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On the unity between observational and experimental causal discovery

(Sobre la unidad entre el descubrimiento causal observacional y experimental)

Jiji Zhang*
Hong Kong Baptist University

ABSTRACT: In “Flagpoles anyone? Causal and explanatory asymmetries”, James Woodward supplements 
his celebrated interventionist account of causation and explanation with a set of new ideas about causal and ex-
planatory asymmetries, which he extracts from some cutting-edge methods for causal discovery from observa-
tional data. Among other things, Woodward draws interesting connections between observational causal dis-
covery and interventionist themes that are inspired in the first place by experimental causal discovery, alluding 
to a sort of unity between observational and experimental causal discovery. In this paper, I make explicit what 
I take to be the implicated unity. Like experimental causal discovery, observational causal discovery also relies 
on interventions (or exogenous variations, to be more accurate), albeit interventions that are not carried out 
by investigators and hence need to be detected as part of the inference. The observational patterns appealed to 
in observational causal discovery are not only surrogates for would-be interventions, as Woodward sometimes 
puts it; they also serve to mark relevant interventions that actually happen in the data generating process.

KEYWORDS: causal discovery; exogenous variation; intervention; interventionism; invariance; observatio-
nal data.

RESUMEN: En “Flagpoles anyone? Causal and explanatory asymmetries”, James Woodward complementa su 
celebrada teoría intervencionista de la causación y la explicación con nuevas ideas sobre asimetrías causales y expli-
cativas, extraídas de recientes métodos de descubrimiento causal a partir de datos observacionales. Entre otras cosas, 
Woodward establece interesantes conexiones entre el descubrimiento causal observacional e ideas intervencionis-
tas inspiradas inicialmente en el descubrimiento causal experimental, aludiendo a cierta unidad entre el descubri-
miento causal observacional y experimental. Al igual que el descubrimiento causal experimental, el descubrimiento 
causal observacional también se apoya en intervenciones (o variaciones exógenas, para ser más precisos), aunque 
sean intervenciones que no son realizadas por investigadores y por tanto tienen que ser detectadas como parte de la 
inferencia. Los patrones observacionales a los que se apela en el descubrimiento causal observacional no son los susti-
tutos de posibles intervenciones, como Woodward algunas veces sugiere; también sirven para marcar intervenciones 
relevantes que de hecho tienen lugar en el proceso de generación de datos.

PALABRAS CLAVE: descubrimiento causal; variaciones exógenas; intervención; intervencionismo; invariancia; 
datos observacionales.
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1. Introduction

For several decades now, how to discover causal relations between variables using statistical 
methods has been a vigorous research program pursued in several fields. One of the main 
goals is to invent principled and reliable ways to infer which variable has a (direct) causal 
influence on or is (directly) causally relevant to which variable in a multivariate system, 
from observational data and without prior knowledge or assumption about the causal or-
der. The term ‘observational’ is used to indicate the absence of any active control or manip-
ulation by investigators of the data generating process under investigation; observational 
data are, so to speak, generated by the system of interest running its natural course. By con-
trast, experimental data are generated by a process that includes active control or manipu-
lation by investigators. A paradigmatic example is a randomized controlled trial, where the 
allocation of treatments is designed and administered by the investigators (with a randomi-
zation scheme). Causal inference based on experimental data is regarded as by and large 
more reliable than that based on observational data, but the importance and potential of 
the latter are getting increasingly acknowledged and appreciated, due on the one hand to 
the relative abundance of observational data, especially in the era of big data, and on the 
other hand to significant methodological advances in recent years (Peters et al., 2017).

James Woodward’s rich and illuminating article (Woodward, 2022) amply demon-
strates that the cutting-edge methods for causal discovery from observational data (or 
observational causal discovery as I will henceforth call it) have novel implications for 
philosophical theorizing about causal and explanatory asymmetries. A champion of the in-
fluential interventionist approach to causation and explanation, Woodward draws inter-
esting connections between observational causal discovery and interventionist themes that 
are inspired in the first place by experimental causal discovery, alluding to, as I understand 
it, a sort of unity between observational and experimental causal discovery. In this paper I 
follow up on this issue and make the implicated unity more explicit. My main thesis is that 
like experimental causal discovery, observational causal discovery, when applicable, also re-
lies on interventions (or exogenous variations, to be more accurate), albeit interventions 
that are not carried out by investigators and hence need to be identified as part of the infer-
ence. Observational causal discovery is epistemologically more challenging in large part be-
cause of the additional need to infer the loci of interventions.

