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1 Introduction26

Science is a social enterprise. For the most part, scientists do not work in27

isolation but collaborate with others when running experiments, analyzing28

data, or publishing papers. Scientific collaborations have in fact become29

more common over the past decades throughout academic disciplines (Melin30

and Persson, 1996; Henriksen, 2016). On the bright side, collaborations can31

bring about a host of epistemic and practical goods: collaborations seem to32

increase research output and impact (Beaver, 2004; Lee and Bozeman, 2005),33

and may even promote the attainment of truth by allowing researchers to pool34

resources and expertise (Wray, 2002).35

But the social dimension of science can also bring about unequal out-36

comes, as philosophers of science have recently shown. Drawing on results37

from Bruner (2019) and O’Connor (2017), O’Connor and Bruner (2019) show38

that minorities can end up at a disadvantage in bargaining models of scien-39

tific collaboration merely because of their group size. Similar models suggests40

that minority disadvantage can hinder progress in epistemic communities41

(Rubin and O’Connor, 2018), and that intersectionality may aggravate the42

issue (O’Connor et al., 2019).143

Models of inequality in scientific collaboration can be very illuminating:44

they provide a possible account of how discrimination against minority groups45

might arise without explicit or implicit bias, or indeed without any difference46

between groups apart from size. But so far models of inequality in scientific47

collaboration presuppose the existence of social categories, with agents differ-48

ing in some arbitrary but visible trait—e.g. race, gender, age, or membership49

in some other social group. One may therefore be led to conclude that social50

categories are the main or perhaps the only cause of inequality in epistemic51

communities. Conversely, it would be a lot more troublesome if inequality52

could arise in the absence of social categories. Inequality might then persist53

even if we could somehow erase the divides between distinct social groups.54

1The social dimension of science can lead to outcomes that are undesirable for epistemic
reasons as well. For example, community size and connectivity can restrict how quickly
scientists converge on the truth (cf. Rosenstock et al., 2017; Zollman, 2007, 2010). When
facing a risk-return trade-off in their work, individual scientists can divide cognitive labor
in ways that are suboptimal for the community as a whole (Kummerfeld and Zollman,
2015); see also Kitcher (1990) and Weisberg and Muldoon (2009). Other social aspects of
research, such as the influence of funding agencies, can bias epistemic communities and
steer scientists away from the truth (Weatherall et al., 2020; Holman and Bruner, 2017).
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Here, we present a model of scientific collaboration in which inequality55

arises in the absence of social categories. Our model represents a collabora-56

tion network where scientists must bargain over how much effort to invest in57

joint projects and how to divide credit for their labor. We then show that58

some scientists can end up at a disadvantage when all scientists are identical59

except for the position they occupy in the collaboration network. We also60

show that this unequal outcome is due to the structure of the collaboration61

network. Inequality thus emerges in the absence of biases or social categories,62

although biases and social categories may compound the problem.63

The paper proceeds as follows. We begin by reviewing previous results in64

Section 2. We then describe and justify our model in Section 3. In Section65

4, we report results from computer simulations showing that the structure of66

collaboration networks can lead to inequality in the absence of social cate-67

gories. We also show that similar patterns arise in two real-world collabora-68

tion networks and that different dimensions of inequality can come apart. In69

Section 5, we discuss how our findings relate to previous work on bargaining70

models of scientific collaboration. We conclude in Section 6 by considering71

some limitations of our approach.72

2 Previous Models73

Recent models of scientific collaboration focus primarily on inequalities that74

arise due to social categories. There are good reasons for this, as inequality75

in scientific practice is often linked to social markers. The gender gap is a76

particularly well-documented case. Female scientists tend to publish fewer77

papers than male colleagues and are less likely to participate in collaborative78

research projects (West et al., 2013; Larivière et al., 2013). Female scientists79

also receive grants less often when funding agencies assess their quality as80

principal investigators, but not when agencies assess the quality of their81

research proposals (Witteman et al., 2019). There is further evidence that82

young female scientists are less likely to be listed as an author in a published83

paper, despite working more hours in total than male colleagues (Feldon84

et al., 2017). Similar patterns of discrimination arise with respect to race85

and ethnicity as well: in many disciplines, members of underrepresented86

racial and ethnic groups tend to have fewer publications and lower promotion87

rates (Hopkins et al., 2013; Gabbidon et al., 2004; Abelson et al., 2018).88

In an effort to understand inequality of this form, previous models of89
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scientific collaboration consider a simple version of the Nash demand game90

(Nash, 1950). In this game, two agents decide how to split a resource by91

demanding a portion of it. If the sum of their demands is equal to or less92

than the total amount available, each agent gets what they demand. If the93

sum of their demands exceeds the total amount, each agent gets nothing on94

the assumption that the negotiation breaks down when they cannot come to95

an agreement. For simplicity, we assume that agents can only make one of96

three possible demands: low (Low), medium (Med), or high (High). This is97

the mini-Nash demand game (Skyrms, 1996), with payoffs shown in Table 1.98

Table 1: Payoffs in the mini-Nash demand game. In each cell, the first
and second entries represent the payoff to the row and column players. Note
that L < M = 0.5 < H and L+H = 1.

