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Computational causal discovery: Advantages and assumptions

Descubrimiento causal computacional: ventajas y asunciones

Kun Zhang*
Department of Philosophy, Carnegie Mellon University

ABSTRACT: I would like to congratulate James Woodward for another landmark accomplishment, after publis-
hing his Making Things Happen: A Theory of Causal Explanation (Woodward, 2003). Makes Things Happens gives 
an elegant interventionist theory for understanding explanation and causation. The new contribution ( Woodward, 
2022) relies on that theory and further makes a big step towards empirical inference of causal relations from non-
experimental data. In this paper, I will focus on some of the emerging computational methods for finding causal 
relations from non-experimental data and attempt to complement Woodward’s contribution with discussions on 
1) how these methods are connected to the interventionist theory of causality, 2) how informative the output of the 
methods is, including whether they output directed causal graphs and how they deal with confounders (unmeasu-
red common causes of two measured variables), and 3) the assumptions underlying the asymptotic correctness of the 
output of the methods about causal relations. Different causal discovery methods may rely on different aspects of the 
joint distribution of the data, and this discussion aims to provide a technical account of the assumptions.

KEYWORDS: causal direction; interventionist theory; linear, non-Gaussian causal model; confounders; faithfulness.

RESUMEN: Quiero dar la enhorabuena a James Woodward por Flagpoles anyone? (Woodward, 2022), una con-
tribución que supone un nuevo hito tras la publicación de Making Things Happen: A Theory of Causal Explanation 
(Woodward, 2003). Making Things Happen ofrece una elegante teoría intervencionista para entender la explicación 
y la causación. Esta nueva contribución (Woodward, 2022) se apoya en esa teoría y da grandes pasos hacia la inferencia 
empírica de relaciones causales a partir de datos no experimentales. En este artículo, me centro en algunos métodos compu-
tacionales emergentes para encontrar relaciones causales a partir de evidencia no experimental y trato de complementar la 
contribución de Woodward discutiendo: 1) cómo estos métodos se conectan con la teoría intervencionista de la causalidad; 
2) cómo de informativos son los resultados de estos métodos, incluyendo si producen gráficos causales dirigidos y cómo tra-
tan los confusores (causas no medidas comunes a dos variables  medidas); y 3) las asunciones subyacentes a la corrección 
asintótica de los resultados de estos métodos de descubrimiento causal. Diferentes métodos pueden basarse en aspectos di-
ferentes de a distribución conjunta de los datos. Esta discusión pretende dar una explicación técnica de tales asunciones.

PALABRAS CLAVE: dirección causal; teoría intervencionista; modelo causal lineal, no-Gaussiano; confusores; fideli-
dad.
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1. Introduction: Interventionist Theory of Causality and Discovering Causality

Given two variables X and Y, we are concerned with the causal direction between them or 
the direction of explanation. Causal relations are potentially exploitable for the purpose of 
applying proper manipulations to achieve a certain goal, and it is naturally desirable to pro-
vide an interventionist account of causality (Woodward, 2003). Woodward (2022, p.  8) 
provides a simple version of the interventionist theory:

(M) X causes Z if and only if (i) it is possible to intervene to change the value of X and (ii) un-
der some such intervention on X, the value of Z would change.

An intervention on X is an unconfounded manipulation of X that changes any other vari-
able, if at all, only through the change in X. That is, the intervention on X directly changes 
X, but does not directly change any other variable in the system. There are “hard” and 
“soft” interventions. A hard intervention breaks the connection from direct causes of X 
(except the intervention) to X, and a soft intervention does not break the connection from 
those direct causes to X but provides X with an exogenous source of variation that is inde-
pendent from other causes of X (Eberhardt and Scheines, 2007).

