
Dra� only. Do not quote without permission. mark.sprevak@ed.ac.uk

Predictive coding II:he computational

level

Mark Sprevak

University of Edinburgh

22 May 2022

What computational problem does the brain face in cognition? his question deûnes
Marr’s computational level of explanation. I argue that predictive coding departs from
other paradigms by suggesting that the brain faces just one computational problem
across all aspects of cognition: to minimise its long-term precision-weighted sensory
prediction error. In the ûrst half of this paper, I explore what is normally meant by this
claim. here is agreement about its broad shape and informal character, but providing
a precise characterisation is still an open issue. In the second half of the paper, I turn to
the justiûcation of the claim. I explore three strategies used to defend it: the case-based
defence, the free-energy defence, and the instrumental-value defence. I argue that each
faces challenges.

1 Introduction

When we encounter a new computing device, we o�en try to describe its computa-

tional characteristics in terms of the task it faces: this shop’s cash register has the

task of adding numbers, this computer programme has the task of sorting names
into alphabetical order, this Excel spreadsheet has the task of calculating losses. As

well as asking a how-question about the device – How does it work? – we might

ask a what-question: What is the problem the device is trying to solve? A theory at

Marr’s computational level aims to provide an answer to this question. It aims to
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identify the computational task that a device faces.¹

What is the computational problem faced by the brain? Conventional approaches

in computational cognitive science tend to start from the assumption that the brain

faces many computational problems. Diòerent aspects of cognition – e.g. percep-

tion, motor control, decision making, language learning – require the brain to

respond to diòerent information-processing challenges. Each challenge has its own

computational nature and is likely to deserve its own Marrian computational-level

description. On such a picture, it makes sense for computational cognitive science

to adopt a divide et impera strategy to modelling cognition: it should break up

human cognition into multiple constituent computational problems, each of which

should be described in turn.

Predictive coding suggests that this divide et impera strategy, and the ‘many problems’

assumption on which it is based, is wrong. During cognition, the brain faces a single
computational problem. At Marr’s computational level, one uniûed story should be

told. Apparent diòerences between diòerent challenges encountered in perception,

motor control, decision making, language learning, and so on mask an underlying

unity that all these problems share. hey are all instances of a single overarching

problem: to minimise sensory prediction error.

Sections 2–4 attempt to unpack what is meant by this. Sections 5–8 turn to the

claim’s justiûcation. I outline three main strategies an advocate of predictive coding

might draw on to defend it: the case-based defence (Section 7), the free-energy
defence (Section 8), and the instrumental-value defence (Section 9).

2 Minimising sensory prediction error

What does it mean to say that the brain is trying to minimise its sensory predic-

tion error? As we will see, there are a variety of ways of formalising this task in

mathematical language. However, an advocate of predictive coding o�en starts

with an informal description of the task. Subsequent mathematical descriptions

aim to codify this informal description more precisely and open it up to proposals

that it is tackled by various numerical algorithms. In predictive coding, there is

currently some degree of uncertainty about exactly the right way to formalise the

task of minimising sensory prediction error in mathematical terms. However, there

is broad agreement about the informal nature of the problem. We will begin with

this informal description.

¹Marr’s use of the term ‘computational’ here is not meant to imply that his other levels of
description are not computational. His usage of the term derives from mathematical logic, where a
‘computational’ theory denotes relationships between tasks that are blind to diòerences in algorithms
or physical implementation (as in the identiûcation of relations of computational equivalence).
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he task ofminimising sensory prediction error may be informally characterised as

follows. Brains have sensory organs and their sensory organs supply them with a

continuous stream of input from the outside world. Brains also have complicated

endogenous physical structures and activities that determines how they react to that

stream of input. According to predictive coding, the computational task that a brain

faces in cognition is to ensure that these endogenously generated responses (the

brain’s ‘inference’ over its ‘generative model’) cancel out or suppress the incoming

�ux of physical signals conveyed by the sensory organs from the outside world (that

it ‘predicts’ the incoming ‘sensory evidence’). he degree to which this happens, or

fails to happen, is measured by the sensory prediction error. his quantity measures

the discrepancy between the contribution of the brain’s endogenously generated

activities and the incoming physical signals from the world. According to predictive

coding, the problem that the brain faces, in all aspects of cognition, is to minimise

this discrepancy. If the brainwere to succeed at doing this then, at the sensory bound-

ary, two opposing forces – the world’s sensory input (excitatory/stimulating) and

the brain’s endogenously generated predictions (inhibitory/suppressing) – would ex-

actly cancel out. he brain’s anticipatory signal would ‘quench’ incoming excitation

from the world. In more colourful and metaphorical language:

. . . this is the state that the cortex is trying to achieve: perfect prediction

of the world, like the oriental Nirvana, as Tai-Sing Lee suggested to me,

when nothing surprises you and new stimuli cause the merest ripple in

your consciousness. (Mumford, 1992, p. 247, n. 5)

Predictive coding is a theory is about the subpersonal computational machinery of

cognition, not our conscious personal-level experience, but the basic idea is correct.

he computational task the brain faces is to avoid being perturbed or surprised by

incoming sensory inputs (in the Shannon sense of ‘surprise’, i.e. unpredicted). he

brain’s goal is to arrange itself and its physical responses to anticipate and cancel

upcoming sensory input. his goal – ‘Nirvana’ in the above quotation – is unlikely

to ever be achieved, or achieved in any sustained way, because the sensory inputs

supplied by the world are too rich and complex for our brains to always predict

them with perfect accuracy. Nevertheless, trying to predict them is the task the

brain faces in cognition.

