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Abstract

We propose a new semantics for counterfactual conditionals. It is primar-

ily motivated by the need for an adequate framework for evaluating counter-

factual explanations of algorithmic decisions. We argue that orthodox Lewis-

Stalnaker similarity semantics and interventionist causal modelling semantics

are not adequate frameworks because they classify too many counterfactuals

as true. Our proposed semantics overcomes this problem of the orthodox ap-

proaches and has further advantages, including simplicity, robustness, close-

ness to practice and applicability. It is based on the idea that a counterfactual

A� C is true at an elementary possibility ω just in case C is true at all

variants of ω at which A is true, other things being equal. We provide a novel

explication of the idea of a variation that makes a given sentence true while

leaving other things (but not necessarily all other things) equal.

*Neil Crawford and Laurenz Hudetz are jointly responsible for sections 1 and 2 and general
editing. Laurenz Hudetz is responsible for sections 3-7.
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1 Introduction

Algorithms are increasingly used for decision-making in many areas, including

criminal justice, finance, health care, education and hiring.1 For example, there

are algorithms that calculate an estimate of the probability that a prisoner will

re-offend based on available data about the prisoner as input. Decisions about

whether to grant or deny parole are being made in light of the outputs of such

algorithms (Wexler, 2017). In many cases, explanations of algorithmic decisions

are desirable or even required.2 For example, a prisoner who has been denied

parole based on the prediction of an algorithm arguably deserves an explanation

of why they have been denied parole. This raises the question what counts as an

explanation in such contexts and when a given explanation is good.

We focus on a prominent type of explanations, namely counterfactual expla-

nations (Wachter et al., 2018). To illustrate, suppose a person applies for a loan

but their application is rejected based on the output of an algorithm calculating

credit scores. Then a counterfactual explanation could look like this:

Your loan application was rejected because your income was £38, 000.

If your income had been at least £40, 000, your credit score would have

been above the threshold.

There can be multiple counterfactual explanations of the same fact. But any

counterfactual explanation involves a counterfactual conditional (for short: coun-

terfactual) — a sentence of the form ‘if A were the case, C would be the case’ or

‘if A had been the case, C would have been the case’ (in symbols: A� C).3 The

antecedent A is typically a statement regarding one or more input variables or

variables that can be calculated in terms of input variables, and the consequent

C is typically a statement regarding the output variable(s) of the algorithm used

for making the decision.

1Roughly, an algorithm is a mechanical method for determining an output given an input of
appropriate type. More formally, we view algorithms as computable functions. We restrict atten-
tion to deterministic algorithms in this paper. Nondeterministic algorithms can return different
outputs for the same input.

2There is an ongoing legal debate about whether the European Union’s General Data Pro-
tection Regulation (GDPR) contains a right to explanation (see Kaminski, 2018; Wachter et al.,
2017), and there are philosophical arguments for a moral to explanation (Vredenburgh, 2022).

3We ignore differences in tense and use the formalisation A � C for conditionals both of
type II (past simple) and type III (past perfect).
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Counterfactual explanations can be useful for several purposes (Wachter et al.,

2018). They give data subjects conditions that would lead or would have led to a

particular outcome. This can help data subjects to understand decisions (Wachter

et al., 2018), and it can enable them to make changes to achieve a desired outcome

(Dandl et al., 2020). But even if an attribute is difficult or impossible to change,

a counterfactual involving it can still be useful. For instance, counterfactuals can

reveal biases of algorithms (Wachter et al., 2018). If a change of a protected char-

acteristic in the input data would lead to a different outcome, this can be an

indicator of bias. Counterfactual explanations can also help to discover inaccura-

cies in the input data, for instance when the antecedent of the conditional used in

the explanation is in fact satisfied by the data subject. (A concrete example will be

given in section 2.1.) Counterfactual explanations can thus enable data subjects

to exercise their right to contest decisions based on illegitimate discrimination or

inaccurate or incomplete data (Wachter et al., 2018).

To assess how good a given counterfactual explanation is, two questions re-

garding the conditional on which the explanation is based need to be addressed:

(a) Is the conditional true? (b) Is the conditional useful? That the conditional is

true is a minimal requirement for any good counterfactual explanation in most

contexts. But truth is not sufficient for usefulness. Whether a true counterfactual

is useful typically depends on its purpose and various pragmatic and contextual

factors. For instance, suppose the purpose of a counterfactual is to enable a data

subject to make changes that lead to a desired outcome. It is widely held that, to

be useful in that case, the antecedent should describe only minimal changes to a

small number of attributes that are relatively easy to modify for the data subject,

and it should not mention changes to any protected characteristics (Verma et al.,

2020, 2021). However, if its purpose is to reveal biases or other flaws of an algo-

rithm, changes to protected characteristics should not be ruled out, and changes

need not be minimal or easy to bring about. So, standards of usefulness are best

chosen on a case-by-case basis. However, there should be a general and rigorous

approach to the question concerning truth.

Although truth conditions for counterfactual conditionals are of fundamen-

tal importance for assessing counterfactual explanations, they have not yet been

explicitly addressed in the machine learning literature on counterfactual explana-
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tions.4 So far this literature has been focussing on developing methods for finding

possible input data for which an algorithm returns desired outcomes and which

are “close” to the actual input data.5 Such methods yield lists of possible input

data along with the associated outputs of the algorithm. To illustrate, here is a

simplified example of such a list due to Molnar (2019, section 9.3). It concerns a

machine learning model estimating the probability that a customer’s credit risk

is classified as ‘good’. Values in bold font are those that are changed relative to

the original input data in order to achieve an outcome above 0.5.

age sex job amount duration outcome

58 f skilled 6143 28 0.501

55 m unskilled 6143 24 0.501

54 m unskilled 4889 24 0.506

28 m skilled 6143 24 0.590

Methods for generating such lists of counterfactual data points are undoubt-

edly important for finding useful counterfactual conditionals. But this type of

work leaves open under which conditions counterfactual conditionals are true.

In particular, it leaves open the truth conditions of counterfactuals that specify

ranges of values (rather than precise point values) or that have logically complex

parts, e.g. sentences like this: ‘The outcome would be between 0.5 and 0.7 if (a)

the credit amount were between £4000 and £4600, or (b) the duration were be-

tween 12 and 18 months, or (c) the credit amount were between £4800 and £5200,

and the duration were between 18 and 24.’

But counterfactuals of that type are important for good counterfactual expla-

nations. They are typically more informative and easier to understand for a data

subject than a list of individual data points with associated outputs. For instance,

given just a list of data points, it is unclear how robust the associated outputs of

the algorithm are under perturbations of the inputs. It is unclear how close the

values of a data subject’s variables need to be to a data point on the list to yield

a particular outcome. Ranges may therefore often be more useful than precise

4For recent literature reviews see Artelt and Hammer (2019), Stepin et al. (2021), and Verma
et al. (2020).

5Examples of such methods include the method of Multi-Objective Counterfactuals (MOC)
by Dandl et al. (2020), the method of Diverse Counterfactual Explanations (DiCE) by Mothilal
et al. (2019), the Recourse method by Ustun et al. (2019) and the Feature Tweaking method by
Tolomei et al. (2017).
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point values. And disjunctive antecedents help to summarise alternative ways of

reaching an outcome.

To determine the truth values of counterfactuals that have logically complex

parts or involve ranges, a rigorous semantics with general truth conditions is

needed. One such semantics is Lewis-Stalnaker similarity semantics, which pro-

vides truth conditions in terms of comparative similarity relations between pos-

sible worlds. Similarity semantics is not only one of the most prominent (if not

the dominant) account of counterfactuals in philosophy, it is also similar in spirit

to machine learning approaches to counterfactual explanations that use similarity

metrics to find suitable “nearby” variants of the actual input data.

However, similarity semantics has a substantial problem: it classifies some

counterfactuals about the behaviour of algorithms as true that should arguably

be classified as false (as we show in section 2). Interventionist semantics (Briggs,

2012; Pearl, 2009), which is a main alternative to similarity semantics enjoying

popularity in computer science, has a similar problem (as we argue in section 4.2).

Additional concerns about similarity semantics and interventionist semantics have

led some philosophers and machine learning researchers to call for caution with

the use of counterfactual explanations (Kasirzadeh & Smart, 2021). There are

concerns regarding (a) interventionist manipulations of social categories such as

race and gender and (b) difficulties in making judgements about overall similarity

between worlds. However, we believe that these concerns do not warrant rejecting

counterfactual explanations per se. These concerns rest on the assumption that

counterfactuals are evaluated either in a similarity-based or interventionist frame-

work. But we reject this assumption. We propose an alternative semantics that

overcomes the above-mentioned problems, called ‘variation semantics’ (section 3).