As noted by Woodward (2003, 2022), the notion of intervention is itself a causal no-
tion and as such has a notion of causal direction built into it. However, it provides a way 
to verify causal claims, if one is able to actually apply changes to the system that are con-
firmed to be interventions. For instance, that might be possible if time order information is 
available such that one can check whether the change to X would directly change any other 
variable. Even without time order information, sometimes we can make sure that the ap-
plied changes are valid interventions, thanks to the partial knowledge of the process; for in-
stance, gene knockout is an intervention on a gene that can be exploited for inferring regu-
latory networks (Pinna et al., 2010). This also suggests that applying proper interventions 
is usually too expensive, too time-consuming, or even impossible.

On the other hand, if one thinks of the observed data (which clearly have multiple val-
ues) as produced under unknown or natural “interventions”, then causal direction may 
be revealed by finding whether certain types of “interventions” actually exist in the data. 
This idea makes it possible to find causal direction by analyzing observed data, as argued 
by Woodward (2022) and demonstrated by the algorithms that were recently proposed 
for distinguishing cause from effects (Shimizu et al., 2006; Zhang and Chan, 2006; Hoyer 
et al., 2009; Zhang and Hyvärinen, 2009; Janzing et al., 2012; Huang et al.).

In fact, the past decades witnessed much progress in discovering causal informa-
tion from non-experimental data, known as causal discovery, and its successful applica-
tions. Since the 1990s, conditional independence relationships in the data have been ex-
ploited to recover the underlying causal structure to a certain extent (Spirtes et al., 1993; 
C hickering, 2002). Recently it has been shown that algorithms based on properly defined 
functional causal models (FCMs) are able to find causal direction between two variables 
and hence estimate the underlying causal Directed Acyclic Graph (DAG) uniquely. Can 
we trust the “causal” information produced by such computational causal discovery meth-
ods? How are the methods related to the interventionist theory of causality? Under what 
assumptions can those method produce causal information? Below we will focus on those 
questions.
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2.  Relating Interventionist Theory to Causal Direction Determination between Two Variables

Woodward (2022) suggests that “when one infers causal direction on the basis of non-ex-
perimental information what one is in effect doing is inferring what would happen if vari-
ous interventions were to be performed without actually doing the interventions, relying 
instead on other features present in such situations—the independence/invariance fea-
tures.” Indeed, we can think of the goal of causal discovery from non-experimental data as 
finding the footprint of unknown interventions that were applied (by nature, for instance) 
on the data.

Woodward formulates the Causal to Statistical Independence (CSI) assumption, 
which says that variables that are causally independent are statistically independent. This 
assumption can be seen as a weaker version of the Causal Markov Condition (CMC) 
(Kiive ri et al., 1984; Glymour et al., 1987), and it is generally plausible. CSI motivated the 
following principle for inferring causal direction (Woodward, 2022, p. 26):

(P) Suppose there are 3 variables, H, A and S such that either (i) H and A cause S or (ii) A 
and S cause H. (This assumption, in some way, implies that there are no omitted common causes 
etc.) Suppose the patterns of dependence among these three variables are as follows: H ╨  A, 
H ╨/  S, A ╨/  S, where ╨ means statistical independence and ╨/  means statistical dependence. 
Then (i) is the correct causal order.

Woodward (2022, p. 28) then connects principle P to the interventionist theory M in the 
following way—this connection is desirable since one aims to use principle P to find causal-
ity which can be understood in terms of interventions:

According to the interventionist framework, the claim that H causes S and S does not cause 
H corresponds to the condition that there are interventions on H that will change S but no in-
terventions on S that will change H. Assuming that these are the only two possibilities (i) and 
(ii) and that there is no common causes, as stated in principle P, the pattern of (in)dependencies 
H ╨ A, H ╨/  S, and A ╨/  S suggests that A functions as a soft intervention variable on S, since it is 
exogenous and independent of the only other possible cause of S, namely H. [Let us denote this 
statement by J1.] Observation shows that changes in this intervention variable A for S are not as-
sociated with changes in H, suggesting that S does not cause H. Moreover, if we assume that S 
causes H, then, under this assumption, there will not be, among the variables in the system, any 
intervention variable for H that is independent of S, since the only remaining variable, A, is cor-
related with S. [Denote by J2 this statement.] Hence, the dependence pattern suggests there is a 
route to changing S that is independent of H (which is what we expect if H causes S)—namely 
the route involving A—but no route to changing H that is independent of S, which is what we ex-
pect if S causes H.