Predictive coders suggest that the various computational problems that the brain

faces in perception, learning, motor control, decision making, and so on, are all

instances of minimising sensory prediction error. Our various cognitive capacities

(sensing, planning, and so on), which have traditionally been viewed as dissociable

responses to distinct problems (faced in perception, motor control, and so on),

should perhaps be reconceived as parts of a seamless, uniûed response by the brain to

a single problem. his all suggests that wemight need to rethink howwedescribe and
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individuate our cognitive capacities, and potentially blur the boundaries between

them. It is in this sense that, at Marr’s computational level, predictive coding aims

to oòer a grand, uniûed theory of cognition.

It worth stressing that is not novel or unusual to suggest that minimising sensory

prediction error is one of the computational challenges faced by the brain. Con-

temporary models o�en suggest that early vision involves compression of sensory

signals (Sprevak, forthcoming[a], Section 2) and certain inference and learning

tasks are o�en described as minimising sensory prediction error (ibid., Section

4). What marks out predictive coding as special in this context is that it says that

minimising sensory prediction error is the brain’s only computational task. It is not

one among many objectives pursued by the brain, but the only or the fundamental

objective. he elevated status of this one task is the primary feature that diòerentiates

predictive coding from other approaches.

3 Formal and informal descriptions

heories at Marr’s computational level are o�en precise and characterised in math-

ematical language. hey are usually formal and quantitative. Typically, a theory at

Marr’s computational level will ascribe computation of a mathematical function to

the brain as well as oòering an explanation of why computing that function would

help the brain solve a problem that is informally characterised. For example, in his

account of vision, Marr ascribed computation of the mathematical function∇2G ∗ I
to the brain. Marr related this problem to the informally characterised task of edge
detection: ûnding the location of boundaries between objects in the visual ûeld.²

Marr argued that edge detection is an important problem that the brain faces in

early vision and that solving it is a preliminary step to solving other problems such

as object recognition, depth perception, or binocular fusion. Marr proposed that

the informal task of edge detection could be more precisely described as the task of

computing of this mathematical function.

In Marr’s formal description, I is a two-dimensional matrix of numerical values.

hese values quantify the magnitude of light falling on a two-dimensional array

of photoreceptors on the retina. G is a Gaussian ûlter which is convolved (∗) with

the two-dimensional image (I) and the Laplacian, second-derivative operator (∇2)

is applied to the result. Marr argued that if the brain were to compute the zero-

crossings of this function for various sizes of Gaussian ûlter, it would identify areas

in the retinal image that correspond to sharp changes in light intensity. hese, Marr

²Marr (1982), pp. 68–74. he full story about the informal task is complex, and ‘edges’ should be
understood to include not only the boundaries of objects, but also regions of the visual ûeld where
there are changes in re�ectance, illumination, depth, or surface orientation.
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argued, tend to coincide with the edges of objects in the visual ûeld. Hence, the task

of computing the zero-crossings of this mathematical function provides a precise,

mathematically codiûed formalisation of the (informally characterised) problem of

edge detection.³

One way in which this relationship is described is that between a ‘what’ element

and a ‘why’ element of a computational-level theory.4 he ‘what’ element in a

computation-level theory describes the mathematical function that the device needs

to compute. In the above case, this would be ∇2G ∗ I. he ‘why’ element links the

task of computing that mathematical function to some informally characterised

information-processing problem. It draws a connection between the values that

feature in the function and physical quantities and the concrete adaptive problems

faced by the embodied device. In the case above, it involves explaining why com-

puting ∇2G ∗ I would help an embodied system solve the problem of detecting

edges in the visual ûeld. Marr’s ‘what’ element provides a formal, mathematical

characterisation of the task; the ‘why’ element explains the appropriateness and

adequacy of that mathematical description to the task as informally conceived.5

here are many possible ways one might attempt to formalise the task of minimising

sensory prediction error. Predictive coding has not yet settled on a single canonical

formalisation. A simple example of a formalisation is given in Sprevak (forthcom-

ing[b]), Section 2.1.6 However, even in more complex mathematical treatments,

it is common to assume a highly simpliûed or stripped-down version of the task.

For example, it is common to consider systems with only one or two sensory input

channels, to only attempt to minimise their current prediction errors, or to only

consider predictions from a linear generative model. Such simpliûcations not only

help to keep the formalisation manageable, they may also serve to highlight speciûc

features of interest in the intended model.

Nevertheless, some broad generalisations can be made about predictive coding’s

formal task description. All mathematical formalisations tend to treat the task

as a numerical optimisation problem. hat problem is regarded as having two

free variables – the generative model and the prediction values. hose variables are

changed, on diòerent timescales, in order to ûnd the global minimumof an objective

³Marr thought that this computation was accomplished by the action of retinal ganglion cells:
‘Take the retina. I have argued that from a computational point of view, it signals∇2

G ∗ I (the X
channels) and its time derivative ∂/∂t(∇2

G ∗ I) (the Y channels). From a computational point of
view, this is a precise speciûcation of what the retina does.’ (Marr, 1982, p. 337).