Variation semantics is based on the intuitive idea that a counterfactualA� C

is true at a given elementary possibility ω iff C is true at all variants of ω where A

is true, other things being equal. We explicate the idea of a variation that makes

a given sentence true while leaving “other things equal” in a novel way. On our

account, “leaving other things equal” does not entail “leaving all other things

equal”. Our explication is neither based on similarity comparisons nor on surgical

interventions. Instead, it focuses on upstream changes to relevant independent

variables.

We discuss important properties of variation semantics in sections 4–6. We
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outline its advantages compared to some of the most prominent semantics for

counterfactuals: similarity semantics, interventionist causal modelling semantics

and Kit Fine’s abstract truth-maker semantics. We argue that variation seman-

tics is more suitable for evaluating counterfactuals in explanations of algorithmic

decisions than its alternatives. But its scope of applicability is not limited to such

counterfactuals. It is much more general than it might seem at first glance. We il-

lustrate this using an example. Finally, we comment on philosophical implications

as well as implications for practice (section 7).

2 Challenges for similarity semantics

To motivate the truth conditions of variation semantics, it is instructive to first

examine some problems of similarity semantics. The key idea of similarity seman-

tics is to take into account how similar (“close”) different possible worlds are to

each other when determining whether a given counterfactual is true (see Lewis,

1973a; Lewis, 1973b; Stalnaker, 1968). In similarity semantics, a counterfactual

A� C is true at a possible world w iff some world where A and C are both

true is closer to w than any world where A is true but C is false (if there are any

worlds where A is true). In case there is a closest world where A is true, the truth

condition reduces to: A� C is true at w iff C is true at all the closest worlds to

w where A is true.

When using similarity semantics to evaluate counterfactuals about the be-

haviour of algorithms, it is not necessary to understand ‘possible worlds’ in a

modal realist or any other metaphysically substantive sense. Instead, one can can

take possible data points as the points at which sentences are evaluated. Pos-

sible data points constitute the kind of elementary possibilities that is relevant

when reasoning about alternative inputs and outputs of an algorithm.6 Moreover,

one can define comparative similarity orderings in terms of state-of-the-art mea-

sures of similarity or distance between data points. Data scientists have proposed

and discussed various similarity metrics in the context of counterfactual explana-

tions.7Which counterfactuals are classified as true in similarity semantics depends

6Roughly, a possible data point is an assignment of values to the variables relevant to the
algorithm that satisfies the presuppositions of the algorithm (if any) and any integrity constraints
of the underlying database.

7In the context of counterfactual explanations, two important proposals are weighted Man-
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on the choice of a particular similarity ordering (or metric), and this choice is beset

with difficulties (Fine, 1975; Kasirzadeh & Smart, 2021).

But there is another problem with similarity semantics. Given mild assump-

tions about ‘comparative overall similarity’, it yields implausible results when it

comes to certain counterfactuals that have logically complex parts or that involve

ranges of values. There are issues with non-monotonic relationships, ranges in an-

tecedents, and disjunctive antecedents. Let us examine these three issues in more

detail.

2.1 Non-monotonic relationships

Similarity semantics yields problematic results when it comes to machine learn-

ing models where the output variable depends non-monotonically on some input

variable. To illustrate this issue, let us take the algorithm QCovid as an example.

QCovid calculates an estimate of a person’s risk of death from COVID-19 based

on their health records (Clift et al., 2020). One of the variables used by QCovid is

BMI, which is a predictor of risk of death from COVID-19. It is important to note

that risk of death depends non-monotonically on BMI. A very high BMI increases

the risk compared to a medium BMI. But a very low BMI also increases the risk

compared to a medium BMI.

QCovid made headlines in March 2021 because many people were incorrectly

classified as being at high risk. As reported by The Guardian, “if a patient’s

weight or ethnicity are not recorded on their health records, QCovid automatically

ascribes them a BMI of 31 (obese) and the highest risk ethnicity (black African)”

(Geddes, 2021). Counterfactual explanations can aid trouble-shooting in cases like

this. For instance, a counterfactual of the following form could be useful:

(C1) If your BMI were in the interval [t1, t2], your QCovid risk score would not

be high.

Suppose you are informed that your QCovid risk score is high, and suppose you

are given a counterfactual explanation based on C1. Suppose C1 is true but your

actual BMI lies in the specified interval [t1, t2]. Then this indicates an inaccuracy

in your health record. And if it turns out that your BMI is missing in your health

hattan metrics (Wachter et al., 2018) and the Gower distance (Dandl et al., 2020).
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record, the truth of C1 indicates an issue concerning the variable BMI in the

algorithm.

It is crucial that counterfactuals are true when used for purposes like this, and

an adequate approach to determining their truth values is needed. But similarity

semantics is not adequate. It classifies some sentences of the form of C1 as true

although they should come out as false, namely when the interval [t1, t2] is too

large, containing very low BMI values that result in a high risk score.

For instance, let ω0 be a patient’s available health data, and suppose BMI is

inaccurately set to 31 in ω0 although the patient’s BMI is much lower in reality.

Suppose the algorithm returns a high risk score for all input data that are like ω0

except that BMI is strictly greater than t2. Recall that t2 is the upper threshold

mentioned in C1. We assume that 31 lies above that threshold. So ω0 gets a high

risk score. Suppose further that the algorithm also outputs a high risk score for

all input data that are like ω0 except that BMI is below some threshold t∗1. Let

t∗1 be above the lower threshold t1 mentioned in C1 (but still below t2). Finally,

suppose the algorithm returns a risk score that is not high for all those input data

that are like ω0 except that BMI lies in the interval [t∗1, t2]. Figure 1 illustrates

this scenario.

Figure 1: Risk score depending on BMI. Scores in the shaded region are high.

Given these assumptions, the algorithm returns a high risk score for all those

inputs that are like ω0 except that BMI lies in the interval [t1, t
∗
1), which is a subset

of the interval [t1, t2] specified in C1. In this scenario, C1 should in our view be

classified as false at ω0.
8 Having a BMI in the interval [t1, t2], other things being

8However, note that the might-counterfactual “If your BMI were in the interval [t1, t2], your
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equal, is not sufficient for not having a high risk score. If the patient is underweight

with an actual BMI in the subinterval [t1, t
∗
1), their risk score is high also in light

of the corrected data.

But according to similarity semantics, C1 is true in this scenario. Under any

reasonable construal of ‘comparative overall similarity’, the closest possible data

point to ω0 satisfying the antecedent of C1 is the data point where BMI is set to t2

but all other input variables have the same values as in ω0. Given this data point

as input, the algorithm outputs a risk score that is not high. So the consequent

is true at the closest point where the antecedent is true. Thus, C1 is true at ω0

according to similarity semantics although it should come out as false.

Note that if risk of death from COVID-19 depended monotonically on BMI

(so, the lower the BMI, the lower the risk), there would be no problem in this

scenario. For then we could conclude from the fact that the risk score is not high

at the closest point where the antecedent is true (i.e. where BMI = t2) that it is

also not high at any other points where BMI is in the interval [t1, t2], other things

being equal. So, similarity semantics would get the truth value right.

However, one should not conclude from this that non-monotonic models are

the problem here rather than similarity semantics. First, although monotonicity is

sometimes a desideratum for models in machine learning, non-monotonic models

cannot be brushed aside. Some important relationships simply are non-monotonic,

and accurate models will reflect that. Second, there is a more general underlying

problem that cannot be solved by discarding non-monotonic models, namely the

problem of ranges.

2.2 Ranges

Similarity semantics has a general problem with counterfactuals that specify

ranges of values in the antecedent — even when it comes to monotonic models. To

illustrate this, consider a very simple algorithm for classifying LDL (low-density

lipoproteins) cholesterol levels:

risk score might not be high” is arguably true at ω0. After all, the consequent is true in some
possible data points where BMI lies in the specified interval, other things being equal.
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LDL level (input) classification (output)

less than 100 mg/dL optimal

100 to 129 mg/dL near optimal

130 to 159 mg/dL borderline high

160 or higher high

The relationship between the numerical input and the ordinal output is mono-

tonic. The higher the LDL level, the higher the classification.9 Nevertheless, simi-

larity semantics yields implausible truth values for counterfactuals regarding this

algorithm. For example, suppose a nutritionist makes the following claim when

advising a patient:

(C2) If your LDL cholesterol level were in the range from 100 to 200 mg/dL, it

would be classified as ‘near optimal’.

This claim seems false. For it entails, on a pre-theoretic understanding, that even

high LDL values of up to 200 mg/dL would be classified as ‘near optimal’. But

this is not the case.