Low Med High
Low L, L L, 0.5 L, H
Med 0.5, L 0.5, 0.5 0, 0
High H, L 0, 0 0, 0

When agents are perfectly rational, any two demands that sum to 1 is a99

pure Nash equilibrium of the game. Given any such configuration, neither100

agent has an incentive to unilaterally demand a different share of the resource.101

For example, there is an equilibrium where both agents demand Med and102

split the resource evenly. Such equilibria are usually termed “fair”. There103

are also mixed Nash equilibria in which agents mix two or all three demands104

with some positive probability. For example, there is an equilibrium in which105

one agent demands Low with probability L/H and the other demands High106

with probability 1− L/H. Such equilibria are usually called “unfair”.107

Equilibrium results differ when agents are not perfectly rational and in-108

stead adjust their strategy via a process of biological or cultural evolution.109

Using the replicator dynamic as a model of evolution, Skyrms (1996) shows110

that there are only two equilibria in a population of agents playing the mini-111

Nash demand game: a symmetric equilibrium with agents who only play112

Med, and a mixed equilibrium with some agents playing Low and others113

playing High. Both equilibria are stable. But the equilibrium in which114

agents play Low and High is inefficient: when two agents demanding Low115

meet, each gets a positive payoff but a portion of the resource goes to waste.116

This inefficient equilibrium can be avoided. If agents differ on the basis117

of arbitrary but visible group makers, agents can make their strategy condi-118
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tional on the group membership of others. In this way, agents can coordinate119

on one of the efficient equilibria (Skyrms and Zollman, 2010). The popula-120

tion then evolves to either the symmetric equilibrium in which everyone plays121

Med, or the asymmetric equilibrium in which one group demands High and122

the other group demands Low. The asymmetric equilibrium is known as a123

“discriminatory norm”: a self-reinforcing pattern of behavior that puts some124

at a disadvantage merely because of group membership (Axtell et al., 2001).125

Interesting outcomes are also possible when the population is divided126

into groups that have different sizes. Although the symmetric equilibrium is127

still stable in this case, Bruner (2019) and O’Connor (2017) show that the128

smaller the minority group is, the more likely the population is to evolve to an129

equilibrium with the minority demanding Low and the majority demanding130

High. Similar results have been observed in experiments where participants131

play the mini-Nash demand game in groups of different sizes (Mohseni et al.,132

2019). Under these conditions, the minority is more likely to demand Low133

because the minority encounters the majority more often than the other way134

around. As a result, the minority is faster to adapt to the demands of the135

majority. This outcome is the cultural analogue of the Red King effect: when136

two populations co-evolve, the population that is slower to adapt gains the137

evolutionary upper hand (Bergstrom and Lachmann, 2003).138

Bargaining games such as the mini-Nash demand game have a long his-139

tory as models of resource division (Skyrms, 1996; Binmore, 1998). Recently,140

the mini-Nash demand game has also been used to model the division of re-141

sources resulting from scientific collaborations. O’Connor and Bruner (2019),142

for example, use the mini-Nash demand game to show that members of the143

minority group can end up at a disadvantage in scientific collaboration sim-144

ply because of their group size. Rubin and O’Connor (2018) draw on similar145

models to describe how discrimination can lead to segregation, which de-146

creases the diversity of collaboration networks and is thus likley to hinder147

epistemic progress in science.148

In the next section, we describe a model using the mini-Nash demand149

game to represent the division of resources resulting from scientific collabo-150

ration. But there are no social categories in our model. Yet, we show that151

inequality can arise because of the structure of the social network.152
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3 Model Description153

The mini-Nash demand game captures important features of scientific collab-154

orations (Rubin and O’Connor, 2018; O’Connor and Bruner, 2019). Scientists155

must often decide whether or not to enter a collaboration. If they choose to156

join the project, they must decide how to divvy up the credit for their joint157

labor. We therefore take a strategy in the mini-Nash demand game to repre-158

sent a request for a certain amount of credit resulting from the joint project.159

