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A crucial step in the history of General Relativity was Einstein’s adoption of the principle of
general covariance which demands a coordinate independent formulation for our spacetime theories.
General covariance helps us to disentangle a theory’s substantive content from its merely repre-
sentational artifacts. It is an indispensable tool for a modern understanding of spacetime theories,
especially regarding their background structures and symmetry. Motivated by quantum gravity, one
may wish to extend these notions to quantum spacetime theories (whatever those are). Relatedly,
one might want to extend these notions to discrete spacetime theories (i.e., lattice theories). In [1] I
developed two discrete analogs of general covariance for non-Lorentzian lattice theories. This paper
extends these results to a Lorentzian setting.

In either setting these discrete analogs of general covariance reveal that lattice structure is rather
less like a fixed background structure and rather more like a coordinate system, i.e., merely a
representational artifact. These discrete analogs are built upon a rich analogy between the lattice
structures appearing in our discrete spacetime theories and the coordinate systems appearing in
our continuum spacetime theories. From this, in [1], I argued that properly understood there are
no such things as lattice-fundamental theories, rather there are only lattice-representable theories.
It is well-noted by the causal set theory community that no theory on a fixed spacetime lattice
is Lorentz invariant, however as I will discuss this is ultimately a problem of representation, not
of physics. There is no need for the symmetries of our representational tools to latch onto the
symmetries of the thing being represented. Nothing prevents us from using Cartesian coordinates
to describe rotationally invariant states/dynamics. As this paper shows, the same is true of lattices in
a Lorentzian setting: nothing prevents us from defining a perfectly Lorentzian lattice(-representable)
theory.

1. INTRODUCTION

A crucial step in the history of General Relativity (GR)
was Einstein’s adoption of the principle of general co-
variance which states that the form of our physical laws
should be independent of any choice of coordinate sys-
tems. The conceptual benefits of writing a theory in
a coordinate-free way are immense. A generally covari-
ant formulation of a theory has at least two major ben-
efits: 1) it more clearly exposes the theory’s geometric
background structure, and 2) it thereby helps clarify our
understanding of the theory’s symmetries (i.e., its struc-
ture/solution preserving transformations). It does both
of these by disentangling the theory’s substantive content
from representational artifacts which arise in particular
coordinate representations [2–4]. Thus, general covari-
ance is an indispensable tool for a modern understanding
of spacetime theories.

Motivated by quantum gravity, one may wish to extend
these notions to quantum spacetime theories (whatever
those are). Relatedly, one might want to extend these
notions to discrete spacetime theories (i.e., lattice the-
ories1.). In [1] I developed two analogs of general co-
variance for such discrete spacetime theories in a non-
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1 Given the results of this paper and of [1], calling these “lattice

Lorentzian setting. The aim of this paper is to extend
these results to a Lorentzian setting. Indeed, the analysis
provided here is nearly identical to the one carried out in
[1], although each paper is self-contained.
In either setting these discrete analogs of general co-

variance reveal that lattice structure is rather less like
a fixed background structure or a fundamental part of
some underlying manifold and rather more like a coordi-
nate system, i.e., merely a representational artifact. In-
deed, these discrete analogs are built upon a rich analogy
between the lattice structures appearing in our discrete
spacetime theories and the coordinate systems appearing
in our continuum spacetime theories.
This paper is largely inspired by the brilliant work

of mathematical physicist Achim Kempf [5–16] among
others [17–19]. A key feature present both here and in
Kempf’s work is the sampling property of bandlimited

theories” can be misleading. This would be analogous to referring
to continuum spacetime theories as “coordinate theories”. As I
will discuss, in both cases the coordinate systems/lattice struc-
ture are merely representational artifacts and so do not deserve
“first billing” so to speak. All lattice theories are best thought
of as lattice-representable theories. Similarly, the term “dis-
crete spacetime theories” ought to be here read as “discretely-
representable spacetime theories”. As discussed here (and in [1]),
the defining feature of such theories is that they have a finite den-
sity of degrees of freedom, see the work of Achim Kempf [5–9]
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function revealed by the Nyquist-Shannon sampling the-
ory [20–22]. I review sampling theory in more detail in
Sec. 6, but let me overview here. Bandlimited functions
are those with have a limited extent in Fourier space
(i.e., compact support). Bandlimited functions have the
following sampling property: they can be exactly re-
constructed knowing only the values that they take on
any sufficiently dense sample lattice. What “sufficiently
dense” means is fixed in terms of the size of the function’s
support in Fourier space.

Nyquist-Shannon sampling theory was first discovered
in the context of information processing as a way of
converting between analog and digital signals (i.e., be-
tween continuous and discrete information). Sampling
theory found its first application in fundamental space-
time physics with Kempf’s [5, 10], ultimately leading to
his thesis that “Spacetime could be simultaneously con-
tinuous and discrete, in the same way that information
can be” [13]. Kempf’s thoughts on these topics is the
primary inspiration for this paper and deserves wider ap-
preciation by the philosophy of physics community. For
an overview of Kempf’s works on this topic see [16].

My thesis in [1] is in broad agreement with Kempf’s
with one crucial alteration. I stress that the sampling
property of bandlimited functions indicates that ban-
dlimited physics can be simultaneously represented as
continuous and discrete, (i.e., on a continuous or discrete
spacetime). However, I further argue (both here and in
[1]) that when one investigates these two representations
one finds substantial issue with taking the discrete rep-
resentation as fundamental. These issues stem from the
rich analogy between the lattice structures and coordi-
nate systems mentioned above.

This analogy is supported here (and in [1]) by the three
lessons each of which tell against an intuitions one is
likely to have regarding lattice structure. To motivate
these (wrong) intuitions, consider the following situation.

Suppose that after substantial empirical investigation
of our micro-physical reality we find what appear to be
“lattice artifacts”. For instance, we may find ourselves
restricted to only quarter rotation, or one-sixth rota-
tion symmetries. Intuitively, this would suggest that the
world is fundamentally set on a lattice of the kind shown
in Fig. 1, i.e., a square or hexagonal lattice.

Suppose that we have great predictive success when
modeling the world as being set on (for instance) a square
lattice with next-to-nearest neighbor interactions. Would
this in any way prove that the world is fundamentally
set on such a lattice? No, all this would prove is that
the world can be faithfully represented on such a lattice
with such interactions, at least empirically. Anything
can be faithfully represented in any number of ways, this
is just mathematics. Some extra-empirical work must
be done to know if we should take the lattice structure
appearing in this representation seriously. That is, we
must ask which parts of the theory are substantive and
which parts are merely representational? The discrete
analogs of general covariance developed here (and in [1])
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FIG. 1. Three of the lattice structures in space considered
throughout this paper. The arrows indicate the indexing con-
ventions for the lattice sites. Repeated in time, these give us
something like a square 2D lattice, a cubic 3D lattice, and a
hexagonal 3D lattice respectively. [Reproduced with permis-
sion from [1].]

answer this question: lattice structures are coordinate-
like representational artifacts and so ultimately have no
physical content.
To flesh out the contrary received position however,

let us proceed without this analogy for the moment. We
can ask: beyond merely appearing in our hypothetical
empirically successful theory, what reason do we have to
take the lattice structures which appear in this theory se-
riously? Well, intuitively the lattice structures appear to
play a very substantial role in these theories, not merely
a representational one. One likely has the following three
interconnected first intuitions regarding the role that the
lattice and lattice structure play in discrete spacetime
theories:

1. They restrict our possible symmetries. Taking the
lattice structure to be a part of the theory’s fixed
background structure, our possible symmetries are
limited to those which preserve this fixed structure.
Intuitively a theory set on a square lattice can only
have the symmetries of that lattice. Similarly for a
hexagonal lattice, or even an unstructured lattice.

2. Differing lattice structures distinguishes our theo-
ries. Two theories with different lattice structures
(e.g., square, hexagonal, irregular, etc.) cannot be
identical. As suggested above they have different
fixed background structures and as therefore have
different symmetries.

3. The lattice is fundamentally “baked-into” the the-
ory. Firstly, it is what the fundamental fields
are defined over: they map lattice sites (and in
[1] times) into some value space. Secondly, the
bare lattice is what the lattice structure structures.
Thirdly, it is what limits us to discrete permutation
symmetries in advance of further limitations from
the lattice structure.
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These intuitions will be fleshed out and made more con-
crete in Sec. 3. However, as this paper demonstrates,
each of the above intuitions are doubly wrong and over-
hasty.

What goes wrong with the above intuitions is that
we attempted to directly transplant our notions of back-
ground structure and symmetry from continuous to dis-
crete spacetime theories. This is an incautious way to
proceed and is apt to lead us astray. Recall that, as dis-
cussed above, our notions of background structure and
symmetry are best understood in light of general covari-
ance. It is only once we understand what is substan-
tial and what is merely representational in our theories
that we have any hope of properly understanding them.
Therefore, we ought to instead first transplant a notion
of general covariance into our discrete spacetime theories
and then see what conclusions we are led to regarding the
role that the lattice and lattice structure play in our dis-
crete spacetime theories. This transplant has been done
in a non-Lorentzian setting in [1]. Here I extend these
results to a Lorentzian setting.

This paper will teach us three lessons each of which
negates one of the above intuitions about the role that
lattice structure plays in discrete spacetime theories.

Firstly, as I will show, taking any lattice structure seri-
ously as a fixed background structure systematically un-
der predicts the symmetries that discrete theories can
and do have. Indeed, as I will show neither the bare lat-
tice itself nor its lattice structure in any way restrict a
theory’s possible symmetries. In [1], for non-Lorentzian
theories I have shown that there is no conceptual barrier
to having a theory with continuous translation and rota-
tion symmetries formulated on a discrete lattice. Indeed,
in [1] I presented a perfectly rotation invariant lattice
theory. As I discuss in [1], this is analogous to the famil-
iar fact that there is no conceptual barrier to having a
continuum theory with rotational symmetry formulated
on a Cartesian coordinate system. Here, I repeat this
analysis in a Lorentzian context. In Sec. 11, I present a
perfectly Lorentzian lattice theory.

Secondly, as I will show, discrete theories which are
initially presented to us with very different lattice struc-
tures (i.e., square vs. hexagonal) may nonetheless turn
out to be completely equivalent theories or to be over-
lapping parts of some larger theory. Moreover, given
any discrete theory with some lattice structure we can
always re-describe it using a different lattice structure.
As I will discuss, this is analogous to the familiar fact
that our continuum theories can be described in different
coordinates, and moreover we can switch between these
coordinate systems freely.

Thirdly, as I will show, in addition to being able to
switch between lattice structures, we can also reformu-
late any discrete theory in such a way that it has no
lattice structure whatsoever. Indeed, we can always do
away with the lattice altogether. As I will discuss, this is
analogous to the familiar fact that any continuum theory
can be written in a generally covariant (i.e., coordinate-

free) way.
These three lessons combine to give us a rich analogy

between lattice structures and coordinate systems. It
is from this rich analogy that the central claims of this
paper follow. Namely, from this analogy it follows that
the lattice structure supposedly underlying any discrete
“lattice” theory has the same level of physical import as
coordinates do, i.e., none at all. Thus, as I argued in
[1], the world cannot be “fundamentally set on a square
lattice” (or any other lattice) any more than it could
be “fundamentally set in a certain coordinate system”.
Like coordinate systems, lattice structures are just not
the sort of thing that can be fundamental; they are both
thoroughly merely representational. Spacetime cannot
be a lattice (even when it might be representable as such).
Specifically, I claimed that properly understood, there
are no such things as lattice-fundamental theories, rather
there are only lattice-representable theories. This paper
extends these conclusions to a Lorentzian context.
Once one begins thinking of lattices as a merely

representational structure, a path opens for perfectly
Lorentzian lattice theories. As proponents of causal set
theory correctly point out, no single fixed spacetime lat-
tice is Poincaré invariant. This (apparently) spells big
trouble for any lattice-based Lorentzian theories. They,
however, avoid this issue by considering instead a random
Poisson sprinkling of lattice points which does not pick
out any preferred direction and hence does not explicitly
break Poincaré symmetry, at least on average. However,
given the deflationary position this paper takes towards
lattices, I claim there is no issue to be avoided. Like co-
ordinate systems, lattice structures are just a represen-
tational tool for helping us express our theory. There
is no need for the symmetries of our representational
tools to latch onto the symmetries of the thing being
represented. Cartesian coordinates are distorted under
Lorentz boosts, but we can still use them to describe
our Lorentzian theories without issue. The same is true
of lattices. Indeed, in Sec. 11 I will present a perfectly
Lorentzian lattice theory.

A. Outline of the Paper

In Sec. 2, I will introduce seven discrete Klein Gordon
equations in an interpretation-neutral way and solve their
dynamics. Then, in Sec. 3, I will make a first attempt at
interpreting these theories. I will (ultimately wrongly)
identify their underlying manifold, locality properties,
and symmetries. Among other issues, a central problem
with this first attempt is that it takes the lattice itself
to be the underlying spacetime manifold and thereby un-
equivocally cannot support continuous translation and
rotation symmetries. This systematically under predicts
the symmetries that these theories can and do have.
In Sec. 4, I will provide a second attempt at inter-

preting these theories which fixes this issue (albeit in a
slightly unsatisfying way). In particular, in this second
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attempt I deny that the lattice is the underlying space-
time manifold. Instead, I “internalize” it into the the-
ory’s value space. Fruitfully, this second interpretation
does allow for continuous translation and rotation sym-
metries and even a (limited) Lorentz boost symmetry.
However, the key move here of “internalization” has sev-
eral unsatisfying consequences. For instance, the contin-
uous symmetries we find here are all classified as internal
(i.e, associated with the value space) whereas intuitively
they ought to be external (i.e, associated with the mani-
fold).

We thus will need a third attempt at interpreting these
theories which externalizes these symmetries. Sec. 5 -
Sec. 7 lay the groundwork for this third interpretation.
In particular, they describe a principled way of 1) invent-
ing a continuous spacetime manifold for our formerly dis-
crete theories to live on and 2) embedding our theory’s
states/dynamics onto this manifold as a new dynamical
field. In the middle of this, in Sec. 6, I will provide an in-
formal overview of the primary mathematical tools used
in the latter half of this paper. Namely, I will review
the basics of Nyquist-Shannon sampling theory and ban-
dlimited functions.

With this groundwork complete, in Sec. 8 and Sec. 9 I
will provide a third attempt at interpreting these seven
theories which fixes all issues arising in the previous two
interpretations. For instance, like in my second attempt,
this third interpretation can support continuous trans-
lation and rotation symmetries as well as a (limited)
Lorentz boost symmetry. However, unlike the second
attempt it realizes them as external symmetries (i.e., as-
sociated with the underlying manifold, not the theory’s
value space).

In Sec. 10, I will review the lessons learned in these
three attempts at interpretation. As I will discuss, the
lessons learned combine to give us a rich analogy be-
tween lattice structures and coordinate systems. As I
will discuss, there are actually two ways of fleshing out
this analogy: one internal and one external. This section
spells out these analogies in detail, each of which gives
us a discrete analog of general covariance. I find reason
to prefer the external notion, but either is likely to be
fruitful for further investigation/use. Sec. 11 provides us
with a perfectly Lorentzian lattice theory as promised.

Finally, in Sec. 12 I will summarize the results of this
paper, discuss its implications, and provide an outlook of
future work.

For comments on what this means for the the dynam-
ical vs geometrical spacetime debate [4, 23–32] see [1].
Here I will focus on the implications this work has for
quantum gravity especially causal set theory [33].

2. SEVEN DISCRETE KLEIN GORDON
EQUATIONS

In this section I will introduce seven discrete Klein Gor-
don equations (KG1-KG7) in an interpretation-neutral

way and solve their dynamics. These theories are all de-
scribable as being set on a lattice in both space and time.
In each of these theories the lattice in space will simply
repeat itself in time. I consider the following three cases
for the lattice in space: a uniform 1D lattice, a square
2D lattice, and a hexagonal 2D lattice, see Fig. 1. Re-
peated in time, these give us something like a square 2D
lattice, a cubic 3D lattice, and a hexagonal 3D lattice
respectively.

As harmful as these choices seem to be to Lorentz
invariance (as well as continuous translation and rota-
tion invariance) as I will show they ultimately pose no
barrier to our theories having these symmetries. As I
will argue, these choices of lattice are ultimately merely
choices of representation which have absolutely nothing
to do with the thing being represented. In particular,
there is no need for our representational structure to
have the same symmetries as the thing being represented.
There is no issue with using Cartesian coordinates to de-
scribe a rotationally invariant state/dynamics. I claim
that analogously there is no issue with using a lattice
to describe a state/dynamics with continuous transla-
tion and rotation invariance and even Lorentz invari-
ance. This claim has already been demonstrated in [1]
for states/dynamics with continuous translation and ro-
tation invariance. This paper extends this claim about
lattice structures to Lorentz invariance as well.

A. Introducing KG1-KG7

To begin, let us consider the continuum Klein Gordon
equations in 1 + 1 and 2 + 1 dimensions:

Continuum Klein Gordon Eq. (KG00): (2.1)

∂2t φ(t, x) = (∂2x −M2)φ(t, x)

Continuum Klein Gordon Eq. (KG0): (2.2)

∂2t φ(t, x, y) = (∂2x + ∂2y −M2)φ(t, x, y)

with some mass M ≥ 0. For a generally covariant (i.e.,
coordinate-free) view of these theories, see Sec. 9B.

For our first three discrete Klein Gordon theories, let us
consider the theories with only nearest-neighbor (N.N.)
interactions on the above discussed lattices which best
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approximate KG0 and KG00. Namely:

1D N.N. Klein Gordon Eq. (KG1): (2.3)

[ϕj−1,n − 2ϕj,n + ϕj+1,n]

= [ϕj,n−1 − 2ϕj,n + ϕj,n+1]− µ2ϕj,n

Square N.N. Klein Gordon Eq. (KG4): (2.4)

[ϕj−1,n,m − 2ϕj,n,m + ϕj+1,n,m]

= [ ϕj,n−1,m − 2ϕj,n,m + ϕj,n+1,m

+ ϕj,n,m−1 − 2ϕj,n,m + ϕj,n,m+1]− µ2ϕj,n,m

Hexagonal N.N. Klein Gordon Eq. (KG5): (2.5)

[ϕj−1,n,m − 2ϕj,n,m + ϕj+1,n,m]

=
2

3
[ ϕj,n−1,m − 2ϕj,n,m + ϕj,n+1,m

+ ϕj,n,m−1−2ϕj,n,m+ϕj,n,m+1

+ ϕj,n+1,m−1 − 2ϕj,n,m + ϕj,n−1,m+1]− µ2ϕj,n,m

with j ∈ Z indexing time and n ∈ Z and m ∈ Z indexing
space. See Fig. 1 for the indexing convention. Here µ ∈ R
is a dimensionless number playing the role of the field’s
mass. The terms in square brackets in the above expres-
sions are the best possible approximations of the second
derivative on each lattice which make use of only nearest
neighbor interactions. These theories are named KG1,
KG4, and KG5 in correspondence with the discrete heat
equations considered in [1] and in anticipation of their
further treatment later in this section.

This section has promised to introduce these theories
in an interpretation neutral way. As such, some of the
above discussion needs to be hedged. In particular, in
introducing these theories I have made casual comparison
between parts of these theories’ dynamical equations and
various approximations of the second derivative. While,
as I will discuss, such comparisons can be made, to do
so immediately is unearned. It comes dangerously close
to imagining the spacetime lattices discussed above as
being embedded in a continuous manifold. This may be
something we want to do later (see Sec. 5), but it is a non-
trivial interpretational move which ought not be done so
casually.

Crucially, in this paper I will begin by analyzing these
theories as discrete-native theories. As such, it’s impor-
tant to think of these discrete spacetime theories as self-
sufficient theories in their own right. We must not begin
by thinking of them as various discretizations or ban-
dlimitations of the continuum theories. While, as I will
discuss, these discrete theories have some notable rela-
tionships to various continuum theories it is important
to resist any temptation to see these continuum theories
as “where they came from”. Rather, let us pretend these
theories “came from nowhere” and let us see what sense
we can make of them.

Another bit of hedging: in introducing the above three
theories I casually associated them with the lattice struc-
tures shown in Fig. 1 (each repeated in time). Mak-
ing such associations ab initio is unwarranted. While we
may eventually associate these theories with those lattice

structures we cannot do so immediately. Such an associ-
ation would need to be made following careful considera-
tion of the dynamics. (Such an exercise is carried out in
Sec. 3.) Beginning here in an interpretation-neutral way
these theories ought to be seen as being defined over a
completely unstructured lattice.
I will reflect this concern in my notation as follows.

The labels for the lattice sites are presently too struc-
tured (e.g., (j, n) ∈ Z2 and (j, n,m) ∈ Z3). Instead we
ought to think of the lattice sites as having labels ℓ ∈ L
for some set L. Crucially, at this point the set of labels
for the lattice sites, L, is just that, an unstructured set.
Up to isomorphism (here, generic bijections, i.e.

generic relabelings), sets are uniquely specified by their
cardinality. The set of labels for the lattice sites is here
countable, ℓ ∈ L ∼= Z ∼= Z2 ∼= Z3. Reframed this
way the above discussed theories each consider the same
discrete variables ϕℓ ∈ R. In particular, KG1 consid-
ers variables ϕℓ which under some convenient relabel-
ing of the lattice sites, ℓ ∈ L 7→ (j, n) ∈ Z2, satisfies
Eq. (2.3). Similarly, KG4 and KG5 consider variables
ϕℓ which under some convenient relabeling of the lat-
tice sites, ℓ ∈ L 7→ (j, n,m) ∈ Z3, satisfy Eq. (2.4) and
Eq. (2.5) respectively.

It’s important to stress that the mere existence of
these convenient relabelings by itself has no interpre-
tative force. The fact that our labels (j, n) ∈ Z2 and
(j, n,m) ∈ Z3 in some sense form a square 2D lattice
and cubic 3D lattice in no way forces us to think of L as
being structured in this way (indeed, we might later like
to think of L as a hexagonal 3D lattice). In particular,
the fact that these labels are in a sense equidistant from
each other does not force us to think of the lattice sites
as being equidistant from each other. Nor are we forced
to think that “the distance between lattice sites” to be
meaningful at all. Dynamical considerations may later
push us in this direction, but the mere convenience of
this labeling should not.

I have above introduced three out of seven discrete
Klein Gordon theories. In order to introduce the other
four theories, it is convenient (but not necessary) to first
reformulate things. In particular, let us reorganize the
ϕℓ variables into a vector, namely,

Φ =
∑
ℓ∈L

ϕℓ bℓ. (2.6)

where bℓ is a linearly-independent basis vector for
each ℓ ∈ L and Φ is a vector in the vector space
RL := span({bℓ}ℓ∈L). For later reference, it should be
noted that ϕℓ is also a vector in a vector space: namely,
FL the space of functions f : L→ R. Note that Eq. (2.6)
is an vector space isomorphism between these vector
spaces, RL ∼= FL. Everything which follows concern-
ing Φ ∈ RL has an isomorphic description in terms of
ϕℓ ∈ FL.

Recall that for KG1 the lattice sites ℓ ∈ L have a
convenient relabeling in terms of two integer indices,
ℓ ∈ L 7→ (j, n) ∈ Z2. We can use this relabeling to
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grant the vector space a tensor product structure as
RL 7→ RZ ⊗ RZ by taking bℓ 7→ ej ⊗ en where

em = (. . . , 0, 0, 1, 0, 0, . . . )⊺ ∈ RZ (2.7)

with the 1 in the mth position. Under this restructuring
of KG1 we have,

Φ =
∑
j,n∈Z

ϕj,n ej ⊗ en. (2.8)

In these terms the dynamics of KG1 is given by,

Klein Gordon Equation 1 (KG1): (2.9)

∆2
(1),j Φ = ∆2

(1),n Φ− µ2Φ

where the notation Aj := A⊗11 and An := 11⊗A mean A
acts only on the first or second tensor space respectively.
The linear operator ∆2

(1) appearing twice in the above

expression is the following bi-infinite Toeplitz matrix:

∆2
(1) = {∆+,∆−} = Toeplitz(1, −2, 1) (2.10)

∆+ = Toeplitz(0,−1, 1)

∆− = Toeplitz(−1, 1, 0)

where the curly brackets indicate the anticommuta-
tor, {A,B} = 1

2 (AB + BA). Recall that Toeplitz
matrices are so called diagonal-constant matrices with
[A]i,j = [A]i+1,j+1. Thus, the values in the above expres-
sion give the matrix’s values on either side of the main
diagonal.

Although above I warned about thinking in terms of
derivative approximations prematurely, a few comments
are here warranted. Note that ∆+ is associated with the
forward derivative approximation, ∆− is be associated
with the backwards derivative approximation, and ∆2

(1)

is associated with the nearest neighbor second derivative
approximation,

∆2
(1)/ϵ

2 : ∂2xf(x) ≈
f(x+ ϵ)− 2f(x) + f(x− ϵ)

ϵ2
.

As stressed above, we ought to be cautious not to lean
too heavily on these relationships when interpreting these
discrete theories.

In addition to KG1, I will also consider two more theo-
ries with “improved derivative approximations”. Namely,

Klein Gordon Equation 2 (KG2): (2.11)

∆2
(2),j Φ = ∆2

(2),n Φ− µ2 Φ

Klein Gordon Equation 3 (KG3): (2.12)

D2
j Φ = D2

n Φ− µ2 Φ

where

∆2
(2) = Toeplitz(

−1

12
,
4

3
,
−5

2
,
4

3
,
−1

12
) (2.13)

D = Toeplitz(. . . ,
−1

5
,
1

4
,
−1

3
,
1

2
,−1,0,1,

−1

2
,
1

3
,
−1

4
,
1

5
,. . . )

D2 = Toeplitz(. . . ,
−2

16
,
2

9
,
−2

4
,
2

1
,
−2π2

6
,
2

1
,
−2

4
,
2

9
,
−2

16
,. . . ).

