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Abstract

Signalling games are useful for understanding how language emerges.
In the standard models the dynamics in some sense already knows what
the signals are, even if they do not yet have meaning. In this paper we
relax this assumption, and develop a simple model we call an ‘attention
game’ in which agents have to learn which feature in their environment
is the signal. We demonstrate that simple reinforcement learning agents
can still learn to coordinate in contexts in which (i) the agents do not
already know what the signal is and (ii) the other features in the agents’
environment are uncorrelated with the signal. Furthermore, we show that,
in cases in which other features are correlated with the signal, there is a
surprising trade-off between learning what the signal is, and success in
action. We show that the mutual information between a signal and a
feature plays a key role in governing the accuracy and attention of the
agent.
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1 Introduction

Lewis-Skyrms signalling games are useful for understanding how simple commu-
nication systems emerge (Lewis [1969]; Skyrms [2010]). The idea is to set up a
situation in which either (i) individuals learn to communicate over time through
some kind of learning procedure, or (ii) a population with different strategies for
responding to signals changes over time based on the success of the strategies.
In (i), the agents need a specific protocol for sending and receiving signals, such
that they can learn from the successes and failures of their endeavours. For
(ii), the strategies encode specific dispositions an agent has for sending signals
conditional on observations, and for conditioning their acts on the signals they
receive.

In both cases, the traditional account makes assumptions about the agents’
knowledge of the structure of the game. First, it assumes that agents know the
space of possible actions and signals. But it also assumes that the agents already
know in some sense what part of the world constitutes the signal. A thorough-
going empiricism must be able to give an account of how these features of the
game themselves arise from more fundamental adaptive processes. Alexander
et al. ([2012]) give a model in which agents invent new signals over time. This
provides an account of how agents might learn the space of possible actions. The
collection of models we provide here addresses the other problem: how might
agents learn which available stimulus is best to condition their actions on. This
is a fundamental concern for the theory of self-assembling games.1

In a signalling game, when a sender sends a signal to her partner, the partner
responds to that signal in a specific way. But in the real world, her partner might
not know what part of the act the sender performs is meant to be the signal.
Suppose she signals by waving a red flag. What is the signal here? Is it the
colour? The fact that it is a flag? The pattern in which she waves it? Where
she stands when she is waving it?

Our work draws inspiration from other models in the literature. Herrmann
and Skyrms ([forthcoming]) provide a model of the invention of conventions
in which agents need to learn the properties on which they condition their
strategies. In the epistemic network game of Barrett et al. ([2019]), agents learn
to attend to other agents and use an attention urn for this purpose. Relatedly,
Bala and Goyal ([2000]) consider a model of network formation in which agents
choose the other agents with whom they form costly connections, based on
possible benefits. Barrett ([2020]) gives a Lewis-Skyrms signalling game model
in which agents must learn to distinguish between a signal with an already-
established meaning and an uncorrelated feature of the world when deciding
how to condition their actions. He calls this process of appropriating already-
evolved signals as inputs to a game modular composition.2 Our concern here is
with a more general form of modular composition. Instead of supposing that
the sender has fixed signalling dispositions, we consider the case in which both

1See (Barrett and Skyrms [2017]) for the details of this theory.
2Lacroix ([2020b]) gives a related model of modular composition in which agents learn to

make use of the pre-evolved dispositions of other agents instead of evolving them from scratch.
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Figure 1: A 2× 2× 2 Lewis-Skyrms signalling game.

senders and receivers must co-evolve a signalling system (as in the traditional
Lewis-Skyrms signalling game). We then show how in the context of such a
signalling game, the receiver might additionally learn to pick out the sender’s
signal from a set of possible stimuli.3

2 Lewis-Skyrms Signalling Games

Lewis ([1969]) proposed the signalling game to show how agents might use pre-
existing saliences to coordinate on a conventional communication system. Na-
ture presents some stimulus which yields a payoff if a particular action is taken
in response. The sender observes the stimulus, and sends some signal to the
receiver. The receiver in turn observes the signal and performs some action.
If the action corresponds to the state of nature, the agents receive the pay-
off. Coordination in a traditional Lewis signalling game happens by means of
prior agreement between players, salience, or precedent. Skyrms ([2010]) showed
how coordination could evolve without appeal to any mechanism beyond simple
adaptive processes.