One example of how a scientist might claim credit is by requesting to be first160

author. But there are other ways in which a scientist might claim credit. For161

example, a scientist might claim credit by explicitly describing their role in162

an author contribution statement, presenting results from the joint project163

at a conference, or promoting the project in social media. The Low strategy164

thus corresponds to a case in which a scientist requests a small amount of165

credit, the Med strategy to a case in which a scientist demands a moderate166

amount of credit, and the High strategy to a case in which a scientist de-167

mands a large amount of credit. We assume throughout that collaborators168

do enough work to get an output of sufficient quality, thus ensuring that169

research quality is held constant.170

Accordingly, the Low−Low outcome might correspond to a case in which171

both scientists evince a certain level of timidity, do not promote the project172

in social media or do not present it at conferences, and therefore claim only173

a small amount of credit. In this case, both scientists split the credit evenly174

but claim a small amount of credit in total so each scientist ends up receiving175

a low payoff. In the Med−Med outcome, both scientists claim a moderate176

amount of credit—for example, by promoting the project in social media or177

presenting it at conferences. In this case, scientists again split the credit178

evenly but each scientist claims a moderate amount of credit and so ends179

up receiving a moderate payoff. In the Med − Low outcome, the scientist180

playing Med claims a moderate amount of credit while the scientist playing181

Low claims a small amount of credit. Thus, theMed scientist gets a moderate182

payoff and the Low scientist ends up with a small payoff. In the High−High183

and the High − Med outcomes, both scientists claim too much credit for184

themselves and conflict erupts between them. As a result, the collaboration185

breaks down and both are left with a payoff of zero.186

In line with this interpretation of the Low, Med, and High strategies, we187

use the mini-Nash demand game to represent the division of credit in scientific188

collaborations. In contrast to these models, however, we assume that there189
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are no social categories. We make this assumption because in some cases190

inequality in science does not appear to be due to social categories, being191

rather linked to the structure of the social network. A case in point is the192

“Matthew effect” (Merton, 1968). The Matthew effect describes how more193

prominent scientists often get more credit than less prominent ones for work194

of equal worth. Since the mechanism was first proposed, empirical studies195

have confirmed that the Matthew effect is pervasive in science. For example,196

early work shows that inequality in publication counts increases as scientists197

age, suggesting a cumulative effect over time (Allison and Stewart, 1974;198

Allison et al., 1982). Recent work indicates that citation counts appear to199

depend in part on how renowned the author already is (Petersen et al., 2014).200

In fact, the problem seems to be getting worse (Nielsen and Andersen, 2021).201

A Matthew effect can also be seen in science funding, with recipients of early-202

career grants being more likely to win further grants than equally qualified203

peers (Bol et al., 2018).204

In light of the evidence that inequality is not always directly due to social205

categories, we consider how inequality can arise in scientific communities in206

the absence of social categories. As there are no social categories in our207

model, we assume that scientists are identical except for the position they208

occupy in the collaboration network. In particular, we let scientists occupy209

the N nodes of a graph. Further, we let eij = 1 represent a link between210

scientists i and j if they collaborate on a joint project and eij = 0 otherwise.211

Scientist i then plays the mini-Nash demand game with every scientist j such212

that eij = 1. For simplicity, we assume that every scientist i plays the same213

strategy with all their collaborators. In each round of interaction, their total214

payoff is then given by the following expression:215

πi =
N∑
j

eij · rij , (1)

where rij is the reward that i gets from interacting with j. The total payoff is216

thus the sum of rewards that a scientist receives from all their collaborators.2217

As before, we suppose that scientists receive rewards according to Table218

1. Since the values of L and H determine how large the gap is between219

the rewards that Low and High scientists get, we take these parameters to220

2We consider the sum, and not the average, of rewards because it is more natural to
think of scientists adding the rewards they receive from joint projects instead of averaging
them. But results are the same if we instead take the average reward.
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represent how “elitist” or “egalitarian” a scientific community is with respect221

to reward allocation. A large difference between L and H thus represents222

an elitist community where scientists either get a very low or a very high223

reward; in contrast, a small difference represents an egalitarian community224

where scientists mostly get the same reward. Indeed, scientific communities225

appear to differ in how unequal they are (Han, 2003; Clauset et al., 2015).3226

To model the structure of the scientific community, we turn to sciento-227

metric studies on the topology of collaboration networks. Empirical evidence228

suggests that collaboration networks often have predictable properties, de-229

spite discipline-specific idiosyncrasies. In particular, collaboration networks230

tend to have a skewed degree distribution (Newman, 2001, 2004). This is231

to say that the distribution of the number of collaborators per scientist has232

a long tail, with collaboration networks displaying a hub-and-spoke archi-233

tecture in which few scientists (“hubs”) have many collaborators and many234

scientists (“spokes”) have just a few. More precisely, the degree distribution235

of collaboration networks has the following form:236

P (d) ∼ d−γ , (2)