Note that ∆2
(2) is related to the next-to-nearest-neighbor

approximation to the second derivative. Obviously, the
longer range we make our derivative approximations the
more accurate they can be. The infinite-range operator
D (and its square D2) in some sense are the best discrete
approximations to the derivative (and second derivative)
possible. The defining property of D is that it is diagonal
in the (discrete) Fourier basis with spectrum,

λD(k) = −i k (2.14)

where k = k for k ∈ [−π, π] repeating itself cyclically
with period 2π outside of this region. This is in tight
connection with the continuum derivative operator ∂x
which is diagonal in the (continuum) Fourier basis with
spectrum λ∂x

(k) = −i k for k ∈ [−∞,∞].
Alternatively, one can construct D2 in the following

way: generalize ∆2
(1) and ∆2

(2) to ∆2
(n) namely the best

second derivative approximation which considers up to
nth neighbors to either side. Taking the limit n → ∞
gives D2 = limn→∞ ∆2

(n). Other aspects of D will be

discussed in Sec. 6 (including its related derivative ap-
proximation Eq. (6.7)) but enough has been said for now.
While these connections to derivative approximations

allow us to export some intuitions from the continuum
theories into these discrete theories, we must resist this
(at least for now). In particular, I should stress again
that we should not be thinking of any of KG1, KG2 and
KG3 as coming from the continuum theory under some
approximation of the derivative.
Let’s next reformulate KG4 and KG5 in terms of

Φ ∈ RL. In these cases we have a convenient relabel-
ing of the lattice sites in terms of three integer in-
dices, ℓ 7→ (j, n,m). As before we can use this rela-
beling to grant the vector space a tensor product struc-
ture as RL 7→ RZ ⊗ RZ ⊗ RZ by taking by taking
bℓ 7→ ej ⊗ en ⊗ em. Under this restructuring we have,

Φ =
∑

j,n,m∈Z
ϕj,n,m ej ⊗ en ⊗ em. (2.15)

In these terms the dynamics of KG4 given above (namely,
Eq. (2.4)) is now given by,

Klein Gordon Equation 4 (KG4): (2.16)

∆2
(1),j Φ = (∆2

(1),n +∆2
(1),m) Φ− µ2 Φ

A similar treatment of the dynamics of KG5 (namely,
Eq. (2.5)) gives us,

Klein Gordon Equation 5 (KG5): (2.17)

∆2
(1),j Φ =

2

3

[
∆2

(1),n +∆2
(1),m

+
{
∆+

m −∆+
n ,∆

−
m −∆−

n

}]
Φ− µ2 Φ

While the third term in the square brackets looks com-
plicated, it is just the analog of ∆2

(1),n and ∆2
(1),m but in

the m− n direction. See Eq. (2.10).
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Finally, in addition to KG4 and KG5 I consider the
following two theories:

Klein Gordon Equation 6 (KG6): (2.18)

D2
j Φ = (D2

n +D2
m) Φ− µ2 Φ

Klein Gordon Equation 7 (KG7): (2.19)

D2
j Φ =

2

3

(
D2

n +D2
m + (Dm −Dn)

2
)
Φ− µ2 Φ

which resemble KG4 and KG5 but which make use of
an infinite range coupling between lattice sites. Having
introduced these seven theories, let us next solve their
dynamics.

B. Solving Their Dynamics

Conveniently, each of KG1-KG7 admit planewave so-
lutions. Moreover, in each case these planewave solutions
form a complete basis of solutions.

Considering first KG1-KG3 we have solutions of the
form,

ϕj,n(ω, k) = e−iω j−i k n. (2.20)

with ω, k ∈ R2. It should be noted however, that out-
side of the range ω, k ∈ [−π, π] these planewaves re-
peat themselves with period 2π due to Euler’s identity,
exp(2πi) = 1. In terms of RL ∼= RZ⊗RZ these planewaves
are:

Φ(ω, k) =
∑
j,n∈Z

ϕj,n(ω, k) ej ⊗ en. (2.21)

From this planewave basis we can recover the ej ⊗ en
basis as:

ej ⊗ en =
1

(2π)2

∫∫ π

−π

eiω j+i k n Φ(ω, k) dωdk. (2.22)

These planewaves are only a solution if ω and k satisfy
the theory’s dispersion relation which can be straight-
forwardly calculated from the theory’s dynamics:

KG1: 2− 2 cos(ω) = µ2 + 2− 2 cos(k) (2.23)

KG2:
1

6
(cos(2ω)− 16 cos(ω) + 15) (2.24)

= µ2 +
1

6
(cos(2 k)− 16 cos(k) + 15)

KG3: ω2 = µ2 + k2 (2.25)

where ω = ω and k = k for ω, k ∈ [−π, π] repeating
themselves cyclically with period 2π outside of this re-
gion. Note that the dispersion relation for KG3 follows
from Eq. (2.14), essentially from the definition of D.

Fig. 2 shows these dispersion relations restricted to the
region ω, k ∈ [−π, π] with a field mass of µ = 1.25. Qual-
itatively, KG1-KG3 all seem to agree with each other at

π /4 π /2 3π /4 π0-π /4-π /2-3π /4-π

0

-π /4

-π /2

-3π /4

-π

π /4

π /2

3π /4

π

Dispersion Relation for KG1-KG3

KG1 KG2 KG3

FIG. 2. The dispersion relations for the planewave solutions
to the discrete Klein Gordon equations are plotted as a func-
tion of wavenumber for KG1, KG2 and KG3 with µ = 1.25.

low wavenumbers. They appear to mostly differ with re-
spects to the rate at which high wavenumber planewaves
oscillate. Let’s investigate how these theories behave
for planewaves with periods and wavelengths which span
many lattice sites, that is with |ω|, |k| ≪ π.

KG1: ω2 = µ2 + k2 +
ω4 − k4

12
+O(ω6) +O(k6)

KG2: ω2 = µ2 + k2 − ω6 − k6

90
+O(ω8) +O(k8)

KG3: ω2 = µ2 + k2. (2.26)

Note that the dispersion relation for KG3 exactly
matches that of the continuum theory, not only within
this regime but for all ω, k ∈ [−π, π]. In the |ω|, |k| ≪ π
regime, KG2 gives a better approximation of the contin-
uum theory than KG1 does. This is due to its longer
range coupling giving a better approximation of the
derivative.
If we consider only solutions with all or most of their

planewave support with |ω|, |k| ≪ π, we have an approx-
imate one-to-one correspondence between the solutions
to these theories. This is roughly why each of these
theories have the same continuum limit, namely KG00
defined above. In terms of the rate at which these the-
ories converge to the continuum theory in the contin-
uum limit, one can expect KG3 to outpace KG2 which
outpaces KG1. (As I discussed in [1], this is in a way
counter-intuitive: why does the most non-local discrete
theory give the best approximation of our perfectly local
continuum theory?)



8

However, while interesting in their own right, these
relationships with the continuum theory are not directly
helpful in helping us understand KG1-KG3 in their own
terms as discrete-native theories.

Moving on to KG4-KG7, their planewave solutions are
of the form,

ϕj,n,m(ω, k1, k2) = e−iω j−i k1 n−i k2 m (2.27)

with ω, k1, k2 ∈ R2. Again, it should be noted
however, that outside of the range ω, k1, k2 ∈ [−π, π]
these planewaves repeat themselves with period 2π
due to Euler’s identity, exp(2πi) = 1. In terms of
RL ∼= RZ ⊗ RZ ⊗ RZ these planewaves are:

Φ(ω, k1, k2) =
∑

j,n,m∈Z
ϕj,n,m(ω, k1, k2) ej ⊗ en ⊗ em.

From this planewave basis we can recover the ej⊗en⊗em
basis as:

ej ⊗ en ⊗ em (2.28)

=
1

(2π)3

∫∫∫ π

−π

eiω j+i k1n+i k2m Φ(ω, k1, k2) dωdk1dk2.

The dispersion relation for each of these theories is
given by:

KG4: 2− 2 cos(ω) = µ2+4−2 cos(k1)−2 cos(k2) (2.29)

KG5: 2− 2 cos(ω) = µ2

+
4

3

[
3− cos(k1)− cos(k1)− cos(k2 − k1)

]
KG6: ω2 = µ2 + k1

2 + k2
2

KG7: ω2 = µ2 +
2

3

[
k1

2 + k2
2 + (k2 − k1)

2
]
.

Note that the dispersion relation for KG6 and KG7 follow
from Eq. (2.14), essentially from the definition of D.
Unlike KG1-KG3, these theories do not all agree

with each other in the small ω, k1, k2 regime. KG4
and KG6 agree that for |ω|, |k1|, |k2| ≪ π we have
ω2 = µ2 + k21 + k22. Moreover, KG5 and KG7 agree with
each other in this regime, but not with KG4 and KG6.
Do we have two different results in the continuum limit
here?

Closer examination reveals that we do not. The key to
realizing this is to note that under the transformation,

ω 7→ ω, k1 7→ k1, k2 7→ 1

2
k1 +

√
3

2
k2. (2.30)

we have the dispersion relation for KG7 mapping exactly
onto the one for KG6. The inverse of this map is

ω 7→ ω, k1 7→ k1, k2 7→ 2k2 − k1√
3

. (2.31)

Technically, when acting on the planewaves Φ(ω, k1, k2)
these transformations are only each other’s inverses when

we have ω, k1, k2 ∈ [−π, π] both before and after the
transformation. This is due to the 2π periodicity of these
planewaves. Fortunately however, all of KG7’s planewave
solutions with ω, k1, k2 ∈ [−π, π] remain in this region af-
ter applying Eq. (2.30). The same is true of KG6: its
planewave solutions with ω, k1, k2 ∈ [−π, π] also remain
in this region after applying Eq. (2.31). As I will soon
discuss, this means we have an exact one-to-one corre-
spondence between KG6 and KG7’s solutions (much ado
will be made about this later.) Applying this transfor-
mation to KG5 does not map it onto KG4, but it does
bring their |ω|, |k1|, |k2| ≪ π behavior into agreement.

Thus, if we consider only solutions with all or most
of their planewave support with |ω|, |k1|, |k2| ≪ π (or
the appropriately transformed regime for KG5 and KG7)
then we have an approximate one-to-one correspondence
between the solutions to these theories. Within this
regime we can define their common continuum limit,
KG0. Repeating our analysis of the convergence rates
of KG1-KG3 here, we expect KG6 and KG7 to converge
in the continuum limit faster than KG4 and KG5 do.

This paper will make three attempts at interpreting
these seven discrete theories. Allow me to identify in
advance three important points of comparison between
these interpretations.

The first important point of comparison is what sense
they make of these different convergence rates in the con-
tinuum limit. As discussed above, in terms of this con-
vergence rate we expect KG3 > KG2 > KG1 and simi-
larly KG6,KG7 > KG4,KG5 with higher rated theories
converging more quickly. This is in tension with our in-
tuitive sense of locality for these theories: judging lo-
cality by the number of lattice sites coupled together
we have KG1 > KG2 > KG3 with higher rated theories
being more local and similarly KG4,KG5 > KG6,KG7.
How is it that our most non-local theories are somehow
the nearest to our perfectly local continuum theory?

Regarding how these three interpretations deal with
this tension, not much changes between the discrete heat
equations considered in [1] and the discrete Klein Gor-
don equations considered here. As such, I will leave any
detailed discussion of this issue to [1] and direct the inter-
ested reader there. Roughly, the second and third inter-
pretations deal with this tension by negating or reversing
all of the above intuitive locality judgements.

A second important point of comparison between these
three interpretations will be what sense they make of the
above-noted exact one-to-one correspondence between
KG6 and KG7’s solutions. (More will be said about this
in Sec. 4.) It is important to note that the mere exis-
tence of such a one-to-one correspondence does not auto-
matically mean that these theories are identical or even
equivalent; All it means technically is that their solution
spaces have the same cardinality. As I will discuss, some
of the coming interpretations recognize KG6 and KG7 as
being equivalent whereas others do not.

A third important point of comparison between the
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coming interpretations will be what sense they make of
these theories having continuous symmetries. For in-
stance, the dispersion relation for KG6 appears to be
in some sense rotation invariant and even Lorentz invari-
ant (at least in Fourier space and staying inside of the
region ω, k1, k2 ∈ [−π, π]). In a sense, KG7 might have
these symmetries too: given the above-noted one-to-one
correspondence between the solutions of KG6 and KG7,
there may be some (skewed) sense in which KG7 is rota-
tion invariant and Lorentz invariant as well. All of this
will be made precise later on. As I will discuss, some in-
terpretations consider KG6 and KG7 to have a rotation
symmetry and even (limited) Lorentz boost symmetries
whereas others do not. As I will discuss in Sec. 11, KG6
and KG7 can be seen as representationally-limited parts
of a larger perfectly Lorentzian lattice theory.

Having introduced these theories and solved their dy-
namics in an interpretation-neutral way. We can now
make a first (ultimately misled) attempt at interpreting
them.

3. A FIRST ATTEMPT AT INTERPRETING
KG1-KG7

Now that we have introduced these seven discrete the-
ories and solved their dynamics, let’s get on to interpret-
ing them. Let us begin by following our first intuitions
and analyze these seven discrete theories concerning their
underlying manifold, locality properties and symmetries.
Ultimately however, as I will discuss later, much of the
following is misled and will need to be revisited and re-
vised later. Luckily, retracing where we went wrong here
will be instructive later.

Let’s start by taking the initial formulation of the
above theories in terms of ϕℓ seriously, i.e. Eq. (2.3),
Eq. (2.4) and Eq. (2.5). Taken literally as written, what
are these theories about? Intuitively these theories are
about a field ϕℓ which maps lattice sites (ℓ ∈ L ∼= Z ∼=
Z2 ∼= Z3) into field amplitudes (ϕℓ ∈ R). That is a field
ϕ : Q → V with a discrete manifold Q = L and value
space V = R. Thus, taking ϕ : Q → V seriously as a
fundamental field leads us to thinking of Q = L as the
theory’s underlying manifold and V = R as the theory’s
value space. It is important to note that here, Q is the
entire manifold, it is not being thought of as embedded
in some larger manifold. (However, a view like this will
be considered in Sec. 5.)

Taking Q to be these theories’ underlying manifold
has consequences for our understanding of the locality
of these theories. In a highly intuitive sense, theory KG1
is the most local in that it couples together the fewest lat-
tice sites (only nearest neighbors). Following this KG2
is the next most local in the same sense: it couples only
next-to-nearest neighbors. Finally, in this sense KG3 is
the least local, it has an infinite range coupling. As men-
tioned above, there is some tension however with the rate
we expect each of these theories to converge at in the con-

tinuum limit. How is it that our most non-local theories
are somehow the nearest to our perfectly local continuum
theory? This first interpretation can do little to resolve
this tension, I refer the interested reader to [1] for further
discussion.

A. Intuitive Symmetries

With this manifold Q = L and value space V = R
picked out, what can we expect of these theories’ symme-
tries? For any spacetime theory there are roughly three
kinds of symmetries: 1) external symmetries associated
with automorphisms of the manifold, here Auto(Q), 2)
internal symmetries associated with automorphisms of
the value space, here Auto(V), and gauge symmetries
which result from allowing these internal symmetries to
vary smoothly across the manifold. But what are the
relevant notions of automorphism here?
Answering this question for Auto(Q) will require us to

distinguish what structures are “built into” Q and what
are “built on top of” Q. The analogous distinction in
the continuum case is that we generally take the mani-
fold’s differentiable structure to be built into it while the
Minkowski metric, for instance, is something additional
built on top of the manifold. In this paper, I am offi-
cially agnostic on where we draw this line in the discrete
case. However, for didactic purposes I will here be as
conservative as possible giving Q as little structure as is
sensible. Note that the less structure we associate with Q
the larger the class of relevant automorphisms Auto(Q)
will be. Thus, I am taking Auto(Q) to be as large as it
can reasonably be.
Here the minimal structure we can reasonably asso-

ciate with Q = L is that of a set. As such the largest
Auto(Q) could reasonably be is permutations of the lat-
tice sites, Auto(Q) = Perm(L).
In addition to Auto(Q) we might also have internal

symmetries Auto(V) and gauge symmetries. While in
general there may be abundant internal or gauge sym-
metries, for the present cases there are not many. In par-
ticular, for all of the above-mentioned theories we only
have V = R. As mentioned following Eq. (2.6), our (po-
tentially off-shell) discrete fields are themselves vectors
ϕℓ ∈ FL. Namely, they are closed under addition and
scalar multiplication and hence form a vector space. This
addition and scalar multiplication is carried out lattice-
site-by-lattice-site. Thus, the field’s value space V = R
is also structured like a vector space.
The value space V = R may additionally have more

structure than this. However, as above, for didac-
tic purposes I will here minimize the assumed struc-
ture in order to maximize possible symmetries. We
can even drop the zero vector from our consideration
taking V = R to be an affine vector space. There-
fore, I will take Auto(V) = Aff(R) such that our inter-
nal symmetries are linear-affine rescalings of ϕℓ, namely
ϕℓ 7→ c1ϕℓ + c2. We can find the theory’s gauge symme-
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tries by letting c1, c2 ∈ R vary smoothly across Q. That
is, ϕℓ 7→ cℓ,1ϕℓ + cℓ,2.
Thus, in total, for KG1-KG7 the widest scope of sym-

metry transformations available to us (at least on this
interpretation) are:

s : ϕℓ 7→ cP (ℓ),1ϕP (ℓ) + cP (ℓ),2 (3.1)

for some permutation P : L→ L.
For later reference it will be convenient to translate

these potential symmetry transformations in terms of the
vector, Φ ∈ RL, as

s : Φ 7→ C1 P Φ+ c2, (3.2)

for some permutation matrix, P , a diagonal matrix C1

and a vector c2. Here P captures the theory’s possible
external symmetries: the possibility of permuting lattice
sites. The diagonal matrix C1 and the vector c2 capture
the theory’s possible gauge symmetries: the possibility of
linear-affine rescalings of ϕℓ which vary smoothly across
Q.
I will next discuss which transformations of this form

preserve the dynamics of KG1-KG7. It should be clear
from the outset however that (at least on this interpreta-
tion) these theories cannot have continuous spacial trans-
lation and rotation, let alone Lorentzian boost symme-
tries. Indeed, I have been charitable considering the lat-
tice sites structured only as a set (perhaps artificially)
increasing the size of Auto(Q). Given this, it would be
highly surprising if we found KG1-KG7 to have symme-
tries outside of this set. (Such a surprise is coming in the
Sec. 4.)

As I will show in Sec. 4, this first interpretation of
these theories systematically under predicts the symme-
tries that discrete spacetime theories can and do have.
Fixing this issue will lead one to a discrete analog of
general covariance. We here under-predict symmetries
because we are taking these theories’ lattice structures
too seriously. Properly understood, they are merely a
coordinate-like representational artifact and so do not
limit our symmetries. Before that however, let’s see the
symmetries these theories have on this interpretation.

Symmetries of KG1-KG7: First Attempt

What then are the symmetries of KG1-KG7 according
to this interpretation? A technical investigation of the
symmetries of KG1-KG7 on this interpretation is car-
ried out in Appendix A, but the results are the follow-
ing. For KG1-KG3 the dynamical symmetries of the form
Eq. (3.1) are:

1) discrete shifts which map lattice site
(j, n) 7→ (j − d1, n− d2) for some integers
d1, d2 ∈ Z,

2) two negation symmetries which map lattice site
(j, n) 7→ (−j, n) and (j, n) 7→ (j,−n) respectively,

3) global linear rescaling which maps ϕℓ 7→ c1ϕℓ for
some c1 ∈ R,

4) local affine rescaling which maps ϕℓ 7→ ϕℓ + c2,ℓ(t)
for some c2,ℓ(t) which is also a solution of the
dynamics.

These are the symmetries of a uniform 1D lattices in
space and a uniform 1D lattice in time, zj,n = (j, n) ∈ R2

(plus linear-affine rescalings). These are two independent
1D lattices (rather than a single square 2D lattice) be-
cause we do not have quarter rotations between space and
time among our symmetries. Previously I had warned
against prematurely interpreting the lattice sites under-
lying KG1-KG3 as being organized into a square lattice.
As it turns out, having investigated these theories’ dy-
namical symmetries this warning was warranted.
What about KG4 and KG6? For KG4 and KG6 the

dynamical symmetries of the form Eq. (3.1) are:

1) discrete shifts which map lattice site
(j, n,m) 7→ (j − d1, n− d2,m− d3) for some
integers d1, d2, d3 ∈ Z,

2) three negation symmetries which map lattice site
(j, n,m) 7→ (−j, n,m) and (j, n,m) 7→ (j,−n,m)
and (j, n,m) 7→ (j, n,−m) respectively,

3) a 4-fold symmetry which maps lattice site
(j, n,m) 7→ (j,m,−n),

4) global linear rescaling which maps ϕℓ 7→ c1ϕℓ for
some c1 ∈ R,

5) local affine rescaling which maps ϕℓ 7→ ϕℓ + c2,ℓ(t)
for some c2,ℓ(t) which is also a solution of the
dynamics.

These are the symmetries of a square 2D lattice in space
and a uniform 1D lattice in time, zj,n,m = (j, n,m) ∈ R3

(plus linear-affine rescalings). The above 4-fold symme-
try corresponds to quarter rotation in space. These are
two independent lattices (rather than a single cubic 3D
lattice) because we do not have quarter rotations between
space and time among our symmetries. Previously I had
warned against prematurely interpreting the lattice sites
underlying KG4 and KG6 as being organized into a cubic
lattice. As it turns out, having investigated these theo-
ries’ dynamical symmetries this warning was warranted.
What about KG5 and KG7? For KG5 and KG7 the

dynamical symmetries of the form Eq. (3.1) are:

1) discrete shifts which map lattice site
(j, n,m) 7→ (j − d1, n− d2,m− d3) for some
integers d1, d2, d3 ∈ Z,

2) an exchange symmetry which maps lattice site
(j, n,m) 7→ (j,m, n),

3) a 6-fold symmetry which maps lattice site
(j, n,m) 7→ (j,−m,n+m). (Roughly, this
permutes the three terms in the right hand side of
Eq. (2.17) for KG5 and Eq. (2.19) for KG7.),
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4) global linear rescaling which maps ϕℓ 7→ c1ϕℓ for
some c1 ∈ R,

5) local affine rescaling which maps ϕℓ 7→ ϕℓ + c2,ℓ(t)
for some c2,ℓ(t) which is also a solution of the
dynamics.

These are the symmetries of a hexagonal 2D lat-
tice in space and a uniform 1D lattice in time,
zj,n,m = (j, n+m/2,

√
3m/2) ∈ R3 (plus linear-affine

rescalings). The above 6-fold symmetry corresponds to
one-sixth rotation in space. Previously I had warned
against prematurely interpreting the lattice sites underly-
ing KG5 and KG7 as being organized into a cubic 3D lat-
tice, prompted by the convenient relabeling ℓ 7→ (j, n,m).
As it turns out, having investigated these theories’ dy-
namical symmetries this warning was well warranted.

Thus, by investigating these theories’ dynamical sym-
metries we were able to find what sort of lattice structure
the assumed-to-be unstructured lattice L actually has for
each theory (e.g. in space a uniform 1D lattice, a square
lattice, and a hexagonal lattice each together with a uni-
form 1D lattice in time).

Finally, in this interpretation what sense can be made
of KG6 and KG7 having a nice one-to-one correspon-
dence between their solutions discussed at the end of
Sec. 2? While this correspondence between solutions cer-
tainly exists, little sense can be made of it here in support
of the equivalence of these theories. As the above discus-
sion has revealed this interpretation associates very dif-
ferent symmetries to KG6 and KG7 and correspondingly
very different lattice structures. While there is nothing
technically wrong per se with this assessment our later
interpretations will make better sense of this correspon-
dence.

To summarize, this interpretation has the benefit of
being highly intuitive. Taking the fields given to us,
ϕ : Q→ R, seriously we identified the underlying mani-
fold as Q = L. From this we got some intuitive notions of
locality. Moreover, by finding these theories’ dynamical
symmetries we were able to grant some more structure to
their lattice sites. By and large, the interpretation seems
to validate all of the first intuitions laid out in Sec. 1. On
this interpretation, the lattice seems to play a substantive
role in the theory: it seems to restrict our symmetries,
it seems to distinguish our theories from one another, be
essentially “baked-into” the formalism. (As I will discuss
in the next section, none of this is right.)

However, there are three major issues with this inter-
pretation which will become clear in light of our later
interpretations. Firstly, our locality assessments are in
tension with the rates at which these theories converge
to the (perfectly local) continuum theory in the contin-
uum limit, see [1] for further discussion. Secondly, de-
spite the niceness of the one-to-one correspondence be-
tween the solutions to KG6 and KG7, this interpretation
regards them as significantly different theories: with dif-
ferent lattice structures and (here consequently) different

symmetries. The final issue (which will become clear in
the next section) is that this interpretation drastically
under predicts the kinds of symmetries which KG1-KG7
can and do have. In fact, each of KG1-KG7 have a hid-
den continuous translation symmetry. Moreover, KG6
and KG7 have a hidden continuous rotation symmetry.
Moreover still, KG3, KG6, and KG7 all have a hidden
(limited) Lorentzian boost symmetry.
As I will discuss, the root of all of these issues is tak-

ing the theory’s lattice structure too seriously. As I
will argue, when properly understood, they are merely a
coordinate-like representational artifact. Indeed, as I will
show in the next section they do not limit our theory’s
symmetries. Moreover, theories appearing initially with
different lattice structures may nonetheless be equiva-
lent. Finally, these theories can always be reformulated
to refer to no lattice structure at all. These three points
establish a strong analogy between the lattice structures
appearing in our discrete spacetime theories and the co-
ordinate systems appearing in our continuum theories.
Ultimately, spelling out this analogy in detail in Sec. 10
will give us a discrete analog of general covariance (now
extended to a Lorentzian context). Indeed, this will lead
us to a perfectly Lorentzian lattice theory in Sec. 11.

4. A SECOND ATTEMPT AT INTERPRETING
KG1-KG7

In the previous section, I claimed that KG1-KG7 have
hidden continuous translation and rotation symmetries
and even (limited) Lorentzian boost symmetries. But
how can this be? How can discrete spacetime theories
have such continuous symmetries? As I discussed in
the previous section, if we take our underlying manifold
to be Q = L then these theories clearly cannot support
continuous translation and rotation symmetries let alone
Lorentzian boosts.
In order to avoid this conclusion we must deny the

premise, Q must not be the underlying manifold. What
led us to believe Q was the underlying manifold? We
arrived at this conclusion by focusing on ϕℓ ∈ FL and
thereby taking the real scalar field ϕ : Q → V to be
fundamental. Q is the underlying manifold because it
is where our fundamental field maps from. In order to
avoid this conclusion we must deny the premise, the field
ϕ : Q→ V must not be fundamental.
But if ϕ : Q → V is not fundamental then what is?

Fortunately, our above discussion has already provided us
with another object which we might take as fundamental.
Namely, Φ defined in Eq. (2.6). These vectors Φ ∈ RL

are in a one-to-one correspondence with the discrete fields
ϕℓ ∈ FL, Moreover, these vector spaces are isomorphic
RL ∼= FL with Eq. (2.6) being a vector space isomorphism
between them.
On this second interpretation I will be taking the for-

mulations of KG1-KG7 in terms of Φ seriously: namely
Eq. (2.9), Eq. (2.11), Eq. (2.12), and Eqs. (2.16)-(2.19).
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Taken literally as written, what are these theories about?
These theories are intuitively about an infinite dimen-
sional vector (Φ ∈ RL) which satisfies some dynamical
constraint.