To proceed, I will first review in Section 2 some distinctive features of Woodward’s 
(2003) notion of an intervention, and two ways in which this notion is used to character-
ize the presence of a causal relation. I suggest that the essential element in Woodward’s no-
tion of intervention is a notion of exogenous variation, and that although Woodward pre-
fers not to build a condition of invariance or mechanism-preservation into the notion of an 
intervention, the kind of intervention or exogenous variation that matters in causal infer-
ence must satisfy some condition of invariance. This makes salient the possibility of some-
times detecting exogenous variation through invariance, which is related to Woodward’s 
latest discussion of a value-relationship independence/invariance principle for causal dis-
covery. Then, in Section 3, I briefly recall Richard Scheines’s (2005) argument that the in-
ference to the presence of a causal relation using observational conditional dependence and 
independence relations is essentially the same as the inference based on experimental data. 
I suggest that the essential common element is that they both infer the presence of a causal 
relation between two variables from their covariation in which one variable’s variation is 
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(known or assumed or inferred to be) exogenous with respect to the other. I apply this idea, 
in Section 4, to examine the more recent and powerful methods of observational causal dis-
covery discussed by Woodward (2022), suggesting subtle modifications to some of his in-
terpretations while endorsing his main points. I close in Section 5 with brief concluding re-
marks.

2. Woodward’s conception of intervention

In his seminal work, Woodward (2003, p. 98) presented a careful definition of what counts 
as an intervention on one variable with respect to another. For present purposes, we need 
not go into more details than noting a few features of the account. First, Woodward ex-
plicitly relativizes an intervention on a variable with respect to another variable, so we talk 
about an intervention on variable X with respect to variable Y rather than an intervention 
on X simpliciter. Second, an intervention on X with respect to Y is represented as an inter-
vention variable taking a value, and the core requirement for an intervention variable for 
X with respect to Y is that it influences Y, if at all, only through X and is statistically inde-
pendent of all other variables that influence Y without going through X.1 Third, and very 
important for my thesis, an intervention does not necessarily involve a human action; any 
garden-variety variable may serve as an intervention variable for X with respect to Y as long 
as it stands in the right causal relations with X and Y. Fourth, an intervention is not re-
quired to be mechanism-preserving; that is, it is possible that an intervention on X with re-
spect to Y changes how Y is affected by X (though by definition, this effect of the interven-
tion cannot be a result of the intervention affecting causes of Y whose influences do not go 
through X.)

The restriction to singletons in the first feature is not essential. Woodward’s definition 
can be easily extended to cover interventions on a set of variables with respect to another 
set of variables, but for his main purposes the version for singletons is sufficient. The third 
feature Woodward refers to as nonanthropomorphism. A straightforward implication of 
this feature is that even though no intervention is carried out by investigators in an obser-
vational study, an intervention on a variable of interest with respect to another may none-
theless have taken place. Therefore, it is at least coherent to say that observational causal 
discovery also relies on interventions.

The fourth feature is probably the most distinctive and controversial. As is noted by 
Woodward, many other influential accounts of interventions or manipulations, such as 
those of Spirtes et al. (2000) and Pearl (2009), build in some version of a mechanism-pres-
ervation or invariance condition. Woodward’s main worry regarding those accounts is that 

1 In Woodward (2003), another requirement put down for an intervention variable for X is that there 
are some possible values of the variable such that when the variable takes these values, X ceases to de-
pend on its other causes and depends solely on the intervention variable. These values implement what 
are sometimes referred to as “hard” or “surgical” interventions. However, in the subsequent definition 
of an intervention, there does not seem to be any requirement that these values be taken by the inter-
vention variable in an intervention. In any case, Woodward (2022) also talks about “soft” intervention 
variables, so I will assume in this paper that this requirement is not imposed on an intervention vari-
able.
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the notion of intervention on X with respect to Y would then already invoke the causal re-
lationship between X and Y, and to use such a notion as he does to characterize the causal 
relationship between X and Y would smell of a potentially objectionable kind of circularity. 
This is an interesting point, but more relevant to my present purpose is an apparent diffi-
culty with the more liberal notion of an intervention. To see the difficulty, let us compare 
two ways a causal relation between X and Y may be characterized in Woodward’s frame-
work.