where γ controls the shape of the distribution and d is the degree or the237

number of collaborators per scientist. Networks with a degree distribution of238

this form are known as “scale-free”. A similar degree distribution is common239

in other social and biological networks, such as animal societies and gene240

regulatory networks (Barabási and Oltvai, 2004; Lusseau, 2003).241

For this reason, we consider here scale-free networks with a power-law242

degree distribution. Although there are many models of network formation243

that result in such a distribution, a simple model that is known to gener-244

ate a power-law degree distribution is the preferential-attachment model due245

to Barabási and Albert (1999). In this model of network formation, there246

is initially a small set of interconnected nodes. Nodes are then added to247

the network and connected to other nodes with probability proportional to248

the number of connections that existing nodes already have, giving rise to a249

3As an anonymous referee points out, some academic communities have a reputation
for being especially elitist—e.g. economics. At the same time, economics follows a strict
norm of alphabetical author order implying equal contribution in collaborative work. This
might be taken to mean that economics is an egalitarian discipline after all. However, it is
possible that an alphabetical author order only makes a discipline more elitist: if authors
do not disclose their real contribution to a joint project, others must resort to an author’s
past reputation or institutional affiliation to infer their real contribution.
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Matthew effect in network formation. As the network grows, few nodes ac-250

cumulate many connections and many nodes acquire only a few. In the limit251

of an infinitely large network, the resulting degree distribution converges on252

the power law given by equation (2). There are certainly more sophisticated253

models of network formation, but the preferential-attachment model is a sim-254

ple and widely used one. For comparison, we consider regular networks in255

which every node has the same degree d and thus the average degree is also256

d. In particular, we consider regular networks with d = 2 and d = 5. These257

regular networks are not realistic but serve as control cases, as the scale-free258

networks we analyze have an average degree of about d = 2 (see Figure 1).259

Figure 1: Network topologies. Left : regular network with d = 2. Cen-
ter : regular network with d = 5. Right : scale-free network given by the
preferential-attachment model described in Barabási and Albert (1999) with
one initial node. Shown are networks with N = 30.

Another important feature of collaboration networks is that they are not260

static. Scientists sometimes change their behavior, choosing to collaborate261

when they did not before and vice-versa. There are of course many possible262

ways to represent this. Following O’Connor (2017), Rubin and O’Connor263

(2018), and O’Connor et al. (2019), we suppose that scientists update their264

behavior using a rule known as “myopic best response”. This means that,265

in the first round of interaction, scientists choose a behavior at random. So266

a third of scientists plays Low, a third plays Med, and a third plays High.267

In each round thereafter, there is a small probability that a scientist updates268

their behavior. When a scientist updates their behavior, the scientist chooses269

the strategy that would have been a best response to the set of strategies270

that they encountered in the previous round. Scientists therefore update271

their behavior by best responding to previous plays but only keep a record272

of the most recent interactions.273

Given our interest in the emergence of inequality in collaboration net-274
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works, we track how unequal the payoff distribution is. To do so, we use the275

Gini Index (GI). The GI measures the spread in a distribution. Although276

not entirely free of problems (Langel and Tillé, 2013), the GI is often used in277

economics to measure income and wealth inequality. It has also been applied278

to a variety of other contexts, such as in the study of biodiversity and enzyme279

selectivity (Wittebolle et al., 2009; Graczyk, 2007). The GI is given by:280

GI =

∑N
i=1

∑N
j=1 |πi − πj|

2N
∑N

j=1 πj
(3)

where πi and πj are the payoffs that scientists i and j get from their collab-281

orations. The numerator is the mean absolute difference of the payoff dis-282

tribution and the denominator is twice the mean of the distribution. Since283

payoffs are always non-negative, the GI ranges from 0 (minimum) to 1 (max-284

imum) depending on the spread of the distribution. The GI thus measures285

the spread in the payoff distribution.286

But we show below that it is possible for different aspects of inequality287

to come apart. For example, heterogeneity in the distribution of strategies288

can be low while payoff inequality is high (and vice versa). For this reason,289

we introduce another measure to track heterogeneity in the distribution of290

strategies: the Strategy Heterogeneity Index (SI). Since agents get the same291

payoff when both play Med, we define the SI as the overall frequency of292

agents who play any of the two extreme strategies (i.e., Low and High).293

The SI is therefore given by:294

SI = fL + fH (4)

where fL and fH give the frequency of agents who play Low and High,295

respectively. The SI ranges from 0 (minimum) to 1 (maximum), with 0296

indicating that everyone plays Med and 1 that no one plays Med. Unlike297

the GI, the SI therefore does not track the spread in the payoff distribution;298

it is instead a simple measure of how far the population deviates from the299

state in which everyone plays Med.300

Having defined the structure of the collaboration network, the strategies301

that scientists in the collaboration network can adopt, the rule they use to up-302

date strategies, their payoffs, as well as two measures of inequality, we report303

our results in the next section. Pseudo-code, code for simulations, data, and304

scripts for analyses and figures are available anonymously at: https://osf.305
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io/h6j75/?view_only=479ac3174b8c4fbe8b6e2de1af3e5abe. Pseudo-code306