There are two ways in which one might try to make
sense of Φ as a field Φ : M → V with some manifold M
and some value space V. Firstly, one might consider a
one-point manifold M = p with Φ simply being the field
value there Φ := Φ(p). Alternatively, one might try to
make sense of Φ as a field “from nowhere” with an empty
manifold M = ∅. On this view Φ is a vector field which
takes in no input and returns the vector Φ.
In any case, on this interpretation Q is no longer the

underlying manifold for KG1-KG7. Indeed, on this inter-
pretation the lattice sites, L, are no longer our spacetime
manifold (there may not even be a manifold). Rather,
they have been “internalized” into the value space V =
RL. In particular, in defining this vector space we have
associated with each lattice site ℓ ∈ L a basis vector bℓ.
See Eq. (2.6). However, as I will discuss, these particular
basis vectors play no special role in these theories. In-
deed, looking back at the dynamics for each of KG1-KG7
written in terms of Φ, one can see that in each case it
can be made basis-independent.

Let’s see what consequences this interpretive stance
has for these theories’ locality and symmetry. To pre-
view: this second interpretation either dissolves or re-
solves all of our issues with the first interpretation.
Firstly, the tension is dissolved between our theories’ dif-
ferences in locality and their differences in convergence
rate in the continuum limit. With no spacetime manifold
we no longer have access to any spaciotemporal notion
of locality. There simply are no differences in locality
anymore. I refer the interested reader to [1] for further
discussion.

Secondly, KG6 and KG7 are seen to be equivalent in a
stronger sense. And thirdly, perhaps most importantly,
this interpretation reveals KG1-KG7’s hidden continuous
translation and rotation symmetries and even (limited)
Lorentzian boost symmetries. However, as I will discuss,
this interpretation has some issues of its own which will
ultimately require us to make a third attempt at inter-
preting these theories in Sec. 8.

A. Internalized Symmetries

How does this internalization move affect our theory’s
capacity for symmetry? How can we now have contin-
uous translation and rotation symmetries as well as a
Lorentzian boost symmetry? At first glance, this may
appear to have made things worse. Without a mani-
fold (or even if the manifold is a single point) we no
longer have any possibility for external symmetries. How-
ever, while there are certainly less possible external sym-
metries, we are now open to a wider range of internal
symmetries. It is among these internal symmetries that
we will find KG1-KG7’s hidden continuous translation

and rotation symmetries and even (limited) Lorentzian
boost symmetries. As I will argue these symmetries can
reasonably be given these names despite being internal
symmetries. (In Sec. 8 I will present a third attempt
at interpreting these theories which “externalizes” these
symmetries, making them genuinely spacial translations,
rotations, and Lorentzian boosts.)
With our focus now on Φ ∈ RL, let us consider its

possibilities for symmetries. As discussed above, we have
no possibility of external symmetries associated with the
manifold. However, we do have possible internal sym-
metries associated with the value space (i.e., an infinite
dimensional vector space) we now have the full range of
invertible linear-affine transformations over RL, namely
Auto(V) = Aff(RL). There are no gauge symmetries here
as there is no longer any manifold for them to smoothly
vary across. Thus, in total the possibly symmetries for
our theories under this interpretation are,

s : Φ 7→ ΛΦ+ c (4.1)

for some invertible linear transformation Λ ∈ GL(RL)
and some vector c ∈ RL.
Contrast this with the symmetries available to us on

our first interpretation, namely Eq. (3.2). We can role
this new class of possible symmetries back onto our first
interpretation as follows: Note that because RL ∼= FL

we have Aff(RL) ∼= Aff(FL). The set of transformations
Aff(FL) acting on ϕℓ ∈ FL is much larger than what we
previously considered: namely, Auto(V) = Aff(R) vary-
ing smoothly over Auto(Q) = Perm(L). Indeed, the
present interpretation has a significantly wider class of
symmetries than before.

Moving back to our second interpretation, our previous
class of transformations (i.e, Auto(V) = Aff(R) varying
smoothly over Auto(Q) = Perm(L)) corresponds to only
a subset of our present consideration: Aff(RL). The dif-
ference is that before we could only apply a permutation
matrix P followed by a diagonal matrix C1 whereas now
we are allowed a general linear transformation Λ.

Note that permutation and diagonal matrices are
basis-dependent notions. Our first interpretation took
the lattice sites ℓ ∈ L seriously as a part of the man-
ifold Q = L and this is reflected in its conception of
symmetries. Converted into RL this first conception of
these theories’ possible symmetries gives special treat-
ment to the basis associated with the lattice sites, namely
{bℓ}ℓ∈L. In particular, on our first interpretation, our
possible symmetries are those of the form Eq. (4.1) which
additionally preserve this basis (up to rescaling, and re-
ordering).

This basis receives no special treatment on this second
interpretation. While it is true that {bℓ}ℓ∈L were used
in the initial construction of Φ, after this they no longer
play any special role. We are always free to redescribe Φ
in a different basis if we wish. Indeed, here any change of
basis transformation is of the form Eq. (4.1) and hence a
symmetry.
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With this attachment to the basis {bℓ}ℓ∈L dropped, we
now have a wider class of symmetries. Indeed, everything
which was previously considered a symmetry will be here
as well and possibly more. Perhaps among this more
general class of symmetries we may find new continuous
symmetries. Let’s see.

Symmetries of KG1-KG7: Second Attempt

Which of the above transformations are symmetries for
KG1-KG7? A non-exhaustive investigation of the sym-
metries of KG1-KG7 on this interpretation is carried out
in Appendix A, but the results are the following. For
KG1 and KG2 the dynamical symmetries of the form
Eq. (4.1) include:

1) action by T ϵ
j sending Φ 7→ T ϵ

j Φ where
T ϵ
j = T ϵ ⊗ 11 with T ϵ defined below. Similarly for
T ϵ
n = 11⊗ T ϵ,

2) two negation symmetries which map basis vectors
as ej ⊗ en 7→ e−j ⊗ en and ej ⊗ en 7→ ej ⊗ e−n

respectively,

3) a local Fourier rescaling symmetry which maps

Φ(ω, k) 7→ f̃(ω, k)Φ(ω, k) for some non-zero

complex function f̃(ω, k) ∈ C with ω, k ∈ [−π, π],

4) local affine rescaling which maps Φ 7→ Φ+ c2 for
some c2 which is also a solution of the dynamics.

These are exactly the same symmetries that we found on
the previous interpretation with two differences: Firstly,
global rescaling ϕℓ 7→ c1ϕℓ has been refined to a local
Fourier rescaling. Note that the discrete Fourier trans-
form itself is in Aff(RL) and so is in the class of potential
symmetries considered here.

Secondly, discrete shifts have been replaced with action
by

T ϵ := exp(−ϵD) (4.2)

with ϵ ∈ R acting on each tensor factor. A straight-
forward calculation shows that T ϵ acts on the planewave
basis Φ(k) :=

∑
n∈Z e

−iknen with k ∈ [−π, π] as

T ϵ : Φ(k) 7→ exp(ikϵ)Φ(k).

Using em = 1
2π

∫ π

−π
ei km Φ(k) dk we can recover how T ϵ

acts on the basis em as

T ϵ : em 7→
∑
b∈Z

Sm(b+ ϵ) eb (4.3)

where

S(y) =
sin(πy)

πy
, and Sm(y) = S(y −m), (4.4)

are the normalized and shifted sinc functions. Note that
Sn(m) = δnm for integers n and m.

As I will now discuss, T ϵ can be thought of as a con-
tinuous translation operator for three reasons despite it
being here classified as an internal symmetry. Note that
none of these reasons depend on T ϵ being a symmetry of
the dynamics.
First note that T ϵ is a generalization of the discrete

shift operation in the sense that taking ϵ = d1 ∈ Z re-
duces action by T ϵ to the map T d1 : em 7→ em−d1

on
basis vectors and relatedly the map m 7→ m− d1 on lat-
tice sites.
Second note that T ϵ is additive in the sense that

T ϵ1 T ϵ2 = T ϵ1+ϵ2 . In the language or representation the-
ory T ϵ is a representation of the translation group on
the vector space RZ ∼= RL. In particular, this means
T 1/2 T 1/2 = T 1: there is something we can do twice to
move one space forward. The same is true for all fractions
adding to one.

Third, recall from the discussion following Eq. (2.14)
that D is closely related to the continuum derivative op-
erator ∂x, exactly matching its spectrum for k ∈ [−π, π].
Recall also that the derivative is the generator of trans-
lation, i.e. h(x− ϵ) = exp(−ϵ ∂x)h(x). In this sense also
T ϵ = exp(−ϵD) is a translation operator. More will be
said about T ϵ in Sec. 6.

Thus we have our first big lesson: despite the fact that
KG1-KG2 can be represented on a lattice, they nonethe-
less have a continuous translation symmetry. This con-
tinuous translation symmetry was hidden from us on our
first interpretation because we there took the lattice to
be hard-wired in as a part of the manifold. Here, we do
not take the lattice structure so seriously. We have inter-
nalized it into the value space where it then disappears
from view as just one basis among many.

Before KG3 had the same symmetries as KG1 and
KG2, now it does not. However, allow me to skip over
KG3 temporarily. In the previous interpretation the sym-
metries of KG4 and KG6 matched each other, both being
associated with a 2D square lattice. Moreover, the sym-
metries of KG5 and KG7 matched each other, both being
associated with a hexagonal 2D lattice. Here however,
these pairings are broken up and a new matching pair is
formed between KG6 and KG7. More will be said about
this momentarily.

Let’s consider KG4 first. For KG4 the dynamical sym-
metries of the form Eq. (4.1) include:

1) action by T ϵ
j sending Φ 7→ T ϵ

j Φ. Similarly for T ϵ
n

and T ϵ
m,

2) three negation symmetries which map basis
vectors as ej ⊗ en ⊗ em 7→ e−j ⊗ en ⊗ em, and
ej ⊗ en ⊗ em 7→ ej ⊗ e−n ⊗ em, and
ej ⊗ en ⊗ em 7→ ej ⊗ en ⊗ e−m respectively,

3) a 4-fold symmetry which maps basis vectors as
ej ⊗ en ⊗ em 7→ ej ⊗ em ⊗ e−n,

4) a local Fourier rescaling symmetry which maps

Φ(ω, k1, k2) 7→ f̃(ω, k1, k2)Φ(ω, k1, k2) for some
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non-zero complex function f̃(ω, k1, k2) ∈ C with
ω, k1, k2 ∈ [−π, π],

5) local affine rescaling which maps Φ 7→ Φ+ c2 for
some c2 which is also a solution of the dynamics.

These are exactly the symmetries which we found on our
first interpretation (plus local Fourier rescaling) but with
action by T ϵ

j , T
ϵ
n and T ϵ

m replacing the discrete shifts. The

same discussion following Eq. (4.2) applies here, justi-
fying us calling these continuous translation operations.
Thus, KG4 has three continuous translation symmetries
despite being initially represented on a lattice, Eq. (2.4).

Let’s next consider KG5. For KG5 the dynamical sym-
metries of the form Eq. (4.1) include:

1) action by T ϵ
j sending Φ 7→ T ϵ

j Φ. Similarly for T ϵ
n

and T ϵ
m,

2) a negation symmetry which maps basis vectors as
ej ⊗ en ⊗ em 7→ e−j ⊗ en ⊗ em and an exchange
symmetry which maps basis vectors as
ej ⊗ en ⊗ em 7→ ej ⊗ em ⊗ en,

3) a 6-fold symmetry which maps basis vectors as
ej ⊗ en ⊗ em 7→ ej ⊗ e−m ⊗ en+m. (Roughly, this
permutes the three terms in Eq. (2.17)),

4) a local Fourier rescaling symmetry which maps

Φ(ω, k1, k2) 7→ f̃(ω, k1, k2)Φ(ω, k1, k2) for some

non-zero complex function f̃(ω, k1, k2) ∈ C with
t ∈ R and ω, k1, k2 ∈ [−π, π],

5) local affine rescaling which maps Φ 7→ Φ+ c2 for
some c2 which is also a solution of the dynamics.

These are exactly the symmetries which we found on our
first interpretation (plus local Fourier rescaling) but with
action by T ϵ

j , T
ϵ
n and T ϵ

m replacing the discrete shifts. The

same discussion following Eq. (4.2) applies here, justi-
fying us calling these continuous translation operations.
Thus, KG5 has three continuous translation symmetries
despite being initially represented on a lattice, Eq. (2.5).

Before moving on to analyze the symmetries of KG6
and KG7, let’s first see what this interpretation has to say
about them being equivalent to one another. As noted
at the end of Sec. 2, KG6 and KG7 have a nice one-to-
one correspondence between their solutions. Allow me to
spell this out in detail now.

Before this, however, it is worth briefly noting a rather
weak sense in which each of KG4-KG7 are equivalent to
each other. As noted following Eq. (2.30) and Eq. (2.31)
there is an approximate one-to-one correspondence be-
tween each of these theories in the |ω|, |k1|, |k2| ≪ π
regime as they approach their common continuum limit,
KG0. By contrast, as I will show, KG6 and KG7 have
an exact one-to-one correspondence over the whole of√
k21 + k22 < π and indeed more. This includes all of

their solutions but not all of ω, k1, k2 ∈ [−π, π].
This one-to-one correspondence is mediated by the

transformations Eq. (2.30) and Eq. (2.31). Let’s

first rewrite these in terms of Φ ∈ RL ∼= RZ ⊗ RZ ⊗ RZ

as follows. Consider first the transformation which
maps the dispersion relation for KG7 onto the one
for KG6 (namely, Eq. (2.30)). Consider its action on
the planewave basis Φ(ω, k1, k2) with ω, k1, k2 ∈ [−π, π],
namely

ΛKG7→KG6 : Φ(ω, k1, k2) 7→ Φ

(
ω, k1,

1

2
k1 +

√
3

2
k2

)

A straight-forward calculation shows this acts on the
ej ⊗ en ⊗ em basis as:

ΛKG7→KG6 : ej ⊗ en ⊗ em 7→ (4.5)

ej ⊗

 ∑
b1,b2∈Z

Sn(b1 + b2/2)Sm(
√
3 b2/2) eb1 ⊗ eb2

 .

Consider also the transformation which maps the dis-
persion relation for KG6 onto the one for KG7 (namely,
Eq. (2.31)). Consider its action on the planewave basis
Φ(ω, k1, k2) with ω, k1, k2 ∈ [−π, π], namely as

ΛKG6→KG7 : Φ(ω, k1, k2) 7→ Φ

(
ω, k1,

2k2 − k1√
3

)
A straight-forward calculation shows this acts on the
ej ⊗ en ⊗ em basis as:

ΛKG6→KG7 : ej ⊗ en ⊗ em 7→ (4.6)

ej ⊗

 ∑
b1,b2∈Z

Sn(b1 − b2/
√
3)Sm(2 b2/

√
3) eb1 ⊗ eb2

 .

It should be noted however that despite the fact that
Eq. (2.30) and Eq. (2.31) are each other’s inverses,
ΛKG7→KG6 and ΛKG6→KG7 are not each other’s inverses
(at least not on the whole of RL ∼= RZ ⊗ RZ ⊗ RZ). This
is due to the 2π periodic identification of the planewaves
Φ(ω, k1, k2). Indeed, when viewed as acting on V =
RL, the transformation ΛKG7→KG6 is not even invert-
ible. They are only each other’s inverses when we have
ω, k1, k2 ∈ [−π, π] both before and after these transfor-
mations.
For these reasons we need to consider the following two

subspaces of RL ∼= RZ ⊗ RZ ⊗ RZ:

RL
KG7 := span(Φ(ω, k1, k2)|with ω, k1, k2 ∈ [−π, π] (4.7)

before and after applying Eq. (2.30))

RL
KG6 := span(Φ(ω, k1, k2)|with ω, k1, k2 ∈ [−π, π] (4.8)

before and after applying Eq. (2.31)).

For later reference it should be noted that the rotation
invariant subspace,

RL
rot.inv := span

(
Φ(ω, k1, k2)

∣∣∣√k21 + k22 < π

)
(4.9)
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is a subspace of RL
KG6, that is RL

rot.inv ⊂ RL
KG6.

Restricted to RL
KG6 and RL

KG7 these transformations
are invertible and indeed are each other’s inverses. For-
tunately, all of KG6’s solutions are in RL

KG6 (and more-
over they are in RL

rot.inv as well). Similarly, all of KG7’s
solutions are in RL

KG7. Thus, ΛKG7→KG6 maps generic
solutions to KG7 onto generic solutions for KG6 in an
invertible way. Therefore, ΛKG6→KG7 and ΛKG7→KG6

give us not only a one-to-one correspondence between
the solutions to KG6 and KG7 but a solution-preserving
vector-space isomorphism between KG6 and KG7. One
can gloss this situation saying: the KPMs of KG6 and
KG7 are not isomorphic, but their DPMs are.

The fact that this is solution-preserving vector-space
isomorphism rather than merely a one-to-one correspon-
dence has substantial consequences for these theories’
symmetries. Namely, this forces KG6 and KG7 to have
the same symmetries. This is because these transforma-
tions are both of the form Eq. (4.1) (but notably not of
the form Eq. (3.2)) for any symmetry transformation for
KG6 there is a corresponding symmetry transformation
for KG7 and vice versa.

This is in strong contrast to the results of our previous
analysis in Sec. 3. There KG6 was seen to have symme-
tries associated with a square 2D lattice and KG7 was
seen to have the symmetries associated with a hexago-
nal 2D lattice. By contrast, in the present interpreta-
tion KG6 and KG7 are thoroughly equivalent: We have
a solution-preserving vector-space isomorphism between
them. Thus, on this interpretation the only difference
between KG6 and KG7 is a change of basis.

Thus we have our second big lesson: despite the fact
that KG6 and KG7 can be represented with very dif-
ferent lattice structures (i.e., a square lattice versus a
hexagonal lattice) they have nonetheless turned out to be
completely equivalent to one another. This equivalence
was hidden from us on our first interpretation because we
there took the lattice too seriously. As I will now discuss,
this reduced their continuous rotation symmetries down
to quarter rotations and one-sixth rotations respectively
and thereby made them inequivalent. Here, we do not
take the lattice structure so seriously. We have here in-
ternalized it into the value space where it subsequently
disappears from view as just one basis among many.

In addition to switching between lattice structures, in
this interpretation we can also do away with them alto-
gether. In this interpretation, a lattice structure is asso-
ciated with a choice of basis for V = RL. A choice of basis
(like a choice of coordinates) is ultimately a merely repre-
sentational choice, reflecting no physics. We can always
choose, if we like, to work within a basis-free formula-
tion of these theories. That is, ultimately, a lattice-free
formulation of these theories. Thus we have our third
big lesson: given a discrete spacetime theory with some
lattice structure we can always reformulate it in such a
way that it has no lattice structure whatsoever.

In the rest of this subsection I will only discuss the
symmetries KG6; analogous conclusions are true for KG7

after applying ΛKG6→KG7. For KG6 the dynamical sym-
metries of the form Eq. (4.1) include:

1) action by T ϵ
j sending Φ 7→ T ϵ

j Φ. Similarly for T ϵ
n

and T ϵ
m,

2) three negation symmetries which map basis
vectors as ej ⊗ en ⊗ em 7→ e−j ⊗ en ⊗ em, and
ej ⊗ en ⊗ em 7→ ej ⊗ e−n ⊗ em, and
ej ⊗ en ⊗ em 7→ ej ⊗ en ⊗ e−m respectively,

3) action by Rθ sending Φ 7→ RθΦ with Rθ defined
below. (This being a symmetry requires some
qualification as I will discuss below.),

4) action by Λw
j,n sending Φ 7→ Λw

j,nΦ with Λw
j,n

defined below. Similarly for Λw
j,m which is defined

below as well. (This being a symmetry requires
some qualification as I will discuss below.),

5) a local Fourier rescaling symmetry which maps

Φ(ω, k1, k2) 7→ f̃(ω, k1, k2)Φ(ω, k1, k2) for some

non-zero complex function f̃(ω, k1, k2) ∈ C with
ω, k1, k2 ∈ [−π, π],

6) local affine rescaling which maps Φ 7→ Φ+ c2 for
some c2 which is also a solution of the dynamics.

As with KG4 and KG5, we have here gained local Fourier
rescaling and action by T ϵ

j , T
ϵ
n and T ϵ

m has replaced the
discrete shifts from before. The same discussion follow-
ing Eq. (4.2) applies here, justifying us calling these con-
tinuous translation operations. Thus, KG6 (and KG7)
have three continuous translation symmetries despite be-
ing initially represented on a lattice.
Additionally, we have the quarter rotation symmetry

from our first interpretation replaced with action by Rθ,
which as I will argue is essentially a continuous rota-
tion transformation. Before that, it is worth noting a
rather weak sense in which each of KG4-KG7 are rota-
tion invariant. Each of these theories is approximately
rotation invariant in the |ω|, |k1|, |k2| ≪ π regime as they
approach the continuum limit. By contrast, as I will
show, KG6 is exactly rotation invariant over the whole of√
k21 + k22 < π, that is the whole of RL

rot.inv.. Since all
of KG6’s solutions lie inside of RL

rot.inv., R
θ will always

map its solutions to solutions in an invertible way, and
will hence be a symmetry.
This alleged continuous rotation transformation Rθ is

given by

Rθ := exp(−θ(NnDm −NmDn)) (4.10)

with θ ∈ R and where N is the “position operator” which
acts on the basis em as Nem = m em for m ∈ Z. Thus
Nn = 11⊗N ⊗ 11 and Nm = 11⊗ 11⊗N return the second
and third index respectively when acting on ej⊗en⊗em.
A straight-forward calculation shows that Rθ acts on

the planewave basis Φ(ω, k1, k2) with ω, k1, k2 ∈ [−π, π]
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as

Rθ :Φ(ω, k1, k2) 7→ (4.11)

Φ(ω, cos(θ)k1 − sin(θ)k2, sin(θ)k1 + cos(θ)k2).

and acts on the basis ej ⊗ en ⊗ em as

Rθ : ej⊗ en⊗ em 7→ ej ⊗
∑

b1,b2∈Z
Rb1b2

nm (θ) eb1⊗ eb2 (4.12)

Rb1b2
nm (θ)=Sn(cos(θ)b1−sin(θ)b2)Sm(sin(θ)b1+cos(θ)b2).

It should be noted that Rθ is not invertible (at least
not on the whole of RL ∼= RZ ⊗ RZ ⊗ RZ). As I will soon
discuss, this is due to the 2π periodic identification of the
planewaves Φ(ω, k1, k2). However, Rθ is invertible over
RL

rot.inv. which contains all of KG6’s solutions. Thus, for
KG6 Rθ always maps solutions to solutions in an invert-
ible way, and is hence a symmetry.

To see why Rθ is not invertible over all of V = RL note
that Rπ/4 maps two different planewaves to the same
place: Firstly note,

Rπ/4Φ(ω, π, π) = Φ(ω, 0,
√
2π) (4.13)

= Φ(ω, 0,
√
2π − 2π)

since the planewaves repeat themselves with period 2π.
Secondly note,

Rπ/4Φ(ω, π −
√
2π, π −

√
2π) = Φ(ω, 0,

√
2π − 2π).

Such issues do not arise when
√
k21 + k22 < π. Thus, when

we restrict our attention to RL
rot.inv (which contains all

of KG6’s solutions) then Rθ is invertible and indeed a
symmetry. One can gloss this situation saying: rotation
does not map the KPMs of KG6 onto themselves in an
invertible way, but it does for the DPMs of KG6. If we
cut the KPMs of KG6 down to RL

rot.inv this minor issue
is fixed.

As I will now discuss, Rθ can be thought of as a con-
tinuous rotation operator for three reasons despite it be-
ing here an internal symmetry. First note that Rθ is a
generalization of quarter rotation operation in the sense
that taking θ = π/2 reduces action by Rθ to the map
Rπ/2 : ej ⊗ en ⊗ em 7→ ej ⊗ em ⊗ e−n on basis vectors
and relatedly the map (j, n,m) 7→ (j,m,−n) on lattice
sites.

Second, note that restricted to RL
rot.inv., R

θ is cycli-
cally additive in the sense that Rθ1 Rθ2 = Rθ1+θ2 with
R2π = 11. In the language of representation theory, Rθ is
a representation of the rotation group on the vector space
RL

rot.inv.. In particular, this means Rπ/4Rπ/4 = Rπ/2.
There is something we can do twice to make a quarter
rotation. Similarly for all fractional rotations. Moreover,
note that together with the above discussed translations,
these constitute a representation of the Euclidean group
over RL

rot.inv..
Third, recall from the discussion following Eq. (2.14)

that D is closely related to the continuum derivative op-
erator ∂x, exactly matching its spectrum for k ∈ [−π, π].

Recall also that rotations are generated through the
derivative as h(Rθ(x, y)) = exp(−θ(x∂y − y∂x))h(x, y).
In this sense also Rθ is a rotation operator. More will
be said about Rθ in Appendix A.
This adds to our first big lesson: despite the fact that

KG6 and KG7 can be represented on a cubic 3D lattice
and a hexagonal 3D lattice respectively, they nonethe-
less both have a continuous rotation symmetry. This,
in addition to their continuous translation symmetries.
These continuous translation and rotations symmetries
were hidden from us on our first interpretation because
we there took the lattice representations too seriously.
Here, we do not take the lattice structure so seriously. In-
stead, we have internalized it into the value space where
it then disappears from view as just one basis among
many.
Let’s next discuss KG6’s (limited) Lorentzian boost

symmetry. In addition to generalizing the 4-fold sym-
metry into to a continuous rotation symmetry, KG6 also
has a brand new symmetry on this interpretation, namely
“action by Λw

j,n and/or Λw
j,m”. As I will argue these are

essentially Lorentz boost transformations. Before that,
it is worth noting a rather weak sense in which each of
KG4-KG7 are Lorentz invariant. Each of these theories
is approximately Lorentz invariant as they approach the
continuum limit regime |ω|, |k1|, |k2| ≪ π at least boosts
parameters w which keep them in this regime. By con-
trast, as I will show, KG6 is exactly Lorentz invariant
over a finite-sized region around ω, k1, k2 = 0 and boost
parameter w = 0.
This alleged Lorentz boost transformations are given

by

Λw
j,n := exp(−w(NjDn +NnDj)), (4.14)

Λw
j,m := exp(−w(NjDm +NmDj))

with w ∈ R. Note that Λw
j,n acts only on the first and

second tensor factor, whereas Λw
j,m acts only on the first

and third factors. In what follows I will focus on Λw
j,n,

with similar results following for Λw
j,m.

A straight-forward calculation shows that Λw
j,n acts on

the planewave basis Φ(ω, k1, k2) with ω, k1, k2 ∈ [−π, π]
as

Λw
j,n :Φ(ω, k1, k2) 7→ (4.15)

Φ(cosh(w)ω + sinh(w)k1, sinh(w)ω + cosh(w)k1, k2).

This is a Lorentz boost in discrete Fourier space. It fol-
lows from this that Λw

j,n acts on the basis ej ⊗ en ⊗ em
as

Λw
j,n : ej ⊗en ⊗em 7→

∑
b1,b2∈Z

Λb1b2
jn (w) eb1 ⊗eb2 ⊗em

Λb1b2
jn (w) = Sj(cosh(w)b1 + sinh(w)b2) (4.16)

× Sn(sinh(w)b1 + cosh(w)b2).