4See Marr (1982), p. 22.
5See Shagrir and Bechtel (2017); Shagrir (2010) for a helpful explanation of the ‘what’ and ‘why’

at Marr’s computational level.
6A range of other formalisations can be found in Bogacz (2017); Friston (2003); 1330–1339;

Friston (2005), pp. 819–821; Friston (2009), p. 296; Spratling (2017), pp. 92–93.
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function – the sensory prediction error. In the simplest case, the generative model is

formalised as a two-dimensional matrix of values. Prediction values are formalised

as a vector that, when combined with a generative model by multiplication, produce

another vector, the sensory prediction. he sensory input is another vector with the

same dimensionality, each of whose components encode the actual incoming activity

of each physical sensory channel. he sensory prediction error measures how close

the sensory prediction is to the sensory input. It is o�en treated as the (weighted)

sum or mean of the squares of the diòerence between the sensory input vector

and the sensory prediction vector. he task the brain faces is to select prediction

values and generative model such that its prediction errors over sensory inputs are

minimised. Describing the problem in this way allows many existing numerical

optimisation algorithms – including the vast range of algorithms that employ some

form of gradient descent – to be brought to bear as proposals about how the brain

attempts to solve its problem.

4 Precision weighting of prediction errors

An important element that has not yet been mentioned is that not all sensory

prediction errors are weighted equally in the task of minimising sensory prediction

error. Predictive coding has a third type of variable, precision weighting, which

describes the relative weight of each sensory prediction error. he brain’s task is thus

to minimise its precision-weighted sensory prediction error. Errors that have a high

degree of precision weighting should be prioritised during this; errors that have a

low precision weighting are given a lower priority or ignored. Precision weighting

describes a scaling factor or ‘gain’ that is applied to each component of the sensory

prediction error.

Precision weighting is a critically important part of predictive coding’s task de-

scription. It can make certain sensory prediction errors dominate the optimisation

process and others small enough to be irrelevant. It can exercise this control in very

ûne-grained, nuanced ways. Precision weighting can potentially modify the gain

on prediction errors associated with each individual sensory channel independ-

ently. Precision weighting is usually treated as a distribution that determines which

sensory prediction errors are boosted and which are dampened down at any given

moment. he shape of that distribution may be complex and it may change radically

and rapidly over time (e.g. within milliseconds). Formally, and in the simplest case,

precision weighting is represented as a two-dimensional matrix that is multiplied

by the raw sensory prediction error vector to scale its elements.7

Precision weighting plays a number of conceptually distinct functional roles within

7See Sprevak (forthcoming[b]), Section 2.4.
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predictive coding. First, under a probabilistic interpretation of predictive coding’s

algorithm, it is assumed to be connected to the brain’s estimation of uncertainty
associated with its sensory predictions. Predictions about which the brain is more

certain have a smaller variance, which is equivalent to themhaving a higher precision

weighting associated with their corresponding prediction errors (Friston, 2003).8

Second, precision weighting is claimed to be connected to the direction of ût of

sensory predictions. Sensory prediction errors with a high degree of precision

weighting are the ones that will dominate the optimisation process and on which the

brain is more likely to act; they will function as quasi motor commands (see Section

7). In contrast, prediction errors with a low degree of precision weighting are less

likely to feed into action and might be used to simulate or imagine actions of the

agent or of other agents without danger of producing an associated motor response

(Clark, 2016; Friston, Mattout and Kilner, 2011, Ch. 5; Pickering and Clark, 2014).9

hird, precision weighting is claimed to be connected to the allocation of attention.
When the cognitive system attends to certain features, the components of the sensory

signals associated with those features are the ones for which the corresponding

prediction errors have been assigned a higher precision weight. When the cognitive

system shi�s the focus of its attention, this entails a rebalancing of the distribution

of precision weightings away from those features (Feldman and Friston, 2010).¹0

Finally, and most controversially, precision weighting is sometimes used as a kind of

‘fudge factor’ to accommodate observations that do not straightforwardly ût into the

prediction-error-minimisation framework. If the brain fails to minimise a sensory

prediction error, then an advocate of predictive coding might interpret that failure,

not as evidence against predictive coding, but as evidence that the brain has assigned

a low precision weighting to that particular sensory error. If a scientist is allowed to

assume any distribution of precision weightings at any moment in time, almost any

observation can be accommodated under predictive coding’s task description.¹¹

Obviously, constraints are needed on how precision weightings are assigned to a

brain. Finding a suõcient number of empirically motivated constraints on this

remains an open problem for predictive coding.¹²

he distribution of precision weighting intuitively captures ‘what matters’ to the

brain when it is attempting to minimise its sensory prediction error. No version

8See Sprevak (forthcoming[b]), Section 5.
9See Sprevak (forthcoming[b]), Section 6.1.
¹0See Sprevak (forthcoming[c]), Section 5.
¹¹See Clark (2013a) for examples of how precision weighting can explain a range of otherwise

puzzling cases for the view (e.g. habit-based action and behaviour during model-free learning).
See Miller and Clark (2018), p. 2568 for their response to the objection that precision weighting
functions as a ‘magic modulator’ that allows predictive coding to accommodate every possible
behaviour.

¹²For further discussion of this problem, see Sprevak (forthcoming[c]), Section 8.
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of predictive coding can aòord to omit precision weighting: it would simply be

implausible to think that every sensory prediction error matters equally to the brain.