Woodward (2022) [Section 9] then goes one step further, to consider the problem of in-
ferring causal direction when only two variables, X and Y, are giving and justify a set of 
methods to solve this problem. Assume the causal influence from the cause variable and 
the unmeasured factors (noise) to the effect variable follows some constrained Functional 
Causal Model (FCM) class, such as the Linear, Non-Gaussian, Acyclic Model (LiNGAM) 
(Shimizu et  al., 2006), Post-NonLinear (PNL) causal model (Zhang and Chan, 2006; 
Zhang and Hyvärinen, 2009), and the Additive Noise Model (ANM) (Hoyer et al., 2009). 
First of all, Woodward noted that given only two measured variables X and Y, the error 
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term is unobserved and must be inferred, in order to apply principle P. When we find an 
error U which is independent of X but no error U l which is independent of Y, we infer 
that U and X are causes of Y. Such asymmetry between two variables X and Y that are as-
sumed to be directly causally related (the estimated error term is independent from the hy-
pothetical cause in only one direction), under the assumption of a properly constrained 
FCM class, has inspired several approaches to causal discovery that are able to recover the 
underlying causal DAG uniquely.

Why does the asymmetry in the (in)dependence between the error term and the hypo-
thetical cause imply causal direction between two variables, denoted by H and S? This can 
be examined from an interventionist perspective, as an application of the arguments in the 
above quote to justify principle P for finding causal directions among 3 variables from the 
interventionist perspective. We notice that principle P makes use of three variables H, A, 
and S, while in the two-variable case, U is not observed but constructed from variables X 
and Y, in light of the constrained FCM class. In order to apply this principle to find causal 
direction when only two variables, H and S, are given, or more specifically, in order for 
statements J1 and J2 to hold true when only variables H and S are measured, the following 
conditions are expected to hold:

C1) Variable A is a variable that actually exists in the system under consideration. (As 
a consequence, J1 is true.)

C2) There does not exist another variable in the system, A’, such that S ╨  A’ and 
A’ ╨/  H (otherwise H and S will be symmetric). (As a consequence, J2 is true.)

As stated in the condition of principle P, it is assumed that H and A are not confounded in 
the first place. Can we make an alternative set of assumptions that are technically testable 
or appear weak in terms of the underlying causal model, while guaranteeing that the esti-
mated causal direction from the two given variables is asymptotically correct? We will dis-
cuss the required assumptions in Section 4. Specifically, we will see some technical assump-
tions to imply condition C2 and assumptions on hidden variables in the system under 
which one can find causal direction even without the unconfounding assumption. Before 
that, let us review the assumptions that are required for conditional independence-based 
methods for causal discovery.

3. Assumptions for Conditional Independence-Based Approaches

Woodward (2022) focuses on finding the causal direction between two variables which are 
believed to be directly causally related. The issue of discovering causal information based 
on conditional independence relations among the measured variables seems somehow ir-
relevant to it. However, here for completeness of the discussion and for comparative pur-
poses, let us briefly review such methods and discuss their assumptions.

Widely-used conditional independence-based approaches to causal discovery include 
the PC algorithm and FCI (Spirtes et  al., 2001). The PC algorithm returns a Markov 
Equivalence Class (MEC) of DAGs, and all DAGs in the MEC share the same adjacency 
and conditional independence relations. FCI allows confounders in the system and returns 
a Partial Ancestral Graph (PAG). Although the Greedy Equivalence Search (GES) (Chick-
ering, 2002) is a score-based method for causal discovery that assumes no confounding, it 
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usually assumes a linear-Gaussian model or multinomial data and as a consequence, it also 
makes use of conditional independence relations among the measured variables, together 
with a penalty determined by the complexity of the whole causal model, to find the MEC.