is also available in the Appendix.307

4 Results308

Computer simulations show that collaboration networks reach an equilibrium309

state in regular and scale-free networks. But regular and scale-free networks310

arrive at different equilibria. In regular networks with d = 2 and d = 5,311

the entire population comes to play Med when L = 0.1 (Figure 2, left). In312

scale-free networks, however, only about 70% of the population plays Med313

at equilibrium. Equilibria also differ when L = 0.4 (Figure 2, right). While314

the entire population continues to play Med in regular networks with d = 5,315

about 40% of the population comes to play Med in regular networks with316

d = 2. In scale-free networks, the share of the population playing Med is317

even smaller: about a third plays Med. The share of the population that318

plays Med at equilibrium therefore depends on not only network topology,319

but also average degree and value of L. (Since L = 1−H, it does not matter320

whether we track L or H; we focus on L when presenting results.)321

Figure 2: Frequency of Med over time. Left : when L = 0.1, Med takes
over regular networks with d = 2 (dotted) and d = 5 (dashed); the equilibrium
frequency of Med is 0.7 in scale-free networks (solid). Right : when L = 0.4,
Med takes over regular networks with d = 5 but the frequency of Med is 0.4
in regular networks with d = 2 and 0.33 in scale-free networks. Results are
average of 100 runs, update probability equal to 0.1, and N = 100.

We also find that the equilibrium composition of scale-free networks varies322
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across values of L (Figure 3, left). When L = 0.1, 72% of the population323

play Med, while 19% play Low and 9% play High. With increasing values of324

L, the equilibrium frequency of Med goes down while the frequencies of Low325

and High go up. When L = 0.4, the frequency of High is higher than the326

frequency of Low: 40% of the population play High, while 35% play Med327

and 25% play Low. Depending on L, the population thus goes from having328

more agents who play Low than High to having more High than Low.329

Figure 3: Equilibrium Composition & Inequality. Left : the equilibrium
composition depends on L. Right : the Gini Index (GI) decreases with L,
while the Strategy Heterogeneity Index (SI) increases with L. Results are
average of 100 runs with 100 time steps, update probability equal to 0.1, and
N = 100.

Next, we find that the payoff distribution becomes less unequal as L goes330

up (Figure 3, right). When L = 0.1, GI is about 0.52; when L = 0.4, GI331

is about 0.4. This is not very surprising given that higher (lower) values of332

L represent more egalitarian (elitist) communities. But the value of L has333

a very different effect on strategy heterogeneity: SI increases with L, with334

SI going from 0.3 when L = 0.1 to 0.66 when L = 0.4. These two measures335

also differ in that SI is more sensitive than GI to changes in the value of L:336

SI goes up by 120%, whereas GI goes down by 23%. As L increases, the337

population thus becomes less unequal with respect to payoff at the same time338

that it becomes a lot more heterogeneous with respect to its composition. In339

other words, payoff inequality and strategy heterogeneity come apart.340

To better understand what factor(s) could be driving and maintaining341

payoff inequality and strategy heterogeneity, we consider how an agent’s342
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strategy depends on the position that they occupy in the collaboration net-343

work. In particular, we compare the degree of agents who play Low with344

those who play High (Figure 4, left). When L = 0.1, agents playing High345

tend to have a higher average degree than agents playing Low: the former346

have about 3.6 collaborators on average, while the latter have about 1.24.347

But when L = 0.4, the pattern is reversed: agents playing Low tend to have348

about 3 collaborators, while agents playing High have around 1.36. When L349

is low, those who play High therefore tend to be well-connected agents; when350

L is high, it is those playing Low who are more likely to be well-connected.351

Inspection of a representative network at equilibrium illustrates this point352

(Figure 4, right). When L = 0.1, agents playing Low tend to occupy more353

peripheral nodes than agents playing High. Given that agents are identical354

except for the position that they occupy in the collaboration network, this355

suggests that it is the structure of the network that drives and maintains356

inequality in our model.357

Figure 4: Degree inequality in model networks. Left : When L is low,
the average degree of those playing High is higher than the average degree
of those playing Low; the pattern is reversed when L is high. Results are
average of 100 runs with 100 times steps, update probability equal to 0.1, and
N = 100. Right : Population composition after 100 rounds of interactions in
a scale-free collaboration network with L = 0.1.

But the structure of the collaboration network in our model is simply358

due to the preferential-attachment model. Although this model of network359

formation gives rise to a degree distribution that is known to resemble the360

degree distribution of real-world collaboration networks, it is clearly an ide-361
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alization. For one, scientists do not always choose who to collaborate with362

on the basis of how many collaborations potential coworkers already have—363

among myriad other factors, geographical proximity, institutional affiliation,364

and personality quirks can also play a role. To examine whether the in-365

equality we observe in our model might arise in the real world, we study the366

same dynamics of collaboration on two well-known and publicly available367

collaboration networks: the GR-QC and the Erdos collaboration network.368

The GR-QC collaboration network includes the authors of papers on general369

relativity and quantum cosmology posted to the pre-print repository arXiv370

between 1993 and 2003 (Leskovec et al., 2007). The Erdos collaboration net-371

work covers all papers written by the extremely prolific mathematician Paul372

Erdős, his co-authors, and their co-authors (Batagelj and Mrvar, 2000).373

Figure 5: Degree inequality in real-world networks. In the Erdos (N =
4, 158; left) and the GR-QC (N = 5, 094; right) collaboration networks, the
average degree of agents who play High is higher than the average degree of
agents who play Low when L is low; the pattern is reversed when L is high.
Results are average of 100 runs with 100 time steps and update probability
equal to 0.1.