Contrary to this intuitive judgement, similarity semantics classifies C2 as true,

provided that the patient’s LDL level lies below 100 mg/dL. In that case, the clos-

est possibility that makes the antecedent of C2 true is having an LDL level of 100

mg/dL. This level is classified as ‘near optimal’. So, the consequent is true at the

closest point at which the antecedent is true. Clearly, there are also many possible

ways in which the antecedent of C2 can be true while the consequent is false. But

similarity semantics considers only the closest possibilities where the antecedent is

true. All other possibilities are neglected. And therefore similarity semantics has

a general problem when it comes to counterfactuals specifying ranges of values.

2.3 Disjunctive antecedents

The problem of disjunctive antecedents is another, related issue. It a well-known

objection to similarity semantics that goes back to Fine (1975). Here is an exam-

ple that illustrates the problem and its relevance to explanations of algorithmic

decisions. Suppose you apply for a loan. You feed the application form with data

9Nothing depends on the fact that there are four classification ranges in this example. The
problem arises whenever there are at least two.
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including your annual income (£39, 000) and your age (60 years). You are de-

nied the loan because the bank’s algorithm returns a credit score below a certain

threshold t when fed with your data. Now, suppose that in this situation the

following counterfactual conditional is true:

(C3) If you were 40 years old or your annual income were £40, 000, your credit

score would be above t.

Suppose you made a mistake when entering your data and your actual age is

40 years. So your corrected data actually satisfy the antecedent of C3. Then it

seems reasonable to infer that the credit score based on your corrected data must

be above the threshold if C3 is true. So you should be successful when making

use of your right to contest decisions based on inaccurate data. After all, it seems

plausible in this context that C3 logically entails the following simpler conditional:

(C4) If you were 40 years old, your credit score would be above t.

However, according to similarity semantics, C3 does not entail C4. If C3 is true

in similarity semantics, the credit score based on your corrected data may still

be below the threshold. Let us take a closer look at how this can be the case.

Consider three data points:

(ω0) the original data (age = 60, income = 38k, . . .),

(ω1) the data point where income = 40k but all other input variables have the

same values as in the original data,

(ω2) the corrected data, i.e. the data point where age = 40 but all other input

variables have the same values as in the original data.

Suppose the algorithm returns credit scores below t for ω0 and ω2 but a credit

score above t for ω1. So, even for the corrected data, your credit score remains

below the threshold. Now, to apply the truth conditions of similarity semantics, we

need some information about the comparative similarity ordering of possible data

points. Suppose the ordering satisfies the following plausible conditions. First,

data point ω1 is closer to ω0 than is ω2. Earning a bit more is arguably less of a

departure from actuality than being 20 years younger. Second, relative to ω0, ω1

is the closest data point where the antecedent of C3 is true. Setting the variable

income to 40k is the smallest change one can make to satisfy the disjunction
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‘age = 40 ∨ income = 40k’. Third, ω2 is the closest data point, relative to ω0,

where the antecedent of C4 is true. So, setting the variable age to 40 is the smallest

change one can make to satisfy ‘age = 40’.

In this scenario, C3 is true at ω0 according to similarity semantics because the

consequent of C3 is true at ω1, which is the closest point at which the antecedent

of C3 is true. In contrast, C4 is false at ω0 according to similarity semantics. This

is so because its consequent is false at ω2, which is the closest point where the

antecedent of C4 is true. But this means that C3 does not entail C4 according

to similarity semantics. So, the credit score based on your corrected data can fall

below the threshold even though C3 comes out as true in similarity semantics.

The root of the problem lies in classifying C3 as true at ω0. This is highly

misleading for the data subject and, in our view, simply incorrect. Our aim is

to capture this intuition by providing an alternative semantics in which C3 does

come out as false in this scenario and in which C3 entails C4. We acknowledge

that there are also pragmatic approaches to the problem regarding disjunctive

antecedents.10 But a semantic solution is possible too, one that also solves the

problems regarding ranges and non-monotonic models.

3 Variation semantics

The examples above suggest in our view that one should consider not only the

closest data points where the antecedent is true when evaluating a counterfactual

conditional. Instead, one should consider all ways in which the antecedent can

be made true by changing relevant variables while holding everything else fixed.

This is the core idea of variation semantics in a nutshell. For example, in our

10One pragmatic approach would be to insist that the “true” logical form of C3 is not that
of a counterfactual with a disjuntive antecedent ((A ∨ B) � C) but rather a conjunction of
two counterfactuals ((A � C) ∧ (B � C)). But this solution leads to bizarre results when
carried over to the closely related problem of ranges. A counterfactual referring to a range
in the antecedent would have to be understood as an infinite conjunction of uncountably many
individual counterfactuals, one for each real number in the interval. Another pragmatic approach
would be to claim that C3 is indeed true but it should not be asserted in this context. We see two
problems with this. (1) The standard move would be say that C3 should not be asserted because
there is a logically stronger (more informative) sentence one can assert instead. But this does
not work here. The conditional ‘If your annual income were £40, 000, your credit score would
be above t’ is not logically stronger than C3 in similarity semantics. (2) It is unclear how the
claim that C3 is true in this scenario could be justified without already presupposing similarity
semantics.
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example about COVID-19 risk above, one should consider all ways of making the

antecedent ‘BMI ∈ [t1, t2]’ true by appropriately varying the value of the variable

BMI in the given data point. If the consequent (‘risk score is not high’) comes out

as true under all those variations, the counterfactual conditional is true, otherwise

it is false.

To turn this idea into a rigorous semantic framework, we need to define several

new concepts. The central concept is that of an A-variant of a possible data point,

where A is a sentence. Roughly speaking, an A-variant of a possible data point

ω is a possible data point at which the sentence A is true but that “otherwise”

coincides with ω. Once this concept is made precise, the truth conditions of vari-

ation semantics can be stated in a simple form: a would-counterfactual ‘if A were

the case, C would be the case’ (A� C) is true at a data point ω iff C is true at

every A-variant of ω. And a might-counterfactual ‘if A were the case, C might be

the case’ (A� C) is true at ω iff C is true at some A-variant of ω.

The rest of this section is devoted to explicating the concept of A-variants.

To explicate this and related concepts, we need to define the notion of a model in

variation semantics. But before presenting the technical definition, it is important

to distinguish two senses of the word ‘model’ that must not be confused with each

other: the scientist’s sense and the logician’s sense. By ‘models in the scientists

sense’ we mean mathematical models based on formulas that establish functional

relationships between dependent and independent variables. Mathematicians, sci-

entists and engineers frequently understand ‘model’ in this way. Machine learning

models are examples of models in this sense, but so are more traditional mathe-

matical models from the natural and social sciences. By ‘models in the logician’s

sense’ we mean structures that allow us to assign truth values to sentences. It

is this sense of ‘model’ that we have to make precise in variation semantics. For

brevity, we call models in the scientist’s sense simply ‘mathematical models’, and

we call models in the logician’s sense ‘semantic models’.

When it comes to evaluating counterfactuals about the behaviour of mathe-

matical models (call this the ‘central intended application’ of variation semantics),

there is a close relationship between semantic models and mathematical models.

To assign truth values to sentences about the behaviour of a mathematical model,

one needs a semantic model that is suitably related to the mathematical model in

question. We therefore define semantic models in a way that allows us to incorpo-
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rate mathematical models in semantic models. As usual in modal logic, semantic

models are built on frames. But our notion of frames differs from traditional no-

tions of frames. Traditionally, a frame is a set of possible worlds that is equipped

with a relation between worlds (e.g. an accessibility relation or a similarity re-

lation). In variation semantics, the structure of frames is chosen in a way that

makes it straightforward to encode the central aspects of any given mathematical

model M , namely (a) its dependent and independent variables and (b) the set of

data points that are possible according to M , which captures the relationships

between the variables in M .

Definition 1. (Ω,Var) is a frame in variation semantics iff

1. Ω is a non-empty set (the elements of which are called ‘possible data points’).

2. Var is a non-empty set of variables on Ω that is partitioned into independent

variables (Vari) and dependent variables (Vard), i.e. each X ∈ Var is a

function from Ω to some value space VX , and either X ∈ Vari or X ∈ Vard.

3. Possible data points are characterised by the values variables take in them,

i.e. for all ω, ω′ ∈ Ω: ω = ω′ iff for all X ∈ Var, X(ω) = X(ω′).

4. Independent variables can be varied independently of each other, i.e. for

every independent variable X ∈ Vari, every possible value v ∈ VX of X and

every possible data point ω ∈ Ω, there exists a unique possible data point

ω′ at which X takes the value v but all other independent variables take the

same values as in ω. (We denote this data point by ‘ωX:v’.)

5. The values of dependent variables are determined by (supervene on) the

values of independent variables, i.e. any possible data points ω, ω′ ∈ Ω that

agree regarding the values of all variables in Vari also agree regarding the

values of all variables in Vard.11

Some remarks about possible data points and variables are in order. Possible data

points are taken as primitive for the sake of generality. If we defined possible data

points, this would only make the semantics less flexible and decrease its range of

applicability. But when it comes to the central intended application of variation

11In more formal terms: for all ω, ω′ ∈ Ω, if X(ω) = X(ω′) for all X ∈ Vari, then Y (ω) = Y (ω′)
for all Y ∈ Vard.
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semantics, we can say more about how possible data points and variables can be

understood.