Like with Rθ discussed above, Λw
j,n is a symmetries of the

dynamics in a qualified sense: namely, Λw
j,n is not invert-

ible (at least not on the whole of RL ∼= RZ ⊗ RZ ⊗ RZ).
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Indeed, each of these transformations is only invertible
for a subspace of RL ∼= RZ ⊗ RZ ⊗ RZ. As before, this is
due to the 2π periodic identification of the planewaves

Φ(ω, k1, k2). To see this note that Λ
ln(2)
j,n maps two dif-

ferent planewaves to the same place: Firstly note,

Λ
ln(2)
j,n Φ(π, π, k2) = Φ(2π, 2π, k2) (4.17)

= Φ(0, 0, k2)

since the planewaves repeat themselves with period 2π.
Secondly note,

Λ
ln(2)
j,n Φ(0, 0, k2) = Φ(0, 0, k2)

Such issues do not arise when we have ω, k1, k2 ∈ [−π, π]
both before and after the Lorentz transformation.

Thus, Λw
j,n and Λw

j,m are invertible over the portion of

RL ∼= RZ ⊗ RZ ⊗ RZ spanned by planewaves Φ(ω, k1, k2)
which satisfy the following two conditions:

| cosh(w)ω + sinh(w) k1 | <π (4.18)

| sinh(w)ω + cosh(w) k2 | <π.

Unfortunately, unlike with Rθ this issue cannot be
so easily contained: the region where both Λw

j,n and
Λw
j,m are invertible depends on w and indeed, shrinks

to nothing as w → ±∞. When boosted enough, any
planewave except ω = k1 = k2 = 0 will leave the
region ω, k1, k2 ∈ [−π, π]. Moreover, for any w there
is some planewave in ω, k1, k2 ∈ [−π, π] which when
boosted by w leaves this region. However, despite
this, for every planewave in ω, k1, k2 ∈ (−π, π) there
is some small enough boost w ̸= 0 which keeps it in
ω, k1, k2 ∈ [−π, π]. Moreover, for every w there is some
neighborhood around ω, k1, k2 = 0 where boosting by w
leaves us in ω, k1, k2 ∈ [−π, π]. When restricted to acting
on the span of these planewaves Λw

j,n and Λw
j,n are both

invertible.
It is in the following sense that Λw

j,n and Λw
j,m are sym-

metries of KG6. Consider solutions to KG6 which are
supported only over planewaves in some finite neighbor-
hood of ω, k1, k2 = 0. Consider Λw

j,n and Λw
j,m with w in

some finite neighborhood of w = 0. Choose the neighbor-
hoods such that Eq. (4.18) is satisfied throughout. Re-
stricting our attention to this regime, all of these transfor-
mations map exactly map solutions to solutions in an in-
vertible way. As I claimed above, KG6 is exactly Lorentz
invariant over a finite-sized region around ω, k1, k2 = 0
and boost parameter w = 0.

Recall as mentioned above that for all planewaves in
ω, k1, k2 ∈ (−π, π) there is some small enough boost
w ̸= 0 which keeps it in ω, k1, k2 ∈ [−π, π]. Thus, KG6
has a differential Lorentz boost invariance over all of
ω, k1, k2 ∈ (−π, π). Note that the same is true of trans-
lations and rotations. Including translations and rota-
tions, KG6 has a differential Poincaré invariance over
ω, k1, k2 ∈ (−π, π). Concretely, taken all together
Λw
j,n, Λw

j,m, Rθ, T ϵ
j , T ϵ

n and T ϵ
m form a representa-

tion of the Poincaré algebra over the space spanned by

ω, k1, k2 ∈ (−π, π). In particular, this means that for ev-
ery algebraic fact about the differential Poincaré transfor-
mations there is an analogous fact here with the group
action being replaced by matrix multiplication. Expo-
nentiating this representation of the Poincaré algebra we
recover a finite part of the Poincaré group. Namely, the
finite-sized collection of states and transformations sat-
isfying:

| cosh(w)ω + sinh(w) |k| | <π (4.19)

| sinh(w)ω + cosh(w) |k| | <π
| cos(θ) k1 − sin(θ)k2| <π
| sin(θ) k1 + cos(θ)k2| <π.

Indeed, KG6 is exactly Poincaré invariant over a finite-
sized region around ω, k1, k2 = 0 and w = θ = 0.
As I will now discuss, in this regime Λw

j,m and Λw
j,n

can be thought of as implementing Lorentzian boosts
for two reasons despite being here categorized as an
internal symmetry. Firstly, recall the close relation-
ship noted above between D and ∂x. Recall also that
Lorentz boosts are generated through the derivative as
h(Λw(t, x)) = exp(−w(x∂t + t∂x))h(t, x).
Secondly, as I have already mentioned, together with

our above discussed translations and rotations, Λw
j,m and

Λw
j,n give us a representation of the Poincaré algebra and

even a finite portion of the Poincaré group.
Thus we have yet another addendum to our first big

lesson: despite the fact that KG6 and KG7 can be rep-
resented on a cubic 3D lattice and a hexagonal 3D lat-
tice respectively, they nonetheless both have a Lorentzian
boost symmetries (in a finite but limited regime). This,
in addition to their continuous translation and rotation
symmetries. As impressive as this admittedly limited
Lorentz symmetry is, we can do better: In Sec. 11 I will
provide a perfectly Lorentzian lattice theory.

Finally, let’s consider KG3. For KG3 the dynamical
symmetries of the form Eq. (4.1) include:

1) action by T ϵ
j sending Φ 7→ T ϵ

j Φ. Similarly for T ϵ
n.

2) two negation symmetries which map basis vectors
as ej ⊗ en 7→ e−j ⊗ en and ej ⊗ en 7→ ej ⊗ e−n

respectively,

3) action by Λw
jn sending Φ 7→ Λw

jnΦ where Λw
jn is

defined above,

4) a local Fourier rescaling symmetry which maps

Φ(ω, k) 7→ f̃(ω, k)Φ(ω, k) for some non-zero

complex function f̃(ω, k) ∈ C with ω, k ∈ [−π, π],

5) local affine rescaling which maps Φ 7→ Φ+ c2 for
some c2 which is also a solution of the dynamics.

As with KG1 and KG2 we have gained local Fourier
rescaling and discrete shifts have been replaced with ac-
tion by T ϵ. As discussed above we are justified in call-
ing T ϵ a continuous translation operation. For KG3 we
also have a new symmetry, namely action by Λw

jn. For
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the reasons discussed above, this can be thought of as
a (limited) Lorentzian boost symmetry despite it being
here classified as an internal symmetry.

To summarize: this second attempt at interpreting
KG1-KG7 has fixed all of the issues with our previous
interpretation. Firstly, there is no longer any tension
between these theories’ differing locality properties and
the rates at which they converge to the (perfectly local)
continuum theory in the continuum limit. (There are
no longer any differences in locality.) See [1] for further
discussion. Secondly, the fact that we have a nice one-
to-one correspondence between the solutions to KG6 and
KG7 is now more satisfyingly reflected in their matching
symmetries. Finally, this interpretation has exposed the
fact that KG1-KG7 have hidden continuous translation
and rotation symmetries as well as a (limited) Lorentzian
boost symmetries.

By and large, the interpretation invalidates all of the
first intuitions laid out in Sec. 1. As this interpretation
has revealed, the lattice seems to play a merely repre-
sentational role in the theory: it does not restrict our
symmetries. Moreover, theories initially appearing with
different lattice structures may nonetheless turn out to
be completely equivalent. The process for switching be-
tween lattice structures is here a change of basis in the
value space. Indeed, we have a third lesson: there is
no sense in which these lattice structures are essentially
“baked-into” these theories; on this interpretation our
theories make no reference to any lattice structure if we
work in a basis-independent way. No basis is dynamically
favored.

As I discussed in [1] these three lessons lay the founda-
tion for a strong analogy between the lattice structures
which appear in our discrete spacetime theories and the
coordinate systems which appear in our continuum space-
time theories. This analogy here extended to Lorentzian
theories.

These are substantial lessons, but ultimately this in-
terpretation has a few issues of its own. Firstly, the way
that the tension is dissolved between locality and conver-
gence in the continuum limit is unsatisfying. Intuitively,
we ought to be able to extract intuitions about locality
from the lattice sites.

Moreover, while this interpretation has indeed exposed
KG1-KG7’s hidden symmetries, the way it classifies them
seems wrong. They are here classified as internal sym-
metries (i.e., symmetries on the value space) whereas in-
tuitively they should be external symmetries (i.e., sym-
metries on the manifold).

The root of all of these issues is taking the theory’s
lattice structure to be internalized into the theory’s value
space. Our third attempt at interpreting these theories
will fix this by externalizing these symmetries. As I will
discuss, this gives us access to a perspective within which
we can find a perfectly Lorentzian lattice theory (i.e., not
limited as the above theories are).

5. EXTERNALIZING THESE THEORIES -
PART 1

In the previous section it was revealed that KG1-KG7
have hidden continuous symmetry transformations which
intuitively correspond to spacial translations and rota-
tion and even (limited) Lorentzian boosts. In our first
attempt at interpreting KG1-KG7 the possibility of such
symmetries were outright denied, see Sec. 3. In our sec-
ond attempt, these hidden symmetries were exposed, but
they were classified (unintuitively) as internal symme-
tries, see Sec. 4. This is due to an “internalization” move
made in our second interpretation. This move also had
the unfortunate consequence of undercutting our ability
to use the lattice sites to reason about locality.
In this section I will show how we can externalize these

symmetries by in a principled way 1) inventing a contin-
uous manifold for our formerly discrete theories to live
on and 2) embedding our theory’s states/dynamics onto
this manifold as a new dynamical field.

A. A Principled Choice of Spacetime Manifold

If we are going to externalize these symmetries then
we need to have a big enough manifold on which to do
the job. What spacetime manifold M might be up to the
task? The first thing we must do is pick out which of our
theory’s symmetries we would like to externalize (there
may be some symmetries we want to keep internal). For
KG1-KG7 we want to externalize the following symme-
tries: continuous translations, mirror reflections, as well
as discrete rotations for KG4 and KG5 and continuous
rotations for KG6 and KG7. For each theory we can
collect these dynamical symmetries together in a group

Gdym
to-be-ext. Clearly, our choice of spacetime manifold M

needs to be big enough to have Gdym
to-be-ext as a subgroup

of Diff(M). Let us call this the symmetry-fitting con-
straint2.
Of course, symmetry-fitting alone doesn’t uniquely

specify which manifold we ought to use. If M works,
then so does any larger M′ with M as a sub-manifold.
For standard Occamistic reasons, it is natural to go with
the smallest manifold which gets the job done. The larger

the gap between the groups Gdym
to-be-ext and Diff(M) the

more fixed spacetime structures will need to be intro-
duced later on (see Sec. 9B).
In principle, we are free to pick any large-enough man-

ifold which we like to embed KG1-KG7 onto. However,
perhaps surprisingly, if we make natural choices about
how the translation operations we have already identified
(see Eq. (4.2)) fit onto the new spacetime manifold then
our choice of M is actually fixed up to diffeomorphism.

2 As I will soon discuss, there may be transformations which we
want to externalize even when they are not symmetries.
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In particular, I demand the following: Certain translation
operations on RL are to correspond (perhaps in a com-
plicated way) to parallel transport on the new spacetime
manifold M. For KG1-KG3 these to-be-externalized
translation operations are T ϵ1

j and T ϵ2
n . For KG4-KG7

these to-be-externalized translation operations are T ϵ1
j ,

T ϵ2
n , and T ϵ3

m . Let us call this the translation-matching
constraint. As I will soon show, this constraint fixes the
new spacetime manifold M up to diffeomorphism.

Before fleshing this out, however, it’s worth reflecting
on two questions focusing on KG4-KG7: What exactly
makes T ϵ1

j , T ϵ2
n , and T ϵ3

m translation operations? More-
over, what motivation do we have to externalize these
particular translation operations? To answer: firstly,
these can be thought of as translation operations for the
reasons discussed following Eq. (4.2). Note these rea-
sons are unrelated to the fact that these are dynamical
symmetries of KG4-KG7. Suppose the dynamics of KG4
given by Eq. (2.4) was modified to have explicit depen-
dence on the index n. In this case, T ϵ2

n would no longer be
a dynamical symmetry but it would still be a translation
operation (and moreover, one worth externalizing).

Secondly, why externalize these translation operations
in particular? As I will now discuss, any motivation
for externalizing these particular translation operations
must come from the dynamics. Forgoing any dynamical
considerations, all we can say about KG1-KG7 is that
they concern vectors Φ ∈ RL (or alternatively functions
ϕ : L→ R in FL). Recall that pre-dynamics the set of
labels for lattice sites L is uncountable but otherwise un-
structured; We might index it using any number of in-
dices we like, L ∼= Z ∼= Z2 ∼= . . . ∼= Z17 ∼= . . . . Using each
of these re-indexings we can grant RL different tensor
product structures, RL ∼= RZ ∼= RZ ⊗ RZ ∼= . . . . In each
tensor factor we can define a translation operation T ϵ as
in Eq. (4.2). Thus, the vector space RL supports repre-
sentations of: the 1D translation group, the 2D transla-
tion group, . . . , the 17D translation group, etc. Given all
these possibilities, why externalize T ϵ1

j , T ϵ2
n , and T ϵ3

m in
particular? The answer must come from the dynamics.

One good reason to consider T ϵ1
j , T ϵ2

n , and T ϵ3
m wor-

thy of externalization is that they are dynamical symme-
tries of KG4-KG7. However, as mentioned above, some-
thing might be a translation operation (and moreover,
one worthy of externalizing) even if it’s not a dynamical
symmetry. Unfortunately, I don’t have a perfect rule for
how to identify such cases. The best I can offer is to
check whether its associated derivative (or some function
thereof) appears in the dynamical equations.

Regardless, its sufficiently clear for KG4-KG7 that T ϵ1
j ,

T ϵ2
n , and T ϵ3

m are among the translation operations wor-
thy of externalizing. Our translation-matching constraint
suggests that these ought to correspond (perhaps in a
complicated way) to parallel transport on the new space-
time manifold M. I claim that (at least in this case) this
constraint fixes the spacetime manifold M up to diffeo-
morphism.

To show this I will first pick out at each point p ∈ M

on the manifold three independent directions in the tan-
gent space at p. To realize the translation-matching con-
straint, I demand that differential translation by T ϵ1

j ,
T ϵ2
n , and T ϵ3

m is then to be carried out on the manifold
as parallel transport in these three directions. Note that
this already implies that the dimension of M is at least
three.
Indeed, in this case we have good reason to take M to

be exactly three dimensional. To see this, note that

RL ∼= RZ ⊗ RZ ⊗ RZ (5.1)

= span(T ϵ1
j T ϵ2

n T ϵ3
m e0⊗ e0⊗ e0|(ϵ1, ϵ2, ϵ3) ∈ R3)

(5.2)

That is, beginning from e0 ⊗ e0 ⊗ e0 these translations
cover all of RL ∼= RZ⊗RZ⊗RZ. That is, they cover all of
our state space in the second interpretation. The three
translations T ϵ1

j , T ϵ2
n , and T ϵ3

m are thus already enough
to cover every kinematic possibility. We need no further
dimensions and so by Occam’s razor we may then take
the spacetime manifold M to be three dimensional.

But how does the translation-matching constraint
(which I have yet to state technically) fix M up to diffeo-
morphism? As I will now discuss, (at least in this case)
M it is fixed up to diffeomorphism by the group theo-
retic properties of T ϵ1

j , T ϵ2
n , and T ϵ3

m . Let Gtrans. be the

group formed by all compositions of T ϵ1
j , T ϵ2

n , and T ϵ3
m .

Note that the group Gtrans. is a Lie group, and hence is
also a differentiable manifold.

Recall that so far the translation-matching constraint
associated to each of our differential translations, a di-
rection in the tangent space of each point p ∈ M.
Since Gtrans. contains nothing but these translations, this
gives us a one-to-one correspondence between the algebra
gtrans. of Gtrans. and (at least a subspace of) the of the
tangent space of each point on the manifold. Let’s take
these tangent vectors to very smoothly across the man-
ifold. Let Mtrans.(p) be the submanifold of points on
the spacetime manifold reachable from p ∈ M by follow-
ing these tangent vectors. The algebra gtrans. is related
to the group Gtrans. in the same way that this tangent
space it related to Mtrans.(p), namely by repeated appli-
cation of the exponential map. Hence, I take translation-
matching to demand that Mtrans.(p) ∼= Gtrans. as differ-
entiable manifolds for every p ∈ M.
As discussed above, we have reason to take M

to be three dimensional. Hence (assuming that M
is connected) any three dimensional submanifold (e.g.
Mtrans.(p)) must in fact be the entire manifold. There-
fore we have M ∼= Gtrans. as differentiable manifolds.
But what can we say about this translation group

Gtrans. viewed as a manifold? Notice that these three
continuous translation operations comprising Gtrans. all
commute with each other. As such for any combination
of them Tgeneric ∈ Gtrans. we always have a unique fac-
torization of the form,

Tgeneric = T ϵ1
j T ϵ2

n T ϵ3
m (5.3)
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Moreover, this factorization represents all of Gtrans. with-
out redundancy. Indeed, we can smoothly parameterize
all of Gtrans. using parameters (ϵ1, ϵ2, ϵ3) ∈ R3 in a one-
to-one way. That is, Gtrans.

∼= R3 as differentiable man-
ifolds. Therefore, we have M ∼= R3 as well. Note this
means that we have access to a global coordinate system
for M.
Thus, from the translation-matching constraint alone

we are forced to take M ∼= R3 for KG4-KG7. For KG1-
KG3 the same translation-matching constraint forces us
to take M ∼= R2. Note that in both cases these manifolds
satisfy the symmetry-fitting constraint: Diff(M) is large

enough to contain Gdyn
to-be-ext.

B. A Principled Choice of Embedding

Now that we have a spacetime manifold selected, we
need to somehow embed Φ (or equivalently ϕℓ) into it.
Here I will begin with Φ with the approach from ϕℓ be-
ing addressed in Sec. 7. The goal in either case is to
construct in a principled way from either Φ or ϕℓ a new
field ϕ : M → R defined over this manifold.

Before this, however, recall that our move from the first
to the second interpretation was mediated by means of a
vector-space isomorphism FL

∼= RL namely Eq. (2.6).
Here too, our reinterpretation will be mediated by a
vector-space isomorphism.

Let F (M) be the set of all real scalar functions
f : M → R. Notice that this is a vector space as it is
closed under addition and scalar multiplication. Our goal
here is to in a principle way construct an isomorphism be-
tween RL and some vector subspace of F (M). Indeed,
F (M) is much larger than RL (having an uncountably
infinite dimension). As such we will only ever map RL

onto some subset of it, F ⊂ F (M). In order for us
to have a vector space isomorphism between RL and F
the following conditions must be satisfied. F must be:
1) closed under addition and scalar multiplication and
hence a vector space, and 2) countably infinite dimen-
sional and hence isomorphic to RL, i.e., F ∼= RZ ∼= RL.
With the target subset characterized, the embedding of
Φ ontoM is then accomplished by picking a vector-space
isomorphism E : RL → F . The embedded field is then
gives to us as ϕ := E(Φ).
It appears we have a great deal of freedom here. Sup-

pose that, in line with the translation-matching con-
straint discussed above, we take M ∼= R2 for KG1-KG3
and M ∼= R3 for KG4-KG7. In this case, we still have
great freedom in picking both the target vector space
F ⊂ F (M) and the isomorphism E : RL → F . However,
as I will now discuss, translation-matching also drasti-
cally limits these choices as well. Allow me to demon-
strate with KG4-KG7.

First, allow me to explicitly define a coordinate sys-
tem for M ∼= Gtrans.

∼= R3. As discussed above we al-
ready have an explicit smooth parametrization of Gtrans.

via (ϵ1, ϵ2, ϵ3) ∈ R3, see Eq. (5.3). In addition to this,

concretely realizing our translation-matching constraint
requires us to fix a smooth map from Gtrans. to M. Com-
bined these two maps give us a global coordinate system
(ϵ1, ϵ2, ϵ3) ∈ R3 for M. We can then rescale these to give
new coordinates (t, x, y) ∈ R3 by adding in a length scale
a > 0 with t = ϵ1a, x = ϵ2a, and y = ϵ3a for some fixed
length scale a.
In total this picks out a diffeomorphism

dtrans. : R3 → M which assigns global coordinates
(t, x, y) ∈ R3 to M. For much of the next sections I
will work with ϕ in these coordinates. Namely I will
work with the pull back, ϕ ◦ dtrans. : R3 → R. One
may worry that this choice of coordinates is arbitrary.
Indeed, if one changes the smooth map from Gtrans.

to M referenced above we end up with a different
coordinate system dtrans. related to the original by some
diffeomorphism. While this is true, no matter how one
realizes the translation-matching constraint there will
be some coordinate system would result from the above
construction. In what follows, nothing depends on how
the translation-matching constraint is realized.
A word of warning. The coordinates used above might

end up lying on the manifold in a curvilinear way. Cru-
cially, the naive distance and metric structure associated
with these coordinates do not automatically have any
spaciotemporal significance. At present, our manifold
M still has no metric. When a metric arises later, it
will be due to dynamical considerations, not from any
choice of coordinates. A coordinate-independent view of
these theories will be given in Sec. 9B.
With this said, by construction we have the following

in correspondences in these coordinate:

1. Action by T ϵ
j on RL ∼= RZ ⊗ RZ ⊗ RZ acts on the

manifold M in these coordinates as
(t, x, y) 7→ (t− ϵ a, x, y),

2. Action by T ϵ
n on RL ∼= RZ ⊗ RZ ⊗ RZ acts on the

manifold M in these coordinates as
(t, x, y) 7→ (t, x− ϵ a, y),

3. Action by T ϵ
m on RL ∼= RZ ⊗ RZ ⊗ RZ acts on the

manifold M in these coordinates as
(t, x, y) 7→ (t, x, y − ϵ a).

In particular, matching up differential translations on
RL ∼= RZ ⊗ RZ ⊗ RZ with those on M requires

E(Dj Φ) = a ∂tE(Φ) (5.4)

E(DnΦ) = a ∂xE(Φ)

E(DmΦ) = a ∂yE(Φ)

in these coordinates for all Φ ∈ RL.
Evaluating these conditions in the planewave basis

for RL ∼= RZ ⊗ RZ ⊗ RZ (namely Φ(ω, k1, k2) for
ω, k1, k2 ∈ [−π, π]) we see that E(Φ(ω, k1, k2)) must be
simultaneously an eigenvector of ∂t, ∂x, and ∂y with
eigenvalues −iω/a, −ik1/a, and −ik2/a respectively.
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This uniquely picks out the continuum planewaves:

KG1-KG3: ϕ(t, x;ω, k) := e−iωt−ikx (5.5)

KG4-KG7: ϕ(t, x, y;ω, k1, k2) := e−iωt−ik1x−ik2y.

In particular, we are forced to take

E :Φ(ω, k1, k2) (5.6)

7→ f̃(ω, k1, k2)ϕ(t, x, y;ω/a, k1/a, k2/a)

for some complex function f̃(ω, k1, k2) ∈ C. That is,
each discrete planewave must map onto something pro-
portional to the corresponding continuous planewaves
(rescaled by a).
Note that up to a local rescaling of Fourier space

(which recall is a symmetry of the dynamics) our em-
bedding is uniquely fixed by translation-matching. Even
without this consideration however, our translation-
matching constraint still fixes the vector space F ⊂
F (M) we can embed Φ ∈ RL onto, note the following.

We must have f̃(ω, k1, k2) ̸= 0 for all ω, k1, k2 ∈ [−π, π]
otherwise E will not be invertible an hence not an iso-
morphism. Therefore F is fixed as,

F = span(E(Φ(ω, k1, k2))|ω, k1, k2 ∈ [−π, π]) (5.7)

=span(f̃(ω, k1, k2)ϕ(t, x, y;
ω

a
,
k1
a
,
k2
a
)|ω, k1, k2 ∈ [−π, π])

= span(ϕ(t, x, y;
ω

a
,
k1
a
,
k2
a
)|ω, k1, k2 ∈ [−π, π])

= span(ϕ(t, x, y;ω, k1, k2)|ω, k1, k2 ∈ [−π/a, π/a]).

In light of this, let us define

KG1-KG3: (5.8)

FK := span(ϕ(t, x;ω, k)|ω, k ∈ [−K,K])

KG4-KG7: (5.9)

FK := span(ϕ(t, x, y;ω, k1, k2)|ω, k1, k2 ∈ [−K,K])

where K = π/a. These are the spaces of ban-
dlimited functions with bandwidth ω, k ∈ [−K,K]
and ω, k1, k2 ∈ [−K,K] respectively. Thus, demanding
translation-matching we are forced to map Φ ∈ RL onto
some bandlimited ϕ(t, x, y) ∈ F = FK (at least in the
coordinates dtrans.).

The next section will discuss in detail some remark-
able properties of bandlimited functions, namely their
sampling property. Before that however, let’s find an
interpretation for the f̃(ω, k1, k2) function appearing in
Eq. (5.6). First note that applying E to the basis vector
e0 ⊗ e0 ⊗ e0 we have

E(e0 ⊗ e0 ⊗ e0) = f

(
t

a
,
x

a
,
y

a

)
(5.10)

where f(t, x, y) is the inverse Fourier transform of

f̃(ω, k1, k2). Next note that by applying T ϵ
j , T

ϵ
n, and T

ϵ
m

with integer arguments we can get from e0 ⊗ e0 ⊗ e0 to

any other basis vector, ej⊗en⊗em. In these coordinates
this means,

E(ej ⊗ en ⊗ em) = f

(
t

a
− j,

x

a
− n,

y

a
−m

)
(5.11)

Thus, we can understand a choice of f̃ as picking a profile
f(t, x, y) ∈ Fπ. A translated and rescaled copy of this
profile is then associated with each basis vector.
To review: Our translation-matching considerations

have greatly constrained our choice of both the space-
time manifold M and the embedding of Φ onto F (M).
In particular, M was forced to be diffeomorphic to R2

for KG1-KG3 and to R3 for KG4-KG7. Moreover, the
vector space F ⊂ F (M) which we map Φ ∈ RL into
is forced to be the space of bandlimited functions with
some bandwidth (i.e., bandlimited in coordinates dtrans.
with ω, k1, k2 ∈ [−K,K]).
Beyond this, our only freedom left is in picking a profile

f to associate with each basis vector ej ⊗ en ⊗ em. In
Sec. 7 I will motivate a principled choice for f . Before
that however, let’s discuss bandlimited function in some
detail.