However, introducing precision weighting into predictive coding’s task description

raises a number of puzzles. It plays many roles within predictive coding’s model

and it is not obvious how all those various roles cohere. It is also not clear which

independent, empirically motivated constraints lie on the assignment of precision

weightings considering its tremendous power to reshape the computational problem

facing the brain.

5 Long-term prediction error and the dark-room objection

A second important element of the task description not yet mentioned is that the

objective should be understood as that of minimising long-term sensory prediction

error. hat goal might be glossed in various ways, with expressions such as ‘global’

prediction error (Lupyan, 2015), ‘upcoming’ prediction error (Muckli, 2010, p. 137),

‘long-term average’ of prediction error (Hohwy, 2013, p. 90, 175, 176), or ‘long-term

average surprise’ (Schwartenbeck et al., 2013).

he mathematical nature of this long-term objective is, however, not entirely clear.

It is to minimise some form of average of individual (precision-weighted) sensory

prediction errors over time. However, what type of average, and how far in time

that period should extend, is not clear. It is unknown whether, and to what degree,

future prediction errors should be discounted. It is unknown whether the objective

should be to reduce prediction errors relative to the system’s own expectations (its

subjective probability) of making future sensory prediction errors, or relative to the

objective chances (objective probability) of it making such errors. It is unknown

whether the relevant time period to minimise errors is of the order of hours, days,

years, the entire future lifespan of the organism, or further to include the lifespans

of all its possible descendants and evolutionary successors. It is unknown how

this average (which weights prediction errors over time) should interact with preci-

sion weighting (which weights the current error signals) – i.e. whether precision

weighting should be understood as having a prospective component to allow the

brain to preferentially discount certain expected future errors over others. hese

open questions suggest that alternative formulations of predictive coding could be

developed at the computational level.

Nevertheless, acceptance that the brain aims to minimise a long-term measure

plays an important role in clarifying and lending plausibility to predictive coding’s

task description. For one thing, it allows one to understand how predictive coding

could respond to the infamous ‘dark room’ objection. For another, it suggests that

predictive coding is compatible with inferences and behaviour that tend to drive
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up short-term sensory prediction error, such as curiosity, exploration, and novelty

seeking.

he dark-room problem is a long-standing objection to predictive coding.¹³ he

dark-room problem is to explain why, if predictive coding’s description at the

computational level is correct, a cognitive agent would not simply seek out the

most predictable possible environment, such as a dark room, and remain inside

for as long as possible. If the goal of cognition is to minimise sensory prediction

errors, why not maximise the chances of achieving this by staying in a maximally

predictable environment?

Friston, hornton and Clark (2012) oòered an initial reply to the dark-room prob-

lem.¹4 heir response focuses on the idea that our generative model and prediction

values are not inûnitely malleable: there are limits to the kinds of predictions we

can generate and to how much our generative model and prediction values can be

revised. hese constraints, primarily due to our physical hardware, are assumed to

be immune to change by learning or inference, and are called ‘hyperpriors’. Human

hyperpriors bias us towards making certain kinds of predictions, and not ones that

are not particularly suited to life in a dark room. Although the sensory data inside

a dark room might be ‘easy to predict’ in some disembodied sense, they might be

diõcult for a creature like us to predict. If we were a diòerent type of creature, one

that had evolved with diòerent hard-wired biases (maybe a cave-dwelling creature),

we might have no trouble in reliably generating accurate sensory predictions in-

side a dark room. However, we are biased to predict sensory data that come from

bright, changeable environments, and so we are unlikely to minimise our sensory

prediction errors inside a dark room.

his response highlights an important but as yet unmentioned point about predictive

coding’s task description: the problem brain faces is a constrained optimisation

problem. he brain’s objective is to minimise sensory prediction error by varying

a generative model and prediction values given the constraints imposed by our

physical hardware about how far and how rapidly that generative model and those

prediction values can vary. he literature on predictive coding’s computational-level

proposal tends to be silent about the speciûc nature of these physical constraints.

However, a crucial part of making the view plausible is to acknowledge that a range

of constraints on the optimisation problem are implicitly there.¹5

¹³See Clark (2013b), p. 193 for a statement of the problem.
¹4See also Hohwy (2013), pp. 87, 185; Clark (2016), pp. 265–268;
¹5We will see some constraints �ow from what predictive coding says at the algorithmic level and

implementation level (Sprevak, forthcoming[b], Section 2.5; Sprevak, forthcoming[c], Section 7).
However, as will become clear, what predictive coding says at those levels is by no means a complete
account of the relevant constraints faced by the brain in inference or learning.
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Friston, hornton and Clark (2012)’s reply brings to the fore an important feature of

predictive coding’s computational-level description, but it does not fully address the

concerns that motivated the dark-room problem. For example, it does not explain

why, even relative to a constrained model, cognitive agents like ourselves still seek out

novelty and surprise. Even when we can predict a situation, we sometimes choose a

more surprising alternative. In other words, cognitive agents like ourselves some-

times prefer novelty to predictability. How is that consistent with what predictive

coding says at the computational level?¹6

An alternative reply that fares better at addressing this kind of objection is to em-

phasise the long-term nature of the brain’s objective. he world in which we live

contains both environments that are easy to predict and environments and that are

hard to predict (for us). Successfully predicting our sensory inputs only where we

can already do so may not, over the long term, be a good solution to the brain’s

problem. An agent who sequesters itself inside an easy-to-predict environment

leaves itself a hostage to fortune. Unpredictable elements may intrude on the agent