As a simple example of this, consider the 2-state, 2-signal, 2-action (2×2×2)
signalling game under a simple reinforcement learning dynamics.4 An illustra-
tion of this game is shown in Figure 1. Nature presents one of two possible stim-
uli, uniformly at random. The sender draws from one of two urns corresponding
to the stimulus. The ball has one of two possible colors, corresponding to the
possible signals that he could send. He then sends the corresponding signal.
The receiver observes the signal and draws from one of two urns corresponding
to the signal. These urns in turn have balls of two colors, corresponding to the
two possible actions. She then performs the corresponding action. If the action
corresponds to the state of nature, the receiver returns the ball she drew to the
urn, and adds another ball of that color. The sender does the same. If the

3In a signalling game, the signal might be any feature of the world which the sender has
control over. What we are doing here is relaxing the requirement that the receiver know which
feature of the world that is. There may be many features of the world salient to the receiver
which the sender has only partial control over, or no control over whatsoever. The receiver
must learn to distinguish the signal from the noise.

4This is a special case of a learning process commonly used in psychology and economics
(Luce [1959]; Herrnstein [1970]; Erev and Roth [1998]), but it is also an evolutionary process
in that agents are relying on an adaptive dynamics to carry them to equilibrium.
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action does not correspond to nature, they return their balls to their respective
urns, but do not add an additional ball.

For the case of 2×2×2 signalling games under simple reinforcement, Argiento
et al. ([2009]) proved that convergence to an optimal signalling system is guar-
anteed in the limit. This means that, in this simple context, agents will always
learn a signalling system.

3 Attention Games

Here we introduce the attention game in abstract. Suppose we have a sender and
a receiver. The sender makes some observation from an observation partition
N = {σ0, σ1, . . . , σn}. The sender then chooses which signal to send from a
collection of possible signals S = {s0, s1, . . . , sn}.

Here is where things differ from the traditional Lewis signalling game. In-
stead of simply observing the signal and then acting, the receiver instead ob-
serves a feature vector, which is probabilistically generated from the signal. More
formally, we define a feature f as a finite set of natural numbers, and a feature
set F = {f0, f1, . . . , fl} as a set of features. A feature vector is an l + 1-length
vector such that its ith member vi is a member of fi.

The intended interpretation of these features is the following. We can think
of the values that a feature can take as partitioning the possible observations
of the receiver. For example, in the traditional 2× 2× 2 Lewis signalling game,
the receiver observes whether one signal or the other is sent. Since it is assumed
one and only one signal is sent, the two signals together partition the receiver’s
possible observations. However, the receiver may pay attention to other parti-
tions of their possible observations. These partitions may or may not relate to
the signal partition.

Our features capture this idea of an observation partition. The set of possi-
ble feature vectors represents the possible observations that the receiver might
make. The range of each feature partitions this set.5

Instead of the receiver simply conditioning their act a ∈ A = {a0, a1, . . . , an}
on the value of f0, the receiver first must choose which feature to condition
on when selecting their act. Nature then determines the payoffs according to
whether or not the act matched the observation. An attention game differs
from a signalling game by introducing on the receiver’s side the choice to pay
attention to different features, introducing the problem of distinguishing the
signal from the noise.

4 Uncorrelated Features

To make this more concrete, consider a 2× 2× 2 attention game under simple
reinforcement learning. Suppose that there are 2 possible observations which

5We will later put probabilities over the values that features might take. Thus, we require
every feature to be a measurable function, with respect to whatever background field. Then
features are random variables. Since everything is finite here, it is clear that the measureability
constraint poses no problem.
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Figure 2: Mean cumulative accuracy for different run lengths (each data point
represents the mean of 103 simulations). To emphasize the number of uncorre-
lated features i, we write 1 + i, with 1 representing the signal feature.

nature will randomly determine with equal chances on each round, 2 possible
acts corresponding to the states of nature, and 2 possible signals. Suppose that
the number of features is at least 1, and for each i, fi = {0, 1}. f0 is the
signal-feature, and all other fi are determined randomly. All features are hence
uncorrelated with each other.

Upon making an observation, the sender draws from the corresponding urn.
The sender then sends the signal corresponding to the drawn ball. f0 then
takes on a value corresponding to the signal, and the other features take on
values determined uniformly at random. The receiver then draws a ball from
their attention urn, and observes the feature corresponding to the drawn ball.
Finally, the receiver draws a ball from the urn corresponding to the chosen
feature and the chosen feature’s value, and takes the corresponding act. Note
that the receiver has a unique urn for each pair of feature and feature value. If
the action corresponds to the observation, the players are rewarded, and they
return all drawn balls to their respective urns, and add an additional ball of the
same type. If the action was unsuccessful, the players simply return all drawn
balls to their respective urns.

The addition of the various features and the attention urn means that we
cannot apply the Argiento et al. ([2009]) convergence results to the attention
game. Here we will be giving simulation results which estimate the medium-run
performance of learning agents in our model.