One way is to say (roughly) that

(1) X is a (type-level) cause of Y if and only if there is an intervention on X with re-
spect to Y that would change the value of X, under which the value (or probability 
distribution) of Y would also change.

Woodward (2003, p. 108) considered the possibility that if an intervention is not re-
quired to be mechanism-preserving, then some interventions may end up destroying the 
causal influence of X on Y and not changing the value of Y. As he rightly pointed out, this 
possibility does not threaten (1), whose right hand side is existentially quantified. How-
ever, I worry about the possibility of a “false positive”: an intervention on X with respect 
to Y that is not mechanism-preserving may change the value of Y, in which case X is de-
clared a cause of Y by (1), but intuitively a mechanism-altering intervention is not a good 
test of the pre-intervention causal relation between X and Y. This issue becomes more sali-
ent if we compare (1) to another way of characterizing the causal relationship between X 
and Y, which goes through a notion of invariance. Although Woodward does not require 
every intervention on X with respect to Y to preserve whatever causal mechanism there 
is between X and Y, invariance under some such interventions is regarded as a necessary 
condition for a generalization relating X and Y to be causal (with the causal direction go-
ing from X to Y).2 Since, as I think it is safe to assume, X is a (type-level) cause of Y only if 
they are related by a true generalization that is causal (with the direction from X to Y), we 
can also say that

(2) X is a (type-level) cause of Y only if there is a true generalization relating X and Y 
and an intervention on X with respect to Y such that the generalization remains 
true under the intervention.

Call an instance that makes an existentially quantified statement true a witnessing in-
stance. A witnessing intervention for the right hand side of (2) is required to satisfy a kind 
of invariance or mechanism-preservation, whereas a witnessing intervention for that of 
(1) is apparently not. Given how central the notion of invariance is in Woodward’s ac-
count of causal and explanatory generalizations, this apparent discrepancy between (1) and 
(2) should probably be resolved or accounted for in favor of (2). This does not mean that 
(1) must be extensionally inadequate without an explicit requirement of invariance, be-
cause it may be argued that only a mechanism-preserving intervention can satisfy the prop-

2 There is a small technical catch in regarding it as a sufficient condition, and Woodward introduces a 
further qualification called a testing intervention to render the necessary condition also sufficient (see 
also Woodward and Hitchcock, 2003). Since I can make my point without entering that complica-
tion, I will just work with an “only if” statement here. 



https://doi.org/10.1387/theoria.22691 67

On the unity between observational and experimental causal discovery

erty stated in the right hand side of (1), or that whenever there is a witnessing intervention 
that is not mechanism-preserving, there is also a witnessing intervention that is. But it sug-
gests strongly that the kind of intervention that matters for causal inference in the spirit of 
(1) needs to satisfy some condition of mechanism-preservation. Moreover, although the 
additional requirement often amounts to just another assumption, it also creates the op-
portunity of sometimes detecting the presence of an intervention by checking invariance 
or some surrogate property of a hypothesized causal generalization. We will return to this 
point in Section 4.

Finally, if we look back at the second feature noted earlier of Woodward’s characteri-
zation of an intervention, together with the characterization of a causal relation between X 
and Y given in (1), it is clear that the relevant role of an intervention on X with respect to Y 
in the context of causal inference is to create a change or variation in X that is not due to a 
change in Y nor associated with any variation in a cause of Y whose influence on Y does not 
go through X. Call such a variation an exogenous variation of X with respect to Y. I suspect 
that most if not all of the insights of interventionism can be recast in terms of a notion of 
exogenous variation. I will not explore here how feasible and desirable it is to reformulate 
interventionist theories in terms of exogenous variation, but a potential advantage is worth 
noting: the notion of exogenous variation, unlike the notion of intervention-induced vari-
ation, accommodates the possibility of spontaneous and uncaused variations of a variable 
that are nonetheless exogenous with respect to another variable and are therefore as good as 
intervention-induced variations for the purpose of probing the causal relation between the 
variables.

