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Abstract

Climate scientists frequently interpret climate models as providing prob-
abilistic information, a practice that has come under substantial crit-
icism from philosophers of science. The present paper defends this in-
terpretation. I show that the probabilistic information provided by “en-
sembles” of climate models is invaluable to climate science; it provides
important information about how to distribute confidence over vari-
ous alternatives. Importantly, this information is best understood and
treated as evidence (rather than as some kind of deferral-worthy expert
function). From this perspective, it becomes clear that the criticisms
raised by philosophers only motivate a moderate position according to
which some but not all uses of the probabilities generated by “ensemble-
based methods” are appropriate.
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0 Introduction

Climate scientists frequently employ groups or “ensembles” of climate models
when evaluating hypotheses about the past, present, and future climate. In
many cases, they interpret the results given by these ensembles as providing
probabilistic information—that is, they treat the variation between the dif-
ferent members of the ensemble as providing evidence about the probability
of various alternative scenarios. Philosophers have written extensively about
both these “ensemble-based methods” and the probabilities that they gener-
ate, most of it quite critical: though the details of the arguments differ, the
broad consensus within philosophy seems to be that extant ensembles are not
properly “independent” in the way that they would need to be to (e.g.) apply
statistics to them, and thus that the probabilistic results of such applications
are not worthwhile.!

It’s important to distinguish between two possible views motivated by these
criticisms. More moderately, one might hold that climate scientists shouldn’t
uncritically accept or adopt the precise probabilities generated by ensemble-
based methods. In the terminology of epistemology, we shouldn’t take the re-
sulting probabilities to be expert functions; they aren’t unproblematic guides
to the true probabilities or the probabilities that we should adopt. A more ex-
treme view says that climate scientists shouldn’t use ensemble-based methods
at all. Some of the prior literature—see, e.g., Wendy Parker’s work—is explicit

1For examples, see Betz (2007, 2015), Carrier and Lenhard (2019), Jebeile and Barber-
ousse (forthcoming), Katzav (2014), Katzav et al. (2021), Parker (2010a,b, 2013), Parker
and Risbey (2015), Schmidt and Sherwood (2015), and Winsberg (2018). There is to my
knowledge only one paper that explicitly defends the practice (Dethier 2022).



in adopting the more moderate position. By contrast, others—such as Katzav
et al. (2021)—seem at times to advocate for the extreme view.?

Absent from much of the prior literature is a discussion of why the prob-
abilities generated by ensembles might be valuable; the general assumption
seems to be that we want probabilities for decision-theoretic purposes. As
I’ll show in this paper, however, there are other benefits to the probabilis-
tic treatment of climate models besides the (presumptive) decision-theoretic
ones discussed in the literature. In particular, the probabilities generated by
ensembles of climate models provide valuable evidence about how we should
distribute our confidence over different hypotheses. I argue that we don’t have
any good reason to throw away this evidence—or at least, we have no more
reason to throw away this evidence than we have reason to throw away any
information provided by the models. The upshot is an argument in favor of a
conditional version of the moderate view: if we have sufficient reason to treat
anything the models tell us as evidence—I think we do, but I won’t be arguing
for that here—then we have sufficient reason to treat the probability functions
generated by ensemble-based methods as evidence too.

The first two sections lay my positive argument: the variation between
members of an ensemble provides us with information about how to distribute
our confidence that a single model does not. As I stress, the benefit here isn’t
purely theoretical. On the contrary, climate scientists sometimes make use
of this information to concretely improve their methods. Section three briefly
states my positive position, while the final section addresses various objections
that have been raised in the literature. In particular, I argue that many of these
arguments are ineffective against the moderate position advanced in this paper;
they give us good reason not to treat the probabilities generated by ensembles
as experts, but not good reason to throw them out.

One final note. In what follows, I focus on a paradigm case of ensemble-
based methods, namely the application of statistics to the set of results gen-
erated by simulations run on an ensemble of climate models. As I'll stress,
however, what my arguments really motivate is not the use of this particular
method but rather merely that we use some method that takes the variation
between model results into account. There are worthwhile debates to be had
about which ensemble-based methods (in this broad sense) climate scientists
should use, and I want to leave the door open for other approaches so long as
they take account of inter-model variation in some way.

20n my reading, Katzav et al. are really interested in a more moderate position—i.e.,
they’re advocating against the use of precise probability functions to represent future uncer-
tainty in the context of decision-making. What they say, however, is that precise probability
functions “should not be used in the climate context” (Katzav et al. 2021).



1 Climate modeling and imprecision

1.1 Using climate models to evaluate hypotheses

Here I briefly outline how climate models are used in evaluating hypotheses
about the (future) climate. To make the discussion more concrete, consider
equilibrium climate sensitivity (ECS), the °C change in temperature that will
be observed given a doubling of the atmospheric CO, concentration.

Were we Bayesian rational agents in an ideal situation, our estimate for
ECS would consist in a precise probability distribution over possible values of
ECS, and this distribution would be generated by conditionalizing our prior
expectations on the total evidence. In practice, of course, this isn’t feasible.?
We're rarely if ever in a position to directly employ our total evidence in eval-
uating hypotheses. It’s not as though we have access to a complete description
of all of the evidence collected up to this point, let alone an understanding of
the probabilistic relationships between that description and various hypothe-
ses. Instead of calculating the probability of a hypothesis like ECS = 2.5°C
directly on the total evidence, therefore, scientists build theories and models
that systematize the evidence as well as possible. These theories and models
then tell us what we should believe about the future.

Simulations run using global climate models are one of the methods by
which climate scientists estimate ECS.# We can think of global climate models
as consisting of a number of gridded shells, with each shell representing a
layer of the atmosphere and each grid box a location in that layer. Each grid
box is assigned a number of climate variables, representing (e.g.) the average
temperature and precipitation in that region over the course of a time-step
(say, a month). The relationships between the variables found in various grid
boxes are given by a series of equations that determine how a change in the
climate variables of one box affects other variables in that box as well as the
variables in its neighbors. At the simplest level, quantities like heat will simply
defuse through the system, but of course there are more complicated effects

3It’s common for (Bayesian) epistemologists to wave away concerns about feasibility by
pointing out that the relevant standards are “evaluative” rather than “normative.” Fair
enough. Science isn’t concerned with the reasons that an agent might have in an abstract
evaluative sense, however, but instead with the reasons that can be made intersubjectively
salient (Longino 1990): you have to be able to demonstrate to other people that a hypothesis
is warranted. Feasibility questions—e.g., can your evidence be communicated?’—are thus
relevant to philosophy of science in a way that they (arguably) aren’t to (ideal) epistemology.