Generally speaking, conditional independence relations among the measured variables, 
which reflect only part of the information implied by the joint distribution, do not con-
tain sufficient information for producing a complete picture of the causal relations. First, 
even under the assumption of no confounding, the methods, such as PC and GES, return 
a MEC, which may contain multiple DAGs. For instance, if applied to two variables, they 
cannot determine their causal direction. Second, although there exist algorithms that can 
produce asymptotically correct results in the presence of confounders, such results are usu-
ally not strong enough to determine whether confounders exist. FCI is a remarkable algo-
rithm whose result is asymptotically correct even with confounders. However, in the re-
sult by FCI, one usually cannot distinguish between unconfounded pairs of variables with 
direct causal relations between them and confounded pairs without direct causal relations 
in between—whenever it is possible to have confounders of the pair of variables, the algo-
rithm will indicate it and, as a consequence, the output usually contains very few variable 
pairs that are directed causally related without cofounding.

Standard assumptions for the asymptotic correctness of the output of the above algo-
rithms are the CMC and Faithfulness assumption. The Faithfulness assumption (Spirtes 
et al., 2001; Zhang, 2013; Zhang and Spirtes, 2008) states that there is no ‘accidental’ con-
ditional independence relation between the variables according to the distribution. More 
precisely, it says that all conditional independence relations among the variables are impli-
cations of the CMC applied to the DAG representing the true causal relations among the 
variables. Combining the CMC and Faithfulness assumptions, one is then able to recover 
some information of the underlying DAG from the measured data, given that we have 
enough data. Faithfulness can be viewed as one version of the “simplicity” assumption of 
the underlying DAG—if two variables are conditionally independent given any subset of 
the remaining variables, then they are not adjacent in the causal graph.

4. Independent Noise-Based Approaches: Assumptions on Causal Mechanisms

As Woodward (2022) noted, suitable assumptions on the causal mechanism (which are 
not made in conditional independence-based methods), such as a LiNGAM model to de-
scribe the causal effect, help find causal direction between two variables and hence recover 
the whole causal DAG, as supported by much empirical evidence. Below we start with an 
illustration of how and why LiNGAM, which is taken as an example of those properly de-
fined constrained FCMs, helps find causal direction, and then discuss the required assump-
tions.

4.1. Asymmetry between Two Variables: Illustration

Consider the causal process X → Y with causal model Y = dX + U, where d is the linear co-
efficient and U is the noise (unmeasured factor) that is independent from X. As a concrete 
example, one can think of them as atmospheric pressure and the reading of a barometer, re-
spectively. Suppose two linear regressions are done, one predicting X from Y and the other 
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predicting Y from X. The residual of the regression of X on Y is the difference of the meas-
ured variable and its predicted value from the regression. In the anti-causal direction the re-
sidual is a random variable, U’ = X − αZ, that is a function of the predictor variable and the 
predicted variable, or a function of the underlying noise terms. The coefficient α can be es-
timated by minimizing the total squares of the residual, which implies that the residual and 
predictor Z are uncorrelated. Bearing in mind that for simplicity of the presentation, all 
variables are assumed to be standardized (i.e., they have a zero mean and unit variance), one 
can see that

α =
ov(X ,Y )
Var(Y )

=ov(X ,Y )= d

where ov(·) and ar(·) denote covariance and variance, respectively. The residual of re-
gressing Y on X (in the causal direction) is U, and the residual for regression in the anti-
causal direction is

U’ = X − αY = X − d(dX + U) = (1 − d 2)X − dU.

Figure 1
Illustration of the asymmetry between cause and effect in the linear, non-Gaussian case, where X causes 
Y with Y = dX + U. From left to right: the scatter plots for X and Y, for X and the residual of regressing 

Y on X, for Y and X, and for Y and the residual of regressing X on Y, respectively.  
Top row: cause X and noise U are both Gaussian; bottom row: they follow a uniform distribution 

(a particular type of non-Gaussian distributions).