This advantage is perhaps merely theoretical. It is plausible to think that in practical 
causal inference, exogenous variations always result from some interventions. Even so, as I 
will stress later, observational causal discovery relies heavily on detecting interventions (as 
opposed to interventions known in advance, as in experimental causal discovery), but in 
many cases, no intervention variable is explicitly located, and it is, strictly speaking, only the 
exogeneity of variation that is detected.

3.  Scheines on the similarity between observational and experimental causal discovery

In addition to Woodward (2022), another inspiration for the main thesis of this paper is 
the insight of Scheines (2005). Scheines compared the basic rationale of experimental in-
ference of a causal relation between two random variables and that of observational infer-
ence of a causal relation based on graphical modelling, where a directed graph is taken to 
represent both a causal structure and a statistical model defined by a set of statistical condi-
tional independence constraints (Pearl, 1988, 2009; Spirtes et al., 2000). The similarity be-
tween them highlighted by Scheines is depicted in Figure 1. In Figure 1(a), the presence of 
a causal influence of X on Y (represented by the arrow from X to Y) is inferred based on an 
experimental intervention on X, where the probability distribution of X is known (or as-
sumed) to be determined by an intervention variable (say, a randomizing device) IX, and 
the statistical dependence between X and Y under this intervention is taken to be evidence 
for the causal influence of X on Y. In Figure 1(b), the presence of a causal influence of X on 
Y is inferred from passive observations on X and Y as well as some other variables such as Z1 
and Z2. Suppose the observations turn out to warrant the statement that Z1 is statistically 
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independent of Z2 (conditional on the empty set) and the statement that they are statisti-
cally independent of Y conditional on X, together with a number of conditional depend-
ence statements.3 Under two assumptions known as the causal Markov condition and the 
Faithfulness or Stability condition (Spirtes et al., 2000; Pearl, 2009), it follows from these 
conditional independence and dependence statements that X does not have a causal influ-
ence on either Z1 or Z2 (as represented by the arrowheads at X on the edges between Z1 
and X, and between Z2 and X), and that X has a causal influence on Y (as represented by 
the arrow from X to Y).

Scheines calls a variable such as Zi (either Z1 or Z2) in Figure 1(b) a detectible instru-
ment (for X with respect to Y) and stresses the following similarity between such a detect-
ible instrument and the intervention variable IX in Figure 1(a): both are adjacent to X but 
not adjacent to Y in the respective causal graph, and neither is influenced by X. As Scheines 
takes some care to explain, having a variable with these features allows an inference from 
certain observed statistical relations to the presence of a causal arrow from X to Y. That is 
why he calls such a variable an instrument (for causal inference concerning X and Y). In 
observational causal discovery such a variable is not known in advance to be an instrument 
but its status as an instrument is sometimes detectible from data, as the simple example in 
Figure 1(b) illustrates.

Figure 1
Scheines’s (2005) comparison between experimental causal discovery and (a prominent approach to)  

observational causal discovery: (a) experimental inference to a causal arrow from X to Y based 
on investigators’ interventions on X with respect to Y; (b) observational inference to a causal arrow 

from X to Y based on detecting Z1 or Z2 as an instrument.

A difference between Zi in Figure 1(b) and IX in Figure 1(a) is also noted by Scheines. 
The former is not necessarily a cause of X, as indicated by the circle at Zi on the edge be-
tween Zi and X,4 whereas the latter is a cause of X. In other words, Zi could be but is not 

3 Namely, Z1 and X are dependent conditional on any subset of the other variables, and so are Z2 and 
X, and are X and Y, which is why each of these pairs of variables has an edge between them in Fig-
ure 1(b). 