4For a comparison of the various sources of estimates for ECS, see IPCC (2013, 922-923,
1110, box 12.2).



as well.?

To use a global climate model in estimating a quantity like ECS, climate
scientists run computer simulations in which the model is “forced” to take
on a new state by an exogenous change; in the case of ECS, for instance,
one standard procedure is to rapidly double the amount of CO; in the (sim-
ulated) atmosphere. Comparing the end-state of the simulation to the initial
state yields a point-value quantity for the change in average temperature in
the model. So suppose that the in-model change in average temperature, rep-
resented by AT, is 2.5°C. In what follows, I'll speak of a model “saying” or
“reporting” that AT = 2.5°C. The idea here is that the “model report” is akin
to an “instrumental reading”: the quantity that our computer simulation spits
out is like the quantity that we read off a thermometer. It’s a data point to
be recorded and interpreted and which our hypotheses about the climate will
be expected to account for (compare Parker 2020a).5

In what follows, I'll often speak about the interpretation of model reports
in Bayesian language (though nothing hangs on this particular choice of frame-
work). In this framework, “interpreting” model reports means conditionalizing
on them in accordance with Bayes’ rule. In our ECS example, that means that
the probability that we (should) assign to a hypothesis like ECS = 2.5°C on
the basis of the model report that AT = 2.5°C is given by

Pr*(ECS = 2.5) = Pr(ECS = 2.5 | m : AT = 2.5)
_ Pr(ECS =25)Pr(m: AT =25 | ECS = 2.5)
B Pr(m : AT = 2.5)

where “m : AT = 2.5” indicates that the model m is reporting that AT =
2.5°C. The crucial point is that what we take from the model report depends
on how well (we think) the model is tracking the truth, or, in the Bayesian
framework, on the likelihood ratio.

5The picture I've presented here is simplified in a number of ways. For a deeper discus-
sion, see a climate modeling primer such as Gettelman and Rood (2016) and McGuffie and
Henderson-Sellers (2014). For a philosophical introduction, see Winsberg (2018, 27-54).

61 suspect that this assumption is a key point of divergence between my own approach
and that of those who are more skeptical of ensemble-generated probabilities. On the picture
offered by Thompson and Smith (2019), for instance, a model needs to clear some sort of
bar for accuracy or reliability before we can treat it as providing information about the
world, whereas I'm simply building the inaccuracy or unreliablility of the model into the
likelihood ratio. I think Thompson and Smith are probably right about the practice—climate
scientists both should and in fact do only take models into consideration when they meet
some minimal standard of accuracy—but this doesn’t affect my central contention. Roughly,
if the models don’t clear the bar, we shouldn’t take anything they say as evidence; if they
do clear the bar, we should treat the inter-model variation as evidence.



1.2 The problem of imprecise evidence

It is uncontroversial that climate models are not perfect: they misrepresent or
idealize some real climate processes, omit or paramaterize others, and rely on
assumptions that are risky or arbitrary in the sense that we don’t know whether
they're true.” It is also uncontroversial that climate models are (relatively)
“opaque” in the sense that it is hard to tell how any one idealization affects
the accuracy of the model with respect to a variable of interest.®

The upshot of these two facts is that climate scientists are rarely (if ever)
in a position to know exactly how to interpret a given model report—in our
Bayesian framework, they don’t know the likelihood of a given model report
on different hypotheses. It’s helpful to be slightly more concrete. So suppose
that our model generates a report of AT = 2.5°C. For the sake of simplicity,
suppose further that we know that the likelihood of observing different values
for AT given some hypothesis h is given by a normal distribution centered
on the truth. Essentially: we know that the hypothesis on which our model
report has the highest likelihood is ECS = 2.5°C, and that the likelihood of
the model report falls off as we move to hypotheses that assign more distant
values to ECS. The sole question in this simplified example is how quickly
the likelihood falls off. If the normal distribution has a standard deviation of
.25, our confidence in different values of ECS will look like the graph pictured
in figure la. And if the normal distribution has a standard deviation of .5,
our confidence in different values of ECS will look like the graph pictured
in figure 1b. Insofar as we’re uncertain about which assumption about the
model’s accuracy we ought to adopt, we’ll be equally uncertain about which
distribution we should prefer.

Situations like this one are sometimes described by epistemologists as in-
volving “imprecise evidence” (see, e.g., Carr 2019). That terminology can be
confusing, however. It’s not the case that the datum that we’re conditioning on
is itself imprecise; on the contrary, the model’s reported value for AT can be
calculated with as much precision as we like. Instead, the problem is that we're
not in a position to justify a precise interpretation of the model report—we
can’t pick out a single probability function as the assignment of probabilities
that the report supports.

Here’s another way at getting at this contrast. Evidence can warrant more

"See IPCC (2013, chapter 9). The point is also widely acknowledged by philosophers: see
Carrier and Lenhard (2019), Jebeile and Barberousse (forthcoming), and Parker (2010a).

8The terminology of “opacity” is owed to Humphreys (2004); for discussions of opacity
in the context of climate models, see Carrier and Lenhard (2019), Lenhard and Winsberg
(2010), and Parker and Winsberg (2018).
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Figure 1: Posterior probability distributions for values of ECS at the 1/4" of
a °C level induced by different views about likelihoods. Priors assumed to be
identical and uniform.

or less precise conclusions in at least two different senses. On the one hand, the
evidence can warrant more or less precise conclusions in the sense of ruling out
possible values for a quantity. To illustrate, contrast learning the proposition
that [[ECS falls between 0.5 and 4.5°C]] with learning the proposition that
[[ECS falls between 1.5 and 3.5°C]]. The latter rules out more possible values
for ECS and is thus more precise in what we might call a first-order sense.

On the other hand, the evidence can warrant more or less precise conclu-
sions in the sense of ruling out possible distributions over values. The most fa-
miliar (but not the only) way to understand this higher-order sense of precision
is in terms of what are called imprecise probability distributions.? So, in a stan-
dard Bayesian framework, updating your priors Pr(-) on a piece of evidence
yields a single preferred posterior probability function Pr*(-) = Pr(-|E). That
is: the standard Bayesian framework treats all evidence as maximally precise
in that it only allows for a single probability distribution. In the example we
saw above, however, our uncertainty about likelihood functions meant that we
were uncertain about which of two posterior probability functions to adopt—
rather than a single probability function Pr*, we had a set of them {Pry, Pri}.
In this example, E is less than maximally precise in a higher-order sense: it
doesn’t rule out all but one distribution over the possible values.