Can we see the asymmetry between X and Y by looking at the properties of the residuals U 
and U’?
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U is assumed to be independent from X. However, since Y = dX + U, U’ and Y both 
involve independent variables X and U, and they CANNOT be independent if at least one 
of X and U is non-Gaussian, as implied by the Darmois-Skitovich theorem (Kagan et al., 
1973) (this is related to condition C2): two linear combinations of a set of independent 
components cannot be independent from each other if they share any non-Gaussian inde-
pendent component. So by testing for the independence between residuals and predictors, 
the direction of the X − Y causal link can be identified. For illustrative purposes, Figure 1 
provides scatter plots of variables X and Y and scatter plots of the predictor and regression 
residual in the causal (left part) and anti-causal (right part) directions, in a joint Gaussian 
case (top row) and in the case with cause X and the noise term following uniform distribu-
tions (bottom row). In the uniform case (as a particular non-Gaussian case), one can see 
that in the anti-causal direction, residual U’ and predictor Y are clearly statistically depend-
ent (because the conditional distribution of one of them given the other taking some spe-
cific value is not identical to its marginal distribution).

4.2.  What Assumptions on Causal Mechanisms Are Required to Guarantee 
Asymmetry?

The linear, non-Gaussian model relies on the linearity of the causal mechanism, a particu-
lar type of parametric assumption, as well as the non-Gaussianity assumption of the noise 
terms, making it possible to estimate causal models from non-experimental data. Linear 
models are thought to be simple in the sense that they involve few parameters (e.g., as linear 
coefficients).1 In fact, if there is no proper constraint on the FCM, for any two given ran-
dom variables, one can always write one of them as a function of the other and some inde-
pendent error term, as shown by Hyvärinen and Pajunen (1999) and Zhang et al. (2015), 
where the function is related to the conditional distribution of the variables and may be 
very complex. This is also the case in the example given in Figure 1—although U’, the resid-
ual of regressing X on Y is not independent from Y in the uniform case, X can still be writ-
ten as a rather complex, clearly non-linear function of Y and some error term that is inde-
pendent from Y. Assuming linear, non-Gaussian causal models, one would infer the causal 
direction X → Y in this example. The linearity assumption can be checked by inspection 
on the scatter plots—given the measured data points, one can plot one variable against an-
other variable, and the pattern should be approximately linear. In fact, statistical test of in-
dependence between the residual and the predictor (hypothetical cause) can also serve as a 
test of linearity—if the causal model is linear (resp., non-linear), then the residual produced 
by linear regression in some direction will be independent from (resp., dependent on) the 
predictor. If needed, one can also resort to specific tests of linearity, such as the Theil test 
(Theil, 1950), for this purpose. Test of non-Gaussianity can be performed implicitly or ex-
plicitly. If the residual is independent from the predictor only in one direction (i.e., only 
one DAG gives rise to independent residuals), then the predictor and residual cannot be 

1 Here is a brief explanation of why we prefer linear models from a model selection perspective. If mul-
tiple models explain the given data equally well, i.e., with the same likelihood, then suitable model se-
lection approaches, such as Bayesian Information Criterion (BIC) (Schwarz, 1978), would prefer the 
model with the fewest number of free parameters.



Kun Zhang

82 Theoria, 2022, 37/1, 75-86

jointly Gaussian. Alternatively, one may directly exploit statistical tests, such as the Sha-
piro-Wilk test, on the estimated residual or the predictor to check whether it follows the 
Gaussian distribution.

In the causal discovery community, this type of asymmetry between X and Y is es-
sential for distinguishing cause from effect: under the assumed (parametric or non-para-
metric) FCM class, only in the causal direction one can find an independent noise term. 
This is asymmetry directly implied by the data distribution and the FCM class. In order to 
give causal claims, e.g., X → Y, Woodward (2022) explicitly assumes that there is no con-
founder for X and Y. Below we give an alternative formulation of the assumption in the 
spirit of Faithfulness, to guarantee the connection between asymmetry implied by data and 
causal direction in the interventionist framework.