Results for this game under varying parameters are shown in Figure 2. In
all versions, the game is set up so that one feature reflects the signal, and we
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vary the number of additional uncorrelated features from 0 (which would be a
traditional 2×2×2 Lewis-Skyrms signalling game) up to 4, with 103 simulations
of each experimental condition. We see that the cumulative accuracy decreases
significantly as the number of non-signal features increases. To use another
metric, after 106 plays with 0 non-signal features, 0.996 of the runs ended up
with cumulative accuracy above a threshold of 0.75.6 With 4 non-signal features,
this happens on only 0.708 of the runs. Learning is still possible, but the addition
of “noise” in the form of uncorrelated features slows down the process.7

5 Correlated Features

We saw above that learning is frequent, even if slower, when non-signal features
are uncorrelated with the signal-feature. But what happens when those features
are imperfectly correlated with the signal-feature?

We consider here a particular kind of correlation between non-signal features
and the signal-feature. Specifically, we consider cases in which a non-signal
feature value depends on the signal to some extent, but not directly on the state
of nature.8 For simplicity we restrict our analysis to the case where features are
all binary. We represent the extent to which a non-signal feature f is correlated
with the signal-feature with two parameters, α and β, where

α = P (f = 1 | f0 = 1)

β = P (f = 1 | f0 = 0)

These two parameters also characterize the unconditional probabilities that f
takes on a particular value, as long as the probabilities of the signals are known.
Note that when α = β the non-signal feature and the signal-feature are uncor-
related.9

6 Learning Results for Correlated Features

In order to understand the relationship between correlation and learning we
consider an attention game with only one additional feature.10 For ease of
exposition, we refer to this non-signal feature as ‘the feature’, and denote it

6This threshold is chosen arbitrarily. Really, any threshold significantly higher than 0.5
will be good enough to show learning.

7Learning a signalling system becomes significantly harder when we extend the model such
that the sender must also pay attention to the correct source among several uncorrelated
sources in nature. Specifically, after 106 rounds, the agents in this setup only do better than
0.75 on 0.680 of the runs when 1 uncorrelated source of nature is added to the 1 + 1 game.
This drops to 0.141 when 4 uncorrelated sources of nature are added to the 1 + 4 game. We
thank Jeff Barrett for suggesting this extension to the model.

8Of course, if the feature is correlated with the signal-feature, and the signal-feature with
the state of nature, then the feature is correlated with the state of nature. What we mean
here is that the signal screens off this correlation. This could be relaxed in future work.

9We will soon use α and β to make precise the extent of correlation between feature and
signal-feature. For this we use mutual information.

10So two features total: the signal-feature and one non-signal feature.
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Figure 3: Running accuracy (top) and probability of correct attention (bottom)
for experiments with one correlated feature. Heatmaps are mirrored from upper
left to bottom right.

with f . We will use ‘A’ to denote the event f = 1, and s1 to denote the event
f0 = 1.

The experimental conditions now depend on α and β. We sample α at
intervals of 0.02 on [0, 1], and, for every value of α, we sample β at intervals of
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0.02 on [0, α].11 We run 103 simulations of each condition, with 104 plays per
simulation.

Results for this experiment are given in Figure 3. Here we observe that as
the difference between α and β decreases – that is, as the correlation of the
feature with the signal-feature decreases – the accuracy of the learned signalling
convention decreases correspondingly. This means that agents spend less time
paying attention to the most informative feature: the signal feature. On the
other hand, the probability that the receiver draws the correct feature from their
attention urn increases under the same conditions. This reveals a surprising
trade-off. We might think that groups which tend more often to pay attention
to the correct feature (the signal-feature) would be more successful at learning
to perform the correct action. This is the opposite of what we observe.12 In
order to understand this trade-off better, we turn to a discussion of mutual
information.

7 Mutual Information Between Signal and Feature

We use mutual information in order to characterize the extent to which a non-
signal feature and a signal-feature are correlated.13 The mutual information of
two discrete random variables X and Y is given by

I(X;Y ) =
∑
y∈Y

∑
x∈X

P (x, y) log
P (x, y)

P (x)P (y)
.

Intuitively, this quantity represents the amount of information one gets about
one random variable if one observes the value of the other. This is a natural
quantity for our context, in which we want to characterize how informative a
feature is about a signal-feature.

The mutual information depends on the unconditional probabilities of the
two random variables. In our context these change as the agents learn up a
signalling convention. Thus, the mutual information will vary over time. To see
this, consider the first term of the sum:

P (A, s1) log
P (A, s1)

P (A)P (s1)
.