4 In the framework Scheines (2005) works with, Zi o® X means roughly that it could be Zi ® X, in which 
case Zi is a cause of X, or Zi « X, in which case Zi is not a cause of X but there is a common cause of Zi 
and X.
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necessarily a (soft) intervention variable for X with respect to Y.5 One way to view the role 
of Zi in this simple example is that even if it is not itself an intervention variable for X with 
respect to Y, it is a surrogate for an unobserved intervention variable for X with respect to 
Y (namely, an unobserved common cause of X and Zi). From this perspective, the exam-
ple illustrates the idea of detecting interventions in observational causal inference, inter-
ventions that are not carried out by investigators. Another, closely related but on my view 
more apt conception is that the detected features of Zi serve to show that some variation of 
X is exogenous with respect to Y, and the accompanying covariation of Y implies that X has 
a causal influence on Y. As explained by Scheines, the inference in this case is not just that 
X is a cause of Y, but moreover that there is no unobserved common cause of X and Y (see 
also the notion of “visibility” in Zhang, 2008). Since this simple example does not contain 
any observed common cause either, it is, so to speak, the whole variation of X that is de-
tected to be exogenous with respect to Y. In more complex cases, it will be the variation of 
X conditional on or adjusted for some observed variables that is detectibly exogenous with 
respect to Y. Such exogenous variations are perhaps most plausibly interpreted as resulting 
from certain (soft) interventions on X with respect to Y, but conceptually they do not have 
to be. In any case, only a surrogate for an intervention variable may be detected in such in-
ferences.

4. More recent advances in observational causal discovery

The kind of observational causal discovery discussed by Scheines (2005) remains a major 
approach to inferring causal structures from observational data. However, since 2006, a 
plethora of other methods for observational causal discovery have been proposed and re-
fined, some of which are more powerful at least in the following respect: under suitable 
assumptions, they can reliably infer the causal relation between two variables without ap-
pealing to any detectible instrument in Scheines’s sense. These more recent advances in ob-
servational causal discovery figure centrally in Woodward’s (2022) new accounts of causal 
and explanatory asymmetries. I submit that although these methods do not proceed by 
identifying an observed variable as an intervention variable or a surrogate thereof, the de-
tection of exogenous variations still plays a pivotal role in them.

Consider first the class of methods that employ the setup of noisy functional causal 
models. For simplicity, I will follow Woodward (and Scheines) to focus attention on the 
task of inferring the causal relation between two variables X and Y. The basic setup for 
many of these methods is to assume that the effect variable is a function of the cause varia-
ble and a noise or error term that is statistically independent of the cause variable. Thus, as-
suming without loss of generality that the causal arrow goes from X to Y, then it is assumed 
that the causal generalization relating X and Y can be properly represented as Y = f(X, N), 
for some function f (of a certain form) and some noise term N (of a certain type) such that 

5 To repeat the clarification stated in footnote 1, I am following Woodward (2022) to allow interven-
tion variables to be “soft”, in that they are not required to relieve the target variable of dependence on 
other causes, but only required to satisfy the other conditions in Woodward’s (2003) definition of an 
intervention variable. 
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X and N are statistically independent. As is observed by Woodward (2022, p. 34), one con-
sequence of such an assumption is that the noise term N can be viewed as a (soft) interven-
tion variable for Y with respect to X. This way of thinking of the noise term is warranted 
if the noise term is interpreted as representing omitted causes of Y, an interpretation that 
seems commonly adopted in practice. But again, even if the noise term is not interpreted 
as a cause of Y, but is instead regarded as representing a genuinely stochastic component in 
the generation of a value of Y from a value of X (Steel, 2005), it can still be viewed as pick-
ing out a part of the variation of Y that is exogenous with respect to X.

More important for my present purpose is the following point alluded to by Wood-
ward. If the causal mechanism between X and Y is correctly represented as Y  =  f(X,  N), 
with X and N being statistically independent, then whatever generate the values of X “op-
erate so as to change the value of X in a way that is independent of the other causes of Y” 
(Woodward, 2022, p. 34), and so may be regarded as interventions on X with respect to 
Y, or at any rate as exogenous variations of X with respect to Y (even if they are somehow 
spontaneous and uncaused). From this viewpoint, it is useful to think of the fitting of a 
noisy functional causal model as potential evidence for detecting interventions or exog-
enous variations: if data support the hypothesis of a functional relationship Y  =  f(X,  N) 
with statistical independence between X and N, then it may be evidence that the observed 
variation of X is exogenous with respect to Y.