In the central intended application, we can take the label ‘possible data points’

seriously. But we understand them not as data points from available samples but

rather as data points that are possible according to the mathematical model it-

self. Intuitively, a possible data point can be thought of as an assignment of

values to all variables in Var (see condition 3) satisfying the following necessary

and jointly sufficient conditions: (a) It must satisfy all assumptions of the mathe-

matical model. For example, assigning the value 0 to a variable is not possible if

this would lead to a division by zero. (b) It must satisfy the relationship between

the dependent and independent variables postulated by the mathematical model.

(c) It must satisfy any integrity constraints of the model’s underlying database

if there is one. So, we can think of Ω as including a data point for each possible

input to the mathematical model (see condition 4 above).

Variables are understood, essentially as in probability theory, as functions from

Ω to value spaces. There are no constraints on the value spaces of variables.12 Both

qualitative variables (e.g. gender) and quantitative variables (e.g. income) can be

handled by variation semantics. By ‘independent variables’ we mean the input

variables of the mathematical model in question, also known as ‘features’. The

dependent variables include at least the output variable(s), sometimes called the

‘target’; but intermediate variables may also be included.

To illustrate our definition of ‘frame’, let us specify a frame that captures a

simple linear model with n independent variables X1, . . . , Xn and one dependent

variable Y related by the equation

Y = β0 + β1X1 + . . .+ βnXn,

where β0, . . . , βn are concrete real numbers. We must specify two things: the set of

possible data points (Ω) and the set of variables (Var). First, let Ω be the set of all

(n+1)-tuples (x1, . . . , xn, y) of real numbers such that y = β0 +β1x1 + . . .+βnxn.

These tuples are taken as the data points that are possible according to the simple

linear model under consideration. Second, let Var = {X1, . . . , Xn, Y }, Vari =

{X1, . . . , Xn} and Vard = {Y }. Let all these variables be real-valued. That is,

12We do not even need the assumption that value spaces are measurable spaces.
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every member of Var is a function from Ω to R. For any ω = (x1, . . . , xn, y) ∈ Ω,

let Xi(ω) = xi (for 1 ≤ i ≤ n), and let Y (ω) = y. Given this set-up, it follows that

(Ω,Var) meets all conditions in definition 1 and that the linear model’s equation

is satisfied: for all ω ∈ Ω, Y (ω) = β0 + β1X1(ω) + . . .+ βnXn(ω).

This illustrates how to construct frames in the central intended application.

But it is important to note that, when it comes to applications of other types,

frames can be constructed in alternative ways and still satisfy definition 1. In par-

ticular, the definition leaves open which objects may play the role of possible data

points. One could for instance take possible worlds in a metaphysically substan-

tive sense or Carnapian state descriptions as elements of Ω. Which facts obtain in

which worlds can be captured by Boolean variables. Any fact F can be represented

by a Boolean variable F̃ : Ω→ {0, 1} such that F̃ (ω) = 1 if and only if the fact F

obtains in world ω. The distinction between dependent and independent variables

then boils down to a distinction between fundamental and supervenient facts:

independent variables represent fundamental facts that all other facts supervene

on.13 When constructing frames in such ways, the label ‘possible data points’ for

the elements of Ω clearly must be taken with a grain of salt. The choice of this

label is inspired by the central intended application. But in general one should

think of possible data points simply as elementary possibilities at which sentences

have truth values.

With frames defined, we can now bring language into the picture. We focus on

propositional languages with countably many atomic sentences. We use ‘p’, ‘q’,

‘r’ (±indices) as meta-variables for atomic sentences. In practical applications,

concrete sentences with internal structure such as ‘age ≥ 20’ or ‘BMI ∈ [18, 25]’

can be used as atomic sentences. We assume that the logical vocabulary includes

the classical sentential connectives ¬, ∧ and ∨. The material conditional (→)

and the biconditional (↔) can be included too, but we omit them for simplicity.

Furthermore, the vocabulary contains symbols for would-counterfactuals (�)

and might-counterfactuals (�). Formation rules for complex sentences are as

usual. To distinguish between sentences with and without counterfactuals, we call

sentences ‘normal sentences’ iff they contain neither � nor �. So when we

13In such a frame, facts may be stratified into many levels in the sense of List (2019) such that
facts on any higher level supervene on facts of the next lower level. The hierarchy of levels does
not have to be linear. There may be branches. All that variation semantics assumes is that there
is a fundamental level.
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simply say ‘A is a sentence’, A may contain occurrences of � or �.

For sentences to have truth values, their language must be interpreted over a

frame. This is what semantic models are for.

Definition 2. (Ω,Var,Rel,Prop) is a model in variation semantics iff

1. (Ω,Var) is a frame;

2. Rel assigns a set of variables Rel(p) to each atomic sentence p.

3. Prop assigns a set of possible data points Prop(p), i.e. a proposition/intension,

to each atomic sentence p.14

The set Prop(p) is to be understood as the set of possible data points at which

the atomic sentence p is true. For example, to the atomic sentence ‘age ≥ 20’ one

would assign the set of all possible data points ω ∈ Ω such that the variable age

takes a value greater than or equal to 20 in ω.

The set Rel(p) is to be understood as the set of variables relevant to the

truth/falsity of p. Being relevant means being involved in making p true/false.

For example, let p be the atomic sentence ‘age ≥ 20’. If Var contains the vari-

able age, we can let Rel(p) be the set {age}, containing just this one variable.

But there is some flexibility. If Var contains the variable date of birth as an in-

dependent variable in terms of which age is calculated, we can also set Rel(p) =

{age, date of birth}. This alternative choice does not lead to any changes of truth

values. It is okay but not necessary to close Rel(p) under dependence.15 If Var

contains the variable date of birth but not age, then we have to set Rel(p) =

{date of birth} and specify Prop(p) in terms of date of birth. In some cases, more

than one variable is relevant to an atomic sentence. For example, the set of vari-

ables relevant to ‘savings > amount requested’ is {savings, amount requested}. In

any case, the variables relevant to an atomic sentence can normally be read off

the sentence itself when it comes to the central intended application of variation

semantics.

So far, the key difference to similarity semantics is that models contain the

two ingredients Var and Rel instead of a similarity relation. These ingredients are

important to make the core idea of variation semantics precise. Recall that the

14Instead of Prop one could equivalently use a valuation assigning to each atomic sentence a
truth value at each possible data point.

15The notion of dependence between variables is made precise in definition 4.
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idea is to consider all variants of a given data point that make the antecedent true

but otherwise coincide with the original data point.

One must be careful when fleshing out this idea. Let us return to the credit

score example to illustrate a potential pitfall. Consider a data point ω0 such that

age(ω0) = 60, income(ω0) = 38k, gender(ω0) = woman, etc. Let A be the sentence

‘age = 40 ∨ income = 40k’. Now what are the variants of ω0 where A is true,

other things being equal? A naive answer would be to say: exactly those possible

data points at which A is true and that differ from ω0 at most in the values of the

variables age and income count as such variants. This captures all variants we want

to consider. But it also includes unintended, problematic variants. For example,

consider the data point ω∗ where age(ω∗) = 40 but income(ω∗) = 0, while all

other independent variables have the same values as in ω0. This variant of the

original data point satisfies the conditions in the naive answer. Nevertheless, this

variant is not one we want to consider. We should not allow any further changes

that are not involved in making the sentence A true. But ω∗ contains an additional

change that is not involved in making A true, namely the change of the value of

the variable income to 0. It is the value of the variable age alone that makes A

true in ω∗. If we require that the consequent of a counterfactual has to come out

as true even under variants like ω∗ that contain additional changes, it becomes

much too hard for counterfactuals to be true. The naive account of A-variants is

too wide. A more sophisticated approach is required.

Our approach uses the idea of exact truth-makers, which was introduced by

Van Fraassen (1969) and has recently gained much attention in formal semantics.16

To get an intuitive grasp of this idea, consider the example we just used to refute

the naive account of A-variants. We saw that the value of the variable income is

not involved in making the disjunction true in the data point ω∗. The value of age

alone is what makes it true. More generally, what makes a sentence true at a given

data point is typically not a full specification of values of all variables. Typically,

a sentence is made true by what the values of some relevant variables are, so by

partial data. For example, the atomic sentence ‘income ≥ 40k’ is made true in

some data point ω by the fact that income(ω) = 40k, and it is made false in some

other data point ω′ by the fact that income(ω′) = 20k. For compound sentences,

the situation is more complex. For example, the sentence ‘age = 40 ∨ income =

16For an overview of truth-maker semantics see Fine (2017).
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40k’ can be made true (a) just by the fact that age takes the value 40, (b) just by

the fact that income takes the value 40k or (c) by the fact that both age takes

the value 40 and income takes the value 40k.