9For an overview, see Bradley (2019) and Mahtani (2019). The alternative that I have in
mind replaces imprecise probability’s sets of functions with a modal frame and the accom-
panying access relations (see Dorst 2019; Dorst et al. forthcoming). The differences between
these two approaches shouldn’t matter for the present discussion.



To summarize, climate modeling—or at least the project of using climate
models to estimate quantities like ECS—faces a problem. Due to the heavily
idealized and relatively opaque nature of climate models, climate scientists
often don’t know the likelihood of a given model report on different hypotheses
about quantities of interest. Their uncertainty about likelihoods renders the
evidence provided by the model report imprecise in the higher-order sense
just sketched: the evidence allows for a variety of possible distributions over
different values for ECS.

Generally speaking, imprecision in our evidence is undesirable: we prefer to
be in situations where the evidence warrants more precise hypotheses rather
than those in which it only warrants less precise ones. This general preference
holds regardless of what sense of precision is at issue and is particularly acute in
climate science. As is widely discussed in the scientific literature, the available
evidence places much tighter bounds on the low end for ECS than on the high
end. Given that higher values for ECS represent relatively disastrous scenarios,
however, practical questions concerning (e.g.) what CO, concentrations we
should aim to stay beneath are highly sensitive to the probability distribution
over various unlikely high-end options (Weitzman 2012). In climate science,
therefore, imprecise evidence is not just undesirable in an abstract sense—it
presents a genuine practical problem.

In the next section, I'll argue that ensembles of models help: they provide
evidence that is more precise than the evidence provided by a single model.

2 From a model to an ensemble

2.1 Ensemble-based methods: a primer

As we saw above, one way that climate scientists estimate quantities like ECS
is by running a simulation on a climate model to generate what I've called a
“model report,” which are like instrumental readings in the sense that they are
evidence that needs be “interpreted.” (We modeled this “interpretation” step
with Bayesian updating, but we could represent in other ways.) “Ensemble-
based methods” proceed along largely the same lines: the same simulation is
run on each of the models in the ensemble, generating a set of model reports.
The crucial difference is that scientists do not reason from or interpret the
individual model reports directly; instead, they reason using the features of
the set of model reports as a whole.!”

10As Parker (2010b) notes, there are important differences between different kinds of
ensembles—and the practice has grown more complex in recent years with the continued



The standard method for turning the set of reports generated by an ensem-
ble into evidence involves employing statistics. In short, this means assuming
that the set of reports behaves as though it were drawn from some sort of
population according to a given sampling procedure. In the simplest case, for
instance, climate scientists might assume that the reports behave as though
they were randomly drawn from a population centered on the truth. Or (more
realistically), they might assume that each of the members of the ensemble is
an equally realistic representation of the true climate and thus that the ensem-
ble behaves like a random sample from a population that contains the truth
as one of its members.!! These assumptions are essentially qualitative ways
of fixing what’s called a “statistical model,” a set of assumptions about the
probabilistic relationship between various hypotheses and the observed data
(i.e. the model reports). Given a statistical model, the observed reports can be
used to generate a probability distribution over various alternatives, and these
probability distributions (again, as opposed to the individual model reports)
are then what climate scientist employ in making judgments about how much
confidence we should assign to various hypotheses.

It’s worth being a little bit more concrete here. So consider the the as-
sumption that the ensemble behaves like a random sample from a population
that contains the truth as one of its members. Essentially, this assumption
amounts to the stipulation that for any temperature x, the probability that
ECS = z is equivalent to the probability that an arbitrary model generates a
report that AT = z. Given this stipulation, the likelihood of observing a given
set of model reports on the assumption that ECS = x is just the probability of
drawing a report that AT = x from the same distribution that characterizes
the (imagined) population. So, for instance, if the underlying population is
normally distributed, then the likelihood of observing a sample with mean AT
of 2.5 and standard deviation of .25 on the assumption that ECS falls between
2.4 and 2.6 is given by:

2.6 1 _l(z—2.5)2
Pr(u=250=.25]24<ECS<26)= / e 2\ .25 7 dz
04 25021
We can then use these likelihood assignments as part of either a Bayesian
updating procedure or a classical hypothesis test—climate scientists use both
approaches, though the classical one is currently much more popular.

development of the Coupled Model Intercomparison Project. I'm going to ignore these differ-
ences for present purposes: while they are certainly relevant to the evaluation of a particular
ensemble-generated probability distribution, they shouldn’t affect my central conclusion.

' The contrast between these two options is discussed at length in Annan and Hargreaves
(2010, 2011) and Sedlacek and Knutti (2013).



There are three points that I want to stress before moving on to a dis-
cussion of how the use on ensembles helps address the problem identified in
the last section. First, what I'll be arguing below is that the proper parallel
to draw here is not between the reports generated by the ensemble and the
individual model report but rather between the probability distribution gen-
erated by the ensemble-based method and the individual model report. That
is: the probability distributions need to be “interpreted” in the same way that
individual model reports do. In this respect, the ensemble-based method is
no different from a method based on a single model. What differs between
the two cases is that the probability distribution provides us with information
that a single model report doesn’t. In particular, there’s no analogue of the
variance (the second moment of the distribution of ensemble results) in the
single-model case.

Second, to reiterate a point from the introduction, the ensemble-based
method I've sketched here is simply a paradigm case of the most popular
approach, and other approaches are possible. Some climate scientists have
experimented with interpreting ensembles by weighting the different members
and taking their weighted average (Knutti et al. 2017; Sanderson, Knutti,
and Caldwell 2015); alternatively, some philosophers have suggested a pooling
approach that employs imprecise probabilities and explicitly accounts for the
stakes in interpreting the ensemble (Roussos, Bradley, and Frigg 2021). Which
of these approaches is best is an interesting question that I don’t want to
address here; as we’ll see, my contention is solely that there are good reasons
for climate scientists to use some ensemble-based method that takes account
of the variation between the different model reports. In other words, climate
scientists should interpret ensembles in a “probabilistic” manner; there’s room
for disagreement about how to calculate (and use) the relevant probabilities,
when and where to coarse-grain or invoke “imprecise” probabilities, but not
as to whether the interpretation should be probabilistic.