It is not necessarily evidence because it is sometimes possible to fit such a model come 
what may, even when X does not cause Y. The best known example is that if X and Y fol-
low a bivariate Gaussian distribution, then it always fits Y = f(X, N) for some linear func-
tion f and some Gaussian noise N that is independent of X. On the other hand, if no re-
striction is put down on f or N, then it is always possible to fit a noisy functional causal 
model for any two random variables with continuous support (Hyvärinen and Pajunen, 
1999; Zhang et al., 2014). However, under some restrictions, such as linear non- Gaussian 
acyclic models (LiNGAM, Shimizu et  al., 2006), additive noise models (ANM, Hoyer 
et  al., 2009), or post-nonlinear models (PNL, Zhang and Hyvärinen, 2009), it becomes 
nontrivial to satisfy the requirement of statistical independence between the noise term 
and the hypothesized cause. It has been shown that either always (for LiNGAM) or ge-
nerically (for ANM and PNL), this requirement can be met for at most one causal direc-
tion: if the joint probability distribution of X and Y is compatible with a generalization 
Y = f(X, N) satisfying the model restrictions such that X and N are statistically independ-
ent, then it is not compatible with any generalization X  =  g (Y,  N’) satisfying the model 
restrictions such that Y and N’ are statistically independent. Moreover, it is clear that for 
LiNGAM models, if X and Y are confounded by an unobserved common cause, then under 
a suitable faithfulness assumption, the requirement of statistical independence between the 
noise term and the hypothesized cause can be met in neither direction (Entner and Hoyer, 
2010). I suspect that this is also generically the case for ANM and PNL models.

With such model restrictions, a standard procedure to infer a causal relation from an 
observed covariation between X and Y is based on checking whether a noisy functional 
causal model (satisfying the model restrictions) is warranted by data in either direction. If 
it is warranted in one direction but not in the other, then the former direction is inferred 
to be the causal direction. Such a procedure is usually taken to assume in the first place that 
there is no unobserved confounding and the task is to decide between two hypotheses: that 
X causes Y (without confounding) or that Y causes X (without confounding). However, 
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we may also think of the procedure as trying to detect interventions or exogenous varia-
tions, using the asymmetric possibility of fitting a suitable model as a criterion. Viewed this 
way, the procedure may or may not return an informative answer, depending on whether 
the criterion is or is not met for judging a variable to have an exogenous variation with re-
spect to the other variable in their covariation. If an uninformative answer or suspension of 
judgement is allowed, it is unnecessary to assume away latent confounding and force a se-
lection between two hypotheses of an unconfounded causal relation. When we cannot fit 
a noisy functional causal model in either direction, an option is to remain silent about the 
causal relation between X and Y (and suggest that there is probably a latent confounder), 
because no suitable exogenous variation is detected.

Moreover, even when there is confounding and the variation of either variable is not 
entirely exogenous with respect to the other, it may be possible to identify parts of the vari-
ations that are exogenous and exploit them to draw informative causal inference. As men-
tioned earlier, the setup of noisy functional causal models renders the noise terms a sort of 
intervention variables or proxies for exogenous variations. Sometimes they may be recover-
able from data to a sufficient extent even when there is latent confounding, and be used to 
infer causal relations. A case in point is the approach to inferring LiNGAM models based 
on independent component analysis (ICA). Even when latent confounding is present, how 
observed variables depend on the exogenous noise terms can be sufficiently recovered un-
der a faithfulness assumption using the so-called overcomplete ICA, so that the acyclic 
causal structure among the observed variables can still be inferred (Hoyer et al., 2008; Sale-
hkaleybar et al., 2020).