4.3.  Assumptions on Hidden Variables to Connect Asymmetry to Causal 
Direction

Under the assumption that there was no confounder for X and Y, the above analysis 
does not require the traditional Faithfulness assumption for inferring causal directions as-
ymptotically correctly (Shimizu et al., 2006). Note that in reality we usually are not sure 
whether there are confounders and if yes, how measured variables are confounded in the 
true processes—can we still trust the result produced by the above LiNGAM analysis (per-
forming linear regression and testing for independence between the residual and hypotheti-
cal cause)? Do we need any Faithfulness-like assumptions at all to guarantee the correctness 
of the statement?

Let us look at an illustrative example.

Example. Let us consider four variables—lifestyle, mortality risk, food consumption, and 
physical activity—denoted by X, Y, W, and UX, respectively. Suppose that we can directly 
measure X and Y but not W and UX. Measured variables X and Y are generated by the two 
hidden, independent, non-Gaussian variables, W and UX, according to the following specific 
linear model, as shown in Figure 5(a), in which variables in the shaded area are not observed:

X = UX + f W, 
Y = f X − f UX + (1 − f 2)W,

where f is a positive number smaller than 1.
Because of the specification of the coefficients, we can rewrite the above model for Y as

 Y = f X − f UX + (1 − f 2)W = f (UX + f W) − f UX + (1 − f 2)W = W. (1)

That is, mortality risk is determined by food consumption, although physical activity is also 
its cause. As a consequence, the statistical relationship between X and Y is

X = UX + f W = f Y + UX.

Although there is no deterministic relation between measured variables, in this case 
(X causes Y, together with specific confounders W and UX), we cannot identify the correct 
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causal direction with the LiNGAM analysis—in fact, the distribution of X and Y in this 
case can also be represented by the causal model in Figure 5(b), in which Y causes X with-
out a confounder. What led to the wrong conclusion produced by the LiNGAM analysis? 
How can we avoid it? We notice here

1. that the confounder UX (physical activity) actually has a zero effect on Y (mortal-
ity risk), although Y is its descendant in the causal graph, and

2. that although X (lifestyle) and Y (mortality risk) are non-deterministically related, 
they are completely determined by the confounders.

Now suppose neither of the above two properties holds. That is, we make the following as-
sumptions:

AP1. Any hidden variable (which may be a confounder or unobserved noise variable) 
has a non-zero total causal effect on any of its descendants.

AP2. Each measured variable has non-zero noise relative to its parents (among meas-
ured variables and unmeasured confounders).2

Under assumptions AP1 and AP2, one can find causal direction in both the unconfounded 
and confounded cases. In the considered example, let us denote by g11, g12, g21, and g22 the 
direct causal effects (linear coefficients) of UX on X, UX on Y, W on X, and W on Y, respec-
tively, and still let f be the causal effect of X on Y. Then X and Y are generated from non-
Gaussian independent variables, EX (unobserved noise in X), EY (unobserved noise in Y), 
UX , and W, in the following way:

X = g11 UX + g21 W + EX, 
Y = g12 UX + f X + g22W + EY = (g12 + f g11)UX + (g22 + f g21)W + f EX + EY,

or in matrix form:

X
Y

⎡

⎣
⎢

⎤

⎦
⎥=

1 0
f 1

g11 g21
g12 + g11 g22 + fg21

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

denoted by A1
  

⋅

EX

EY

U X

W

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

The above model, or specifically, the coefficients in matrix A1, is identifiable from X and Y 
with overcomplete ICA (Eriksson and Koivunen, 2004; Hoyer et al., 2008). We can then 
see that under assumptions AP1 and AP2, we can find the causal relation between X and 
Y from the estimated matrix A1. From the second column of A1, we know that Y does not 
cause X—otherwise, given that EY influences Y, as indicated by the non-zero entry of the 

2 In some work, confounding is modeled by correlated noise; see, e.g. (Mandt et al., 2017). Assumption 
AP2 is stronger than it. For instance, in Example 1 X and Y are non-deterministically correlated, but 
Assumption AP2 is violated.
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second entry of this column, EY must influence X as well, according to Assumption AP1; 
this means that the first entry of this column cannot be zero, which is not the case. Simi-
larly, we know that it is impossible that X does not influence Y—because if X did not influ-
ence Y, its noise term, EX would influence only X, but not Y, and accordingly, there would 
be some column of A1 in which the first entry is non-zero while the second is zero, but 
there is no such column in A1. So the causal relation is X → Y.