Finally, as should already be clear, the move to an ensemble doesn’t solve
the problem of the last section. Recall: in a Bayesian framework, the problem is
that we don’t know the likelihood relationship between the observed data and
various hypotheses. Exactly the same problem arises here, as illustrated above:
the debates about which statistical model we should employ in interpreting
ensembles are essentially debates about the proper assumptions to make about
the likelihood of observing a particular distribution of model reports. The
upshot is that the probability distribution generated by an ensemble-based
method counts as “imprecise evidence” in the same sense that a single model
report does: both allow for a variety of posterior probability distributions over
different values for ECS.

10



2.2 Ensembles and precise evidence

Nevertheless, moving to an ensemble helps. The easy way to illustrate this
point is by considering the simplified example of the last section. There, we
stipulated that the likelihood function—that is, the probability of observing a
model report of AT = z given a hypothesis ECS = y—was given by a normal
distribution centered on the truth. Unfortunately, even given this strong as-
sumption, a single model report just doesn’t provide us with any information
to narrow down the class of possible distributions. In other words, even when
we know that the distribution is normal, a single model doesn’t tell us how
wide or narrow we should expect the normal distribution to be.

An ensemble does. Given the assumption that the likelihood function is
given by a normal distribution centered on the truth, an ensemble will allow
us to pick out a preferred distribution over possible values for ECS. The crucial
difference between the two cases is the inter-model variation, which provides
information about the width of the likelihood function: the more variation
there is in the sample, the wider we should expect the normal distribution
that represents the likelihood function to be. So, just to be concrete, in this
case, the likelihood function for an arbitrary model report m; would be given
by a probability density function, meaning that we can calculate the likelihood
of any observed report as follows

oV 2T

US| _l(z—m)Q
Pr(m<mi<y\ECS:u):/ e 2V o/ dz

where m is the ensemble mean and o is given by:

n

o= nilz(mi—m)z

=1

with n being the number of models in the ensemble.

Of course, we know that extant ensembles aren’t actually like random sam-
ples from a normal distribution centered on the truth—indeed, they don’t
approximate such random samples terribly well (Knutti et al. 2010)—and so
the assumption just outlined is not in fact warranted. That’s why, as stressed
above, we cannot say that ensembles solve the problem of imprecise evidence.
But they do help: the variation between ensembles allows us to narrow the
range of plausible likelihood functions and thus to rule out as implausible some
possible posterior probability distributions over values of ECS. Returning to
the language of imprecise probabilities, we can think of single-model methods

11



as delivering a large set of permissible probability functions and ensemble-
based methods as delivering a (strictly) smaller set of such functions. Insofar
as we desire less imprecision (all other things being equal), we should prefer
the ensemble-based method.

What’s going on here is basically that inter-model variation provides what
epistemologists term higher-order evidence. Both a single model and an en-
semble provide us with an estimate for the true value of ECS—the model
report on the one hand and the mean of the distribution on the other. What
the ensemble provides, in addition, is variation between ensemble members,
which serves as higher-order evidence concerning how accurate we should ex-
pect this estimate to be; all other things being equal, the more variation, the
less we should trust the mean as an estimator. The information provided by
this variation is what’s gained by shifting from the single point-value report
to the distribution generated by the ensemble-based method. Of course, the
relevant distribution is itself imperfect—it may be misleading or inaccurate in
the same way that the first-order evidence may be—but the mere possibility
of these sorts of problems doesn’t mean that it’s not useful.

Here’s a slightly different way of making the point. Suppose there’s a set of
mutually exclusive propositions {P, @, R, ...} and that we don’t know exactly
what probability we should assign to each of them. One way to proceed here
is to adopt the one that seems most likely to be true and to treat it as true—
e.g., to work under the assumption that Pr(P) (say) is equal to 1. Later
on, we can qualify our results to address the fact that our work was carried
out under this risky assumption. Obviously, this isn’t an ideal strategy, but
it’s essentially the strategy that we employ when using a single model. We're
taking our “best guess” at how to represent the world, proceeding as though
it’s entirely accurate, and then keeping our concerns about reliability in mind
when updating on the report that it outputs.

In this analogy, using an ensemble-based method is akin to adopting a
more equitable distribution of probabilities over the set. So, for example, if our
models are equally divided between P, ), and R and we weight each model
equally, that’s equivalent to assigning each proposition a probability of 1/3.
Since we don’t know what probability distribution our total evidence warrants
in this case, the resulting probability distribution may be misleading—just as
in the single model case, we shouldn’t update on the results without taking our
concerns about reliability into account. Importantly, however, the ensemble
allows us to build some of our concerns about reliability into the method
itself: the ensemble-based approach accounts for the possibility of error due
to assuming P rather than Q or R. As a consequence, the ensemble and the
probability functions that it generates are likely to be better at capturing what

12



we should believe than the single-model and its point-prediction. Essentially,
the latter requires us to assign 100% of our confidence to one option, while the
former allows us to adopt confidence distributions that more closely track our
true confidence. The end result is information that requires less qualification
than that provided by a single model. Adopting a particular distribution over
the set is risky, but the risk is less substantial than in the single-model case.

The important takeaway is that ensemble-based methods mitigate the
problem of imprecise evidence outlined in the last section in virtue of the
fact that there’s variation between ensemble members that isn’t present in
a single model. Or, in plainer English, methods that make use of the differ-
ences between models provide us more guidance about how to distribute our
confidence than methods that don’t.

2.3 The concrete benefits of variation

The advantages of ensemble-based methods are not merely philosophical ad-
vantages. Of course, it’s widely recognized that ensemble means are generally
more accurate than the report generated by any single model. The point is
made explicitly by the empirical work on ensembles that is commonly cited in
the philosophical literature (see, e.g., Knutti et al. 2010) and is in some sense
unsurprising: basically any average of a set of estimates will have a higher
expected accuracy than the individual estimates (Roussos 2020, 119-20).
In saying that the advantages of ensembles are not merely philosophical,
however, I don’t have this kind of increase in accuracy in mind. After all, my
claim in this section is that the variation between ensemble members provides
valuable information—it’s open for an opponent to argue that ensemble means
are valuable but that the variation between ensemble members isn’t. I'm going
to wrap up this section by arguing that that position is wrong: variation be-
tween ensemble members provides climate scientists with concrete advantages
over and above the advantage of having a point-value estimate with higher
expected accuracy. Briefly, the reason why is that the estimates generated by
climate models aren’t just treated as ends in themselves but are frequently
used as parts of longer and more complex strings of reasoning. In these con-

12That said, I think the improvement in accuracy gained by averaging is underappreciated.
As Annan and Hargreaves (2011) argue, the degree to which ensemble means outperform in-
dividual models is not fixed by abstract mathematical considerations and demands explana-
tion (see also Rougier 2016). To me, this looks like a problem for the critic of ensemble-based
methods: the surprising accuracy of ensemble averages looks like empirical disconfirmation
of the view that ensembles are too “opportunistic” to be useful (see §4.2 for further discus-
sion).