in ways that it has not taken the trouble to learn how to handle – light might enter

the room, a stranger might enter, food supplies might run out. To guard against

future surprises and an associated rise in sensory prediction error, it may be better –

purely in the terms of the long-term goal of minimising sensory prediction error –

to leave an environment that is easy to predict and engage in some exploration to

learn a more comprehensive model of the world. Exploring environments that are

harder to predict might raise current sensory prediction errors, but it is a hedge

against future, possibly bigger surprises that an agent who led an entirely sheltered

life would not be able to avoid. here is obviously a balance to strike here between

the cost of exploring (in terms of a rise in current sensory prediction error), and its

potential future pay-oò (in terms of a reduction in long-term sensory prediction

error). But that there is a trade-oò between the value of exploration and exploitation

is to be expected on any model of cognition. he important point is that what

predictive coding says at the computational level allows for the possibility that a

cognitive agent may sometimes prefer unpredictable environments to predictable

ones. Curiosity, exploration, and novelty seeking are consistent with the brain min-

imising a long-term measure of sensory prediction error, even if they entail a rise

in that error along the way (Schwartenbeck et al., 2013).

6 Evidence for predictive coding

Justiûcation for predictive coding’s computational-level claim o�en rests on one of

three strategies. I call these the case-based defence, the free-energy defence, and the

¹6See also Clark (2016), pp. 265–266
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instrumental-value defence. he case-based defence considers a range of cognitive

tasks and aims to show that all of these tasks can and should be described as minim-

ising sensory prediction error. he free-energy defence shortcuts consideration of

individual tasks and attempts to establish predictive coding’s computational-level

general claim by appeal to Karl Friston’s free-energy principle. he instrumental-

value defence focuses on the utility of predictive coding’s task description to compu-

tational cognitive science and argues that it provides a desirable set of heuristics to

make sense of, and discern patterns within, the mass of human behavioural and

neural responses.

7 he case-based defence

he case-based defence is an abductive argument. It attempts to show that a num-

ber of tasks facing the brain – for example, during perception, decision-making,

planning, motor control – can and should be thought of as instances of the single

task of minimising sensory prediction error. Some of those tasks may already have

computational-level descriptions associated with them based on rival or more tradi-

tional computational research programmes. he job of predictive coding is to show

that these can and should be stated as instances of minimising sensory prediction

error. Behavioural and neural responses that might previously have been categorised

as attempts by the brain to compute some domain-speciûc mathematical function

should be redescribed in the manner predictive coding suggests.

Any case-based argument for predictive coding faces an obvious epistemic hurdle.

Predictive coding makes a universal claim – every problem the brain encounters

in cognition is to minimise sensory prediction error. Showing that this holds in a

limited number of cases (e.g. in aspects of early vision) does not entail that it holds

in other, perhaps as yet unconsidered cases (e.g. language learning). No amount of

success in applying predictive coding’s task description to limited domains of cogni-

tion demonstrates that in every case the problem the brain faces is minimisation

of sensory prediction error. Nevertheless, science is rife with universal general-

isations made on the back of observations about a limited number of cases. he

non-demonstrative nature of such arguments is not in principle an objection to

using them. However, there are clearly more and less eòective ways of making such

an abductive argument work.

One plausible strategy is to focus on a diverse range of cases – what one might

hope is a representative sample of cases. Early work on predictive coding focused

on sensory compression in the early visual system (Atick, 1992; Rao and Ballard,

1999; Srinivasan, Laughlin and Dubs, 1982). Ideally, predictive coding should seek

support for its wider claim by showing that other kinds of behavioural and neural
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response fall under predictive coding’s task description. If it can be shown that many

behavioural and neural phenomena that have no obvious connection to each other,

or to early vision, can and should fall under predictive coding’s task description,

then that would lend credence to the idea that not just in some cases, but in every

case, the problem the brain faces is sensory prediction error minimisation. Example

of such ‘non-obvious’ applications of predictive coding include music perception

(Koelsch, Vuust and Friston, 2019); formation of emotions and judgements about

bodily ownership (Seth, 2013); binocular rivalry (Hohwy, Roepstorò and Friston,

2008); formation of judgements about the nature of the self (Hohwy and Michael,

2017); and the perceptual, doxastic, and motor characteristics of schizophrenia and

autism (Corlett and Fletcher, 2014; Fletcher and Frith, 2009; Friston, Stephan et al.,

2014; Pellicano and Burr, 2012).

It is worth noting that, with respect to each individual case, a case-based argument

requires one to meet two separate challenges. he ûrst challenge is to show that

the case in question can be described as an instance of sensory-prediction-error

minimisation. he second is to show that it should be described this way. he

ûrst challenge requires one to show that predictive coding’s computational-level

description is consistent with the behavioural or neural data associated with that case.

he second is to show that cognitive psychology should prefer predictive coding’s

computational-level description of that data to rival or more traditional accounts.

here should be some net beneût to adopting predictive coding’s computational-

level treatment of that instance of cognition – e.g. in terms of increased predictive

accuracy, increased explanatory power, or some other epistemic virtue.