6. BRIEF REVIEW OF BANDLIMITED
FUNCTIONS AND NYQUIST-SHANNON

SAMPLING THEORY

The previous section has given us reason to care about
bandlimited functions. A bandlimited function is one
whose Fourier transform has compact support. The
bandwidth of such a function is the extent of its sup-
port in Fourier space. As I will now discuss, such func-
tions have a remarkable sampling property: they can be
exactly reconstructed knowing only their values at a (suf-
ficiently dense) set of sample points. The study of such
functions constitutes Nyquist-Shannon sampling theory.
For a selection of introductory texts on sampling theory
see [20–22].
To introduce the topic I will at first restrict our at-

tention to the one-dimensional case with uniform sample
lattice before generalizing to higher dimensions and non-
uniform samplings later on.

A. One Dimension Uniform Sample Lattices

Consider a generic bandlimited function, fB(x), with
a bandwidth of K. That is, a function fB(x) such that
its Fourier transform,

F [fB(x)](k) :=

∫ ∞

−∞
fB(x) e

−ikxdx, (6.1)

has support only for wavenumbers |k| < K.
Suppose that we know the value of fB(x) only at the

regularly spaced sample points, xn = na+ b, with some
spacing, 0 ≤ a ≤ a∗ := π/K, and offset, b ∈ R. Let
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fn = fB(xn) be these sample values. Having only the
discrete sample data, {(xn, fn)}n∈Z, how well can we ap-
proximate the function?

The Nyquist-Shannon sampling theorem [34] tells us
that from this data we can reconstruct fB exactly every-
where! That is, from this discrete data, {(xn, fn)}n∈Z,
we can determine everything about the function fB ev-
erywhere. In particular, the following reconstruction is
exact,

fB(x) = Sn

(
x− b

a

)
fn, (6.2)

where

S(y) =
sin(πy)

πy
, and Sn(y) = S(y − n), (6.3)

are the normalized and shifted sinc functions. Note that
Sn(m) = δnm for integers n and m. Moreover, note that
each Sn(x) is both L1 and L2 normalized and that taken
together the set {Sn(x)}n∈Z forms an orthonormal basis
with respects to the L2 inner product. The fact that any
bandlimited function can be reconstructed in this way is
equivalent to the fact that this orthonormal basis spans
the space of bandlimited functions with bandwidth of
K = π.

As a concrete example, let us consider the function
fB(x) = 1 + S(x − 1/2) + xS(x/2)2, shown in Fig. 3a).
This function has a bandwidth of K = π and so has
a critical sample spacing of a∗ = π/K = 1. Thus, we
can fully reconstruct fB(x) knowing only its values at
xn = na + b for any spacing a ≤ a∗ = 1. In particular
the sample values at xn = n/2 are sufficient to exactly
reconstruct the function, see Fig. 3b). So too are the
sample values at the integers xn = n and at xn = n+1/3,
see Fig. 3c) and Fig. 3d). In each of these cases the
reconstruction is given by Eq. (6.2).

Everything about this function can be reconstructed
from any uniform sample lattice with a ≤ a∗ = 1. In
particular, the value of fB two third’s of the way between
sample point, fB(2/3), is fixed by {(n, fB(n))}n∈Z even
though we have no sample at or even near x = 2/3. The
derivative of fB at zero, f ′B(0), is fixed by {(n, fB(n))}n∈Z
even though the only sample point we have in this neigh-
borhood is fB(0). Moreover, the derivative at x = 2/3,
namely f ′B(2/3), is fixed by {(n, fB(n))}n∈Z even we have
no sample points in the neighborhood.

On first exposure this may be shocking: how can a
function’s behavior everywhere be fixed by its value at a
discrete set of points? When fB is represented discretely,
where has all of the information gone? Where is the
information about the derivative at x = 2/3 stored in
the discrete representation?

To see this, it is convenient (but not necessary) to or-
ganize our sample values fn = f(xn) into a vector as,

f = (. . . , f−1, f0, f1, f2, . . . )
⊺ =

∑
n∈Z

fn wn (6.4)

-4 -2 2 4

a)

-4 -2 2 4

b)

-4 -2 2 4

c)

-4 -2 2 4

d)

-4 -2 2 4

e)

FIG. 3. Several different (but completely equiva-
lent) graphical representations of the bandlimited function
fB(x) = 1 + S(x− 1/2) + xS(x/2)2 with bandwidth of K =
π and consequently a critical spacing of a∗ = π/K = 1. Sub-
figure a) shows the function values for all x. b) shows the
values of fB at xn = n/2. Since 1/2 < a∗ = 1 this is an in-
stance of oversampling. c) shows the values of fB at xn = n.
This is an instance of critical sampling. d) shows the values
of fB at xn = n + 1/3. This too is an instance of critical
sampling. e) shows a non-uniform sampling of fB. From any
of these samplings we can recover the function fB exactly ev-
erywhere. [Reproduced with permission from [1].]

where wn = (. . . , 0, 0, 1, 0, 0, . . . )⊺ ∈ RZ with the 1 in the
nth position.

The values that fB takes at the sample points xn can
be recovered from f as

fB(xn) = fn = w⊺
nf ,

Next notice that translating a bandlimited function pre-
serves its bandwidth. As such both fB(x) and fB(x+ ϵa)
can be represented as Eq. (6.2). Using this fact, we can
recover the values that fB takes away from the sample
points (i.e., at x = xn + ϵ a for ϵ ∈ R) as

fB(xn + ϵ a) =

∞∑
m=−∞

Sm(n+ ϵ) fm = w⊺
n T

ϵ
B f (6.5)
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where the entries of the matrix T ϵ
B are [T ϵ

B]i,j = Si(j+ϵ).
Note T ϵ

B acts as the translation operator for this repre-
sentation of bandlimited functions. If f represents fB(x)
then T ϵ

Bf represents fB(x+ ϵ a).
From this translation operator we can identify the

derivative operator for bandlimited functions, DB, as

DB := lim
ϵ→0

T ϵ
B − 11

ϵ
.

It should be noted that DB and T ϵ
B commute and more-

over we have the usual relationship between derivatives
and translations, T ϵ

B = exp(ϵDB).
From the above definition of DB one can easily work

out its matrix entries as [DB]i,j = (−1)i−j/(i− j) when
i ̸= j and 0 when i = j. That is,

DB = Toeplitz(. . . ,
1

4
,
−1

3
,
1

2
,−1,0,1,

−1

2
,
1

3
,
−1

4
,. . . )

(6.6)

Note that DB acts as the derivative operator for this
representation of bandlimited functions. If f represents
fB(x) then

1
aDBf represents f ′B(x).

Comparing this with the D operator introduced in
Eq. (2.13) we see that they are numerically identical. In-
deed, DB = D and moreover T ϵ

B = T ϵ. If we were to
extend our discussion to two-dimensional functions we
could find a discrete representation of the rotation oper-
ator for bandlimited functions, Rθ

B. This would come out
numerically equal to the Rθ operator introduced earlier
in Eq. (4.10), namely Rθ

B = Rθ. See Appendix A for
further discussion. Thus, the discrete notions of deriva-
tive, translation, and rotation that we have been using
up until now are intimately connected with bandlimited
functions.

It should be noted that D = DB gives us the following
remarkable derivative approximation (which is exact for
bandlimited functions):

∂xf(x) ≈ 2

∞∑
m=1

(−1)m+1 f(x+ma)− f(x−ma)

2ma
.

(6.7)

Relatedly, we have the second derivative approximation
(which is exact for bandlimited functions):

∂2xf(x) ≈ 2

∞∑
m=1

(−1)m+1 f(x+ma) + f(x−ma)

m2 a2
(6.8)

− π2

3
f(x).

Namely, when f is bandlimited with bandwidth of K and
a ≤ π/K then these formulas are exact. Moreover, if the
Fourier transform of f is mostly supported in [−K,K]
with thin tails (e.g, Gaussian tails) outside this region,
then these are very good derivative approximations.

Ultimately we can compute any derivative of fB any-
where from our sample data as,

∂rx fB(xn + ϵ a) =
1

ar
w⊺

nD
r
BT

ϵ
B f .

Thus, we can recover any value or derivative of fB from
its values on any sufficiently dense uniform sample lattice.
Note that each fB is representable in this way on a

wide number of sample lattices with differing spacings
a < π/K and differing offsets b. Translating between
these different descriptions of fB is equivalent to a change
of basis on the vector of sample values f .

B. Non-Uniform Sample Lattices

The previous subsection showed how any value or
derivative of fB can be recovered from its values on any
sufficiently dense uniform sample lattice. Moreover, it
showed how changing between representing fB with dif-
ferent uniform sample lattices is ultimately just a change
of basis on f .
As I will now discuss, we can also represent f on any

sufficiently dense non-uniform lattice. To motivate this,
consider first an oversampling of fB. For example, figure
Fig. 3b) shows fB sampled at twice the necessary fre-
quency. This is a representation of f in an overcomplete
basis. Imagine oversampling by a factor of ten with a
spacing of a = a∗/10. Intuitively, this sample lattice has
ten times the information needed to recover the function
exactly. If we were to delete all but every tenth data point
we would still be able to recover the function. But what
if we just half of the sample points, but did so randomly?
This would result in a non-uniform sample lattice. See
for instance Fig. 3e). Hopefully, the reader has some in-
tuition that at least some non-uniform sample lattices
are sufficient to exactly reconstruct fB.
The scope of such non-uniform samplings is established

by various non-uniform sampling theorems [20, 21]. The
details of these theorems are not important here; They
can all be summarized as saying that reconstruction is
possible when our non-uniform sample points are “suf-
ficiently dense” in some technical sense. The sampling
shown in Fig. 3e) is sufficiently dense. The reconstruc-
tion in the non-uniform case is significantly more com-
plicated than it is in the uniform case. Rather than
Eq. (6.2), in the non-uniform case our reconstruction is
of the form,

fB(x) =

∞∑
m=−∞

Gm(x; {zn}n∈Z) fB(zm) (6.9)

for some reconstruction functions, Gm, which depend in
a complicated way on the location of all of the other
sample points, {zn}n∈Z.

C. Higher Dimensional Sampling

The same story about bandlimited functions is largely
true in higher dimensions as well. A two-dimensional
function fB(x, y) is bandlimited if is Fourier trans-
form F [fB(x, y)](kx, ky) is compactly supported in the
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FIG. 4. Several different (but completely equivalent) graphical representations of the bandlimited function given by Eq. (6.10).
This function has a bandwidth of

√
k2
x + k2

y < K = π and so has a critical spacing of a∗ = π/K = 1 in every direction. The
scale of each subfigure is 5x5. In each subfigure, the colored regions are the Voronoi cells around the sample points (black).
Subfigure a) shows the function values for all x. b) shows fB sampled on a square lattice with zn,m = (n/2,m/2). Since
1/2 < a∗ = 1 this is an instance of oversampling. c) shows fB sampled on a square lattice with zn,m = (n,m). This is an
instance of critical sampling since a = a∗ = 1. d) shows fB sampled on a square lattice with zn,m = (n + m,n − m)/

√
2.

e) fB sampled on a hexagonal lattice of with zn,m = (n+m/2,
√
3m/2) ∈ R2. f) shows fB sampled on an irregular lattice.

[Reproduced with permission from [1].]

(kx, ky)-plane. Specifying the value of the bandwidth is
less straightforward in the high dimensional case as the
Fourier transform’s support may have different extents
in different directions. However, any compact region can
be bounded in a square. We can thus always imagine
fB(x, y) as being bandlimited with kx, ky ∈ [−K,K] for
some K > 0. As such, we can represent fB(x, y) with a
(sufficiently dense) uniform sample lattice in both the x
and y directions. That is, we can represent any bandlim-
ited fB(x, y) in terms of its sample values on a sufficiently
dense square lattice. Once we have such a uniform sam-
pling, the reasoning carried out above applies unchanged.
We can represent fB(x, y) on any sufficiently dense non-
uniform lattice.

For a concrete example consider the bandlimited func-

tion shown shown in Fig. 4a), namely,

fB(x, y) = J1(π r)/(π r) (6.10)

where J1 is the first Bessel function and r =
√
x2 + y2.

This function is bandlimited with
√
k2x + k2y < K = π

and hence critical spacing a∗ = π/K = 1. Moreover,
note that this function is rotation invariant.
Given this function’s bandwidth of K = π, we can rep-

resent it via its sample values taken on a square lattice
with spacing a = 1/2 ≤ a∗ = 1, see Fig. 4b). We can also
use a coarser square lattice with a spacing of a = a∗ = 1,
see Fig. 4c). We could also use a rotated square lat-
tice, see Fig. 4d). Sampling the function on a hexagonal
lattice also works, see Fig. 4e). Finally we can use a
non-uniform lattice of sample points, see Fig. 4f). From
each of these discrete representations, we could recover
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the original bandlimited function everywhere exactly via
some generalization of Eq. (6.2) in the uniform cases and
Eq. (6.9) in the irregular case.

Thus, there is no conceptual barrier to representing a
rotationally invariant bandlimited function on a square
lattice. Indeed, there is no issue with representing such a
function on any sufficiently dense lattice. In light of the
analogy proposed in this paper, we can see this as analo-
gous to the unsurprising fact that there is no conceptual
barrier to representing rotationally invariant functions in
Cartesian coordinates. There is no requirement that our
representation (be it a choice of coordinates or a choice
of sample points) latches onto the symmetries of what is
being represented.

Thus we have a non-uniform sampling theory for higher
dimensions. But what about a sampling theory on curved
spaces? While such things are not relevant for the aims of
this paper, recently notable progress has been made on
developing a sampling theory for curved manifolds [12,
35].

7. EXTERNALIZING THESE THEORIES -
PART 2

Having reviewed the sampling property of bandlimited
functions, let’s return to the task of embedding Φ into
our spacetime manifold M. As discussed in Sec. 5, for
KG4-KG7 our translation-matching constraint forces the
new field ϕ : M → R to be bandlimited in the coordinate
system dtrans. with bandwidth ω, k1, k2 ∈ [−K,K] where
K = π/a. Similarly for KG1-KG3. In either case, let’s
note this by giving the field a subscript B as ϕB : M → R.

Before continuing on, it should be noted that, the
above discussed translation-matching constraint guaran-
tees that ϕB ◦dtrans. will have the sampling property dis-
cussed in the previous section.

A. A Principled Choice of Profile

What freedom remains for our choice of embedding?
Focusing on KG4-KG7, in coordinate dtrans. our remain-
ing freedom is a choice of profile f(t, x, y) ∈ Fπ appearing
in Eq. (5.10). A translated and rescaled copy of this pro-
file is associated with each basis vector ej ⊗ en ⊗ em.
As noted following Eq. (5.6), up to a local recaling of
Fourier space (which is a symmetry of the dynamics) our
embedding is fixed. However, in order to completely fix
this embedding, we need to pick a profile f(t, x, y).
The discussion in the previous section offers

us a promising candidate for this profile namely
f(t, x, y) = S0(t)S0(x)S0(y). This profile is the unique
one in Fπ with the following property3: it makes

3 To give the technical details, this f is the unique function in

ϕB(t, x, y) evaluated at zj,n,m = (j a, n a,ma) take the
value of ϕj,n,m. That is, it makes our original discrete
variables ϕj,n,m sample values of ϕB at the sample points
zj,n,m. Let us call this choice of profiles the lattice-as-
sample-points constraint.
To be clear, what hinges on our choice of profile f is not

whether or not ϕB has the sampling property discussed
in the previous section; This property is guaranteed inde-
pendent of our choice of f . Rather, what is at stake is just
whether our original discrete variables ϕj,n,m themselves
are sample values.
It follows from the lattice-as-sample-points constraint

that E acts on the planewave basis as

E : Φ(ω, k1, k2) 7→ ϕ(t, x, y;ω/a, k1/a, k2/a) (7.1)

That is, discrete planewaves are mapped onto continuous
planewaves (rescaled by a). Moreover, this constraint
forces E to act on the basis ej ⊗ en ⊗ em as

E : ej ⊗ en ⊗ em 7→ Sj(t/a)Sn(x/a)Sm(y/a). (7.2)

In particular, applying this to Eq. (2.15) gives us

KG1-KG3: (7.3)

ϕB(t, x) =
∑
j,n∈Z

Sj(t/a)Sn(x/a) ϕj,n

KG4-KG7: (7.4)

ϕB(t, x, y) =
∑

j,n,m∈Z
Sj(t/a)Sn(x/a)Sm(x/a)ϕj,n,m.

where analogous reasoning applies for KG1-KG3.
Thus from these translation-matching and lattice-as-

sample-points constraints it follows that our new field
must be the result of a certain bandlimited reconstruc-
tion. Namely, for KG4-KG7 it must come from a re-
construction using sample values ϕj,n,m at sample point
zj,n,m. Similarly for KG1-KG3 it must come from using
sample values ϕj,n at sample points zj,n = (j a, n a).

Fig. 5a) shows for KG1-KG3 these sample points
zj,n = (j a, n a) and sample values as they lie on the
spacetime manifold M ∼= R2 in the coordinates dtrans.
Fig. 5b) shows for KG3 what the reconstructed bandlim-
ited function ϕB : M → R might look like in these coor-
dinates. One can imagine an analogous figure for KG4-
KG7 with the sample points forming a cubic lattice in
the coordinates dtrans..
One may worry that we are here taking a cubic 3D lat-

tice for each of KG4-KG7 whereas for KG5 and KG7 we
naturally ought to embed onto a hexagonal 3D lattice.
This was after all, the lattice structure picked out by our
symmetry analysis in the first interpretation. However,

Fπ which evaluates to zero at all integer arguments except
(0, 0, 0) where it returns 1. That is, f(j, n,m) = δj0δn0δm0 for
j, n,m ∈ Z. This uniqueness is a direct consequence of the
Nyquist-Shannon sampling theorem.
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FIG. 5. Subfigure b) shows a solution to KG3 formulated as a bandlimited function in the coordinates given by dtrans..
This field in these coordinates obeys Eq. (7.9). Subfigure a) shows the values that this function takes on a square lattice in
spacetime. These discrete field values obey Eq. (2.12). From this embedding we can uniquely reconstruct the bandlimited field
ϕB. However, these sample points play no special role in the theory. We are free to redescribe the state and its dynamics by
resampling it on any sufficiently dense collection of sample points. For instance, we might describe ϕB using the boosted sample
points shown in subfigure c). Not all states will be describable on both of these lattices, but some are. If we boost both the
sample values and the field as shown in subfigure d) e) and f) nothing changes. Both sets of sample values still obey Eq. (2.12).
Moreover, in the bandlimited field still obeys Eq. (7.9).

one need not worry for two reasons: Firstly, there is no
real sense in which the sample points zj,n and zj,n,m form
a square and cubic lattice respectively. These sample lat-
tices only appear square and cubic in this particular co-
ordinate system; in other coordinate systems they won’t,
see Fig. 5d). Indeed, the coordinates we are using here
may lie on the spacetime manifold M in a curvilinear
way. As such one ought not to think of these sample
points as being arranged in a square or cubic lattice on
the spacetime manifold. Indeed, at this point the mani-
fold still does not have a metric.

Secondly, after we have used the sample points zj,n
and zj,n,m to build ϕB they no longer play any special
role in the theory. As discussed in the previous section,
we are always free to resample a bandlimited function on
any sufficiently dense sample lattice. Recall Fig. 4. Thus
even staying in this coordinate system (where our initial
sample points do form a cubic 3D lattice) we are free to
resample ϕB on a hexagonal 3D lattice. Moreover, we

also might be able to resample ϕB on a boosted lattice
as shown in Fig. 5c).

Thus, in a sense the lattice sites L from our first inter-
pretation still exist here they are embedded onto our new
spacetime manifold, ℓ ∈ L 7→ zℓ ∈ M. However, once
embedded, these lattice sites no longer play any special
role in the theory; We can always resample.

To review: In Sec. 5 we saw how the translation-
matching constraint forced us to embed Φ onto M as a
some bandlimited function, ϕB : M → R (i.e., bandlim-
ited in coordinates dtrans. with ω, k1, k2 ∈ [−K,K]). In
this section, we further demanded the lattice-as-sample-
points constraint. This allowed us to think of our initial
discrete variables ϕℓ as being the values that ϕB takes at
some sample points zℓ ∈ M. Taken together these two
constraints completely fix how ϕB : M → R is built from
Φ (or equivalently ϕℓ). In particular, in the global co-
ordinate system given by dtrans. we must have Eq. (7.3)
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and Eq. (7.4).

In the next subsection, I will rewrite the dynamics of
each of KG1-KG7 in terms of this new field ϕB in the
coordinates dtrans.. Following this, in Secs. 8 and 9, I will
begin interpreting this theory independently of how they
were constructed. In Sec. 9B I will give a coordinate-
independent formulation of these theories.

B. Bandlimited Dynamics

The previous subsections has given us a principled way
to embed ϕℓ onto our new spacetime manifold M as a
bandlimited function. Namely, Eq. (7.3) and Eq. (7.4).
Equivalently we can think of embedding Φ onto our
new spacetime manifold M as a bandlimited function.
Namely, Eq. (7.2). Either of these perspectives allow
us to translate the kinematics of KG1-KG7 into this
new continuous setting. This subsection will addition-
ally translate over the dynamics into this new continuous
setting.

Let’s begin with KG1. This translation is aided by
the fact that the derivative is the generator of transla-
tions, i.e., h(x + a) = exp(a ∂x)h(x). Mapping the left
hand side of the dynamics of KG1 (i.e., Eq. (2.3)) onto a
bandlimited function we have

∑
j,n∈Z

Sj(t/a)Sn(x/a) (L.H.S. of Eq. (2.3)) (7.5)

=
∑
j,n∈Z

Sj(t/a)Sn(x/a)
[
ϕj+1,n − 2ϕj,n + ϕj−1,n

]
= ϕB(t− a, x)− 2ϕB(t, x) + ϕB(t+ a, x)

= [exp(−a ∂t)− 2 + exp(a ∂t)]ϕB(t, x)

= [2 cosh(a ∂t)− 2] ϕB(t, x).

Similarly, for the right hand side of Eq. (2.3) we have

∑
j,n∈Z

Sj(t/a)Sn(x/a) (R.H.S. of Eq. (2.3)) (7.6)

= [µ2 + 2 cosh(a ∂t)− 2] ϕB(t, x).

Thus, when the sample values ϕj,n = ϕB(zj,n) obey
Eq. (2.3), the bandlimited field obeys,

KG1: [2 cosh(a∂t)−2]ϕB=[µ2 + 2 cosh(a∂t)−2]ϕB
(7.7)

Skew

FIG. 6. As this figure shows, a certain linear transformation
of coordinates (namely Eq. (7.14)) maps a square lattice to a
hexagonal one. [Reproduced with permission from [1].]

Similarly for the other six theories we have:

KG2:
1

6
[− cosh(2a∂t)+16 cosh(a∂t)−15]ϕB (7.8)

=

(
µ2 +

1

6
[− cosh(2a∂x)+16 cosh(a∂x)−15]

)
ϕB

KG3: ∂2t ϕB = (µ2
0 + ∂2x)ϕB (7.9)

KG4: [2 cosh(a∂t)−2]ϕB (7.10)

= [µ2 + 2 cosh(a ∂x) + 2 cosh(a ∂y)−4]ϕB

KG5: [2 cosh(a ∂t)−2]ϕB =
[
µ2 +

4

3
cosh(a ∂x) (7.11)

+
4

3
cosh(a ∂y) +

4

3
cosh(a (∂y − ∂x))−4

]
ϕB,

KG6: ∂2t ϕB = (µ2
0 + ∂2x + ∂2y)ϕB (7.12)

KG7: ∂2t ϕB=
(
µ2
0+

2

3

[
∂2x+∂

2
y+(∂x−∂y)2

])
ϕB (7.13)

where µ0 := µ/a.
Note that the dynamics of KG3 and KG6 are exactly

the same as those of the continuum Klein Gordon equa-
tions KG00 and KG0 with a field mass M = µ0. More-
over, after a coordinate transformation,

t 7→ t, x 7→ x+
1

2
y, y 7→

√
3

2
y (7.14)

the dynamics of KG7 exactly maps onto the dynamics
of KG6 (and consequently, KG0). Note that this change
of coordinates is equivalent to Eq. (2.30) applied in con-
tinuum Fourier space. Moreover, note that Eq. (7.14)
maps a square lattice to a hexagonal one, see Fig. 6. As
I will discuss later, this means that KG6 and KG7 can
be seen as describing the same bandlimited theory, just
using different sample points.
Applying this coordinate transformation to KG5’s ban-

dlimited dynamics gives us:

KG5: [2 cosh(a∂t)−2]ϕB =
[
µ2 − 4 +

4

3
cosh(a ∂x)

(7.15)

+
4

3
cosh(a(

√
3∂y + ∂x)/2)

+
4

3
cosh(a(

√
3∂y − ∂x)/2)

]
ϕB.
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Note that this dynamics now manifestly has a one-sixth
rotational symmetry. Sampling the above dynamics on a
hexagonal lattice gives us our original dynamics for KG5.
Sampling the above dynamics on a square lattice gives
us the following. Given Eq. (6.7) sampling on a square
lattice effectively means taking a ∂t → Dj, a ∂x → Dn

and a ∂y → Dm and replacing ϕB with Φ. For the above
dynamics of KG5 this gives:

KG5: ∆2
(1),j Φ =

[
µ2 − 4 +

4

3
cosh(Dn) (7.16)

+
4

3
cosh((

√
3Dm +Dn)/2)

+
4

3
cosh((

√
3Dm −Dn)/2)

]
ϕB.

Note that before this resampling KG5 was local in
the intuitive sense nearest-neighbor couplings only, see
Eq. (2.5). After resampling it is infinite range. Thus, the
intuitive notion of locality in terms of nearest neighbors
is unstable under resampling. For this and other reasons
(see [1]) the notion of locality arising in the bandlimited
formulation is preferable. Sample values can obey what
appears to be non-local dynamics, because the sample
values themselves are non-local objects: they ought to
be associated with sinc profiles not spacetime points, see
[1].

We can easily solve each of these dynamical equations.
Just as in Sec. 2 these dynamics admit a complete ba-
sis of planewave solutions, given by Eq. (5.5). A few
key differences should be noted between these contin-
uum planewaves and the discrete planewaves considered
earlier, namely Φ(ω, k) and Φ(ω, k1, k2). Firstly, there is
a difference of scale: note how our embedding Eq. (7.1)
rescales the planewaves by a factor of 1/a. Secondly, the
discrete planewaves Φ(ω, k) and Φ(ω, k1, k2) repeated
themselves cyclically with period 2π outside of the re-
gions ω, k ∈ [−π, π] and ω, k1, k2 ∈ [−π, π]. The contin-
uum planewaves do not do this. Now each planewave
with ω, k1, k2 ∈ R is distinct. Here, however, by its
construction ϕB only has support over planewaves with
ω, k1, k2 ∈ [−K,K] with K = π/a.