To make this talk of truth-making precise, we introduce the concept of a

restriction of a data point ω to a set of variables V . We write ‘ω|V ’ for the

restriction of ω to V . Intuitively, if ω is viewed as an assignment of values to all

variables in Var, then ω|V can be viewed as a partial assignment that agrees with

ω except that it assigns values only to variables that are members of V . For our

purposes, it suffices to define ω|V simply as the ordered pair consisting of ω and

V .17 Using this concept, we can now define the relations ‘ω|V is an exact truth-

maker (short: verifier) of A in model M’ and ‘ω|V is an exact false-maker

(short: falsifier) of A in model M’ by simultaneous induction. These notions

are defined along the lines of Van Fraassen (1969) and Fine (2012), except for

the conditions regarding atomic sentences. Before turning to the definition, a

small simplification is useful. Note that ‘verifier’ and ‘falsifier’ are model-relative

concepts. But for the sake of brevity, we omit the phrase ‘in modelM’ from now

on, wherever appropriate.

Definition 3. For all ω ∈ Ω, all V ⊆ Var, all atomic sentences p and all normal

sentences A,B (recall that a normal sentence is one that does not contain a

counterfactual conditional):

1. (a) ω|V is a verifier of p iff V = Rel(p) and ω ∈ Prop(p)

(b) ω|V is a falsifier of p iff V = Rel(p) and ω /∈ Prop(p)

2. (a) ω|V is a verifier of ¬A iff ω|V is a falsifier of A.

(b) ω|V is a falsifier of ¬A iff ω|V is a verifier of A.

3. (a) ω|V is a verifier of A∧B iff there are V1, V2 ⊆ Var such that V = V1∪V2
and ω|V1 is a verifier of A and ω|V2 is a verifier of B.

(b) ω|V is a falsifier of A∧B iff ω|V is a falsifier of A or ω|V is a falsifier of B

or ω|V is a falsifier of A ∨B.

4. (a) ω|V is a verifier of A∨B iff ω|V is a verifier of A or ω|V is a verifier of B

or ω|V is a verifier of A ∧B.

17This is because data points are unstructured primitives in variation semantics. They are not
defined at all. In particular, they are not defined as functions assigning values to variables. If
they were, restrictions of data points could be defined as restrictions of functions.
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(b) ω|V is a falsifier of A∨B iff there are V1, V2 ⊆ Var such that V = V1∪V2
and ω|V1 is a falsifier of A and ω|V2 is a falsifier of B.

The concept of a verifier is important for defining what an A-variant of a possible

data point is. Those independent variables which are not involved in making a

sentence A true in a given data point should keep their values in any A-variant

of the data point. But this alone does not suffice. There can be cases where no

independent variables are directly involved, as constituents of an exact truth-

maker, in making A true. Yet, we cannot allow all independent variables to vary

in such cases. To avoid too much variation, we need to keep the value of an

independent variable X fixed if no dependent variable that is involved in making

A true depends on X. So we need a notion of dependence to give a good definition

of ‘A-variant’ avoiding further pitfalls.

Definition 4. Let X be an independent variable and Y a dependent variable.

Then we say that Y depends on X iff there is a possible data point ω ∈ Ω and

a possible value v ∈ VX of X such that Y takes different values in ωX:v and ω.

(Recall that ωX:v is the possible data point at which X is set to the value v but

all other independent variables take the same values as in ω.)18

Definition 5. Let V ⊆ Var. Then we say that B is the basis of V iff B is the

set of all independent variables that are in V or that some variables in V depend

on. We write ‘Basis(V )’ for the basis of V .

With these definitions at hand, we can put forward our explication of ‘A-variant’.

Definition 6. Let A be a normal sentence and let ω, ω′ ∈ Ω. Then we say that

ω′ is an A-variant of ω iff for some variable set V ⊆ Var:

1. ω′|V is a verifier of A;

2. ω′ agrees with ω regarding the values of all independent variables outside

the basis of V , i.e. for all X ∈ Vari: if X /∈ Basis(V ), then X(ω′) = X(ω);

3. if A is true at ω, then ω′ agrees with ω regarding the values of all variables

in the basis of V .

18The existence and uniqueness of such a data point is guaranteed by our definition of ‘frame’
(condition 4).
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There are two notable special cases: (a) If V does not contain any dependent

variables, V is identical to its basis and the characterisation of A-variants can be

simplified. The second condition becomes: ω′ agrees with ω regarding the values

of all independent variables that are not members of V . (b) If A is true at ω,

then ω has only one trivial A-variant, namely itself. This is a consequence of

the third condition, which corresponds to the centering assumption in similarity

sphere semantics (Lewis, 1973a, section 1.3). So, the third condition captures the

idea that if we seek to evaluate A� C at a given point ω but A is already true

at that point, then there is no need to modify ω to make A true, and the truth

value of A� C then depends only on the truth value of C at ω. But this special

case rarely arises in practice because one typically uses a would-conditional only

if one does not believe that its antecedent is satisfied in the actual circumstances.

With the idea of A-variants made precise, we now have a rigorous answer to the

question under which conditions normal sentences and counterfactual conditionals

are true at a given data point.

Definition 7. Let A and C be sentences, A a normal sentence, and let ω ∈ Ω.

1. A is true at ω iff for some variable set V ⊆ Var, ω|V is a verifier of A.

2. A� C is true at ω iff C is true at all A-variants of ω.

3. A� C is true at ω iff C is true at some A-variant of ω.

Note that these truth conditions also cover nested counterfactuals. They cover

counterfactuals with counterfactuals as consequents, e.g. p� (q� r). However,

as in any exact truth-maker semantics, our truth conditions do not cover counter-

factuals that have counterfactuals as antecedents, e.g. (p� q) � r. This is so

because we have defined A-variants only for normal sentences. Normal sentences

have truth-makers in the technical sense of definition 3. But counterfactuals do

not have truth-makers in this sense. They are not made true by what values par-

ticular variables take in a single data point. Instead, they are true (or false) in

virtue of what holds in other possible data points that are suitably related to the

actual data point. Nevertheless, we conjecture that the notion of an A-variant can

be generalised to cover the case that A is a counterfactual. However, we do not

see such a generalisation as a top priority because counterfactuals with counter-

factuals as antecedents play virtually no role in practice. The other type of nested
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counterfactuals (those with counterfactuals as consequents) is more relevant in

practice, and it can be handled by variation semantics already.

4 Advantages over alternatives

This section outlines what is novel about variation semantics. Its novel features

are best seen by reviewing the advantages variation semantics has over its most

prominent alternatives: similarity semantics and interventionist semantics.

4.1 Advantages vis-à-vis similarity semantics

Variation semantics has three advantages over similarity semantics: (a) It over-

comes the problems of similarity semantics outlined in section 2. (b) It is simpler.

(c) It yields more robust results.

The problems revisited. Let us first return to the examples regarding disjunc-

tive antecedents, non-monotonic relationships and ranges to see how variation

semantics overcomes the problems of similarity semantics.

Non-monotonic relationships. Recall the example from section 2.1: the sen-

tence ‘BMI ∈ [t1, t2] � risk not high’ is true at a data point ω0 according to

similarity semantics although it should count as false. However, in a model of

variation semantics that captures the scenario in question, the sentence can be

shown to be false at the given data point ω0. To see this, consider a data point

where BMI takes a value between t1 and t∗1 and where all other input variables

have the same values as in ω0. This then constitutes an A-variant of ω0 (where

A is ‘BMI ∈ [t1, t2]’) at which the risk score is still high and so the consequent is

false. Hence, the counterfactual is false at ω0.

Ranges. The general problem of ranges also disappears. In variation semantics,

the counterfactual ‘(100 ≤ LDL (mg/dL) ≤ 200) � LDL near optimal’ is false

at any possible data point in a model encoding the simple classification algorithm

described in section 2.2. To see this, let ω be any possible data point. Let A be

the antecedent of the conditional. Then there are always A-variants of ω where

the consequent is false, no matter whether the LDL value lies within or outside

the range specified in A. For example, one can consider the A-variant of ω where

the LDL value is set to 200 mg/dL. Hence, the counterfactual is false at ω.
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Disjunctive antecedents. Recall the scenario described in section 2.3. One can

show that, in variation semantics, the sentence ‘age = 40 ∨ income = 40k) �

(credit score ≥ t)’ is false at ω0 in a semantic model capturing this scenario.

This is so because ω2 is an A-variant of ω0, where A is the antecedent of the

counterfactual in question. To see this, note that ω2|{age} is a verifier of A, and

note that ω2 agrees with ω0 regarding the values of all input variables except age.