Predictive coding’s �agship example of a ‘non-obvious’ application of its

computational-level description is motor control.¹7 Traditional computational

approaches to cognition tend to treat perception and motor control as entirely

separate problems. In perception, the task facing the brain is to use its sensory data

and background knowledge to build an accurate (or an instrumentally adequate)

model of the world. In motor control, the task facing the brain is to use that

model, along with some set of goals or intentions, to output a sequence of motor

commands that would direct muscle actuators towards accomplishing those goals

or intentions. Of course, motor control might partly rely on solving the perceptual

problem. Motor control problems o�en require an agent to ûrst build an accurate

perceptual model of the world. Rapid and complex motor control might also

require online regulation by sensory predictions from a forward model (Franklin

and Wolpert, 2011). However, even if the problems of motor control and perception

have some degree of overlap, they remain distinct problems: the task of perception

¹7See Friston (2010), pp. 133–134; Friston, Daunizeau et al. (2010); Clark (2016), Section 4.5;
Hohwy (2013), Ch. 4.
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is to create an accurate model of the world; the task of motor control is to use that

model to generate motor commands to fulûl goals.

According to predictive coding, perception and motor control are instances of the

same problem, namely, that of minimising sensory prediction error. In perception,

the brain minimises sensory prediction error by varying its generative model and

prediction values to anticipate upcoming sensory input. In motor control, the brain

minimises its sensory prediction error by varying its bodily position and the external

world (via muscle actuators) to change its incoming sensory stream to make its

internally generated sensory predictions more likely to be true. In both cases, the

objective is the same – to minimise sensory prediction error. he diòerence lies in

the method the cognitive system uses to try to achieve it. Advocates of predictive

coding call the ûrst method ‘passive’ inference and the second ‘active’ inference.

Passive and active inference (perception and motor control) are claimed to be

complementary strategies employed by the brain to address what is fundamentally

the same problem. According to predictive coding, the task of reaching for a glass

of water should be reconceptualised as the brain making the prediction that the

hand is already holding the glass of water (along with all its sensory consequences),

and then solving its problem – minimising its sensory prediction error – by varying

its limbs and the glass to make this false sensory prediction true.¹8

Even if perceptual tasks and motor tasks can both be described as instances of

sensory prediction error minimisation, it remains a further question whether they

should be described this way. he justiûcation for this second step is o�en not

obvious. he beneûts of predictive coding’s proposed task description are not

straightforward to calculate and they need to be estimated relative to a wide range

of epistemic standards, interests, and goals in computational cognitive science.

Diòerent researchers may, with good reason, take diòerent views about the value of

the beneûts on oòer.¹9 Aswewill see shortly, those beneûts are also o�en presented as

conditional on accepting other elements of predictive coding’s research programme

(e.g. the universal scope of its claim, or elements of its proposals at the algorithmic

or implementation levels).

To illustrate how these questions about the beneûts of predictive coding’s approach

might be addressed, we will switch to a simpler case: the early visual system. Two

main strategies have been used to defend predictive coding’s computational-level

¹8As well proposing a uniûed account of the problem facing the brain in perception and motor
control, predictive coding also suggests that the algorithms that govern perceptual and motor
processing have a great deal in common (see Sprevak, forthcoming[b], Section 6.1).

¹9For the beneûts of predictive coding’s task description of motor control see Friston (2011),
Friston, Daunizeau et al. (2010); Wiese (2017), Pickering and Clark (2014). For beneûts of alternative
approaches, see Kording (2007); Shadmehr and Krakauer (2008).
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description in this context: (i) appeal to what it can explain and predict relative

to more traditional computational approaches; (ii) appeal to broader theoretical

virtues oòered by the view (e.g. its simplicity, elegance, and unifying power).

he ûrst set of considerations surround predictive coding’s ability to predict and

explain behavioural or neural responses that are generally regarded as puzzling

or anomalous on other views. Traditional computational-level characterisations

of the early sensory system suggest that its computational task is to function as a

Gabor ûlter bank on retinal images and thereby extract ecologically salient stimulus

features such as orientation, spatial frequency, colour, direction of motion, and

disparity (Carandini, Demb et al., 2005). In formal terms, the computational task

of the early visual system is to convolve a matrix of retinal data with a variety of

Gabor ûlters to, e.g., pick out lines in the visual ûeld of various orientation and

spatial frequency. However, many responses of neurons observed in the early visual

system do not ût that description (Olshausen and Field, 2005). hese so-called

‘non-classical’ eòects count as anomalies relative to the visual system’s claimed

objective. One such ‘non-classical’ eòect is end-stopping: some V1 neurons give

a strong response to a line at a particular orientation in the visual ûeld, but that

response is reduced or eliminated if the line extends outside the neuron’s receptive

ûeld. End-stopping is inconsistent with a simple Gabor-ûlter description of their

computational role: a classical Gabor ûlter should continue to ûre regardless of

whether a line extends outside its receptive ûeld. End-stopping is categorised as

anomalous under traditional computational-level descriptions of the early visual

system.