UX W

X Y
f

1
ff

1 f
2

(a) A causal model with specific

confounders, in which variables in

the shaded area are not observ-

able.

X Y

UX

f

(b) A causal model with

no confounders but a re-

verse direction between X

and Y .

Figure 2: Two causal models used in the example. Causal models (a) and (b) produce the same joint

distribution of X and Y .

5 Conclusion

Woodward [2021] discusses principles for finding causal direction between two random variables. As

philosophical reflections on and justifications of the methods for distinguishing cause from e↵ect

recently proposed in machine learning, he connects the computational principles to his interventionist

account of causality. In this paper we focus on independent noise-based methods, and attempt to

provide alternative formulations of the assumptions that guarantee the correctness of the discover

direction. Conditional independence-based methods for causal discovery and their assumptions are

briefly mentioned for completeness of the comparison.

In order to relate the information that is discovered from empirical data to the underlying causal

structure, proper assumptions have to be made. Conditional independence-based methods assume

some type of faithfulness: conditional independence in the data is not an accidental statistical

property, but a reflection of the underlying causal graph. Independent noise-based methods assume

“simplicity” of the causal mechanism, as encoded by the functional class of the functional causal

models, to guarantee that cause and e↵ect are asymmetric—only in the correct causal direction,

the estimated noise term is independent from the hypothetical cause. Moreover, if one does not

directly assume out confounders, some faithfulness-type assumption is needed to guarantee that the

asymmetry that is discovered from empirical data actually implies causal direction.

Some of the assumptions, such as Woodward [2021]’s Causal to Statistical Independence (CSI)

assumption, are widely accepted in the machine learning and philosophy communities. Some of

the assumptions, such as linearity of the relations and non-Gaussianity of the noise, are generally

testable. Some of them, including the faithfulness-type assumption AP1, are not testable. It is

worth noting that causal discovery is typically di↵erent from traditional machine learning problems

such as regression, classification, and clustering, although both of them learn from data: causal

discovery aims to find the underlying truth, while machine learning usually aims at good predictions.

Therefore, first, it is essential to connect the principles underlying the computational methods to the

interventionist theory of causality, to make sure that the causal discovery result actually has a causal

interpretation. Second, researchers and practitioners in causal discovery have to pay close attention

10

 

UX W

X Y
f

1
ff

1 f
2

(a) A causal model with specific

confounders, in which variables in

the shaded area are not observ-

able.

X Y

UX

f

(b) A causal model with

no confounders but a re-

verse direction between X

and Y .

Figure 2: Two causal models used in the example. Causal models (a) and (b) produce the same joint

distribution of X and Y .

5 Conclusion

Woodward [2021] discusses principles for finding causal direction between two random variables. As

philosophical reflections on and justifications of the methods for distinguishing cause from e↵ect

recently proposed in machine learning, he connects the computational principles to his interventionist

account of causality. In this paper we focus on independent noise-based methods, and attempt to

provide alternative formulations of the assumptions that guarantee the correctness of the discover

direction. Conditional independence-based methods for causal discovery and their assumptions are

briefly mentioned for completeness of the comparison.

In order to relate the information that is discovered from empirical data to the underlying causal

structure, proper assumptions have to be made. Conditional independence-based methods assume

some type of faithfulness: conditional independence in the data is not an accidental statistical

property, but a reflection of the underlying causal graph. Independent noise-based methods assume

“simplicity” of the causal mechanism, as encoded by the functional class of the functional causal

models, to guarantee that cause and e↵ect are asymmetric—only in the correct causal direction,

the estimated noise term is independent from the hypothetical cause. Moreover, if one does not

directly assume out confounders, some faithfulness-type assumption is needed to guarantee that the

asymmetry that is discovered from empirical data actually implies causal direction.