13



texts, the variation between ensemble members is crucial: even adopting the
ensemble mean in these longer chains of reasoning introduces an additional
source of error that climate scientists avoid through the use of ensemble-based
methods—in short, it’s like rounding in the middle of a calculation.

Our running example can be used to illustrate this point. As noted above,
ECS is estimated in a wide variety of ways. So far, we’ve focused on direct
estimates generated by running a simulation on a climate model or set of
models that generates a value for the change in temperature. One of the other
ways that climate scientists estimate ECS, however, involves using temperature
data to estimate the effect that past increases in CO5 have had on temperature
and then extrapolating from those results.'?

Speaking roughly, this method of estimating ECS works in the following
way. Climate scientists collect substantial data on past changes to temperature
and then run complex regressions to determine how much of the past temper-
ature change can be attributed to CO, and how much to other factors such
as the interval variability of the climate system. To run these regressions, we
need a quantified understanding of how different factors affect the climate. So,
for example, we consistently observe that while the planet as a whole is warm-
ing, the upper atmosphere is actually cooling. To determine how much of the
observed warming is caused by CO, and how much by other factors, we need
to know how these different factors affect the distribution of heat throughout
the atmosphere. This information—what’s sometimes called the “signature”
or “fingerprint” of a particular factor—is usually provided by climate models.

Simplifying and abstracting substantially, the resulting regression equation
looks like this:

YZZﬁiXi+UY

where Y is the observed data; 8; and X; are the percentage of the increase
due to the i*" factor and the signature of that factor, respectively; and vy is
the internal variability of the climate. Standard least squares algorithms are
then used to estimate the [ terms. The results indicate how much of observed
warming a particular factor is responsible for; if the least squares analysis yields
a result that Sorg = .95, for example, that would indicate that greenhouse

13Stott et al. (2006) is the oldest paper that I'm aware of to estimate quantities like ECS
in this way; many, perhaps most, contemporary papers on the attribution of climate change
to humans now include sections in which ECS and other variables are estimated using the
methods described below.
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gases are responsible for 95% of observed warming.!* Climate scientists can
then use results that the regression spits out for CO5 to estimate ECS.°

The point of this example is that the methodology relies on the accu-
racy of the “signatures” for the different factors—the X terms—and these are
estimated using climate models. Standard regression techniques require the
assumption that the signatures are given (that is, perfectly accurate). Since
our climate models are not perfectly accurate and thus cannot be expected to
deliver perfectly accurate estimates for the X terms, this presents a concrete
problem for climate scientists: when using standard regression methods, errors
in the estimation of the X terms will lead to errors in the estimation of the /3
terms and thus errors in the estimation of ECS (Carroll et al. 2006).

To address this problem, climate scientists employ ensemble-based meth-
ods. There are a couple of different approaches that they have adopted. The
first, developed by Huntingford et al. (2006), replaces the X terms with a prob-
ability distribution over possible values for X estimated using an ensemble of
climate models. The more recent approach, first outlined by Schurer et al.
(2018), runs a standard regression for each estimate of X given by the differ-
ent models to generate probability distributions for the relevant § terms and
then uses a Bayesian updating procedure to generate an ensemble probability
distribution for the [ terms based on the set of distributions generated by
each model. In both cases, the end result is a probability distribution over the
B terms that can then be used to estimate ECS. Unsurprisingly, tests against
data with known properties indicate that both methods generate results that
both more accurate and more reliable than those generated by regressions that
employ either a single model or just the ensemble mean (Hannart, Ribes, and
Naveau 2014; Schurer et al. 2018).

The key takeaway is the following. To estimate ECS in the manner sketched
above, we need some representation of the signature of factors like COy and
thus some estimate for the X terms. We can either (a) adopt a point-value
estimate for each X term (generated either by a single model or, better, by
taking the mean of an ensemble of estimates) or (b) adopt the probability
distribution generated by an ensemble-based method. Both options are vul-
nerable to misrepresentation: the first might assign the wrong value to an X
term; the second might assign the wrong probability to a possible value for

14This description of attribution methodology is really only adequate as anything other
than a rough approximation for a brief period in the late 90s are early 2000s; the paradig-
matic paper here is probably Allen and Tett (1999). For discussion, see Dethier (2022).

15For various reasons, this isn’t quite as simple as taking the observed change in temper-
ature, multiplying it by Sco, and dividing by the observed increase in COg, but we can
forego the details of this last step for present purposes.
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an X term. In this sense, they’re analogous. Nevertheless, as stressed above,
there’s an important sense in which the latter is less of a misrepresentation
because even if it only loosely approximates the confidence that we should
assign to each possible value for X, it approximates that distribution better
than the first option. After all, the first option can be thought of as adopting a
probability distribution that assigns probability 1 to a particular estimate for
X. And in providing this more accurate representation of the actual state of
our uncertainty, ensemble-based methods allow us to generate more accurate
and reliable estimates of related quantities like ECS.

In short: when estimating some quantity of interest (ECS), climate scien-
tists often find themselves needing to rely on model-generated estimates of
some other quantity (the X terms). In these contexts, employing a probability
distribution over the other quantity can improve the estimate of the quantity of
interest. Since the variation found in ensembles provides higher-order evidence
about what distribution to adopt, methods that take account of this variation
in generating probability distributions allow us to more accurately and reliably
estimate the quantity of interest. The upshot is that the higher-order evidence
provided by ensembles is not just valuable in an abstract philosophical sense;
its presence concretely improves the science.

3 Ensemble-based methods: a positive view

So far, I've argued that climate science faces a problem owing to imprecise
evidence and that ensemble-based methods help mitigate that problem, This
section briefly states the positive position that I think the above arguments
motivate. The next addresses various objections.