Predictive coding suggests that the computational task faced by the early visual

system is not to perform Gabor ûltering, but to contribute to minimising the brain’s

sensory prediction error. Under predictive coding’s task description, the behaviour

of the relevant neurons within V1 may be reinterpreted as signalling the diòerence

between the current sensory input and the brain’s sensory prediction (based on

its statistically-informed expectations regarding likely visual input). In our envir-

onment, the statistical norm is for lines in our visual ûeld to extend beyond the

tiny regions covered by the receptive ûelds of individual neurons. Lines that viol-

ate this expectation are unusual and, everything being equal, should be expected

to generate prediction errors. he behaviour of V1 cells when end-stopping may

be reinterpreted as signalling such sensory prediction errors (Kok and de Lange,

2015; Rao and Ballard, 1999, p. 232). End-stopping, not accommodated by tradi-

tional computational-level descriptions, can potentially be accommodated under
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predictive coding’s computational-level description.²0

A second set of motivations for preferring predictive coding’s computational-level

description surround its general theoretical virtues such as its simplicity, scope,

and unifying power with respect to other approaches. Arguably, even if predictive

coding were to do no better than any other model at accommodating various beha-

vioural/neural eòects, these general theoretical virtues might still lead one to favour

the view. As observed in Section 1, traditional computational-level approaches to

cognition tend to adopt a divide et impera approach and assume that the brain is

facing multiple computational problems. On such a view, the brain is treated as an

inherently multifunctional device, not a device tuned to solve just one problem.²¹ A

description of human cognition at Marr’s computational level would be expected to

consist in a patchwork of disjoint theories describing each computational problem

the brain faces. Stepping back from that patchwork, there need be no overarching

pattern or unity. Each domain of cognition – perception, motor control, decision

making, language learning – is likely to merit its own computation-level account.

Predictive coding, in contrast, provides a complete, uniûed, and relatively simple

description of the computational task the brain faces in all aspects of cognition. hat,

by itself, would appear to be a mark in its favour. All else being equal it is rational

to prefer a simple, unifying theory (where available) over less uniûed alternatives:

It is the ûrst time that we have had a theory of this strength, breadth and

depth in cognitive neuroscience . . . I take that property as a sure sign

that this is a very important theory . . . Most other models, including

mine, are just models of one small aspect of the brain, very limited in

their scope. his one falls much closer to a grand theory. (Stanislas

Dehaene quoted in Huang, 2008)

A uniûed computational-level theory also promises to reveal something profound

about the metaphysical nature of cognition. It tells us that cognition is not a motley,

a jumble of distinct phenomena; it can be characterised in terms of a single compu-

tational problem. Predictive coding identiûes what the various, seemingly distinct

and unrelated domains of human cognition – perception, motor control, decision

making, language learning – have in common. Moreover, it appears to explain

why they each count as instances of cognition. It potentially provides us with a

criterion to judge whether new and perhaps controversial instances of cognition are

²0For other examples of non-classical eòects in the early visual system that appear to be ac-
commodated by predictive coding, see Jehee and Ballard (2009); Kok, Jehee and de Lange (2012);
Hosoya, Baccus and Meister (2005); Rao and Sejnowski (2002); Muckli (2010); Kok and de Lange
(2015); Spratling (2010); Alink et al. (2010); Murray et al. (2002). For alternative computational-level
accounts of these non-classical eòects (e.g. in terms of divisive normalisation), see Aitchison and
Lengyel (2017), p. 224; Carandini and Heeger (2012); Schwarz and Simoncelli (2001).

²¹For example, see Allen (2017); Carruthers (2006); Bayne et al. (2019).
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genuinely cognitive.²² It suggests that cognition is a uniûed and relatively simple

functional kind. If a theory uncovers principles like this – that unify and simplify

what otherwise appears to be a complicated and disordered domain – then, all else

equal, that is reason to favour it. Knowledge about the essence of things and the

patterns into which they enter is surely what science aspires to.

8 he free-energy defence

Pursuit of the case-based defence of predictive coding is likely to be long and

fraught. It requires engaging with the details of many speciûc cognitive tasks and

showing that their distinctive eòects – of which there may be many – are captured

or recaptured on predictive coding’s task description. A case-based defence has

no obvious stopping point. A defender of predictive coding faces a potentially

endless sequence of battles: there will always be more tasks, more behavioural

and neural eòects to consider. It is not obvious when enough cases – or a diverse

enough selection of cases – will have been considered to justify the conclusion

that not just some tasks, but every task faced by the brain, is sensory prediction

error minimisation. he free-energy defence aims to shortcut all this. It attempts

to establish predictive coding’s computational-level claim in one fell swoop by

appealing to general properties shared by all cognitive (or living) systems. Friston

(2010) presents a defence of predictive coding along these lines based on his ‘free

energy’ formulation of predictive coding. Friston proposes that the task faced by

the brain is that ofminimising free energy. Minimising free energy can be shown,

under appropriate further assumptions, to be equivalent to the task of minimising

sensory prediction error.

Free energy is a mathematical quantity that appears inside classical thermodynam-

ics, statistical mechanics, and information theory. Friston’s claim is that there is a

relationship between two distinct applications of the mathematical abstraction of

free energy: variational free energy and, what I will call, homoeostatic free energy.²³
Variational free energy is an information-theoretic quantity predicated of agents

who engage in probabilistic inference. If a probabilistic reasoner minimises their

variational free energy, this can be shown to be equivalent to them approximat-

ing Bayesian inference (see Sprevak, forthcoming[d], Section 1). Under further

assumptions, minimising sensory prediction error can also be shown to be equi-

valent to minimising variational free energy (see Sprevak, forthcoming[d], Section

2). ‘Homoeostatic’ free energy applies the same formal construct to a diòerent

set of properties. Unlike variational free energy, it is not (or at least, not directly)

²²For predictive coding as a potential ‘mark of cognitive’, see Clark (2017); Kirchhoò and Kiver-
stein (2021); Ramstead et al. (2021).