Some of the assumptions, such as Woodward [2021]’s Causal to Statistical Independence (CSI)

assumption, are widely accepted in the machine learning and philosophy communities. Some of

the assumptions, such as linearity of the relations and non-Gaussianity of the noise, are generally

testable. Some of them, including the faithfulness-type assumption AP1, are not testable. It is

worth noting that causal discovery is typically di↵erent from traditional machine learning problems

such as regression, classification, and clustering, although both of them learn from data: causal

discovery aims to find the underlying truth, while machine learning usually aims at good predictions.

Therefore, first, it is essential to connect the principles underlying the computational methods to the

interventionist theory of causality, to make sure that the causal discovery result actually has a causal

interpretation. Second, researchers and practitioners in causal discovery have to pay close attention

10

(a) A causal model with specific 
confounders, in which variables in 
the shaded area are not observable.

(b) A causal model with no 
confounders but a reverse 
direction between X and Y.

Figure 2
Two causal models used in the Example.  

While Causal model (a) is the true one, it and model  
(b) produce the same joint distribution of X and Y.

Both Assumptions AP1 and AP2 are needed to find the correct causal direction be-
tween X and Y. If Assumption AP1 does not hold while AP2 holds, or more specifically, 
if EX and EY are zero, then one can only recover the last two columns of A1, which does 
not imply an acyclic relation between X and Y. If Assumption AP2 does not hold while 
AP1 holds, e.g., the second entry of the third column of A1 is zero, i.e., g12 + f g11 = 0, 
then an alternative causal model consistent with Eq. (2) may be that X and Y do not 
have a direct causal influence between them (as seen from the second and third columns 
of A1) and that there are two confounders, EX and W (each influences both X and Y, as 
seen from the first and fourth columns). If both AP1 and AP2 are violated, linear, non-
Gaussian methods may wrongly infer that Y causes X, as seen at the beginning of the 
E xample.

5. Conclusion

Woodward (2022) discusses principles for finding causal direction between two random 
variables. As philosophical reflections on and justifications of the methods for distinguish-
ing cause from effect recently proposed in machine learning, he connects the computa-
tional principles to his interventionist account of causality. In this paper we focus on in-
dependent noise-based methods, and attempt to provide alternative formulations of the 
assumptions that guarantee the correctness of the discover direction. Conditional inde-
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pendence-based methods for causal discovery and their assumptions are briefly mentioned 
for completeness of the comparison.

In order to relate the information that is discovered from empirical data to the under-
lying causal structure, proper assumptions have to be made. Conditional independence-
based methods assume some type of faithfulness: conditional independence in the data is 
not an accidental statistical property, but a reflection of the underlying causal graph. Inde-
pendent noise-based methods assume “simplicity” of the causal mechanism, as encoded by 
the functional class of the functional causal models, to guarantee that cause and effect are 
asymmetric—only in the correct causal direction, the estimated noise term is independent 
from the hypothetical cause. Moreover, if one does not directly assume out confounders, 
some faithfulness-type assumption is needed to guarantee that the asymmetry that is dis-
covered from empirical data actually implies causal direction.

Some of the assumptions, such as Woodward (2022)’s Causal to Statistical Independ-
ence (CSI) assumption, are widely accepted in the machine learning and philosophy com-
munities. Some of the assumptions, such as linearity of the relations and non-Gaussianity 
of the noise, are generally testable. Some of them, including the faithfulness-type assump-
tion AP1, are not generally testable.

It is worth noting that causal discovery is typically different from traditional machine 
learning problems such as regression, classification, and clustering, although both of them 
learn from data: causal discovery aims to find the underlying truth, while machine learn-
ing usually aims at good predictions. Therefore, first, it is essential to connect the principles 
underlying the computational methods to the interventionist theory of causality, to make 
sure that the causal discovery result actually has a causal interpretation. Second, research-
ers and practitioners in causal discovery have to pay close attention to the assumptions to 
guarantee the correctness (relative to the ground truth) of the result produced by computa-
tional methods for causal discovery, as pointed out by Woodward (2022).
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