The positive position is the following. Given that the variation between
ensembles members is (a) useful for the reasons described in the last section
and (b) potentially misleading due to the imperfect nature of extant ensem-
bles, climate scientists should treat the probability distributions generated by
ensemble-based methods that take account of inter-model variation as poten-
tially misleading evidence. Or, more precisely, if any aspects of the models
are treated as evidence, the probability distributions generated by ensemble-
based methods should be too. In particular, when estimating quantities like
ECS, climate scientists should make use of ensemble-based methods rather
than those that don’t take inter-model variation into account. This doesn’t
mean that they should take the probabilities generated by said methods to be
the “true probabilities.” Plausibly, for instance, it would be a mistake to plug
the precise probability distributions calculated using ensemble-based methods
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directly into a decision matrix. Instead, such results should be carefully hedged
and presented in a more coarse-grained manner like that actually employed by
the IPCC.

The motivation for this view is straightforward. The probabilities generated
by ensemble-based methods are alike to the point-value estimates generated by
individual models in the sense that both are more precise than is warranted.
We're assuming that scientists shouldn’t ignore the precise point-estimates
generated by individual models; by analogy, they shouldn’t ignore the precise
probabilities generated by ensemble-based methods. At the same time, given
that we know that these outputs are more precise than is warranted, it would
be irrational to accept either the precise point-values or the precise probability
distributions on the say-so of the model(s). Hence my claim that the outputs
of ensemble-based methods should be treated as evidence: like the precise
point-values, these precise probabilities provide information that must be in-
terpreted. In a slogan: the probability functions generated by ensemble-based
methods are evidence, not experts.

This suggestion is amenable to some of the positions found in the litera-
ture. Wendy Parker, for instance, has long defended the view that the precise
probabilities generated by ensemble-based methods should only be presented
to decision-makers or reported as results under specific and demanding crite-
ria (Parker 2010b; Parker and Risbey 2015).'6 Nothing that I have said above
conflicts with this position. Indeed, a view on which the probability functions
generated by ensemble-based methods are evidence neatly explains why said
functions should only be counted as results fit for public consumption under
special conditions—after all, most “raw” evidence is exactly the same. Further,
as Parker herself has emphasized (e.g. Parker 2020b), which representational
tools are appropriate depends on contextual factors, meaning that it shouldn’t
be surprising that there are some contexts in which it is appropriate to use
the precise probability distributions generated by ensemble-based methods to
represent our uncertainty in the range of outcomes and other contexts in which
it isn’t.

Not everyone shares Parker’s moderate view here, however, and number of
commentators have taken a harder line towards the use of (precise) probability
distributions in climate science and to ensemble-based methods more broadly.
Winsberg (2018, 98), for example, describes the application of statistics to
ensembles as “conceptually troubled.” Stainforth et al. (2007, 2155) deny that
the probability functions generated by the application of statistical tools to

16To be clear, neither Parker nor I am suggesting that these probabilities should be hidden
from the public, simply that they shouldn’t be (e.g.) touted as results in press releases.
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ensemble results are “meaningful.” Betz (2015) and Katzav (2014) argue for
“possibilist” interpretations of ensembles according to which climate scientists
should simply ignore the distribution of models within an ensemble. And, most
recently, Katzav et al., after explicitly considering a moderate position like the
one defended in this paper, argue that precise probability functions “should
not be used in the climate context” (Katzav et al. 2021).

The idealized character of extant ensembles is what provides the explicit
motivation for these views. From the present perspective, however, rejecting
a probabilistic interpretation due to possibility of misrepresentation is—at
minimum—overly hasty: whether or not climate scientists should interpret en-
sembles probabilistically depends on the balance between the benefits of doing
so and the potential risks or costs. As we’ve seen, there are important and con-
crete benefits to the probabilistic interpretation of ensembles; insofar as extant
discussions fail to account for these benefits, they haven’t made a complete
case for abandoning the use ensemble-based methods and the probabilities
that they generate.

Nevertheless, it may be true that in climate science generally speaking the
(potential) costs outweigh the benefits. In the next section, I'll argue that they
don’t—or at least that none of the objections raised in the literature provide
compelling reasons for adopting anything more extreme than a moderate and
cautious position that is compatible with what I've argued for here.

4 Objections to ensemble-based methods

4.1 Ensembles misrepresent, part 1

The oldest and most frequently repeated objection to the use of ensemble-
based methods is that ensembles don’t accurately represent the full spread of
possibilities, and (thus) that the probabilities that they generate don’t accu-
rately represent the uncertainty that we either do have or should in fact have.
In what follows, I'm going to distinguish between two ways of running this ob-
jection. First, it can be run in a non-specific way: the problem is that there is
some respect in which the ensembles / probabilities misrepresent. Second, we
can run the objection by pointing towards empirical work that shows specific
respects in which extant ensembles misrepresent. I treat the first of these here
and the second in what follows.

It is widely recognized that extant ensembles are imperfect. Carrier and
Lenhard nicely summarize the various problems:

First, the models are not independent of each other in the sense
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that they only share physical principles and other trustworthy as-
sumptions but are different otherwise. ... Second, errors are corre-
lated between different models and are not random for this reason.
... Third, the ensemble cannot be expected to represent the entire
space of possibility. (Carrier and Lenhard 2019, 3-4)

The upshot: ensembles are unlikely to accurately represent—or even serve as a
representative sample from—the set of possible climate systems that we should
take into account when reasoning about the future.!” As such, the probabili-
ties generated by ensemble-based methods are unlikely to accurately represent
either our “true” uncertainty or the uncertainty that we should have.'®

It is a substantial step from the fact of misrepresentation to a normative
conclusion regarding whether or not we should use the ensembles and methods
in question, however. Indeed, philosophers of science have roundly rejected this
inference in its general form: the received wisdom is that all scientific represen-
tations misrepresent their targets in some ways but that many (if not most)
are nevertheless useful and informative (see Teller 2004). As the above dis-
cussion illustrates, ensemble-based methods require climate scientists to make
idealized assumptions about the nature of the ensemble and its relationship to
the space of possible representations of the climate. But it’s no good to object
to the use of idealizations here when we happily accept them in other cases;
you can’t consistently argue against ensemble-based methods on the grounds
that extant ensembles are idealized unless you're also willing to argue against
the use of climate models—or indeed, all models—on the same grounds.'’

To be fair, were we aiming to treat the probabilities in question as experts
rather than evidence—were we simply taking the probabilities generated by
ensemble-based methods to be the objective chances (say)—the existence of
idealizations would be a genuine problem, and much of the literature takes

17As Dethier (2022) has argued, the technical aspect of these objections largely misses
the mark; the application of statistics doesn’t require assumptions of genuine independence,
full coverage, or even uncorrelated errors. Nevertheless (as he admits), the conclusion that
extant ensembles misrepresent is unaffected.