However, the consequent is false in ω2. So there is an A-variant of ω0 where the

consequent is false. Thus, the counterfactual is false at ω0, as we argued it should

be.

Simplicity. Variation semantics is in a sense simpler than similarity semantics

because no similarity ordering is required. Instead of a similarity ordering on

Ω, one has to specify a set of variables defined on Ω and also which variables

are relevant to which atomic sentences. However, this is a straightforward task

in the central intended applications of variation semantics. What the space of

possible data points is and which variables to consider can normally be read off

the specification of the machine learning model in question. Also, which variables

are relevant to a given atomic sentence can normally be read off the sentence in

question. In applications of similarity semantics, one has to specify a space of

possibilities as well, but on top of that one must also choose a similarity ordering.

And this choice is difficult. There is in general no unique answer to what the right

similarity ordering is in machine learning (cf. Molnar, 2019, section 9.3). So there

is a sense in which similarity semantics has an additional free parameter compared

to variation semantics.

Robustness. As a consequence of its greater simplicity, variation semantics yields

more robust results than similarity semantics. In similarity semantics, the truth

values of counterfactuals crucially depend on the choice of a similarity ordering,

e.g. on how variables are weighted when making overall comparisons of possible

data points. If one changes the similarity ordering, this can change the truth values

of counterfactuals. In contrast, variation semantics yields the same results inde-

pendently of any preferred similarity ordering. In the central intended applications

of variation semantics, the constituents of a semantic model are determined by

the algorithm and the sentences under consideration. Hence, the truth values of

counterfactuals are determined by the parameters of the application alone. They

do not depend on difficult decisions about the right standard of similarity.
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4.2 Advantages vis-à-vis interventionist semantics

In variation semantics, one evaluates counterfactuals relative to models that spec-

ify functional relationships between dependent and independent variables. In this

regard, it is similar to interventionist semantics, which offers truth conditions for

counterfactuals in terms of causal models in the structural equations framework.

This similarity raises the question how variation semantics compares to interven-

tionist semantics.

Interventionist semantics has been developed on the basis of Judea Pearl’s

work on causal models (Galles & Pearl, 1998; Halpern, 2000; Pearl, 2009), and

it has been brought in its most general form by Briggs (2012). Causal models

are popular not only in philosophy but also in computer science, for example as

tools for testing whether algorithms satisfy fairness criteria such as counterfactual

fairness (Kusner et al., 2017).

In interventionist semantics, one evaluates a counterfactual conditional of the

form ‘X = a � Y = b’ relative to a causal model by adding the equation

‘X = a’ to the causal model while removing any other equation from the model

that determines the value of X, to avoid inconsistency. This step is referred to

as a ‘surgical intervention’. If ‘Y = b’ holds in the new model resulting from the

intervention, then ‘X = a� Y = b’ is true in the original model. Otherwise it is

false.

Variation semantics and interventionist semantics both explicate the idea of

making the antecedent true by setting the values of certain variables while keep-

ing other things equal.19 But they differ in how ‘other things’ is understood. We

believe that interventionist semantics is not in general adequate for counterfactual

reasoning about algorithmic decisions for the following reason: when dependent

variables are relevant to the antecedent of a counterfactual, surgical interventions

change the underlying causal model (algorithm) to make the antecedent true. A

surgical intervention sets the values of some variables by force and severs the links

between these variables and any variables they depend on by removing equations

from the model. Surgical interventions are useful for some purposes. But they are

a problem when evaluating counterfactuals regarding the behaviour of algorithms

19We conjecture that they yield the same truth values for equational counterfactuals with
antecedents that concern only independent variables (e.g. ‘X = a � Y = b’, where X is an
independent variable).
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because the algorithm must remain unchanged for a good counterfactual expla-

nation of an algorithm’s output. One seeks to find out how possible alternative

inputs would affect the algorithm’s outputs rather than what would happen if one

changed dependencies within the algorithm itself.

To illustrate this, consider a model where the output variable depends on the

one hand directly on the independent variables but, on the other hand, also on an

intermediate interaction variable. For example, consider a very simple model that

predicts the expected level of economic marginalisation of a person in a particular

society (Y ) in terms of three independent variables

(X1) gender (0: man, 1: woman),

(X2) race (0: white, 1: black),

(X3) disability status (0: able-bodied, 1: disabled)

and an interaction variable capturing multiple discrimination (D).20

X1

X2 D Y

X3

Figure 2: mathematical model with intermediate interaction variable.

The model is given by two equations:

Y = β1X1 + β2X2 + β3X3 + β4D

D = α1X1X2 + α2X1X3 + α3X2X3

Note that D takes the value 0 unless at least two of the three independent vari-

ables take the value 1. So, D takes the value 0 for anybody who is not subject

to multiple discrimination. For simplicity of illustration, we assume that the pa-

rameters α1, . . . , α3 and β1, . . . , β4 are all equal to 1. Given this simplification,

20This example is inspired by the work of Bright et al. (2016) and Kim et al. (2019). That only
the variables gender, race and disability status are used in this model and that they are treated
as binary merely serves to simplify the exposition.
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D takes the value 1 for people who are subject to double discrimination (black

women, women with disability, black people with disability); and it takes the value

3 for people who are subject to triple discrimination (black women with disabil-

ity). As a consequence, the output variable Y takes the value 3 in cases of double

discrimination and the value 6 in the case of triple discrimination.

Now suppose a white man without disability makes the following claim re-

garding this model:

(C5) If I were subject to double discrimination, my expected level of economic

marginalisation would be 1. (D = 1� Y = 1)

According to interventionist semantics, this counterfactual is true. We will now

explain why this is so and why this result poses a problem for interventionist

semantics.

First, to capture the scenario in question, we set X1 = 0, . . . , X3 = 0 (“white

man without disability”). Given these values of the independent variables, the sec-

ond model equation yields D = 0. So we get Y = 0, using the first equation. This

is what the model yields for the actual data point. Now, to evaluate the counter-

factual C5 at this data point according to interventionist semantics, one performs

a surgical intervention in the model. One sets D = 1 but leaves X1, . . . , X3 all set

to 0. To avoid inconsistency, one removes the original equation for D from the

model. So one severs the links between the independent variables and the vari-

able D, which thereby ceases to be an interaction variable in the modified model

(figure 3).

X1

X2 D Y

X3

Figure 3: mathematical model after intervention.

Then one calculates the value of Y on this basis. The result is Y = 1. So, the

intervention that makes the antecedent (‘D = 1’) true, results in the truth of the

consequent (‘Y = 1’). Hence, C5 is true according to interventionist semantics.
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This result is problematic. In effect, we have calculated the expected level

of economic marginalisation for a white man without disability who is artificially

counted as being subject to double discrimination without satisfying the necessary

conditions for that. Counterfactual explanations of algorithmic decisions should

not rely on such reasoning. Note that the original model would not yield Y = 1

for any possible input where D = 1, i.e. for any person who is actually subject

to double discrimination. The reason is that, for D to take the value 1, exactly

two of the independent variables X1, . . . , X3 must also take the value 1, by the

second equation of the model, which defines D. But in that case, the first equation

yields Y = 3. This suggests that ‘D = 1 � Y = 1’ should count as false and

‘D = 1 � Y = 3’ should come out as true instead if one seeks to describe the

behaviour of the model as it is.

Variation semantics captures this intuition. In variation semantics, the under-

lying model remains unchanged. One considers all (D = 1)-variants of the given

data point, and one calculates the value of Y for all these possibilities. In every

such variant, exactly two of the input variables X1, . . . , X3 take the value 1. As

a consequence, the sentence ‘D = 1 � Y = 3’ comes out as true in variation

semantics and ‘D = 1� Y = 1’ as false.

5 Logical consequence and hyperintensionality

We have now seen how variation semantics differs from similarity semantics and

interventionist semantics regarding truth values. But it also differs with regard to

the relation of logical consequence (entailment). The definition is as usual.

Definition 8. Let A be any sentence and T any set of sentences. Then we say that

T entails A in variation semantics iff for every modelM and every possible data

point ω in M: if all sentences in T are true at ω, then A is also true at ω.

One difference to similarity semantics concerns counterfactuals with disjunctive

antecedents. As the example in section 2.3 shows, (A ∨ B) � C does not en-

tail A � C in similarity semantics. But the situation is different in variation

semantics.

Proposition 1. (A ∨ B) � C entails both A� C and B � C in variation

semantics.
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Proof. Without loss of generality, we consider only the case of A� C. To see

that this sentence is entailed by (A ∨ B) � C, simply apply the definition of

entailment and the fact that every A-variant of a possible data point is also an

(A ∨ B)-variant of it. This fact follows from the definition of ‘A-variant’ along

with condition 4.(a) of the definition of ‘verifier’.