In addition to the methods based on noisy functional causal models, Woodward 
(2022) discussed a class of methods that exemplify what he calls the value-relationship in-
dependence/invariance (VRI) principle. As I understand it, the VRI principle is a further 
elaboration or enrichment of Woodward’s characterization of causal and explanatory gen-
eralizations in terms of invariance under interventions (as we emphatically reviewed in Sec-
tion 2). An important new element is that invariance under interventions can sometimes 
be indicated by or inferred from a sort of “independence” between variations in hypoth-
esized cause variables and the hypothesized generalization relating the cause variables to an 
effect variable. The latter, in turn, may be inferred from observational data in various ways. 
Consider again the basic task of inferring the causal relation between two variables X and Y 
for illustration. The idea is that a hypothesized generalization relating X to Y, either repre-
sented by a functional relationship Y = f(X) (as in, e.g., Janzing et al., 2012) or represented 
by the conditional probability function P(Y|X) (as in, e.g., Zhang et  al., 2015), may be 
judged to be “independent” of variations of X, according to various criteria of “independ-
ence” that can be checked based on observational data. This “independence”, according 
to Woodward, is a “surrogate for or indicator of” the notion of invariance under interven-
tions.

I find this viewpoint compelling, but would like to highlight a point that is not suffi-
ciently stressed in Woodward’s discussion. In the cases where we detect the desired “inde-
pendence” between variations of X and a hypothesized generalization relating X to Y (and 
no such “independence” in the other direction), and on this basis infer that X is a cause 
of Y, we are also committed to inferring that whatever generates the observed values of 
X amounts to a Woodwardian intervention on X with respect to Y, or at any rate consti-
tutes exogenous variations of X with respect to Y (even if they are somehow spontaneous 
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or uncaused). Therefore, the detected “independence” not only indicates counterfactual 
invariance under world-be interventions, as Woodward (2022) rightly claims, it also indi-
cates that the actual data generating process features some interventions on X with respect 
to Y and that the generalization relating X to Y is actually invariant under these interven-
tions.

This perspective of detecting interventions or exogenous variations through crite-
ria of independence/invariance is more conspicuous in causal inference based on observa-
tional data from multiple populations or regimes, which feature different probability dis-
tributions but are assumed to share a causal structure (e.g., Peters et al., 2016; Huang et al., 
2020; Mooij et  al., 2020). Woodward (2022) gives a simplified example of this sort on 
pp. 36-37, where P(Y|X) is observed to be invariant in two datasets that feature different 
marginal distributions of X. As he describes in a footnote, one way to view this kind of in-
ference is that the observed invariance across the two datasets is taken to indicate that the 
change in P(X) results from an intervention on X with respect to Y, which, together with 
the accompanying change in P(Y), licence the conclusion that X is a cause of Y. This cri-
terion of invariance of one module in a causal network under changes of another module 
can be generalized into a criterion of independence between changes of different modules 
in a causal network (Huang et al., 2020). The generalized criterion is akin to Woodward’s 
(2022) brief discussion of the independence between different causal relationships (cf. Pe-
ters et al., 2017), and can be used to detect where multiple interventions have taken place 
respectively in a complex data generating process.

5. Conclusion

According to Woodward’s non-anthropomorphic interventionism, intervening is a matter 
of causing in the right way and may happen without an agent’s deliberate design or action. 
Consequently, the data generating process in observational causal discovery, despite the ab-
sence of deliberate control by the investigator, often features relevant interventions that 
may be detected by various clever means. Following the lead of Scheines (2005) and Wood-
ward (2020), I have tried to argue that a variety of approaches to observational causal dis-
covery can be seen as attempts, in one way or another, to detect interventions or exogenous 
variations in the data generating process. On my view, therefore, observational causal dis-
covery and experimental causal discovery are unified in at least the following sense: they 
both need detectible covariation under exogenous variation to draw a positive causal con-
clusion. In experimental studies, the exogenous variation is ensured by the experimental 
setup, if designed adequately, and only the covariation needs to be detected. In observa-
tional studies, however, the biggest challenge is to find ways to detect exogenous variations 
as well as the accompanying covariations.

This additional challenge for observational causal discovery is of course epistemologi-
cally significant. Relevant interventions are not guaranteed to be present in observational 
settings. Even when they are, it is not always possible under acceptable or reasonable as-
sumptions to detect them. And even when it is possible, the assumptions that enable the 
detection, though plausible, are usually less secure than those needed to ensure the presence 
of an intervention in an experimental setting. It is therefore right to exercise more caution 
towards results of observational causal discovery, and when feasible, to validate the results 
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with experiments. Nonetheless, the unity between observational and experimental causal 
discovery, if real, suggests that the former’s epistemological status is probably more contin-
uous with the latter’s than it is often thought to be.
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