We obtain similar results from simulations of a population of agents play-374

ing the mini-Nash demand game with myopic best response on the GR-QC375

and the Erdos collaboration networks (Figure 5). In particular, the average376

degree is higher for agents playing High than for agents playing Low when377

L is low but the pattern is reversed when L is high. When L = 0.1, scientists378

in GR-QC who play Low have about 3.1 collaborators on average, while sci-379

entists who play High have about 7.9 collaborators. A similar pattern holds380
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in Erdos : when L = 0.1, scientists playing Low have a single collaborator on381

average but scientists playing High have about 10.9 collaborators. As L goes382

up, this difference decreases at first and eventually reverses. When L = 0.4,383

scientists in GR-QC who play Low have about 6.37 collaborators on aver-384

age, while scientists playing High have about 2.94. Similarly, scientists in385

Erdos who play Low have 7 collaborators on average, while scientists playing386

High have about 1.46. Network structure therefore drives the emergence of387

inequality in both networks, although the effect is especially pronounced in388

Erdos.389

Figure 6: Degree distribution in model and two real-world networks.
Left : the degree distribution given by P (d) = N · d−γ with γ = 2 (solid
line) approximates the degree distribution in the Erdos collaboration network
(N = 4, 158). Right : the same expression approximates the observed degree
distribution in the GR-QC collaboration network (N = 5, 094). Grey bars
show empirical degree distribution.

It is also worth reiterating that the degree distribution of scale-free net-390

works where inequality arises is similar to that of real-world collaboration391

networks. As already noted, the degree distribution of indefinitely large392

scale-free networks is given by P (d) ∼ d−γ. Empirical studies find that val-393

ues of γ for real-world collaboration networks often range between values of394

1 and 3, depending on dataset and scientific discipline (Barabási et al., 2002;395

Albert and Barabási, 2002). Indeed, this expression approximates quite well396

the degree distribution of both the Erdos and the GR-QC collaboration net-397

works (Figure 6). Considering that the preferential-attachment model was398

built to fit the scale-free degree distribution of real-world networks, this is not399
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very surprising. But it serves as a reminder that the inequality we observe400

in our model is the product of a realistic network structure.401

5 Discussion402

Our model shows that the structure of collaboration networks can give rise to403

inequality even in the absence of social categories. In particular, our model404

shows that inequality in the payoff distribution and heterogeneity in the405

strategy profile of the population arises and persists in collaboration networks406

with a heterogeneous degree distribution. Our model also shows that this407

is so across the full range of values for L—a parameter that controls how408

elitist or egalitarian the scientific community tends to be. Furthermore, our409

model highlights that inequality is not a one-dimensional concept: different410

values of L affect different measures of inequality differently, with inequality411

in the payoff distribution (GI) being high when heterogeneity in the strategy412

profile (SI) is low and vice-versa.413

These results stand in contrast to previous models showing that popula-414

tion structure can promote an even allocation of resources in the mini-Nash415

demand game. For example, Alexander and Skyrms (1999) and Alexander416

(2000) show that spatial structure makes it very likely that a population will417

converge on the fair equilibrium. But this is due to the fact that spatial418

organization is a form of population structure where every agents interacts419

with four neighbors and there is no variation in the degree distribution. When420

population structure leads many to interact with few and few to interact with421

many, our model shows that the resulting heterogeneous degree distribution422

can promote unequal outcomes.423

Our model thus adds to a growing body of work showing that a hetero-424

geneous degree distribution can give rise to inequalities in strategic settings.425

In a network model of the Prisoner’s Dilemma, for example, Du et al. (2008),426

find that a heterogeneous degree distribution favors the spread of coopera-427

tion but that it also promotes an unequal payoff distribution. In public goods428

games, network heterogeneity induces diversity in group size and thus pro-429

motes contributions to the public good (Santos et al., 2006, 2008). But net-430

work heterogeneity can also lead to unequal outcomes in public good games,431

as the proliferation of altruistic behaviors ends up harming some individuals432

(McAvoy et al., 2020).433

Our model also reveals two “regimes” in the emergence of inequality in434
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collaboration networks. One regime is when L is low. In this case, poorly435

connected scientists in the periphery of the collaboration network play Low,436

while their well-connected collaborators play High. The other regime is when437

L is high. In this case, well-connected scientists play Low, while their poorly438