Variation semantics also differs from interventionist semantics in terms of logical

consequence. In interventionist semantics, Modus Ponens is not valid for counter-

factuals. The reason is that an intervention regarding a dependent variable alters

the underlying model even if the variable is set to a value it had anyway (Briggs,

2012). In contrast:

Proposition 2. Modus Ponens is valid for counterfactuals in variation semantics.

That is: {A, A� C} entails C in variation semantics.

Proof. Use the simple fact that ω is an A-variant of itself if A is true at ω.

Moreover, variation semantics captures important invalidities that are commonly

taken to distinguish counterfactuals from strict conditionals. For example:

Proposition 3. Antecedent Strengthening is not valid in variation semantics.

That is: A� C does not entail (A∧B)� C in variation semantics for pairwise

distinct atomic sentences A,B,C.

Proof. Take a simple linear model with three variables (X1, X2, Y ) such that

Y (ω) = X1(ω) + X2(ω) for all ω ∈ Ω. Consider the data point ω0 such that

X1(ω0) = 0 = X2(ω0). Let Prop and Rel be such that

sentence true at relevant variables

A those ω ∈ Ω with X1(ω) = 1 X1

B those ω ∈ Ω with X2(ω) = 1 X2

C those ω ∈ Ω with Y (ω) = 1 Y

Note that A� C is true at ω0. Setting X1 to 1, leaving other things equal, results

in Y taking the value 1. However, (A ∧ B)� C is false at ω0. Setting both X1

and X2 to 1, other things being equal, results in Y taking the value 2.

Another feature of variation semantics that is important from a logical point of

view is that it is a hyperintensional system. More specifically:
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Proposition 4. Not all sentences that are tautologically equivalent can be substi-

tuted in a counterfactual without changing the truth value of the counterfactual in

variation semantics.

Proof. Consider the model and the data point ω0 from the proof of Proposition 3.

The sentence ‘X1 = 1 � Y = 1’ is true at ω0 in this model. We are using the

intended interpretation of the atomic sentences in this example. So, for instance,

Prop(‘X1 = 1’) = {ω ∈ Ω : X1(ω) = 1}, and Rel(‘X1 = 1’) = {X1}. Note that

‘X1 = 1’ is tautologically equivalent to ‘(X1 = 1 ∨ (X1 = 1 ∧ X2 = 10))’.21

However, ‘(X1 = 1 ∨ (X1 = 1 ∧ X2 = 10)) � Y = 1’ is false at ω0, according

to variation semantics. To see this, suppose for reductio that it is true. Then

‘(X1 = 1 ∧X2 = 1)� Y = 1’ must also be true by Proposition 1. However, this

is not the case, as explained in the proof of Proposition 3.

To sum up, the consequence relation of variation semantics differs from the con-

sequence relations of similarity semantics, interventionist semantics and any se-

mantics that treats counterfactuals as strict conditionals.

6 Range of applicability & generalisations

We now address a potential concern about variation semantics, namely that it has

a limited range of applicability. The worry is that variation semantics allows us to

evaluate only counterfactuals about the behaviour of algorithms and other math-

ematical models and that, therefore, it cannot be used to evaluate counterfactuals

of other types such as counterfactuals about natural or social phenomena (e.g. ‘If

Nixon had pressed the button, there would have been a nuclear war between the

USA and the USSR’). This raises the question whether there is a generalisation

of variation semantics that can deal with counterfactuals of any type and, if so,

whether variation semantics is made obsolete by the more general semantics.

Our response is two-fold: (a) There are in fact several ways of generalising

variation semantics. However, in many cases, there are still good reasons for pre-

ferring variation semantics when it comes to concrete applications. (b) The range

21Fine (2017) uses an example of the same structure to illustrate the problem of disjunctive
antecedents.
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of applicability of variation semantics is wider than it might seem at first glance,

and it is not even clear that its generalisations have a significantly greater range

of applicability. Let us elaborate on both points.

Generalisations. There are at least two semantics that can be viewed as gen-

eralisations of variation semantics. Priest’s (2008, chapter 5) general semantics

for conditionals is one. It is a possible world semantics. A model is given by a

set of worlds together with a family of accessibility relations, one relation RA for

each sentence A. A conditional A � C is true at a world w0 iff C is true at

every RA-accessible world (i.e. at every world w1 with w0RAw1). The suggested

reading of ‘w0RAw1’ is ‘A is true at w1, which is, ceteris paribus, the same as w0’

(Priest, 2008, paragraph 5.3.3). However, the intuitive idea behind this reading is

left almost entirely unexplicated in Priest’s framework.22 Only very weak condi-

tions are imposed on RA.23 Therefore, Priest’s framework is enormously general.

It encompasses not only variation semantics but also similarity semantics and

even a semantics of counterfactuals as strict conditionals as special cases. Strict

conditional semantics is obtained by taking all the A-worlds as RA-accessible

worlds. Similarity semantics is obtained by taking the closest A-worlds as the

RA-accessible worlds. Variation semantics is obtained by identifying possible data

points with worlds and taking A-variants as the RA-accessible data points.

Fine’s (2012) abstract truth-maker semantics is another framework that can be

seen as a generalisation of variation semantics. It is a hyperintensional semantics

based on possible states (rather than possible worlds) and on parthood relations

between states. States serve as verifiers and falsifiers of sentences. To give truth

conditions for counterfactuals, Fine works with transition relations s0 →w s1,

where s0, s1 are states and w is a world. The intuitive reading of ‘s0 →w s1’

is ‘state s1 is a possible outcome of imposing the change s0 on the world w’.

A conditional A � C is classified as true at a world w iff for any states s0

and s1 such that s0 is an exact truth-maker of A and s0 →w s1, s1 contains an

exact truth-maker of C. Parthood relations and transition relations are taken as

primitive in Fine’s framework, and only weak conditions are imposed on them

to guarantee maximum generality. One can construct models of this framework

22One can view the definition of ‘A-variant’ as a substantive explication of this idea.
23The conditions are: (1) A is true at w1 if w0RAw1. (2) wRAw if A is true at w. (Priest, 2008,

section 5.5)
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from models of variation semantics. To do so, one can take partial data as states,

i.e. possible assignments of values to (not necessarily all) variables, and define a

parthood and transition relation between them in terms of notions of variation

semantics.24

The extreme generality of the frameworks of Priest and Fine has advantages

but also disadvantages. On the one hand, these frameworks are very flexible and

can be adapted in numerous ways because they place only very weak constraints

on models. On the other hand, generality comes at a cost. The general frameworks

can be difficult to apply when it comes to determining the truth values of coun-

terfactuals in concrete cases. Doing so requires the choice of a semantic model.

But due to the highly abstract form of models in each framework, most of the

difficult work lies in constructing a suitable model.

When it comes to concrete applications, variation semantics may be preferable

to its generalisations for at least two reasons. First, it is continuous with modelling

practices in the sciences and in engineering as far as its conceptual architecture is

concerned, and therefore it is easier to construct suitable semantic models in it.

Second, its range of applicability is much wider than it may seem. Let us elaborate

on each point.

Continuity with scientific practice. Models specifying functional relation-

ships between dependent and independent variables are the bread and butter of

natural and social scientists as well as engineers in many fields, including policy-

relevant areas such as economics and epidemiology. Variation semantics allows us

to evaluate counterfactuals based on such models. It uses possible data points

and a common mathematical conception of variables. Thus, variation semantics

is much closer to the practice of scientific modelling than similarity semantics,

Fine’s truth-maker semantics and other highly abstract semantics popular among

philosophers. It constitutes a user-friendly foundation for counterfactual reasoning

based on mathematical models that is applicable in many fields.

Applicability. It is not true that variation semantics is applicable only to coun-

terfactuals about the behaviour of mathematical models. It can also be applied

24There is a natural parthood relation on variable assignments, e.g. (X1 = a1) is a part of
(X1 = a1, X2 = a2). A transition relation can be defined along the lines of the definition of
‘A-variant’: s0 →w s1 iff s1 is a data point that contains partial data s0 as a part and agrees
with the data point w regarding the values of all independent variables outside the basis of the
set of variables occurring in s0.
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to counterfactuals about natural or social phenomena. And it does not appear to

be less suitable for this purpose than the two more general frameworks. To show

this, let us return to the example from the beginning of this section:

(C6) If Nixon had pressed the button, there would have been a nuclear war be-

tween the USA and the USSR.

Since this sentence is about historical scenarios and not about the behaviour of

a particular mathematical model, one might think that it cannot be handled by

variation semantics. But this is not correct.

One can evaluate C6 by constructing a model that represents dependencies

between possible historical situations. Let us construct a very simple model using

only Boolean variables (taking only the values 0 or 1) for illustration. Let N and

W be Boolean variables such that ‘N = 1’ represents that Nixon presses the

button, and ‘W = 1’ represents that there is a nuclear war between the USA and

the USSR. Then ‘N = 0’ and ‘W = 0’ represent the negations of these statements.