18 A different version of this argument has been advanced by Smith and various co-authors
(see, e.g., Frigg and Smith forthcoming), in which it’s argued on similar grounds that the
forecasts generated by models are unlikely to line up with the true frequencies and thus
that relying on them will lead to non-ideal decisions. I take it that the arguments rehearsed
below apply equally well to this version of the argument, however.

9There are a number of other potential objections that share this problem. So, one might
worry that the probabilities generated by ensemble-based methods might take on a life of
their own, even when carefully hedged. But the same is true of any number that climate
scientists might generate; there’s no reason to think this problem is more damning for
ensemble-based methods than it is for quantitative science generally.
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this kind of treatment of ensembles as its target. As I argued above, however,
this isn’t how we should understand the role of ensembles or ensemble-based
methods. Instead, the outputs generated by ensemble-based methods should
be treated as (potentially misleading) evidence, and I would argue that this is
the way that climate scientists (or at least the IPCC) usually treat the proba-
bilities that are generated by ensemble-based methods. So, for instance, while
ensembles are often used to generate precise probabilities, it’s relatively rare
to see these precise probabilities reported directly to the public or to policy-
makers. Instead, climate scientists coarse-grain and qualify these results—and
they’re often explicit that the reason that they do so is to account for ideal-
izations present in the ensemble-based method (see, e.g., IPCC 2013, 883). In
other words: climate scientists take the results of ensemble-based methods to
indicate what confidence we should have in various hypotheses, but not to do
so definitively or with perfect accuracy. And the mere presence of idealizations
doesn’t serve to undermine this approach.

4.2 Ensembles misrepresent, part 2

The idealized character of extant ensembles isn’t just an abstract philosophy
problem, however. Indeed, there’s been quite a bit of empirical work aimed at
evaluating how accurately ensembles represent those targets that we can test
them against.?’ Early ensembles were too narrow—they under-sampled from
the extremes—while recent ones have included a large number of models that
are unrealistically extreme.

This kind of misrepresentation is certainly not innocent. As noted above,
the extreme scenarios matter in reasoning about climate policy. The misrep-
resentation of such extremes thus provides a clear argument against the use
ensemble-based methods: since extant ensembles fail to properly account for
extreme scenarios and failing to properly account for extreme scenarios will
lead us to make the wrong kinds of decisions about climate policy, we shouldn’t
use extant ensembles.

I think this is the most important objection to the use of extant ensem-
bles. Whether the argument succeeds largely depends on an empirical ques-
tion, namely: in practice, how predictable are the deficiencies in extant en-
sembles, and how well can climate scientists account for them via adjusting
the assumptions embedded in ensemble-based methods. After all, as Horowitz
(2019) stresses, evidence that is predictably misleading is not really misleading

208ee, e.g., Annan and Hargreaves (2011), Knutti et al. (2008, 2010), Tebaldi and Knutti
(2007), and Tokarska et al. (2020).
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at all—you simply have to correct for known errors. To my knowledge, how-
ever, no one has yet even attempted a systematic demonstration that climate
scientists can’t account for the known deficiencies in ensembles, and the suc-
cess of ensemble-based methods relative to those methods that don’t employ
ensembles (see §2.3 and note 12) provides at least face-value evidence that the
practical problems here are not insuperable.

So at the very least this argument against an ensemble-based method de-
pends on empirical questions that haven’t yet been answered. I think that
there’s an even stronger response to this objection, however, namely that in-
sofar as we're worried that extant ensembles fail to accurately represent some
important possibilities, ensemble-based methods and the probabilities that
they generate are usually going to be our best methods for investigating this
possibility and gaining a better understanding of what these extreme scenarios
look like. This is true both in a relatively trivial sense—our evidence that ex-
tant ensembles misrepresent the extremes depends on empirical comparisons
between the distribution of model results and known data in which the varia-
tion between model reports plays a crucial role—and also in a deeper one.

To illustrate the deeper point, consider the spread between model results,
a quantity that has often been suggested (and used) as an alternative to the
precise probabilities generated by ensemble-based methods (see, e.g., Carrier
and Lenhard 2019; Jebeile and Barberousse forthcoming). Because the prob-
lem here concerns the models, however, and not our means of interpreting
them, model spread is at least as likely to misrepresent as the probabilities
generated by ensemble-based methods: if the ensemble doesn’t include models
that accurately represent extreme possibilities, then model spread won’t cover
those possibilities; if it includes models that are unrealistically extreme, then
model spread will cover unrealistic extremities.

In fact the situation is even worse: the inter-model variation found in a
given ensemble provides climate scientists with a means of “filling in” infor-
mation from missing models or issuing corrections where the models are un-
realistic. (This is true, for what it’s worth, regardless of whether we assume
that the sample is normally distributed around the truth or shares some other
relationship with it.) So, for instance, if the ensemble under-samples from the
extremes, empirical information and the actual distribution of models can be
used to estimate what the tails of the distribution look like—that is, how “far”
into extreme territory we should treat as realistic. Model spread provides with
no similar principled means of making this demarcation—there’s no principled
way of extrapolating extant model spread to determine what spread a more
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realistic ensemble of models would cover.?!

In cases where the ensemble includes unrealistic models, similarly, prob-
ability distributions are essential both for evaluating whether (and to what
degree) these unrealistic models bias the ensemble as a whole and for de-
termining whether a given method of correction is effective. Tokarska et al.
(2020, 1), for example, motivate their claim that extant ensembles misrepre-
sent the extremes in part by pointing to the fact that the distribution of models
within the ensemble is skewed in a way that model spread alone can’t capture.
And they evaluate the effects of their proposed correction in part by compar-
ing the probability distributions generated by the corrected ensemble to past
estimates (Tokarska et al. 2020, 8). Probability distributions are valuable in
these comparisons because they contain information—information about inter-
model variation, in particular—that qualitative measures like model spread do
not.??