connected collaborators play High. An analogous pattern is apparent in the439

way that the Red King/Queen effect leads to inequality in the mini-Nash440

bargaining game with co-evolving groups of different sizes (Bruner, 2019;441

O’Connor, 2019; O’Connor, 2017). When L is high, the Red King effect442

leads the minority to get less than the majority. When L is low, the Red443

Queen effect kicks in and the minority gets more than the majority.444

Despite this superficial similarity, the mechanism driving the emergence445

of inequality in our model is not the same as in the Red King/Queen. First,446

the Red King/Queen depends on the minority adapting more quickly to447

the strategy of the majority. In contrast, the update rule we use is the448

myopic best response. Strictly speaking, the myopic best response is not449

an evolutionary update rule because agents do not update their behavior450

by copying the behavior of others. So it is not a difference in evolutionary451

tempo that drives inequality in our model. Second, the Red King/Queen452

relies on there being two groups, groups having different sizes, and individuals453

conditionalizing their behavior on the group membership of others. In our454

model, however, the mechanism that gives rise to inequality does not depend455

on a categorical distinction between groups. In fact, there is no partition of456

the population into groups at all—let alone groups of different sizes. Third,457

the Red King/Queen effect causes the minority groups to be at a disadvantage458

when L is high and thus when payoff inequality is low. But in our model459

those who are poorly connected end up at a disadvantage when L is low and460

payoff inequality is high. For all these reasons, the mechanism leading to461

inequality in our model is not the same as the Red King/Queen.462

So what explains the two regimes of inequality that we observe in our463

model? Since the update rule we use is the myopic best response, to answer464

this question we follow Rubin and O’Connor’s (2018, pp. 386-8) account of465

how discrimination arises in their model and consider the probability that466

a strategy is a best response.4 A strategy is a best response if there is no467

other strategy that would yield a higher payoff given the strategies that other468

agents play in the previous round. The probability that a particular strategy469

is a best response thus depends on the probability with which other agents470

4We thank an anonymous referee for raising this point.
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choose each strategy. For an agent who only interacts with one other agent,471

the probability that the strategy Low, Med, or High is a best response472

is just the probability with which the agent encounters another agent who473

plays High, Med, or Low. Initially, agents choose a strategy at random.474

The initial probability that each strategy is a best response is thus 1
3
.475

In scale-free networks, some agents do interact with only one other agent.476

But other agents interact with many more. In such cases, the probability that477

a strategy is a best response can be found in three steps. The first step is to478

determine what strategy is a best response to every possible combination of479

strategies that other agents may choose. The second step is to calculate the480

probability with which each one of these combinations of strategies occurs.481

The third step is to compute the probability that a strategy is a best response482

by summing over the probabilities of every combination of strategies to which483

the strategy in question is a best response. Assuming that agents pick a484

strategy at random, as they do at first, the probability that Low, Med, or485

High is a best response is shown in Figure 7.486

Figure 7: Initial probabilities that Low and High is a best response.
Left : initial probability that Low and High are a best response for d = 1,
d = 2, and d = 5 when L = 0.1. Right : initial probability that Low and
High are a best response for d = 1, d = 2, and d = 5 when L = 0.4.

Notice that the probability that a strategy is a best response depends on487

degree. As already noted, each strategy is a best response with probability 1
3

488

when an agent interacts with only one other agent—and this is so regardless489

of L. But when an agent interacts with more than one agent, the probability490

that a strategy is a best response depends on how many other agents they491
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interact with. When L = 0.1, for example, the probability that Low is a best492

response for an agent who interacts with two other agents is about 0.11. But493

the probability that Low is a best response for an agent who interacts with494

five other agents is only 0.025. When L = 0.4, the probability that Low is a495

best response for an agent who interacts with two other agents is about 0.55.496

But the probability that Low is a best response for an agent who interacts497

with five other agents is about 0.85.498

This allows us to gain some insight into the two regimes for the emergence499

of inequality in our model. Consider two groups of agents: poorly connected500

agents with d = 1, and well-connected agents with d ≥ 5. When L = 0.1, the501

initial probability that Low or High is a best response for poorly connected502

agents is one third. But for well-connected agents the initial probability that503

High is a best response is a lot higher than the initial probability that Low504

is a best response. This is because the relative payoff to High is relatively505

high, so well-connected individuals respond best by “sticking to their guns”506

and making a High demand that yields a large increase in payoff. For this507

reason, well-connected agents tend to play High and end up at an advantage508

when L is low; at the same time, poorly connected agents tend to play Low509

and end up at a disadvantage. When L = 0.4, the initial probability that510

Low or High is a best response for poorly connected agents is again one511

third. For well-connected agents, however, the initial probability that Low is512

a best response is now a lot higher than the initial probability that High is513

a best response. This is because the relative payoff to Low is relatively high,514