Furthermore, let L, B1 and B2 be Boolean variables such that ‘L = 1’ represents

that the USA launch nuclear missiles on the USSR; ‘B1 = 1’ represents that

particular background conditions under which the USA launch nuclear missiles

obtain; and ‘B2 = 1’ represents that particular background conditions under which

the USSR launch nuclear missiles obtain. Suppose these variables are related as

follows, for all ω ∈ Ω:

L(ω) = 1 iff both N(ω) = 1 and B1(ω) = 1.

W (ω) = 1 iff both L(ω) = 1 and B2(ω) = 1.

N L W

B1 B2

Figure 4: a simple historical model.

Based on this model, one can evaluate C6 (in symbols: N = 1 � W = 1).

Consider the possible data point ω such that N(ω) = 0, B1(ω) = 1 and B2(ω) = 1,
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assuming that this assignment of values to the independent variables in question

is historically accurate. There is only one (N = 1)-variant of ω, namely the data

point ω′ such that N(ω′) = 1, B1(ω
′) = 1 and B2(ω

′) = 1. Note that ‘W = 1’ is

true at ω′ by the conditions above. So, C6 is true at ω.

Admittedly, this is an extremely simplistic model. It merely serves to illustrate

the general idea. But one could construct more complex and realistic models.

Constructing a good semantic model is essential because the truth value of the

counterfactual we seek to evaluate depends on the chosen model. However, how

a good model should look like in this case is not a logical question but rather a

question for historians and social scientists.

But note that more general semantics do not fare better when it comes to

evaluating counterfactuals such as C6. To evaluate a sentence, one needs a se-

mantic model. And we do not see good reasons to think that constructing a good

semantic model is easier in much more abstract frameworks than variation seman-

tics. Consider Fine’s truth-maker semantics. It is at least as difficult to see what

a set of states, a parthood relation and a transition relation on states should be

like to serve as a good basis for evaluating the counterfactual C6 as it is to see

which historical variables might play a role and what their dependencies might

be. So, when it comes to determining truth values of concrete counterfactuals, we

doubt that more general frameworks such as Fine’s and Priest’s possess significant

advantages over variation semantics.

7 Conclusions and outlook

Our main conclusions are: (a) Variation semantics constitutes a good framework

for evaluating counterfactual conditionals in explanations of algorithmic decisions.

It it more suitable for this purpose than similarity semantics, interventionist se-

mantics and the frameworks of Fine and Priest. (b) Since its range of applicability

extends far beyond counterfactuals about the behaviour of algorithms, variation

semantics is a genuine alternative to similarity semantics and interventionist se-

mantics.
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7.1 Implications for practice and computer science

Variation semantics has potential for practical applications in all areas concerned

with counterfactuals about the behaviour of algorithms, including machine learn-

ing and law. When it comes to practical applications, a computational implemen-

tation of variation semantics would be helpful. This raises the question whether

one can write a computer programme, based on variation semantics, that can

calculate the truth value of a given counterfactual about the behaviour of a given

algorithm. Such a programme promises to be of practical use for individuals or

organisations who seek to evaluate counterfactual conditionals to understand or

contest algorithmic decisions.

7.2 Implications for philosophy and logic

There are implications for the debate about the right methodology for assessing

causal effects of social categories such as race and gender and the closely related

issue of how counterfactuals about a person’s gender or race can be evaluated. The

widely used interventionist approach has recently come under increasing criticism

in this debate (Hu, 2022; Kasirzadeh & Smart, 2021).25 This paper supports

critics of interventionism. Interventionist semantics presupposes that any variable

is manipulable in isolation. In a surgical intervention, one may for instance change

the value of the variable race from ‘black’ to ‘white’ or vice versa without changing

the values of any other variables, even if race depends on other variables in the

model in question.26 We have argued in section 4.2 that conclusions drawn from

such interventions can be problematic. Moreover, we have provided an alternative

to interventionist semantics. If race is a dependent variable in a model, then —

according to variation semantics — it cannot be changed without also changing

some variables it depends on. Although variation semantics is not intended as

an approach to causal inference, it might be a useful starting point for critics of

interventionism to develop rigorous frameworks capturing their views.

From a logical point of view, the novel conceptual architecture of variation

semantics may be of interest for two reasons.27 (a) It can be used as a starting point

25See Malinsky and Bright (2021) for an argument in favour of the manipulability of race.
26For example, the variable race might depend on “ancestry, self-awareness of ancestry, pub-

lic awareness of ancestry, culture, experience of privilege or oppression, and subjective self-
identification” (Malinsky & Bright, 2021).

27In term of the structure of models and its conceptual construction, variation semantics differs
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for developing new hyperintensional semantics. (b) It challenges a widespread view

about the design of hyperintensional semantics.

Regarding the development of new semantics, a first natural step is to ex-

tend the ideas presented in this paper to first-order languages. To do so, one

could replace possible data points with possible worlds, where each possible world

comes with an associated domain of objects; and one could replace variables with

attributes, where an n-ary attribute could be viewed as a function that assigns

to each world an n-ary relation in the mathematical sense28 over the domain of

that world. Moreover, one could take dependence relations between attributes as

primitive rather than defining them as in the basic version of variation seman-

tics presented here. Various types of dependence relations could be considered,

including supervenience, grounding or causal dependence relations.

Regarding the design of hyperintensional systems more generally, one of the

most prominent approaches is to start with possible states (or situations) rather

than possible worlds.29 Possible worlds can then be defined as particular maximally-

consistent states. Fine (2012) claims that much hinges on adopting a state-based

approach rather than a possible worlds semantics, for example to overcome the

problem of disjunctive antecedents. But this seems to be an illusion. Variation

semantics belongs to the family of possible worlds semantics, but it can solve

Fine’s problems too. This suggests that a different choice of primitives is equally

viable: possible data points (or possible worlds), variables (or attributes) and an

assignment of relevant variables (or attributes) to atomic sentences. Using this or

a similar architecture to develop hyperintensional semantics for logical operators

other than counterfactual conditionals could be a fruitful strand of research in

philosophical logic and AI.

from traditional semantics for hyperintensional operators such as truth-maker semantics (Fine,
2017), situation semantics (Barwise & Perry, 1983), impossible worlds semantics (Nolan, 1997)
and various semantics for relevance logics (e.g. Anderson & Belnap, 1975; Anderson et al., 1992;
Routley & Meyer, 1973).

28By a ‘relation in the mathematical sense’ we mean a set of ordered n-tuples.
29Barwise and Perry (1983) were among the first to endorse such an approach. A state-based

semantics for counterfactuals was first conceived and developed by Fine (1975, 2012). But also
other important notions have been explicated in this tradition, for example ‘permission’ (An-
glberger & Korbmacher, 2020) or ‘synonymy’ (Hornischer, 2020). For excellent overviews, see
Fine (2017) and Leitgeb (2019, section 1).
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7.3 Outlook

Desiderata for further research include: (a) developing a deductive system for

variation semantics and proving its soundness and completeness; (b) studying

the formal relationships between variation semantics and other semantics in more

detail; and (c) extending variation semantics to give an account of probabilis-

tic counterfactual reasoning. As for the latter point, a natural step to extend

models is to endow Ω with a probability measure. Then one can assign (global)

probabilities to counterfactuals since counterfactuals express propositions.30 But

perhaps more interestingly, one can define (local) counterfactual probabilities.

If a would-counterfactual A � C is false at a point ω while the correspond-

ing might-counterfactual A� C is true — so if C is true at some but not all

A-variants of ω —, then it is natural to ask how probable C is within the set

of A-variants of ω. This suggests defining, at any point ω, a local counterfac-

tual probability of C being the case if A were the case (notation: ‘Pω(C‖A)’)

by setting Pω(C‖A) := P (Prop(C)|〈A〉ω), where P is the background probabil-

ity measure on Ω, Prop(C) is the set of points at which C is true and 〈A〉ω is

the set of A-variants of ω. This definition of local counterfactual probabilities is

novel in several respects. It constitutes an alternative to Balke & Pearl’s expli-

cation of counterfactual probabilities in terms of causal models (1994a, 1994b).

It also differs from suppositional accounts of probabilities of counterfactuals such

as Bradley’s (2021) and from Leitgeb’s (2012a, 2012b) probabilistic semantics for

counterfactuals. It seems that variation semantics offers a fresh starting point for

thinking about counterfactual probabilities and probabilities of counterfactuals.

30The global probability of a counterfactual is the probability of the set of data points in Ω
at which it is true. Pearl (cf. 2009, chapter 7) defines probabilities of counterfactuals essentially
like that as well.
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