Each of these planewaves are solutions only when they

obey the following dispersion relations:

KG1: 2− 2 cos(ω a) = µ2 + 2− 2 cos(k a) (7.17)

KG2:
1

6
(cos(2ω a)− 16 cos(ω a) + 15) (7.18)

= µ2 +
1

6
(cos(2 k a)− 16 cos(k a) + 15)

KG3: ω2 = µ2
0 + k2 (7.19)

KG4: 2−2 cos(ωa)=µ2+4−2 cos(k1a)−2 cos(k2a)
(7.20)

KG5: 2− 2 cos(ω a) = µ2 (7.21)

+
4

3

[
3− cos(k1 a)− cos(k1 a)− cos(k2 a− k1 a)

]
KG6: ω2 = µ2

0 + k21 + k22 (7.22)

KG7: ω2 = µ2
0 +

2

3

[
k21 + k22 + (k2 − k1)

2
]
. (7.23)

Note that the dispersion relation of KG3 and KG6
are exactly the same as those of the continuum Klein
Gordon equations KG00 and KG0 with a field mass
M = µ0. Moreover, after the coordinate transformation,
Eq. (2.31), the dispersion relation of KG7 exactly maps
onto that of KG6 (and consequently, KG0). More will be
said about this later.
We are now ready to make a third attempt at inter-

preting these theories.

8. A THIRD ATTEMPT AT INTERPRETING
KG1-KG7 - PART 1

The previous three sections have (after much effort)
given us a new formulation of KG1-KG7 to interpret. In
particular, this new formulation has aimed to externalize
many of the internal symmetries which we discovered in
Sec. 4.
On this third interpretation I will be taking the for-

mulations of KG1-KG7 in terms of ϕB seriously: namely
Eq. (7.7)-(7.13). Taken literally as written, what are
these theories about? Intuitively these theories are about
a field ϕB which maps points on a manifold (p ∈ M) into
field amplitudes (ϕB(p) ∈ R). That is a field ϕB : M → V
with a manifold M and value space V = R. Thus, taking
ϕB : M → V seriously as a fundamental field leads us to
thinking of M as the theory’s underlying manifold and
V = R as the theory’s value space. Indeed, on this inter-
pretation KG1-KG7 are continuum spacetime theories of
the sort we are used to interpreting (albeit ones which
consider only bandlimited fields).

Note that here we have M ∼= Rd with d = 2 for KG1-
KG3 and d = 3 for KG4-KG7. As such, in either case we
have access to global coordinate systems. The fields ϕB
considered by this interpretation are bandlimited in the
following sense. There exists a fixed special diffeomor-
phism dcoor. : Rd → M which giving us a fixed special
global coordinate system for M. In these special coor-
dinates the field is bandlimited with ω, k1, k2 ∈ [−K,K]
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where K = π/a. That is ϕB ◦ dtrans. ∈ FK . It is in these
special coordinates that the fields ϕB obey the dynamical
equations Eq. (7.7)-Eq. (7.13).

In our construction of ϕB, this special coordinate sys-
tem is the one which is associated to the translation oper-
ations T ϵ by our translation-matching condition, namely
dcoor. = dtrans.. Here however, we are trying to inter-
pret KG1-KG7 as formulated above independent of how
we arrived here. Thus, presently, this special coordinate
system dcoor. is just something promised to us by God.
Of course, we know from the lessons of general covariance
to be skeptical of “special coordinate systems”. Coordi-
nate systems are representational artifacts, reflecting no
physics. We can and should reformulate our theories in
a generally covariant way so as to avoid them. A coordi-
nate independent view of them will be given in Sec. 9B.

As I will discuss, taking M to be these theories’ un-
derlying manifold has substantial consequences for these
theories’ locality properties and symmetries. To preview:
this third interpretation either fixes all of our issues with
the first and second interpretations.

In our first interpretation there was some tension be-
tween our theories’ differences in locality and their dif-
ferences in convergence rate in the continuum limit. The
second interpretation addressed this tension in a hamfist-
edly way: denying that there are differences in locality in
the first place. This move also had the unfortunate conse-
quence of undercutting our ability to use the lattice sites
to reason about locality. This interpretation improves
on this by instead bringing the locality of these theories
into harmony with their convergence rates in the contin-
uum limit. Not much changes between the discrete heat
equations considered in [1] and the discrete Klein Gordon
equations considered here. As such, I will leave discus-
sion of this issue to [1] and direct the interested reader
there.

In our first interpretation, KG6 and KG7 were seen
as distinct theories with radically different symmetries
despite there being a nice one-to-one correspondence be-
tween their solutions. In our second interpretation, KG6
and KG7 were more satisfyingly seen to be completely
equivalent, differing only by a change of basis in the value
space. Here too KG6 and KG7 will turn out to be com-
pletely equivalent differing only by a change of coordi-
nates. Moreover, as I will discuss, we can here see KG6
and KG7 as parts of a larger unified theory viewed in two
ways with differently limited representational capacities.

Our first interpretation outright denied the possibility
that KG1-KG7 could have continuous symmetries (e.g.,
translations, rotations, Lorentz boosts). Our second in-
terpretation then fixed this oversight by revealing KG1-
KG7’s hidden continuous translation and rotation sym-
metries and even their (limited) Lorentzian boost sym-
metries. However, these were unintuitively categorized
as internal symmetries. This interpretation maintains all
of these hidden symmetries, but more satisfyingly cate-
gorizes them as external symmetries. Moreover, seeing
KG6 and KG7 as parts of a larger unified theory will

guide us towards a perfectly Lorentzian lattice theory.
As I discussed in Sec. 4, the improvements that the

second interpretation made over the first one all centered
around the following realization. The lattice structures
appearing in KG1-KG7 are merely representational ar-
tifacts and as such should not be taken seriously as a
substantive part of the theory. As I will discuss, this
realization is deepened and clarified on the third inter-
pretation.

A. Bandlimited Symmetries

How does this externalization move affect our theory’s
capacity for symmetry? Now that we have a continu-
ous spacetime manifold M underlying these theories, we
have a greatly improved capacity for external symme-
tries, namely Auto(M) = Diff(M). By construction
all of the symmetries which we wished to externalize

Gdym
to-be-ext fit inside of Diff(M).
In addition to these external symmetries, we also have

some capacity for internal symmetries, namely Auto(V).
Note that the space of (potentially off-shell) bandlimited
fields are themselves vectors ϕB(t, x, y) ∈ FK . Namely,
they are closed under addition and scalar multiplication
and hence a vector space. This addition and scalar mul-
tiplication is carried out in parallel at each spacetime
point. Thus, the field’s value space V = R is also struc-
tured like a vector space. Therefore, Auto(V) = Aff(R)
such that our internal symmetries are linear-affine rescal-
ings of ϕB. We might also find gauge symmetries by al-
lowing these to vary smoothly across the manifold. Thus,
in total the possibly symmetries for our theories under
this interpretation are,

s : ϕB 7→ C ϕB ◦ d+ c (8.1)

where C : M → R and c : M → R are some real
scalar functions and d : M → M is some diffeomorphism
d ∈ Diff(M). Note that
Are these more or less possible symmetries than we had

on our second interpretation? Diff(M) is a tremendously
large group and is in fact bigger than Aff(RL). One might
expect that we have strictly more possible symmetries
here. However, looks can be deceiving.

We can translate our old potential symmetries into the
new continuum setting as follows. Note that because
RL ∼= FK we have Aff(RL) ∼= Aff(FK). Using dcoor. we
can think of Aff(FK) as a subgroup of Aff(F (M)). Note
that we can also see the above discussed transformations
(i.e., Aff(R) varying smoothly over Diff(M)) as a sub-
group of Aff(F (M)).

Viewed this way, neither is strictly larger. Indeed,
Aff(FK) includes transformations in Fourier space which
are inaccessible from Aff(R) and Diff(M). In particu-
lar, the local Fourier rescaling symmetry from Sec. 4 is
no longer available to us. On the other hand, our new
symmetries contain transformations which are not closed
over FK . However, this comparison seems unfair, what



30

if we restrict our attention transformations closed over
FK? With this restriction, our new range of possible
symmetries is a strict subset of Aff(FK).
Thus, in moving from the second to the third interpre-

tation, we have actually lost some capacity for symmetry.
The source of this reduction in capacity is us imposing
structure on the theory by our choice of manifold and
value space.

As I will now discuss, besides the local Fourier rescal-
ing symmetry, all of our previous symmetries are main-
tained on this third interpretation. Moreover, these re-
maining symmetries are reformulated and recategorized.
As I will now show, on this interpretation the contin-
uous translation, rotation and (limited) Lorentz boost
symmetries identified earlier are now honest-to-goodness
manifold symmetries, represented by diffeomorphisms
d ∈ Diff(M).

Symmetries of KG1-KG7: Third Attempt

Which transformations of the form Eq. (8.1) are sym-
metries for KG1-KG7? A technical investigation of the
symmetries of KG1-KG7 on this interpretation is carried
out in Appendix A, but the results are the following. For
KG1 and KG2 the dynamical symmetries of the form
Eq. (8.1) are:

1) continuous translation which maps
ϕB(t, x) 7→ ϕB(t− t0, x− x0) for t0, x0 ∈ R,

2) two negation symmetries which map
ϕB(t, x) 7→ ϕB(−t, x) and ϕB(t, x) 7→ ϕB(t,−x)
respectively,

3) global linear rescaling which maps
ϕB(t, x) 7→ c1 ϕB(t, x) for some c1 ∈ R,

4) local affine rescaling which maps
ϕB(t, x) 7→ c1 ϕB(t, x) + c2(t, x) for some c2(t, x)
which is also a solution of the dynamics.

These are exactly the same symmetries that we found on
the previous interpretation (sans local Fourier rescaling)
just recategorized: the translation and reflection sym-
metries are here external symmetries. Translation here
is generated by exp(−t0∂t − x0∂x) for some t0, x0 ∈ R.
Notice that translating a bandlimited function by any
amount preserves its bandwidth. Thus, ϕB(t, x) remains
in FK upon translation.

Thus, the first big lesson from Sec. 4 is repeated here:
despite the fact that our discrete theories KG1 and KG2
can be represented on a lattice, they nonetheless have a
continuous translation symmetry. This continuous trans-
lation symmetry was hidden on our first interpretation
because we there took the lattice to be a fundamental
part of the manifold. Here, we do not take the lattice
structure so seriously. We have embedded it onto the
manifold where it then disappears from view as just one
of many possible sample lattices.

Allow me to skip over KG3 temporarily. For KG4 the
dynamical symmetries of the form Eq. (8.1) are:

1) continuous translation which maps
ϕB(t, x, y) 7→ ϕB(t− t0, x− x0, y − y0) for some
t0, x0, y0 ∈ R,

2) three negation symmetries which map
ϕB(t, x, y) 7→ ϕB(−t, x, y), and
ϕB(t, x, y) 7→ ϕB(t,−x, y), and
ϕB(t, x, y) 7→ ϕB(t, x,−y) respectively,

3) a 4-fold symmetry which maps
ϕB(t, x, y) 7→ ϕB(t, y,−x),

4) global linear rescaling which maps
ϕB(t, x) 7→ c1 ϕB(t, x) for some c1 ∈ R,

5) local affine rescaling which maps
ϕB(t, x) 7→ c1 ϕB(t, x) + c2(t, x) for some c2(t, x)
which is also a solution of the dynamics.

These are exactly the same symmetries that we found on
the previous interpretation (sans local Fourier rescaling)
just recategorized: the translation, reflection, and 4-fold
symmetries are here external symmetries. Thus, KG4 has
three continuous translation symmetries despite initially
being represented on a lattice, Eq. (2.4).

Let’s next consider KG5. For KG5 the dynamical sym-
metries of the form Eq. (8.1) are:

1) continuous translation which maps
ϕB(t, x, y) 7→ ϕB(t− t0, x− x0, y − y0) for some
t0, x0, y0 ∈ R,

2) a negation symmetry which maps
ϕB(t, x, y) 7→ ϕB(−t, x, y), and an exchange
symmetry which maps ϕB(t, x, y) 7→ ϕB(t, y, x),

3) a 6-fold symmetry which maps
ϕB(t, x, y) 7→ ϕB(t,−y, x+ y). (Roughly, this
permutes the three terms in Eq. (7.11)),

4) global linear rescaling which maps
ϕB(t, x) 7→ c1 ϕB(t, x) for some c1 ∈ R,

5) local affine rescaling which maps
ϕB(t, x) 7→ c1 ϕB(t, x) + c2(t, x) for some c2(t, x)
which is also a solution of the dynamics.

These are exactly the same symmetries that we found on
the previous interpretation (sans local Fourier rescaling)
just recategorized: the translation, reflection, and 6-fold
symmetries are here external symmetries. Thus, KG5 has
three continuous translation symmetries despite initially
being represented on a lattice, Eq. (2.5). Note that after
a coordinate transformation Eq. (7.14) the above noted
6-fold symmetry is realized as one-sixth rotations, see
Eq. (7.16).

Before moving on to analyze the symmetries of KG6
and KG7, let’s first see what this interpretation has to
say about them being equivalent to one another. As dis-
cussed in Sec. 4 KG6 and KG7 have a solution-preserving



31

vector space isomorphism between a substantial portion
of their models, including all of their solutions. Since our
second and third interpretations are related by a solution-
preserving vector space isomorphism, E : RL → FK , the
same is broadly true here. However, some of the details
change.

As I noted in Sec. 4 each of KG4-KG7 are equivalent to
each other in a weak sense: approximately in the contin-
uum limit regime, |ω|, |k1|, |k2| ≪ π. Here KG4-KG7 are
approximately equivalent in the |ω|, |k1|, |k2| ≪ K = π/a
regime. Note however that this is not the continuum
limit regime, we are already in the continuum. Rather
this is the regime which is significantly below the band-
width K. While each of KG4-KG7 are equivalent in
this weak sense, KG6 and KG7 are equivalent in a much
stronger sense: KG6 and KG7 is in exact one-to-one cor-
respondence over the whole of

√
k21 + k22 < K and indeed

more. This includes all of their solutions but not all of
ω, k1, k2 ∈ [−π, π].
This exact correspondence is mediated by Eq. (2.30)

and Eq. (2.31) in Fourier space or equivalently the co-
ordinate transformations Eq. (7.14) and its inverse. On
our second interpretation, we ran into technical trouble
here due to the 2π periodic identification of the discrete
planewaves Φ(ω, k1, k2) stemming from Euler’s identity.
This caused our maps between KG6 and KG7 not to be
each other’s inverses over the whole of RL ∼= RZ⊗RZ⊗RZ.
We were led to consider instead the subspaces RL

KG6 and
RL

KG7 where these transformations were each other’s in-
verse.

In the present interpretation, something similar hap-
pens but with some key differences. Unlike before, here
our maps between KG6 and KG7 given wide scope are
invertible and indeed each other’s inverses. Wide scope
here meaning seen as acting on F (R3) the set of all
functions f(t, x, y). However, as before, seen as act-
ing on the relevant vector space FK we have issues.
Namely, Eq. (2.30) and Eq. (2.31), understood as act-
ing on FK are not closed: a function supported over
ω, k1, k2 ∈ [−K,K] may have support outside of here
after these transformations.

In Sec. 4 we fixed the non-invertible issue by focusing
on the subspaces RL

KG6 and RL
KG7 where these transfor-

mations are each other’s inverses. We might overcome
our current not-closed-over-FK issue here in the same
way defining

FK
KG7 :=span(ϕ(t, x, y;ω, k1, k2)| in FK (8.2)

before and after applying Eq. (2.30))

FK
KG6 :=span(ϕ(t, x, y;ω, k1, k2)| in FK (8.3)

before and after applying Eq. (2.31))

FK
rot.inv.:=span(ϕ(t, x, y;ω, k1, k2)|k21 + k22 < K2). (8.4)

Note that under our embedding E these subspaces are
isomorphic to RL

KG6, RL
KG7 and RL

rot.inv..
Restricted to FK

KG6 and FK
KG7 these transformations

are invertible and indeed are each other’s inverses. All

of KG6’s solutions are in FK
KG6 (and moreover they are

in FK
rot.inv as well). Similarly, all of KG7’s solutions

are in FK
KG7. Thus, Eq. (7.14) maps generic solutions

to KG7 onto generic solutions for KG6 in an invertible
way. Therefore, Eq. (7.14) and its inverse give us not
only a one-to-one correspondence between the solutions
to KG6 and KG7 but a solution-preserving vector-space
isomorphism between KG6 and KG7. One can gloss this
situation saying: the KPMs of KG6 and KG7 are not
isomorphic, but their DPMs are.
The fact that these transformations (namely,

Eq. (7.14) and its inverse) are of the form Eq. (8.1)
means that for any symmetry transformation for KG6
there is a corresponding symmetry transformation for
KG7 and vice versa. In the present interpretation
KG6 and KG7 are thoroughly equivalent: We have a
solution-preserving vector-space isomorphism between
them. Indeed, on this interpretation the only difference
between KG6 and KG7 is a change of coordinates.
Thus our second big lesson from Sec. 4 is repeated

here: despite KG6 and KG7 being initially presented to
us with very different lattice structures (i.e., a square
lattice in space versus a hexagonal lattice in space) they
have nonetheless turned out to be completely equivalent
to one another. This equivalence was hidden from us
on our first interpretation because we there took the lat-
tice too seriously. As I discuss in Sec. 4, this reduced
their continuous rotation symmetries down to quarter ro-
tations and one-sixth rotations respectively and thereby
made them inequivalent. Here, we do not take the lat-
tice structure so seriously. We have embedded it onto the
manifold where it then disappears from view as just one
of many possible sample lattices.
One substantial difference from our second interpreta-

tion should be noted here. We are not forced to shrink
FK down to FK

KG6 and FK
KG7 to see KG6 and KG7 as

equivalent; we have another option. Namely, rather than
shrinking FK we could also expand it. Consider a the-
ory just like KG6 on this interpretation, but with a band-
width of 2K instead ofK. Clearly, KG6 is a subtheory of
this expanded theory. Note that the coordinate transfor-
mation which maps KG7 onto KG6, namely Eq. (2.30),
skews its support in Fourier space. However, its support
remains inside of k1, k2 ∈ [−2K, 2K]. Thus, KG7 is also a
subtheory of our expanded theory. We can here see KG6
and KG7 as parts of a larger theory. As I will discuss
in Sec. 11, KG6 and KG7 are the parts of this extended
theory which is visible to us when we restrict ourselves
to only certain sets of representational tools. This line
of thought will lead us to a perfectly Lorentzian lattice
theory.

For the rest of this subsection I will only discuss the
symmetries of KG6; analogous conclusions are true for
KG7 after applying Eq. (7.14). For KG6 the dynamical
symmetries of the form Eq. (8.1) are:

1) continuous translation which maps
ϕB(t, x, y) 7→ ϕB(t− t0, x− x0, y − y0) for some
t0, x0, y0 ∈ R,
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2) three negation symmetries which map
ϕB(t, x, y) 7→ ϕB(−t, x, y), and
ϕB(t, x, y) 7→ ϕB(t,−x, y), and
ϕB(t, x, y) 7→ ϕB(t, x,−y) respectively,

3) continuous rotation which maps ϕB(t, x, y) to
ϕB(t, x cos(θ)− y sin(θ), x sin θ + y cos(θ)) for
some θ ∈ R. (This being a symmetry requires
some qualification as I will discuss below.),

4) two Lorentz boosts which map ϕB(t, x, y) to
ϕB(t cosh(w) + x sinh(w), t sinh(w) + x cosh(w), y)
and map ϕB(t, x, y) to
ϕB(t cosh(w) + y sinh(w), x, t sinh(w) + y cosh(w))
respectively for some w ∈ R. (This being a
symmetry requires some qualification as I will
discuss below.),

5) global linear rescaling which maps
ϕB(t, x) 7→ c1 ϕB(t, x) for some c1 ∈ R,

6) local affine rescaling which maps
ϕB(t, x) 7→ c1 ϕB(t, x) + c2(t, x) for some c2(t, x)
which is also a solution of the dynamics.

These are exactly the same symmetries that we found
on the previous interpretation (sans local Fourier rescal-
ing) just recategorized: the translation, reflection, and
rotation, and Lorentz boost symmetries are here exter-
nal symmetries. Thus, KG6 (and KG7) each have three
continuous translation symmetries despite initially being
represented on a lattice.

In addition to this, KG6 has a (qualified) continuous
rotation symmetry. But in what sense is this only a qual-
ified symmetry? Much of the discussion from the previ-
ous section following Eq. (4.10) applies here as well with
some key differences.

As I noted in Sec. 4, each of KG4-KG7 are rotation
invariant in a weak sense: approximately in the contin-
uum limit regime, |ω|, |k1|, |k2| ≪ π. Here KG4-KG7 are
approximately rotation invariant in the |ω|, |k1|, |k2| ≪
K = π/a regime. Note however that this is not the con-
tinuum limit regime, we are already in the continuum.
Rather, this is the regime which is significantly below
the bandwidth K. While each of KG4-KG7 are rotation
invariant in this weak sense, KG6 is rotation invariant in
a much stronger sense: KG6 is exactly rotation over the
whole of

√
k21 + k22 < K.

Rotation is here generated by exp(−θ(x∂y − y∂x)) for
some θ ∈ R. Acting on the continuum planewave basis
this transformation merely rotates their wavenumbers in
Fourier space. On our second interpretation, we ran into
technical trouble here due to the 2π periodic identifi-
cation of the discrete planewaves Φ(ω, k1, k2) stemming
from Euler’s identity. This caused Rθ not to be invertible
over the whole of RL ∼= RZ ⊗ RZ ⊗ RZ. We were led to
consider only the rotation invariant subspace RL

rot.inv..
In the present interpretation, something similar hap-

pens but with some key differences. Unlike before, here
given wide scope rotations are always invertible. Wide

scope here meaning seen as acting on F (R3) the set of
all functions f(t, x, y). However, as before, seen as acting
on the relevant vector space FK we have issues. Namely,
understood as acting on FK rotation is not closed: some
f supported over ω, k1, k2 ∈ [−K,K] may have support
outside of here after being rotated.
In Sec. 4 we fixed the non-invertible issue by focus-

ing on the rotation invariant subspace RL
rot.inv. ⊂ RL.

We might overcome our current not-closed-over-FK issue
here in the same way. While rotation is not closed over
FK it is closed over FK

rot.inv. defined in Eq. (8.4). Note
that under our embedding E this subspace is isomorphic
to the vector space RL

rot.inv. defined in Eq. (4.9).
Note that all of KG6’s solutions are within FK

rot.inv..
Within FK

rot.inv. the above discussed rotation transforma-
tion is of the form Eq. (8.1) and maps solutions to KG6
onto solution to KG6 in an invertible way, and is hence a
symmetry. One can gloss this situation saying: rotation
does not map the KPMs of KG6 onto themselves in an
invertible way, but it does for the DPMs of KG6. If we
cut the KPMs of KG6 down to FK

rot.inv this minor issue
is fixed.
This adds to our first big lesson from Sec. 4: despite

the fact that KG6 and KG7 can be represented on a cu-
bic 3D lattice and a hexagonal 3D lattice respectively,
they nonetheless both have a continuous rotation sym-
metry. This, in addition to their continuous translation
symmetries. These continuous translation and rotations
symmetries were hidden from us on our first interpreta-
tion because we there took the lattice representations too
seriously. Here, we do not take the lattice structure so
seriously. We have embedded it onto the manifold where
it then disappears from view as just one of many possible
sample lattices.
One substantial difference from our second interpreta-

tion should be noted here. We are not forced to shrink
FK down to FK

rot.inv. to make KG6 rotation invariant; we
have another option. Rather than shrinking FK down
to its rotation invariant core, we could also expand it
by adding in every state reachable from FK by rotation

yielding F
√
2K

rot.inv.. Consider a theory just like KG6 on this

interpretation, but defined over F
√
2K

rot.inv. instead of FK .
Clearly, KG6 is a subtheory of this expanded theory. As
I will discuss in Sec. 11, KG6 is the part of this extended
theory which is visible to us when we restrict ourselves
to only a certain set of representational tools. This line
of thought will lead us to a perfectly Lorentzian lattice
theory.
Let’s next discuss how KG6’s (limited) Lorentzian

boost symmetry is realized on this interpretation.
The Lorentz boosts of KG6 are here generated by
exp(−w(x∂t + t∂x)) and exp(−w(y∂t + t∂y)) for some
boost parameter w ∈ R. Notice that boosting a bandlim-
ited function also boosts its support in Fourier space. On
our second interpretation, we ran into technical trouble
here due to the 2π periodic identification of the discrete
planewaves Φ(ω, k1, k2) stemming from Euler’s identity.
This caused Rθ not to be invertible over the whole of
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RL ∼= RZ ⊗ RZ ⊗ RZ. We were led to consider only the
rotation invariant subspace RL

rot.inv..
In the present interpretation, something similar hap-

pens but with some key differences. Unlike before, here
given wide scope Lorentz boosts are always invertible.
Wide scope here meaning seen as acting on F (R3) the
set of all functions f(t, x, y). However, as before, seen as
acting on the relevant vector space FK we have issues.
Namely, understood as acting on FK Lorentz boosts are
not invertible nor are they even functions: some f sup-
ported over ω, k1, k2 ∈ [−K,K] may have support outside
of here after being boosted.

In Sec. 4 we fixed the non-invertible issue by focus-
ing on the finite-sized region around ω, k1, k2 = 0 and
boost parameter w = 0 where Λw

j,n and Λw
j,m are invert-

ible. Moreover, we were even able to find a representation
of the Poincaré algebra. We might overcome our current
not-closed-over-FK issue here in the same way. There is
some finite-sized region around ω, k1, k2 = 0 and boost
parameter w = 0 where Lorentz boosts keep us inside
FK . Moreover, as above, we could find a representation
of the Poincaré algebra over FK as well as a finite portion
of the Poincaré group.

So far the situation here is very much like it was in
Sec. 4. Our first big lesson is here repeated: despite the
fact that KG6 and KG7 can be represented on a cubic
3D lattice and a hexagonal 3D lattice respectively, they
nonetheless both have a Lorentzian boost symmetries (in
a finite but limited regime).

However, there is one substantial difference here which
ultimately points the way towards a perfectly Lorentzian
lattice theory. As I will discuss in Sec. 11, we can see
KG6 as the part of some extended theory which is visi-
ble to us when we restrict ourselves to only a certain set
of representational tools. This extended theory is per-
fectly Lorentz invariant. Viewed this way, KG6’s failure
to be Poincaré invariant in an unqualified way ought to
be seen as a problem of representational capacity and not
of physics.

Finally, let’s consider KG3. For KG3 the dynamical
symmetries of the form Eq. (8.1) are:

1) continuous translation which maps
ϕB(t, x) 7→ ϕB(t− t0, x− x0) for t0, x0 ∈ R,

2) two negation symmetries which map
ϕB(t, x) 7→ ϕB(−t, x) and ϕB(t, x) 7→ ϕB(t,−x)
respectively,

3) a Lorentz boosts which maps ϕB(t, x) to
ϕB(t cosh(w) + x sinh(w), t sinh(w) + x cosh(w)),

4) global linear rescaling which maps
ϕB(t, x) 7→ c1 ϕB(t, x) for some c1 ∈ R,

5) local affine rescaling which maps
ϕB(t, x) 7→ c1 ϕB(t, x) + c2(t, x) for some c2(t, x)
which is also a solution of the dynamics.