so well-connected individuals respond best by playing it safe and making a515

Low demand instead of holding out for what would be a small increase in516

payoff. Well-connected individuals therefore tend to play Low and end up517

at a disadvantage when L is high, while poorly connected agents play High518

and end up at an advantage. The two regimes of inequality we observe in519

scale-free networks is thus due to differences in the initial probability that a520

strategy is a best response.5521

From a social-epistemological perspective, this raises a series of impor-522

tant questions about the structure of collaboration networks. Well-connected523

5The initial probabilities that either Low or High is a best response is higher when
L = 0.4 than when L = 0.1 for d ≥ 2. This helps explain why a smaller share of the
population comes to play Med in scale-free networks and regular networks with d = 2
when L is high. In regular networks with d = 5, the initial probability that Low is a
best response is so high that the population quickly becomes saturated with Low. This
decreases the probability that Low is a best response and allows Med to take over.
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scientists are more likely to play Low and end up at a disadvantage when524

L is high. This means that well-connected scientists are at a disadvantage525

in egalitarian communities where payoff inequality is low. Poorly connected526

scientists, however, are more likely to play Low and thus end up at a disad-527

vantage when L is low. Low values of L correspond to elitist communities528

where payoff inequality is high. Our model therefore raises the specter of a529

two-fold harm: low values of L put poorly connected scientists at a disad-530

vantage when doing so is particularly harmful.531

The two-fold harm of structural inequality is all the more worrisome532

because members of minority or underrepresented groups are often poorly533

connected in real-world collaboration networks. Female scientists, for exam-534

ple, have fewer collaborators than their male colleagues (Araujo et al., 2017;535

Abramo et al., 2009). Black scientists also have fewer collaborators, at least536

in some disciplines (Del Carmen and Bing, 2000). When payoff inequality537

is especially high, the two-fold harm is likely to arise and members of these538

groups might therefore be at a disadvantage. To make matters worse, im-539

plicit and explicit biases linked to social categories might only exacerbate540

the problem: prejudice and discrimination tends to put those groups at a541

disadvantage who are already vulnerable due to the position that they oc-542

cupy in the collaboration network. For example, if scientists choose what543

collaborations to enter on the basis of biases against visible group markers,544

then biases and social categories might contribute to the formation of collab-545

oration networks where pernicious forms of structural inequality are likely to546

emerge.547

6 Conclusion548

Philosophers have long worried that implicit and explicit biases are inevitable549

in science and that they often contribute to various forms of epistemic in-550

justice (Longino, 1990; Fricker, 2007). In recent years, formal models in551

philosophy of science have further shown that it is possible for discrimina-552

tory norms to lead to an unequal allocation of epistemic credit even when553

there are no biases (O’Connor and Bruner, 2019; Rubin and O’Connor, 2018;554

O’Connor et al., 2019). But models proposed so far account for these wor-555

risome patterns in research by positing the existence of social categories.556

Although biases and social categories remain a source of concern, we show557

that unequal outcomes are possible even in the absence of social categories:558
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when scientists bargain with collaborators in a scale-free network, inequality559

arises simply because of the structure of the collaboration network. We also560

bring empirical considerations to bear on models of the social organization of561

science by showing that structural inequality can likewise arise in real-world562

collaboration networks (cf. Martini and Pinto, 2017).563

It is important to keep in mind, however, that our model makes several564

simplifying assumptions. First, we assume that scientist play the same strat-565

egy with all their collaborations. This is unlikely to hold in reality since566

scientists often negotiate different arrangements with different collaborators.567

Second, we consider a dynamic population of scientists who change their568

strategies over time but assume that the structure of the collaboration net-569

work is static. This is not the case in the real world where scientists can570

not only update their behavior, but also adjust their social ties. Third, we571

assume that all scientists are equally competent. This is again unrealistic be-572

cause scientists often differ with respect to how productive they are. Fourth,573

we assume that scientists update their strategy by myopic best response.574

This is a reasonable assumption but update rules based on imitation are575

also plausible. While these simplifying assumptions allow us to isolate and576

better understand an important phenomenon, it would be interesting to re-577

lax these assumptions. Future work could therefore consider collaboration578

networks where scientists pursue different strategies with different collabo-579

rators, change who they interact with over time, differ with respect to how580

productive they are, or update their strategy according to different rules.581
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Appendix582

We use a simple program to simulate the behavior of agents in a network583

who interact with their neighbors by playing the mini-Nash demand game.584

In pseudo-code, the program proceeds as follows:585

586

587

FOR each Network Topology, DO:588

FOR each Agent, DO:589

Choose Demand at random from options L, M, and H590

FOR each Time Step, DO:591

FOR each Agent, DO:592

Get Agent’s Demand593

Get Demand for each of Agent’s neighbors594

Get Agent’s payoff based on own Demand and neighbors’ Demands595

With probability 0.1, DO:596

Find Agent’s Best Response in previous Time Step597

Update Agent’s Demand598

599

600
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