Notice that this depends on the value P (A, s1), which we can rewrite as

P (A | s1)(P (s1 | σ1)P (σ1) + P (s1 | σ0)P (σ0)) =
α

2
(P (s1 | σ1) + P (s1 | σ0)).

14

11No practical difference is made by switching the values of α and β, so no further conditions
are needed.

12One might worry about the cumulative accuracy not accurately reflecting the final out-
come of learning. We also ran the same simulations with 103 non-learning plays at the end
to determine a measure of the final accuracy at the conclusion of the learning process. The
results are comparable in all relevant ways.

13See Skyrms ([2010]) for a discussion of the application of information theory to signalling
games.

14The 1
2
in the expression on the right comes from the equiprobable states of nature.
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Figure 4: Running mutual information between feature and signal for various
degrees of correlation.

The two conditional probabilities on the right hand side, P (s1 | σ1) and
P (s1 | σ0), are what change as the agents learn a signalling system. However,
notice the following. At the beginning of an attention game, both of these values
are 1/2, and thus sum to 1. Furthermore, once the agents have a signalling
system in place, they will also sum to 1. Thus, even though these quantities
do fluctuate over time, we should expect them only to deviate a bit in the
beginning, and then get very close to 1 again as the agents keep learning. Since
the mutual information only changes as these change, we should expect the
mutual information to be relatively constant as well. Indeed, as can be seen in
Figure 4, simulation results of the mutual information over time bear this out.

Whenever the sum of P (s1 | σ1) and P (s1 | σ0) equals 1, we can calculate
the mutual information between the signal-feature and the feature as

I(f0; f) =

(
α log 2α

α+β + β log 2β
α+β + (1− α) log 2(1−α)

2−α−β + (1− β) log 2(1−β)
2−α−β

)
2

.

In Figure 5 we calculate this value for pairs of parameters, α, β ∈ [0, 1].
Notice the striking similarity this heat map has to the two heat maps in

Figure 3. When we test for the correlation between mutual information and both
accuracy and attention, we get almost perfect correlation, specifically r = 0.991
between accuracy and mutual information, and −0.988 between attention and
mutual information.

This strong correlation points to an explanation of the results we stated
above. As the mutual information increases, mistakes in which the receiver

9



Figure 5: Heatmap of mutual information, measured with intervals of 0.02 for
α and β.

pays attention to the less informative feature become less costly.15 Thus overall
accuracy increases. Conversely, as the mutual information increases, this also
means that the non-signal feature is reinforced more often in the attention urn,
which means that the receiver pays more attention to the less informative fea-
ture.16 It is the mutual information that is driving these results. Once we know
the mutual information of the feature and the signal-feature, we do not need to
know the particular α and β parameters to predict what will happen.

15This is because the receiver is learning how to extract the information about the signal,
and thus the state of nature, from the correlated feature.

16Here we have only given simulation results that show this to be the case in the medium-
term. Whether the receiver persists in paying attention to non-signal features in the limit is
an open question. Beggs ([2005]) proves analytically that in a game with a dominant strategy,
simple reinforcement learning will learn to play that strategy with probability 1 in the limit.
Showing which strategy dominates in the attention-learning process is subtle. Proving that
paying attention to the signal-feature always dominates in the limit is equivalent to proving
that the agents always learn a signalling system (separating equilibrium) in the limit. As
previously mentioned, because the proof in (Argiento et al. [2009]) does not extend to cases
in which the signalling channel is being manipulated by an outside process (in this case, the
attention process), we cannot at this point extend the existing results to show that this will
always be the case. When the agents are doing better than chance in the signalling game,
however, there is some evidence that they will end up in the separating equilibrium in the
limit.
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Figure 6: Heatmap of running accuracy (average across 103 simulations run for
104 plays) for experiments with no signal-feature and one correlated feature.

8 Features With No Signal-Feature

A natural thing to investigate is what happens if the signal-feature is not one
of the features, and the features correlate to various degrees with the signal-
feature. This attention game would be appropriate for modelling a situation
in which the sender has only imperfect control over what the receiver gets to
observe. In the case with only one feature this corresponds to a noisy signal-
feature. In the case with multiple features, the receiver would have to learn
which feature is most informative, and pay attention to it.

First we consider the case in which there is only one feature, which is not
the signal-feature. In this case there is no attention urn.17 We show the results
in Figure 6.18 Once again, mutual information is very highly correlated with
accuracy (r = 0.984). This is what we should expect: the more informative a
feature is about the signal-feature, the more successful the agents will be.