These are exactly the same symmetries that we found on
the previous interpretation (sans local Fourier rescaling)

just recategorized: the translation, reflection, and (lim-
ited) Lorentz boost symmetries are here external symme-
tries.

To summarize: this third attempt at interpreting KG1-
KG7 has fixed all of the issues with our first and second
interpretations. Firstly, the tension between our theories’
differences in locality and their differences in convergence
rate in the continuum limit has been harmoniously re-
solved. This improves upon the hamfisted dissolution of
tension given by our second interpretation, see [1]. Sec-
ondly, like on the second interpretation, here KG6 and
KG7 are seen to be completely equivalent. Here however,
we can moreover see KG6 and KG7 in their entirety as
parts of a larger unified theory. Finally, like on the second
interpretation, we have here exposed KG1-KG7’s hidden
continuous translation and rotation symmetries and even
limited Lorentz symmetries. Here however, these are
more satisfyingly categorized as external symmetries.

Like the previous interpretation, this interpretation by
and large invalidates all of the first intuitions laid out in
Sec. 1. Indeed here the lattice seems to play a merely rep-
resentational role in the theory: it does not restrict our
symmetries. Moreover, theories initially appearing with
different lattices may nonetheless turn out to be substan-
tially equivalent. The process for switching between lat-
tice structures is here done by Nyquist-Shannon resam-
pling. Indeed, the third big lesson from Sec. 4 is repeated
here: there is no sense in which these lattice structures
are essentially “baked-into” these theories; our bandlim-
ited theories make no reference to any lattice structure.

As I will discuss in Sec. 10, these three lessons lay the
foundation for a strong analogy between the lattice struc-
tures which appear in our discrete spacetime theories and
the coordinate systems which appear in our continuum
spacetime theories. This ultimately gives rise to a dis-
crete analog of general covariance.

Before that however, a bit more must be said about
this third interpretation.

9. A THIRD ATTEMPT AT INTERPRETING
KG1-KG7 - PART 2

The previous section presented a third interpretation
of our seven discrete theories KG1-KG7. This section will
flesh out this interpretation in two ways. Firstly, I will
provide some more explicit demonstrations of these the-
ories’ symmetries. In particular, I will explicitly demon-
strate the fact that the symmetries of these theories are
independent of which sample lattice we use to represent
them. Secondly, I will write our above formulations of
KG1-KG7 in terms of ϕB in the coordinate-independent
language of differential geometry. This will help clarify
their symmetries and assumed background structures.
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A. Demonstration of Bandlimited Symmetries

In this subsection I will provide some more explicit
demonstrations of these theories’ symmetries. In par-
ticular, I will explicitly demonstrate the fact that the
symmetries of some theory’s dynamics has nothing to do
with the symmetries of the lattice it is represented on.
Just as we can represent any bandlimited state on any
sufficiently dense lattice, so too can we represent any ban-
dlimited dynamics on any sufficiently dense lattice. To
see this consider Figs. 7, 8 and 9.

In each of these figures we begin from some initial state
with a bandlimited representation at t = 0 of,

ϕB(0, x, y) =
J1(πr2)

πr2
+
J0(πr2)− J2(πr2)

2
(9.1)

where Jn(r) is the n
th Bessel function and r =

√
x2 + y2

and r2 = r/
√
2. This function is shown in the first

columns of Figs. 7, 8 and 9. Note that this function
is rotationally invariant.

This function is bandlimited with bandwidth of K =
π/

√
2. We can therefore represent this function with

sampling on a square 2D lattice with a = 1 <
√
2. We

could equivalently represent this function on a hexago-
nal 2D lattice or even an irregular 2D lattice. For each
of KG4, KG5 and KG6=KG7 Such representations are
shown in the second columns of Figs. 7, 8 and 9.

For each of these theories, we then have a choice of
which representation to carry out the dynamics in. I
here consider four options: as a bandlimited function, as
samples on a square lattice, as samples on a hexagonal
lattice or as samples on an irregular lattice. The various
options for KG4, KG5 and KG6=KG7 are shown in Figs.
7, 8 and 9 respectively.

Let’s begin with the dynamics of KG5 represented on
a hexagonal lattice. This is shown in the middle row
of Fig. 8. The bandlimited representation of the initial
distribution is shown Fig. 8b1). The initial sample points
on the hexagonal lattice are shown Fig. 8b2). These can
be evolved forward in time using Eq. (2.5). The resulting
time-evolved sample points are shown in Fig. 8b3). From
these we can reconstruct a bandlimited representation for
the state using the techniques discussed in Sec. 6. The
resulting reconstruction is shown in Fig. 8b4).

Alternatively, we could have carried out this evolution
with no lattice representation at all. That is, we could
have skipped from Fig. 8b1) directly to Fig. 8b4). We
could do this by applying the dynamics Eq. (7.15) di-
rectly to the bandlimited initial condition Eq. (9.1). It is
in this sense that the bandlimited and discrete represen-
tations of our dynamics are equivalent.

The first and third rows of Fig. 8 show the exact
same evolution via KG5 represented on different lattices,
namely a square lattice and an irregular lattice. In the
first row the evolution is carried out by a resampled ver-
sion of Eq. (2.5), namely Eq. (7.16). In the third row
the evolution is carried out by whatever resampling of
Eq. (2.5) corresponds to this irregular lattice.

Notice that the final state has a 6-fold symmetry re-
gardless of how the dynamics is represented. Moreover,
notice that the final state is the same regardless of how
the dynamics is represented. Just as we can represent any
bandlimited state on any lattice, so too can we represent
any bandlimited dynamics on any lattice.
Fig. 7 makes the same demonstration for KG4. No-

tice that the final state has a 4-fold symmetry regardless
of how the dynamics is represented. Notice that the fi-
nal state is the same regardless of how the dynamics is
represented.
Likewise, Fig. 9 makes the same demonstration for

KG6. Notice that the final state is rotation invariant re-
gardless of how the dynamics is represented. Notice that
the final state is the same regardless of how the dynamics
is represented.
These figures demonstrate clear as can be that a the-

ory’s lattice structure has nothing to do with its dynam-
ical symmetries. We can represent any bandlimited dy-
namics on any lattice.

B. Bandlimited General Covariance

As the discussion throughout Sec. 8 has shown, giv-
ing our discrete theory a bandlimited representation has
had many of the same benefits one expects from a gen-
erally covariant formulation. Namely, we have exposed
certain parts of our theory as merely representational ar-
tifacts and in the process we have come to a better un-
derstanding of our theory’s symmetries and background
structures. This is the work of the titular discrete analog
of general covariance. This analogy was originally intro-
duced in [1] and has here been expanded to a Lorentzian
context. The details of this analogy will be spelled out
in detail in Sec. 10.
Before that, however, I will show how to combine this

discrete analog with our usual continuum notion of gen-
eral covariance. Note that on this interpretation KG1-
KG7 are ultimately continuum spacetime theories of the
sort we are used to interpreting (albeit ones which con-
sider only bandlimited fields). Hence we can apply to
these theories the standard techniques of general covari-
ance. (For a review see Appendix A of [1]).
As I discussed at the beginning of Sec. 8 on this third

interpretation KG1-KG7 are about a bandlimited field
ϕB : M → V with a value space V = R and a mani-
fold M ∼= Rd with d = 2 for KG1-KG3 and d = 3 for
KG4-KG7. As such, in either case we have access to
global coordinate systems for M. The fields ϕB consid-
ered by this interpretation are bandlimited in the follow-
ing sense. There exists a fixed special diffeomorphism
dcoor. : Rd → M which giving us a fixed special global
coordinate system for M. In these special coordinates
the field is bandlimited. That is, ϕB ◦ dtrans. ∈ FK . It is
in these special coordinates that the fields ϕB obey the
dynamical equations Eq. (7.7)-Eq. (7.13).
Of course, we know from the lessons of continuum gen-
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FIG. 7. The dynamics of KG4 is here shown being carried out in a variety of lattice representations. In the left most column the
initial condition is shown in its bandlimited representation, given by Eq. (9.1). In the rightmost column the final evolved state
is shown in its bandlimited representation. Here the evolution time is t = 2 and the field mass is µ = 0. This state can be found
in four different ways. Firstly by applying the bandlimited dynamics Eq. (7.10) to the bandlimited initial condition. The other
three ways are shown in the three rows of this figure. The first row shows the initial condition being sampled onto a square
lattice. This is then evolved forward in time via Eq. (2.4). The bandlimited representation of the final state is then recovered
through the methods discussed in Sec. 6. The second and third rows show the same process carried out on a hexagonal lattice
and an irregular lattice. Notice that the final state has a 4-fold symmetry regardless of how the dynamics is represented. Notice
that the final state is the same regardless of how the dynamics is represented. We can represent any bandlimited dynamics on
any (sufficiently dense) lattice.

eral covariance that one ought to be suspicious of any
“special coordinates” appearing in a supposedly funda-
mental formulation of a theory. This section will remove
any reference to these (or any) coordinates from our ban-
dlimited formulation of KG1-KG7. As is expected of such
a generally covariant reformulation, this will reveal these
theories’ underlying geometric background structures.

For simplicity, however, I will just consider KG4 and
KG6 here. To start let us first write the continuum the-
ory KG0 in the coordinate-free language of differential
geometry. After substantial work (see [2] or Appendix
A of [1]) one can rewrite Eq. (2.2) in the coordinate-free

language of differential geometry as follows:

KG0: KPMs: ⟨M, ηab, φ⟩ (9.2)

DPMs: (ηab∇a∇b −M2)φ = 0,

The geometric objects used in this formulation are as
follows. M is a 2+1 dimensional differentiable mani-
fold. ηab, is a fixed Lorentzian metric field with signature
(−1, 1, 1). Here ∇a is the unique covariant derivative op-
erator compatible with the metric, (i.e. with∇c ηab = 0).
φ : M → R is a dynamical real scalar field.
Mathematical structures satisfying the above condi-

tions (independent of whether it satisfies the dynamics)
are the theory’s kinematically possible models (KPMs).
This theory’s dynamically possible models (DPMs) are
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FIG. 8. The dynamics of KG5 is here shown being carried out in a variety of lattice representations. In the left most column
the initial condition is shown in its bandlimited representation, given by Eq. (9.1). In the rightmost column the final evolved
state is shown in its bandlimited representation. Here the evolution time is t = 108 and the field mass is µ = 0. This state can
be found in four different ways. Firstly by applying the bandlimited dynamics Eq. (7.15) to the bandlimited initial condition.
The other three ways are shown in the three rows of this figure. The second row shows the initial condition being sampled
onto a hexagonal lattice. This is then evolved forward in time via Eq. (2.5). The bandlimited representation of the final state
is then recovered through the methods discussed in Sec. 6. The second and third rows show the same process carried out on
a square lattice and an irregular lattice. Notice that the final state has a 6-fold symmetry regardless of how the dynamics
is represented. Notice that the final state is the same regardless of how the dynamics is represented. We can represent any
bandlimited dynamics on any (sufficiently dense) lattice.

the subset of the KPMs which additionally satisfy the
theory’s dynamics.

Next let’s consider KG4. Rewritten in the coordinate-
free language of differential geometry, KG4 becomes:

KG4: KPMs: ⟨M, ηab, T
a, Xa, Y a, ϕB⟩ (9.3)

DPMs: F (T a∇a)ϕB =
[
− µ2 + F (Xb∇b)

+ F (Y c∇c)
]
ϕB.

where

F (z) = 2cosh(a z)− 2. (9.4)

At the level of dynamics, KG4 and KG0 are radically
different. Note that the dynamics of KG0 is local, only

involving finite order of derivative. By contrast, the dy-
namics of KG4 is highly non-local.

These theories are also substantially different at the
level of KPMs. The three key differences between KG4
and the continuum theory KG0 are as follows. Firstly
KG4 resticts us to manifolds M ∼= R3 whereas KG0 does
not. Secondly, the field ϕB ∈ FK in KG4 is bandlimited
with bandwidth ω, k1, k2 ∈ [−K,K] whereas the field ψ
in KG0 is not. I owe the reader a geometric explanation
of what this means.

Finally, KG4 has three extra pieces of spacetime struc-
ture which KG0 lacks. Namely, T a, Xa and Y a are three
fixed constant unit vectors which are orthogonal to each
other. T a is timelike whereas Xa and Y a are spacelike.
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FIG. 9. The dynamics of KG6 is here shown being carried out in a variety of lattice representations. In the left most column the
initial condition is shown in its bandlimited representation, given by Eq. (9.1). In the rightmost column the final evolved state
is shown in its bandlimited representation. Here the evolution time is t = 6 and the field mass is µ = 0. This state can be found
in four different ways. Firstly by applying the bandlimited dynamics Eq. (7.12) to the bandlimited initial condition. The other
three ways are shown in the three rows of this figure. The first row shows the initial condition being sampled onto a square
lattice. This is then evolved forward in time via Eq. (2.18). The bandlimited representation of the final state is then recovered
through the methods discussed in Sec. 6. The second and third rows show the same process carried out on a hexagonal lattice
and an irregular lattice. Notice that the final state is rotation invariant regardless of how the dynamics is represented. Notice
that the final state is the same regardless of how the dynamics is represented. We can represent any bandlimited dynamics on
any (sufficiently dense) lattice.

That is,

∇aT
b = 0 ∇aY

b = 0 ∇aY
b = 0 (9.5)

ηabT
aT b = −1 ηabX

aXb = 1 ηabY
aY b = 1

ηabT
aXb = 0 ηabX

aY b = 0 ηabY
aT b = 0

Roughly, Xa and Y a here serve to pick out the directions
for the rotational anomalies appearing in Fig. 7. T a picks
out a standardized way of moving forward in time (i.e,
translation generated by T a∇a). That is, T a provides a
rest frame.

In terms of these spacetime structures, what does it
here mean to say that ϕB ∈ FK is “bandlimited with
bandwidth ω, k1, k2 ∈ [−K,K]”. Consider the following

eigen-problem for functions h : M → R on the manifold:

T aT b∇a∇bh = −ω2h (9.6)

XaXb∇a∇bh = −k21h
Y aY b∇a∇bh = −k22h

A function f : M → R is bandlimited if and only if it is
the sum of these eigensolutions over a compact range of
Fourier space. The extent of this range is its bandwidth.
In these terms we can state the requirement that ϕB is
bandlimited with bandwidth ω, k1, k2 ∈ [−K,K].

Let’s move on to KG6. Rewritten in the coordinate-
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free language of differential geometry, KG6 becomes:

KG6: KPMs: ⟨M, ηab, T
a, Xa, Y a, ϕB⟩ (9.7)

DPMs: (ηab∇a∇b − µ2
0)ϕB = 0

with spacetime structures as defined following Eq. (9.2),
M ∼= R3 and ϕB ∈ FK in the same sense as KG4.
At the level of dynamics, KG6 and KG0 are nearly

identical. The dynamics for KG0 has a field mass of M
whereas KG6 has µ0 = µ/a. This can be disregarded by
setting µ0 =M .
However, at the level of KPMs, KG6 and KG0 are

substantially different. The three key differences be-
tween KG6 and the continuum theory KG0 are as fol-
lows. Firstly KG6 resrticts us to manifolds M ∼= R3

whereas KG0 does not. Secondly, the field ϕB in KG6 is
bandlimited with bandwidth ω, k1, k2 ∈ [−K,K] in the
sense defined above whereas the field ψ in KG0 is not.
Finally, KG6 has the same extra spacetime structures T a,
Xa and Y a that KG4 does. Indeed, at the level of KPMs
KG6 and KG4 are identical.

One might notice that these extra pieces of spacetime
structure don’t play any role in the dynamics of KG6.
Why then are they there? T a, Xa, and Y a are needed to
spell out what it means for ϕB to be bandlimited with
bandwidth ω, k1, k2 ∈ [−K,K]. This region in Fourier
space is not Poincaré invariant, we need some extra struc-
ture to point out in which directions the corners go.

This is a very strange sort of spacetime structure. It
doesn’t participate in the dynamics, all it does is al-
lows us to articulate a certain restriction on the space
of KPMs. As I will discuss in Sec. 11, it is best to think
of KG6 as being the part of an extended theory which is
visible to us when we restrict our set of representational
tools. On this view, while Xa and Y a are real spacetime
structures for KG4, for KG6 they are merely representa-
tional artifacts.

Before that, however, allow me to spell out in detail the
discrete analogs of general covariance which have been
developed throughout this paper.

10. TWO DISCRETE ANALOGS OF GENERAL
COVARIANCE

Three lessons have been repeated throughout this pa-
per. Each of these lessons is visible in both our second
and third attempts at interpreting KG1-KG7. Combined
these lessons give us a rich analogy between lattice struc-
tures and coordinate systems: Lattice structure is rather
less like a fixed background structure and rather more
like a coordinate system, i.e., merely a representational
artifact.

These three lessons run counter to the three first in-
tuitions one is likely to have regarding lattice structure
discussed in Sec. 1. Namely, that lattices and lattice
structure: restrict our symmetries, distinguish our theo-
ries, and are fundamentally “baked-into” the theory. As

we have seen, they do not restrict our symmetries, they
do not distinguish our theories and they are merely rep-
resentational not fundamental. In particular, we have
learned the following three lessons.

Our first lesson was that taking the lattice structure se-
riously as a fixed background structure or as the under-
lying spacetime manifold systematically under predicts
the symmetries that discrete spacetime theories can and
do have. Indeed, discrete theories can have significantly
more symmetries than our first intuitions might allow
for. As Sec. 4 and Sec. 8 have shown each of KG1-KG7
has a continuous translation symmetry despite being in-
troduced with explicit lattice structures. Moreover, KG6
and KG7 even have a continuous rotational symmetry
and a (limited) Lorentzian boost symmetry. As I will
discuss in Sec. 11, these theories can be seen as part of a
larger lattice theory which is perfectly Lorentzian. Thus,
the fact that a lattice structure was used in the initial
statement of these theories’ dynamics does not in any
way restrict their symmetries. There is no conceptual
barrier to having a theory with continuous symmetries
represented on a discrete lattice.

In light of the proposed analogy between lattice struc-
ture and coordinate systems this first lesson is not myste-
rious. Coordinate systems are neither background struc-
ture nor a fundamental part of the manifold. The use of
a certain coordinate system does not in any way restrict
a theory’s symmetries. Indeed, it is a familiar fact that
there is no conceptual barrier to having a rotationally
invariant theory formulated on a Cartesian coordinate
system.

Our second lesson was that discrete theories which are
initially presented to us with very different lattice struc-
tures may nonetheless turn out to be completely equiva-
lent theories. Indeed, as we have seen, two of our discrete
theories (KG6 and KG7) have a nice one-to-one corre-
spondence between their solutions. This despite the fact
that these theories were initially presented to us with
different lattice structures (i.e., a square lattice in space
and a hexagonal lattice in space respectively). However,
despite this nice correspondence, when in Sec. 3 we took
these lattice structures seriously as a fixed background
structure, we found that KG6 and KG7 were inequiv-
alent; namely, they were here judged to have different
symmetries.

Only in Sec. 4 and Sec. 8 when stopped taking the lat-
tice structure so seriously did we ultimately see KG6 and
KG7 as having the same symmetries. Indeed, in these
later two interpretations KG6 and KG7 were seen to be
completely equivalent. They are simply re-descriptions
of a single theory with slightly different limitations in
representational capacities. In Sec. 4 this re-description
is a change of basis in the theory’s value space, whereas
in Sec. 8 this re-description is merely a change of coordi-
nates. What we thought were distinct lattice theories are
really just different sample points being used to describe
one-and-the-same bandlimited field theory.

In light of the proposed analogy between lattice struc-
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Internal Discrete General Covariance:

Coordinate Systems ↔ Lattice Structure
Changing Coordinates ↔ Changing Lattice Structures

by changing basis in value space
Gen. Cov. Formulation ↔ Basis-Free Formulation

(i.e., coordinate-free) (i.e., lattice-free)

External Discrete General Covariance:

Coordinate Systems ↔ Lattice Structure
Changing Coordinates ↔ Changing Lattice Structures

by Nyquist-Shannon resampling
Gen. Cov. Formulation ↔ Bandlimited Formulation

(i.e., coordinate-free) (i.e., lattice-free)

FIG. 10. A schematic of the two notions of discrete general
covariance introduced [1]. The internal strategy is applied to
KG1-KG7 in Sec. 4 whereas the external strategy is applied
to KG1-KG7 in Sec. 8. These are compared in Sec. 10. [Re-
produced with permission from [1].]

ture and coordinate systems this second lesson is not
mysterious. Unsurprisingly, continuum theories pre-
sented to us in different coordinate systems may turn out
to be equivalent. Moreover, we can always re-describe
any continuum theory in any coordinates we wish.

Our third lesson was that, in addition to being able
to switch between lattice structures, we can also refor-
mulate any discrete theory in such a way that it has
no lattice structure whatsoever. I have shown two ways
of doing this. In Sec. 4 this was done by internalizing
the lattice structure into the theory’s value space. In
Sec. 8 this was done by embedding the discrete theory
onto a continuous manifold using bandlimited functions.
Adopting a lattice structure and switching between them
was then handled using Nyquist-Shannon sampling the-
ory discussed in Sec. 6.

In light of the proposed analogy between lattice struc-
ture and coordinate systems this third lesson is not mys-
terious. This is analogous to the familiar fact that any
continuum theory can be written in a generally covariant
(i.e., coordinate-free) way. Thus, the two above-discussed
ways of reformulating a discrete theory to be lattice-free
are each analogous to reformulating a continuum theory
to be coordinate-free (i.e., a generally covariant reformu-
lation). Thus we have not one but two discrete analogs
of general covariance. See Fig. 10.

Before contrasting these two analogies, let’s recap what
they agree on. In either case, as one would hope, our dis-
crete analog helps us to disentangle a discrete theory’s
substantive content from its merely representational ar-
tifacts. In particular, in both cases, lattice structure is
revealed to be non-substantive and merely representa-
tional as is the lattice itself. Lattice structure is no more
attached or baked-into to our discrete spacetime theories
than coordinate systems are to our continuum theory. In
either case, getting clear about this has helped us to ex-
pose our discrete theory’s hidden continuous symmetries.

What distinguishes these two notions of discrete gen-

eral covariance is how they treat the lattice structure
after it has been revealed as being coordinate-like and
so merely representational. The approach in Sec. 4 was
to internalize the lattice structure into the theory’s value
space. By contrast, the approach in Sec. 8 was to keep
the lattice structure external, but to flesh it out into a
continuous manifold such that it is no longer fundamen-
tal. Let us therefore call these two notions of discrete
general covariance internal and external respectively.
These two approaches pick out very different underly-

ing manifolds for our discretely-representable spacetime
theories. As a consequence, they license very different
conclusions about locality and symmetries. In particu-
lar, while for KG1-KG7 these internal and external ap-
proaches have more-or-less agreed as to what symmetries
there are, they have disagreed about how they are to be
classified.
In each of these differences I find reason to favor the

external approach. To briefly overview my feelings: It is
more natural for the continuous Poincaré symmetries of
KG1-KG7 to be classified as external. Moreover, keeping
the lattice structure external as a part of the manifold,
allows us to draw intuitions about locality from it. In
particular, the external approach has a better way of re-
solving some puzzles about locality and convergence in
the continuum limit. However, neither of these reasons
are decisive and I think either the internal or external ap-
proach is likely to be fruitful for further investigation/use.

11. A PERFECTLY LORENTZIAN LATTICE
THEORY

As I will now discuss, we can leverage this analogy be-
tween lattice structures and coordinate systems to con-
struct a perfectly Lorentz invariant lattice theory.
As discussed in Sec. 9B KG6 is not Lorentz invari-

ant in an unqualified way due to its KPMs not being
closed under boosts. Stating the condition that ϕB be
bandlimited with ω, k1, k2 ∈ [−K,K] requires the use of
two space-like fields Xa and Y a and a time-like field T a

which break Lorentz invariance.
As discussed in Sec. 8, we can see KG6 as a part of an

extended theory. In terms of rotations, we can see KG6 as
a part of an larger rotation invariant theory defined over

F
√
2K

rot.inv. that is with
√
k21 + k22 <

√
2K. As I will now

discuss, we can do the same thing here with Poincaré
invariance. Namely, we can find a Poincaré invariant
extension of KG6.
In particular, we can expand FK by adding to it every

state reachable from FK by any Poincaré transformation
and then closing under addition. This defines FK

Poin.inv.
defined as follows: f(t, x, y) ∈ FK

Poin.inv. if and only if

1) there exists some compact region K(f) where the
Fourier transform of f is supported and

2) this compact region K(f) itself is contained
within the portion of Fourier space satisfying
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−dK2 ≤ w2 − |k|2 ≤ K2

with d being the number of spacial dimensions and |k|
being the norm of the wavenumber, i.e., d = 2 and
|k| =

√
k21 + k22. The first condition comes from the fact

that Poincaré transformations map compact regions in
Fourier space to compact regions in Fourier space. The
second condition comes from first closing FK under rota-
tions in space and then Lorentz boosts then finite sums.

To get away from coordinates, let’s now define
FK
Poin.inv. geometrically in terms of the metric ηab. This

definition comes in two parts. First let’s define the space
FB which satisfies the first constraint. Consider the
eigen-problem for functions h : M → R

ηab∇a∇bh = −λh (11.1)

A function f : M → R is in FB if and only if it is the sum
of these eigensolutions over a compact range of λ ∈ R of
Fourier space. A function is further within FK

Poin.inv. if
and only if this compact range of λs is contained within
−dK2 ≤ λ ≤ K2.
We can thus define following perfectly Lorentz invari-

ant lattice theory:

KGK
Poin.inv. KPMs: ⟨M, ηab, ϕB⟩ (11.2)

DPMs: (ηab∇a∇b −M2)ϕB = 0,

with spacetime structures as defined following Eq. (9.2),
M ∼= R3 and ϕB ∈ FK

Poin.inv. in the sense discussed above.

Note that KG6 is a subtheory of KGK
Poin.inv..

How does KGK
Poin.inv. differ from KG0? Their only dif-

ference is that we are here limited to manifolds M ∼= R3

and that the field ϕB in KGK
Poin.inv. is bandlimited in

FK
Poin.inv., whereas the field ψ in KG0 is not. In fact, for

either theory the dynamics guarantees that if the field
amplitude starts off bandlimited it will stay bandlimited.
Thus this restriction of the allowed dynamical fields is
really just a restriction on the allowed initial conditions.
Thus, ultimately the only difference between KGK

Poin.inv.

and KG0 is a restriction on the initial conditions.
As innocent as this restriction on initial conditions may

seem, I believe it has serious implications for the na-
ture of the underlying manifold. As I will discuss later,
KGK

Poin.inv. has a nice sampling property and therefore
has access to discrete descriptions which make no refer-
ence to the manifold. By contrast, the manifold in KG0
seems descriptively essential. Moreover, as discussed in
[1], this restriction on initial conditions has serious im-
plications for counterfactual reasoning and locality.