To reiterate from above, none of this is to say that ensemble-based methods
are perfect or that the probabilities that they generate should be taken as the
final word on a subject. Even empirically corrected ensemble-generated proba-
bility distributions may misrepresent the probability of extreme scenarios—the
inter-model variation may be misleading. The point of the present section is
that in cases where we’re worried that the ensemble itself misrepresents a cer-
tain group of possibilities in particular (extreme warming scenarios, in this
case), we're likely to be better off using of the variation between ensembles
to generate probability distributions, because these distributions allow us to
extrapolate from areas of relative confidence in a way that more qualitative ap-
proaches do not. In other words, ensemble-based methods provide more tools
for investigating extreme scenarios than we would otherwise have. Rejecting
ensemble-based methods because extant ensembles misrepresent certain sce-
narios is thus not just under-motivated, it’s counter-productive.

4.3 Probabilities are too precise

The final objection that I want to discuss here is that the probabilities gen-
erated by ensemble-based methods are “too precise.” Given the discussion

2I'Well, there are principled ways of doing so, but they work by piggybacking on the
probabilities.

2ZKatzav et al. (2021) allege that precise probability functions “lose” information about
uncertainty. That’s true insofar as the contrast class is an (idealized) more complex proba-
bilistic representation (Bradley and Drechsler 2014). It’s at least not clear that it’s true for
any alternative to precise probability distributions on the table, however, and the opposite
is true for any non-probabilistic alternative.
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of the prior sections, it’s easy to motivate this objection. As we’ve already
seen, ensemble-based methods don’t solve the problem of imprecise evidence.
Ensembles allow us to make more precise judgments—in the setting of im-
precise probabilities, they justify adopting a strictly smaller set of probabil-
ity functions—but they don’t warrant adopting the single precise probability
function generated by the application of statistical tools. Hence the positive
position outlined above: climate scientists should make use of the probabil-
ities generated by these methods but not adopt them as though they were
confirmed results.

Some philosophers; including most explicitly Katzav et al. (2021), seem
to be inclined to a more extreme stance: their view is that climate science
shouldn’t make use of precise probability distributions at all, and they motivate
their position on the grounds that such distributions misrepresent in virtue of
being more precise than is warranted. So, as they put it: “When is a [probability
density function| appropriate? A simple answer is: when it represents what our
subjective probability ought to be given available evidence, including evidence
concerning our uncertainty” (Katzav et al. 2021). They then go on to argue
that the probability functions found in climate science don’t meet this criterion
and therefore are not appropriate.

The standard employed here is unrealistically strict, however. A probability
function can be the best means of representing our uncertainty in a given
context even if it is not a perfect one. The rejoinder I'm pushing here is in
effect simply a more specific version of the response to idealizations that I
made above: given the uncontroversial fact that all of our representational tools
are imperfect, the question that we should be asking is not whether precise
probability functions misrepresent in some way but whether they misrepresent
in ways that undermine their utility for a given task or function. Or, in other
words, the question is whether (in a given context) the best way to represent
our uncertainty is with the a precise probability function—where “best” is to
be judged not according to some standard of ideal accuracy but rather in terms
of what representation best facilitates reliable inferences in the given context.

The arguments of philosophers are not well-suited for answering this kind
of question; in keeping with the moderate view sketched in the last section,
we should expect that whether precise probabilities are the best tool for rep-
resenting uncertainty will depend on the details of the situation including
empirical facts that we’re not in the best position to judge. Unless Katzav
et al. want to commit to the idea that any misrepresentation in this domain
is damning—and I suspect they agree with me here that this position is non-
starter—their arguments simply don’t establish the extreme claim that climate
scientists shouldn’t ever use the precise probabilities generated by ensemble-
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based methods.

It’s unfair to attribute the extreme position just rebutted to Katzav et al.,
however. A more accurate reading would see them not as arguing for the re-
jection of the probabilities generated by ensemble-based methods but instead
as advocating that climate scientists develop and use methods that don’t yield
precise probabilities. This suggestion is entirely amenable to thesis of this pa-
per so long as the imagined methods take account of inter-model variation.
Perhaps, for instance, it would generally be better to adopt ensemble-based
methods that output imprecise probabilities rather than precise ones. It seems
to me to be an open question whether such methods would in fact be preferable
in practice, however, where this question—to reiterate—is one about the costs
and benefits of adopting this different representational tool (compare Bradley
2019, §3.5). Perhaps imprecise probabilities buy us an increase in accuracy,
but only a marginal one and only at substantial costs in terms of processing
power, complexity, or the amount of data required. In such circumstances, it
may not be worthwhile to use imprecise methods as opposed to precise ones.
To be clear, however, this is an almost entirely unexplored area: it’s one thing
to say it would be good in principle for climate scientists to employ impre-
cise probabilities; it’s another thing entirely to show that there are imprecise
methods that can replace the precise ones discussed in section 2 or that these
imprecise methods are preferable to the precise ones in the context of real
problems.

Climate scientists need to represent aspects of the climate that are not per-
fectly understood. There are many desiderata for such representations. One is
that they should accurately capture our uncertainty with respect to the fea-
ture in question. But others include that they should be as constrained by the
empirical evidence as possible; that they should be mathematically tractable;
that they should be reliable, accurate, and trustworthy in realistic (as opposed
to heavily idealized) conditions; and that they should be informative and easily
understood. I think that it’s likely that the precise probabilities generated by
ensemble-based methods will, in many contexts, be the best representational
tool according to this suite of desiderata. Strictly speaking, however, my po-
sition is a weaker one, namely that taking account of the variation between
models should be treated as one desideratum. Ignoring this variation amounts
to ignoring a powerful source of evidence that offers concrete and empirically-
demonstrated benefits to climate science. Since probabilistic (whether precise
or imprecise) interpretations are the only ones that achieve this goal, we should
prefer them to non-probabilistic approaches, all other things being equal.
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5 Conclusion

This paper offers a conditional defense of the use of ensemble-based methods
in climate science and the probabilities that they generate. There are three key
takeaways. First, that climate modeling faces a problem due to what episte-
mologists call “imprecise evidence”: we don’t know (precisely) how to interpret
the evidence produced by climate models. Second, that ensemble-based meth-
ods are able to mitigate this problem by making use of inter-model variation.
Importantly, the value added by these methods is not merely philosophical; as
we saw, there are least some cases where employing ensemble-based methods
improves the accuracy and reliability of the results. Third, and finally, that the
extant objections to ensemble-based methods (or the use of the precise proba-
bilities that they generate) only really tell against views that would treat these
methods as delivering direct access to the truth. Once we recognize that the
probabilities in question should be (and often are) treated as evidence that
must be interpreted rather than as expert functions that should be deferred
to, it becomes clear that the question of whether they should be preferred
to other representational tools is a largely practical question about costs and
benefits.
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