Finally, we consider the case where there are multiple features of differing
correlation with the signal-feature, but no signal-feature. We want to under-
stand both how adding more features affects accuracy, as well as the extent to
which the receiver is able to pay attention to the more informative features. In

17This simple case might also be characterized as a signalling game with a noisy channel.
Barrett et al. ([2017]) consider a similar case in the context of different learning dynamics
and a different way of adding noise. Our noise is characterized by the α and β parameters,
whereas in their model there is a small fixed probability of a random signal.

18Figure 6 looks smooth compared to those in Figure 3. We confirmed that the Figure 6
results are indeed showing the accuracy – the noise simply averaged out in this case because
the attention-learning process has been removed.
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Figure 7: Pie charts showing the proportion of attention given to different
features when no signal-feature is available. Lighter shading indicates a higher
correlation of the feature (in terms of mutual information) with the unobservable
signal-feature.

order to do this we consider four cases, where the number of features ranges
from two to five. To generate the α and β parameters for each feature, we use
the line segment (0.5, 0.5), (1, 0). For the case with n features, we divide this
line segment into n+1 sections, and take the coordinates of the dividing points
as the values for α and β. This allows us to cut across the different possible
values for the mutual information of the signal-feature and the feature in a way
that maximizes the difference of the mutual information between each feature.

In the 2-feature condition, the mean cumulative accuracy was 0.766. For 3
features, 0.790. For 4, 0.797, and for 5, 0.806. The increasing accuracy observed
in this experiment is due to the availability of more informative features as our
partition of the line segment becomes finer. So, in the 2-feature case, the most
informative feature is α = 0.83, β = 0.17, while in the 5-feature case, it is
α = 0.92, β = 0.08. The proportion of balls corresponding to different features
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is shown in Figure 7. In each pie chart, lighter shading indicates a higher
correlation of the feature (in terms of mutual information) with the signal-
feature. We can see that the proportion of balls tracks the informativeness of
the features, which accounts for the increase in accuracy.

9 Conclusion

In order for signalling games to explain the emergence of communication sys-
tems, they need to apply in less idealized situations. We considered a situation
in which the receiver has to learn which one of many observable features is the
signal-feature (if there is one). Indeed, insofar as the ‘receiver’ in a signalling
game is one who receives a signal, what is of interest in this situation is how the
role of being a receiver might itself emerge. We provided a model, the attention
game, that captures this situation.

We showed that learning can still take place when there are multiple features
that are uncorrelated with the signal-feature, even if it is slower. In the context
in which there is one signal and one feature that may or may not be correlated
with the signal-feature, we discovered a surprising trade-off between accuracy
and attending to the signal-feature. We showed that the mutual information
of the feature and the signal-feature is highly predictive of both accuracy and
attention, and used this to propose an explanation for the accuracy-attention
trade-off.

Finally, we considered cases in which the signal-feature was not one of the
observable features. This is an important case since, in the real world, agents
will never observe the signal of other agents with perfect fidelity. We showed
that in the case with only one feature, mutual information once again predicted
the success of the agents. In the case with multiple features of varying amounts
of information, the receiver learns to pay attention to more informative features.

One potentially promising line of inquiry is to carry out a similar analysis
and vary the number of states, acts, and signals.19 Here we have demonstrated
how the simplest 2 × 2 × 2 Lewis-Skyrms signalling game might self-assemble
by an attention-learning process. It would certainly be fruitful to investigate
how the added attention-learning mechanism provides one path toward the self-
assembly of these more complex signalling games as well. This would provide
a precisification of the broad argument given in Barrett and Skyrms’s original
paper on self-assembling games ([2017]).

Another attractive line of inquiry would be the introduction of initially bi-
ased attention urns. This would be one way to incorporate Lewis’s original cat-
egory of salience into the Skyrmsian learning model, and to understand better
the extent to which salience can decrease or increase the quality of learning.20

19One could go further and consider cases in which the different features have different
numbers of possible values. This would of course make it more challenging to characterize the
mutual information of the various features in a transparent way.

20See (LaCroix [2020a]) for a recent study of the effect a ‘salience parameter’ has on learning
in Lewis-Skyrms signalling games.
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Finally, our analysis focused on the learning dynamics of individuals. One
might consider the attention games introduced here in an evolutionary context,
and carry out the appropriate analyses. We doubt that the broad lessons we
drew here would change dramatically, given the deep formal connections between
the urn learning we consider here and the replicator dynamics often used in
evolutionary analysis.21 However, it would still be worthwhile to confirm this
intuition and see if any other lessons emerge, or, even better, discover that it is
false.
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