But what makes KGK
Poin.inv. a lattice theory? Note

that because every compact region is bounded in a large
enough cube, every f ∈ FB is representable by a fine-
enough cubic lattice. Doing so one would find its sample
values on this lattice obey our original discrete equation
for KG6, Eq. (2.18), with some rescaling of µ. Hence, as
each state in this theory is representable on some lattice,
this is a perfectly Lorentzian lattice theory.

This, should be compared with compared with the
Lorentz-covariant sampling theory for fields developed
in [18]. There, only the second condition defining

KGK
Poin.inv. is applied to the fields. Let us call this a

Lorentz-covariant bandlimitation. Lorentz-covariant UV
cutoffs have been considered across the physics literature
recently, see [7, 8, 13–19] among others.

Since −dK2 ≤ w2 − |k|2 ≤ K2 is not a compact re-
gion in Fourier space, the resulting fields are not ban-
dlimited in the usual sense; as their support in Fourier
space may be non-compact. Rather these functions are
Lorentz-bandlimited. Such functions don’t have the sam-
pling property discussed in Sec. 6, but may have a new
Lorentz sampling property. Indeed, [18] develops a new
Lorentz-covariant sampling theory. Here none of that is
necessary as our fields are each bandlimited in the origi-
nal sense. Each field can be represented exactly on some
lattice in the standard way discussed in Sec. 6.

One may still complain that this should not be called
a lattice theory. For each state here we need a differ-
ent lattice to represent it, there is no single ontologically
significant lattice on which we can represent all of our
states. As I will soon discuss, there is in fact such an all-
representing lattice (albeit a non-fundamental one), but
first let me argue against the spirit of this complaint.

Given the deflationary attitude taken in this paper to-
wards lattice structures, the lack of an all-representing
lattice wouldn’t bother me. As I have argued through-
out this paper, lattice structures are merely representa-
tional artifacts playing no substantive role in our the-
ories: they do not limit our symmetries, they do not
distinguish our theories, and they are not fundamen-
tally “baked-into” our theories. Indeed, as I have argued
(here and in [1]), there is a rich analogy between the lat-
tice structures appearing in our discrete spacetime theo-
ries and the coordinate systems appearing in our con-
tinuum spacetime theories. We wouldn’t refer to our
continuum spacetime theories as “coordinate theories”,
they are rather coordinate-representable theories. Anal-
ogously, I claim that properly understood, there are no
such thing as lattice-fundamental theories, rather there
are only lattice-representable theories. Hence, the above
theory is a lattice theory in the strongest sense available.

Accepting this, one might still feel there ought to be an
all-representing lattice (albeit a non-fundamental one).
As I will discuss, there is one but if there weren’t this
wouldn’t be an issue. Note that we are often forced to
represent our continuum theories with multiple overlap-
ping complementary coordinate systems. That is, we of-
ten lack an all-representing coordinate system. Given the
central analogy of this paper, why should the lack of an
all-representing lattice bother us?

Returning to answering the complaint directly how-
ever, there is such an all-representing lattice. Consider
a cubic lattice with some fixed spacing. Consider an-
other cubic lattice with twice the resolution, offset from
the first lattice by some rational amount. Consider an
infinite sequence of lattices each doubling in resolution
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with some rational offset. At some point any function
f ∈ FB will be representable on one of these lattices.
Consider the deep lattice which results from taking the
infinite union of all of these lattices (but not their closure
under the limit). Every function f ∈ FB is representable
on this deep lattice4. Moreover, note that the deep lattice
has a countable number of lattice sites, by construction
it is a subset of the rationals Q3.

One final comment on FK
Poin.inv.. Note that this space

is closed under (finite) addition and scalar multiplication
and is hence a vector space. As the deep lattice shows,
this is a vector space with a countably infinite dimen-
sion. Thus, given its translation, rotation and Lorentz
boost invariances FK

Poin.inv. supports a countably infinite
dimensional representation of the Poincaré group.

Viewing KG6 as a part of KGK
Poin.inv. sheds some light

on its failure to be Lotentz invariant in an unqualified
way. To see how, it is instructive to restate this in
terms of sample lattices. KG6 is a theory about all of
the bandlimited functions which are representable on a
fixed cubic sample lattice with spacing a. By contrast,
KGK

Poin.inv. is a theory about5 all of the bandlimited func-
tions representable on a fixed cubic sample lattice with
spacing a or any Poincaré transformation thereof.
Thus, KG6 is the part of KGK

Poin.inv. which is visible
to us when we restrict ourselves to only a certain set of
representational tools. We can thus see KG6’s failure to
be Lorentz invariant in an unqualified way as a problem of
representational capacity and not of physics. Sure, if we
limit ourselves to functions which are representable on a
fixed cubic lattice, we lose rotation symmetry. But what
physical reason do we have to limit our representational
tools in this way?

Consider an analogous situation involving coordinate
systems. Almost all manifolds cannot be covered with
a single global coordinate system. For instance, the 2-
sphere needs at least two coordinate systems to cover
it. Consider the sphere under arbitrary rotations. Note
that no coordinate system is closed under these trans-
formations. If we limit ourselves to functions which are
supported entirely within the scope of a single fixed co-
ordinate system, we lose rotation symmetry. Would it be
right to say that no theory which is set on a sphere can
be rotation invariant? Of course not, this just reflects the
fact that each of our coordinate systems individually have
a limited representational capacity. We can regain rota-
tion invariance by using multiple representational tools,
i.e., multiple coordinate systems.

Applying this lesson to KG6, we ought to view it as
being able to represent a Lorentz non-invariant part of a
wider Lorentz invariant theory. As discussed above, mak-
ing use of multiple sample lattices (i.e., all Poincaré trans-

4 Indeed any f ∈ FB can be represented on some finite length
initial segment on this.

5 Technically, KGK
Poin.inv. is about this collection of bandlimited

functions closed under addition.

formed cubic lattices with spacing a) we can describe a

rotation invariant theory KGK
Poin.inv. over F

K
Poin.inv..

The equivalence between KG6 and KG7 can also be
seen this way. Note that the coordinate transformation
which maps KG7 onto KG6, namely Eq. (7.14), maps a
cubic 3D lattice to a hexagonal 3D lattice maintaining
the lattice spacing a, see Fig. 6. Thus, KG7 is a the-
ory about all bandlimited functions representable on a
hexagonal 3D sample lattice with spacing a. The sub-
sets of KG6 and KG7’s KPMs which are equivalent to
each other (FK

KG6
∼= FK

KG7) are exactly those parts which
are representable on both a square and hexagonal lattice.
All of KG6 and KG7’s DPMs are representable in both
ways, but not all of their KPMs. We can here see KG6
and KG7 as parts of a larger unified theory viewed in two
ways with differently limited representational capacities.
Note that even the extended theory KGK

Poin.inv. has an
artificially limited representational capacity. What space
do we find if we use all of our representational tools (i.e.,
every possible sample lattice)? The answer is FB defined
above.
Contrast FB with F (R3) the space of all functions

f(t, x, y). The Gaussian distribution is in F (R3) but not
FB. One might gloss this difference as follows: F (R3)
contains actually infinite frequencies, whereas FB con-
tains arbitrarily large but always finite frequencies. That
is, FB contains only a potential infinity of frequencies.
Note that while FB is closed under finite sums it is not
closed under infinite sums.
Using FB we can thus define following perfectly Lorentz

invariant lattice theory:

KGB: KPMs: ⟨M, ηab, ϕB⟩ (11.3)

DPMs: (ηab∇a∇b −M2)ϕB = 0,

with spacetime structures as defined following Eq. (9.2),
M ∼= R3 and ϕB ∈ FB in the sense defined following
Eq. (11.1).
We can even give KGB a diffeomorphism invariant re-

formulation as:

KG′
B: KPMs: ⟨M, gab, ϕB⟩ (11.4)

DPMs: (gab∇a∇b −M2)ϕB = 0

Ra
bcd = 0

Here M ∼= R3. The fixed Lorentzian metric field, ηab,
has been replaced with a dynamical metric field, gab.
The dynamical metric field varies from model to model.
∇a is still the unique covariant derivative operator com-
patible with the metric, (i.e. with ∇c gab = 0). The
dynamical metric field obey a new dynamical equation,
Ra

bcd = 0, where Ra
bcd is the Riemann tensor associated

with the unique compatible derivative ∇a. The dynam-
ical field ϕB is bandlimited in the same sense as above
(i.e., ϕB ∈ FB) with two differences. Firstly, gab replaces
ηab in Eq. (11.1). Secondly, this condition ought to be
viewed as a compatibility constraint acting jointly on the
metric gab, the covariant derivative ∇a, and the field ϕB.
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Comparing with [2], KGB is like SR1 and KG′
B is like

SR2.
Note that the above discussion is suggestive of a pos-

sible procedure by which any spacetime theory can be
given a bandlimited formulation and so gain the sam-
pling property discussed in Sec. 6.

Perhaps surprisingly, all of the above claims about
KGK

Poin.inv. hold for KGB (and relatedly KG′
B). Its state

space FB is closed under Poincaré transformation. More-
over, it is closed under generic diffeomorphisms. Every
function f ∈ FB is representable on some fine-enough cu-
bic lattice. Doing so one would find its sample values on
this lattice obey Eq. (2.18) with some rescaling of µ.
Note that this space is closed under (finite) addition

and scalar multiplication and is hence a vector space.
Moreover, FB has a deep lattice just like FK

Poin.inv. does.
Indeed, it has exactly the same deep lattice. Hence FB

is a countably infinite dimensional vector space. It sup-
ports a countably infinite dimensional representation of
the Poincaré group.

As I see it, the proper view of KG6 (even beginning
from ϕℓ) is the one given by Eq. (9.7) understood as a
part of the maximally extended theory KGB (or KG′

B

depending on taste). In particular, KG6 is the part of
KGB which is visible to us if we restrict ourselves to only
certain representational tools.

How does KGB differ from the continuum theory KG0?
KG0 assents to the existence of actually infinite frequen-
cies whereas KGB does not. To me KGB appears to be
on better ground empirically speaking than KG0: I have
never and will never see a literally infinite frequency pho-
ton. As small as the difference is between KGB and KG0,
I expect there to be radical differences in views on space-
time, but this is a topic for another paper.

12. CONCLUSION

This paper has given an exhaustive study of the seven
discrete Klein Gordon equations presented in Sec. 2.
These theories were initially formulated in terms of a
real valued function over lattice sites, ϕℓ ∈ FL. Next, as
an infinite dimensional vector, Φ ∈ RL. And finally, as a
bandlimited field ϕB ∈ FK over a continuous spacetime
manifold M. Each of these redescriptions was carried
out by a vector space isomorphism, FL

∼= RL ∼= FK .
Along the way, we have learned three substantial

lessons about the role that lattice structures play in our
discrete spacetime theories. These lessons serve to un-
dermine the three first intuitions about lattice structure
laid out in Sec. 1. As I have shown, lattice structures
don’t restrict symmetries, they don’t distinguish our the-
ories, and they are not fundamentally “baked-into” these
theories. As I have discussed, these lessons lay the foun-
dation for a rich analogy between the lattice structures
which appear in our discrete spacetime theories and the
coordinate systems which appear in our continuum space-
time theories. Indeed, my analysis has shown that lattice

structure is rather less like a fixed background structure
or a fundamental part of some underlying manifold and
rather more like a coordinate system, i.e., merely a rep-
resentational artifact. This extends the results of [1] to
a Lorentzian setting.

Based upon this analogy, we have two discrete analogs
of general covariance (see Fig. 10) each of which are useful
for exposing hidden symmetries and background struc-
tures in our discrete spacetime theories (i.e., lattice theo-
ries). In either case, as hoped, when applied to such theo-
ries this discrete analog helps us disentangle the theory’s
substantive content from its representational artifacts.

These results are significant as they tell strongly
against the intuitions laid out in Sec. 1. One might have
an intuition that the world could be fundamentally set
on a lattice. This lattice might be square or hexagonal
and we might discover which by probing the world at
the smallest possible scales looking for violations of rota-
tional symmetry, or other lattice artifacts. Many serious
efforts at quantum gravity assume that the world is set on
something like a lattice at the smallest scales (although
these are often substantially more complicated than the
lattices assumed here). However, as this paper clearly
demonstrates this just cannot be the case.

The world cannot be “fundamentally set on a square
lattice” (or any other lattice) any more than it could
be “fundamentally set in a certain coordinate system”.
Like coordinate systems, lattice structures are just not
the sort of thing that can be fundamental; they are both
thoroughly merely representational. Spacetime cannot
be a lattice (even when it might be representable as
such). Specifically, I claim that properly understood,
there are no such things as lattice-fundamental theories,
rather there are only lattice-representable theories.

The primary inspiration for this paper has been the
work of mathematical physicist Achim Kempf [5–16]
among others [17–19]. For an overview of Kempf’s works
on this topic and his closely related thesis that “Space-
time could be simultaneously continuous and discrete, in
the same way that information can be” [13], see [16].
My thesis here inserts a “representable as” and then
analyzes which parts of these representations should be
thought of as substantial. Lattice structures turn out to
be coordinate-like representational artifacts.

For a discussion of the impact I anticipate these results
having on the philosophy of space and time generally, see
the conclusion of [1]. This includes some discussion of
the dynamical versus geometric debate regarding how we
should view spacetime structures [4, 23, 24, 26–32]. As
we are now in a Lorentzian context, I will focus my atten-
tion on the aspects of this work which relate to quantum
gravity and Lattice QFT.

People often have arguments (e.g., from quantum grav-
ity) that spacetime must be a lattice of some sort, are
such arguments in disagreement with my conclusion?
This would need to be checked on a case-by-case basis,
but there is room for compatibility here. Upon closer
investigation, such arguments may only show that space-
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time must be representable as a lattice. In this case there
is no disagreement with my conclusion. For instance,
bandlimited functions can always be represented as a lat-
tice of sample values; it’s just that upon closer philosoph-
ical investigations these lattice representations cannot
possibly be fundamental, as they are merely coordinate-
like representational tools. However, if their arguments
carry ontological force as well as representational force,
then there is disagreement.

What does my conclusion mean for those who model
spacetime as a lattice (e.g., some approaches to quantum
gravity)? There is no issue per se with modeling space-
time as a lattice: e.g., as I just mentioned bandlimited
physics is discretely representable. My conclusion only
speaks to how such models should be interpreted. In-
deed, those who describe their physics on a lattice for
reasons of approximation (e.g. the Lattice QFT com-
munity, people studying crystalline solid state systems)
are free to ignore my conclusion. However, they ought
not ignore the central analogy or the three lessons which
support it.

For them my lesson is this: “lattice artifacts” arise
under the following two conditions. They arise when 1)
we represent our continuum physics on a lattice 2) and
then modify the dynamics to be simple in this representa-
tion. As this paper has shown, the blame is to be placed
entirely on the second step. Square-shaped lattice arti-
facts do not come from using a square lattice, see Fig. 7.
These artifacts come from using dynamics which are rel-
atively simple (i.e., nearest neighbor interactions) when
represented on a square lattice. One can define rotation
invariant dynamics on a square lattice, Fig. 9, but not
with nearest neighbor interactions.

So how should lattice-based approaches to quantum

gravity be interpreted then? Namely, what about loop
quantum gravity (LQG) and causal set theory [33]? I am
not an authority on either of these approaches, but I can
offer some comments. The conclusion of this paper does
not directly apply to LQG. This is because the spacetime
considered in LQG consists not only of lattice sites but
also links/edges between lattice sites. In order to more
directly apply, the results of this paper would need to be
extended to more complicated gauge theories first.
Regarding causal set theory [33], its proponents often

note that no fixed spacetime lattice is Poincaré invariant.
This (apparently) spells big trouble for any lattice-based
Lorentzian theories. They, however, avoid this issue by
considering instead a random Poisson sprinkling of lattice
points which does not pick out any preferred direction
and hence does not explicitly break Poincaré symmetry,
at least on average. However, given the deflationary po-
sition this paper takes towards lattices, I claim there is
no issue to be avoided. Like coordinate systems, lattice
structures are just a representational tool for helping us
express our theory in a certain way. There is no need for
the symmetries of our representational tools to latch onto
the symmetries of the thing being represented. Carte-
sian coordinates are distorted under Lorentz boosts, but
we can still use them to describe our Lorentzian theo-
ries without issue. Indeed, in Sec. 11 I have presented a
perfectly Lorentzian lattice theory.
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Appendix A: Analysis of Symmetries for KG1-KG7

This appendix will identify the symmetries for KG1-
KG7 under the three interpretations put forward in the
main text. However, it is convenient to do this in the
reverse order in which these interpretations were intro-
duced in the main text.

1. Symmetries in the Third Interpretation

Let’s begin by analyzing the symmetries of KG1-KG7
in our third attempt at interpreting them, in Sec. 8.

For KG6 (and relatedly KG7) we can look to their gen-
erally covariant formulation Eq. (9.7) to determine their
symmetries. For KG6 we find the same symmetries as
we did for the continuum Klein Gordon equation, KG0.
Namely, the 2+1 dimensional Poincaré group plus re-
flections, global linear rescalings and certain local affine
rescalings. Technically, the space of KPMs for KG6 is
not closed under rotations and Lorentz boosts. This has
been discussed at length in Secs.8 and 9B. This is an
issue of representational capacity, not of physics.

Similarly, for KG4 we can look to its generally covari-
ant formulation Eq. (9.3) to identify its symmetries. Its
extra spacetime structures T a, Xa and Y a appearing in
its dynamics restrict its rotation symmetries to just quar-
ter turns and forbid Lorentz boosts. Applying the same
analysis to KG5 one would find we are restricted to one-
sixth turns.

We could also cast KG1-KG3, (namely Eq. (7.7)-(7.9))
into a generally covariant form as well. Doing so we
would find their symmetries are the 1+1D Poincaré group
plus reflections, global linear rescalings and certain local
affine rescalings.

None of this is mysterious.

2. Symmetries in the Second Interpretation

Let us next analyze the symmetries of KG1-KG7 in
our second attempt at interpreting them, in Sec. 4.
Before this, note that our redescription of KG1-KG7 in

terms of ϕℓ ∈ FL, Φ ∈ RL, and ϕB ∈ FK were each me-
diated by a vector space isomorphism, FL

∼= RL ∼= FK .
This gives us a nice solution-preserving one-to-one corre-
spondence between our three interpretations.
Thus, given any transformation on one interpretation

we can always find the equivalent transformation on the
other interpretations. However, as we learned following
Eq. (4.1) and Eq. (8.1) this does not mean that these
theories have the same class of possible symmetries in
each interpretation. While we have a one-to-one corre-
spondence between a generic transformation in one in-
terpretation and another, what counts as a symmetry
transformation is interpretation dependent. The scope
of possible symmetry transformation varies from inter-
pretation to interpretation.

Thus every symmetry revealed by our third interpre-
tation gives us a candidate symmetry for our other two
interpretations, but more must be done. In particular,
we need to check whether these transformations are of
the forms allowed in Eq. (3.2) and Eq. (4.1).

All of the symmetries revealed by our third interpre-
tation are also symmetries on the second interpretation.
However, as discussed following Eq. (8.1), our second in-
terpretation has a wider scope of possible symmetries
than our third interpretation does. In fact, as I will soon
discuss it includes local Fourier rescalings among other
things.

Let’s begin however, with the symmetries shared by
our second and third interpretations. As revealed in
Sec. 6 translation of a bandlimited function fB(x) →
fB(x − ϵ) is represented in terms of its vector of sam-
ple values f as f → T ϵ

Bf , see Eq. (6.5). Moreover, as
discussed following Eq. (6.6), the operator T ϵ

B in Sec. 6
is numerically identical to the operator T ϵ appearing in
Sec. 4.

Thus for KG1-KG3 our candidate symmetry for con-
tinuous translation is Φ → T ϵ

j Φ are Φ → T ϵ
nΦ. Likewise

for KG4-KG7 the candidate symmetries are Φ → T ϵ
j Φ,

Φ → T ϵ
nΦ and Φ → T ϵ

mΦ. These are all of the form
Eq. (4.1) and are thus viable symmetries under our sec-
ond interpretation. Indeed, this is a symmetry of KG1-
KG7 under our second interpretation.

Similar considerations apply for the reflection symme-
tries and for the linear and affine rescalings. It is easy to
find the symmetry candidates here and check that they
are of the form Eq. (4.1). The only other non-trivial
symmetry to transfer over is the continuous rotational
symmetry and the Lorentz symmetry. To see this we
need the following facts.

For functions h(t, x, y) rotations are
generated through the derivative as
h(R(t, x, y)) = exp(θ(x∂y − y∂x))h(x, y). Suppose
that h = hB is bandlimited and we sample it in two
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ways. Once on some cubic lattice, and once on another
lattice identical to the first but rotated in space around
(j, n,m) = (0, 0) by an angle θ. Sometimes (but not
always) the state will be representable on both of these
lattices. If so then its sample values in these two case,
h,h′ ∈ RZ ⊗ RZ ⊗ RZ are related as h′ = Rθ

Bh where

Rθ
B := exp(−θ(NnDB,m −NmDB,n)) (A.1)

with θ ∈ R and where Nn and Nm are position operators
which return the second and third index. Finally, since
DB is numerically identical to D we have Rθ

B = Rθ as
defined in Eq. (4.10).

This transformation is of the form Eq. (4.1) and is
thus a viable symmetry under our second interpretation.
Indeed, this is a symmetry of KG6 under our second
interpretation (at least restricted to RL

rot.inv.). More-
over, with a slight change of basis (namely, Eq. (2.31))
it is for KG7 as well (at least restricted to RL

rot.inv. post-
transformation).

The same holds for Lorentzian boosts. Allow
me to discuss only KG3 here with KG6 and KG7
being treated analogously. For functions h(t, x)
Lorentz boosts are generated through the derivative as
h(Λ(t, x)) = exp(−w(t∂x + x∂t))h(t, x). Suppose that
h = hB is bandlimited and we sample it in two ways.
Once on some square lattice, and once on another lattice
identical to the first but boosted around (n,m) = (0, 0)
by a boost parameter w. Sometimes (but not always)
the state will be representable on both of these lattices,
see Fig.5. If so then its sample values in these two case,
h,h′ ∈ RZ ⊗ RZ are related as h′ = Λw

Bh where

Λw
B := exp(−w(NjDB,n +NnDB,j)) (A.2)

Finally, since DB is numerically identical to D we have
Λθ
B = Λθ as defined in Eq. (4.14).
This transformation is of the form Eq. (4.1) and is

thus a viable symmetry under our second interpretation.
Indeed, this is a symmetry of KG3 under our second in-
terpretation (at least restricted to a finite-sized region
around ω, k1, k2 = 0 and w = 0). Similarly, for KG6 and
KG7.

But what about the local Fourier rescaling symme-
try present in our second interpretation. It’s straight-
forward to check that this is a symmetry, but how do we
know there aren’t other symmetries of the form Eq. (4.1)
missed by our third interpretation?

Let’s begin the search. Firstly note our possibility
for affine transformations c has already been accounted
for above. Thus, the only place extra symmetries could
be realized is as Φ 7→ ΛΦ where Λ is some invertible
linear map. This will be a symmetry if and only if Λ
commutes with the relevant operator (call it ∆2

KG1-KG7)
appearing in the theory’s dynamical equation: namely,
Eq. (2.9), Eq. (2.11), Eq. (2.12) and Eqs. (2.16)-(2.19). In
each case, ∆2

KG1-KG7 is diagonal in the relevant discrete
Fourier basis: Φ(ω, k) for KG1-KG3 and Φ(ω, k1, k2) for
KG4-KG7.

There are roughly two ways for Λ to commute with
∆2

KG1-KG7 it could either be diagonal in the discrete
Fourier basis itself, or it could operate within a degener-
ate subspaces of ∆2

KG1-KG7. The transformations Λ which
are diagonal in the discrete Fourier basis are exactly the
local Fourier rescalings which we have already discussed.

What then are the degenerate subspaces of ∆2
KG1-KG7?

The spectrum of these operators are given by the dis-
persion relations with λ ∈ R replacing µ2 > 0. For
KG1-KG3 only one of these degenerate subspaces con-
tains solutions, the one with λ = µ2. These are plotted
in Fig. 2. For relatively small ω and k these degenerate
subspaces trace out approximate hyperbolas in Fourier
space. For KG3 this degenerate subspace remains ex-
actly hyperbolic as we increase our wavenumbers, but
for KG4 and KG5 these become increasingly distorted.
In every case, for sufficiently high wavenumbers the de-
generate subspaces begin to touch the sides of the region
ω, k ∈ [−π, π]. Recall that we have a 2π periodic identi-
fication of planewaves on our second interpretation.

Thus, these solution-containing degenerate subspaces
trace out a compact figure in Fourier space. Collecting all
of these degenerate Fourier modes together into a vector
space we have something isomorphic to RZ. The dynami-
cal symmetries within each of these degenerate subspaces
is GL(RZ), i.e., tremendously large. For instance, per-
muting these degenerate planewaves in a discontinuous
way is a symmetry here.

If this feels excessive, one can add in some structure to
Fourier space to allow such discontinuous permutations.
Indeed, throughout this paper I have talked about com-
pact regions in Fourier space. We must therefore have
some native topology on Fourier space. Moreover, let’s
give Fourier space a differentiable structure. We can then
restrict our attention to symmetries generated by diffeo-
morphisms in Fourier space. As I mentioned above, the
degenerate Fourier spaces for KG1-KG3 trace out closed
curves in Fourier space. Our symmetries are then smooth
maps which flow along these degeneracy curves. This
may still seem excessive. On this view, KG1 and KG2
have something like Lorentz boost symmetries (smoothly
moving along their non-hyperbolic degenerate spaces).
Although it should be noted that these pseudo-boosts to
do not fit together with these theories’ translation sym-
metries to form a Poincaré group.

One might further restrict the symmetries in this
second interpretation by giving its Fourier space a
Minkowski metric structure. The only symmetries then
are generated by metric preserving transformations of
Fourier space (i.e., Lorentz boosts). This forbids KG1
and KG2’s pseudo-rotations but allows for KG3’s authen-
tic Lorentz boosts.

I leave an analogous analysis of KG4-KG7 degenerate
subspaces to the reader.
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3. Symmetries in the First Interpretation

Let us now check whether the above discussed sym-
metries are still symmetries in our first interpretation.
To do this we just need to check which are understand-
able in terms of permutations of the lattice site and
time reparametrizations. That is, when are the above-

discussed linear transformations Λ permutations?

It is not hard to check when the translations, rotations,
and Lorentz boosts reduce to permutations of lattice sites
for KG1-KG7. Ultimately, this shows the symmetries
under the first interpretation are just those claimed in
Sec. 3.
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