²³Friston does not use these terms. He refers to both as ‘variational’ free energy.
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associated with the subjective probabilities that feature in probabilistic or Bayesian

inference. Rather, it is associated with the objective probability of the macroscopic

physical state the agent is in given its physical environmental conditions. Minim-

ising homoeostatic free energy is associated with the agent’s survival within a narrow

band of macroscopic physical state types (‘being alive’). According to Friston, these

two types of free energy – homoeostatic free energy and variational free energy –

are connected. Agents who minimise their homoeostatic free energy – who survive

and maintain homeostasis – also minimise their variational free energy (and hence,

given certain assumptions, minimise their sensory prediction error).

Friston is clear that neither variational nor homoeostatic free energy is the same

as thermodynamic free energy. hermodynamic free energy measures the useful

mechanical work that can be extracted from a physical system. It is usually deûned

in terms of that system’s ability to exert macroscopic mechanical forces on its sur-

roundings – its energy that is ‘free’ to perform mechanical work. his is normally

formalised as a diòerence between the physical system’s internal energy and its ther-

modynamic entropy (its internal energy that is ‘useless’ for work). Having a reserve

of thermodynamic free energy is generally a good thing for a cognitive or living

creature: a surplus of thermodynamic free energy is a prerequisite for it to be able to

move or act in the world. Minimising thermodynamic free energy would make little

sense as a rule for cognition or survival. Friston is explicit that his principle – that all

cognitive/living systems aim to minimise their homoeostatic/variational free energy

– is notmeant to be somehow a consequence of, or a principle about, thermodynamic

free energy. He justiûes his free-energy principle not on thermodynamic grounds,

but on what he calls ‘selectionist’ grounds: all cognitive/living creatures strive to

minimise their homoeostatic free energy because if they did not, they would tend

to die oò and hence be less likely to reproduce or to be observed by us.²4 Friston

suggests that the only connection between thermodynamic free energy and his

notion of free energy is their shared mathematical form.²5

In outline, the logic of the free-energy defence of predictive coding is as follows. Its

starting point is the observation that all cognitive (and living) creatures face the

problem of surviving and maintaining homeostasis. hat task, according to Friston,

can be formalised as the problem of minimising a particular free-energy measure

(what I have called homoeostatic free energy). Friston claims that minimising ho-

moeostatic free energy entails that the creature also minimises a second free-energy

measure associated with the creature’s subjective probabilistic guesses (variational

free energy). Minimising variational free energy, given certain further assumptions

(detailed in Sprevak, forthcoming[d], Section 2), entails that the creature minimises

²4Friston and Stephan (2007), pp. 419–420, 451; Friston, Kilner and Harrison (2006), p. 85
²5See Friston and Stephan (2007), p. 419.
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its sensory prediction error. Hence, cognitive and living creatures, because they

face the problem of survival and maintaining homeostasis, face the problem of

minimising sensory prediction error.

here is much to unpack here.

First, the argument relies on a tight connection between homoeostatic and vari-

ational free energy. However, the nature of, and justiûcation for, that connection is

not obvious. Homoeostatic free energy pertains to how well the creature maintains

its physical state within the narrow band associated with survival and homeostasis in

the face of actual and possible perturbations from a changing physical environment.

Living creatures change their microscopic physical state all the time. When they

do so, they risk undergoing a fatal phase transition in their macroscopic physical

state. When living systems resist this tendency – when they survive and maintain

homeostasis – they minimise their homoeostatic free energy. Minimising homoeo-

static free energy involves the creature trying to arrange its macroscopic state so as

to avoid being overly changed by likely environmental physical transitions (Friston,

2013; Friston, Kilner and Harrison, 2006; Friston and Stephan, 2007). In contrast,

variational free energy is predicated of an agent’s subjective probability distribu-

tions. It measures how far the agent’s probabilistic guesses depart from the optimal

guesses of a perfect Bayesian observer armed with the same evidence.²6 According

to Friston’s formulation, the brain’s task is to minimise variational free energy and

so approximate an ideal Bayesian reasoner in inference. Minimising variational free

energy makes the sensory data stream less surprising (in the Shannon sense), and

therefore tends to drive down the agent’s sensory prediction error (granted certain

additional assumptions, see Sprevak, forthcoming[d], Section 2).

Homoeostatic free energy and variational free energy have certain features in com-

mon. hey are both information-theoretic quantities and they are both measured

over probability distributions. However, they are not the same. Homoeostatic free

energy is measured over the objective probability distributions of macroscopic phys-

ical states that could occur; variational free energy is measured over the subjective
probability distributions entertained by an agent about what could occur. Homoeo-

static free energy is deûned over the chances of various possible (fatal) physical

states of the agent occurring in response to environmental changes; variational free

energy is deûned over the subjective probabilistic guesses the agent might make.

he respective probability distributions might involve diòerent sets of events, the

distributions might have diòerent shapes, and they each involve diòerent types of

probability (subjective and objective). here might, for various reasons, be a correl-

ation between the two types of free energy, but it is not obvious that minimising

²6See Sprevak (forthcoming[d]), Section 1 for the connection between variational free energy
and Bayesian inference.
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one entails minimising the other.²7

To see this more clearly, consider the tight relationship already mentioned between

minimising variational free energy and Bayesian inference. An agent whominimises

its variational free energy ipso facto approximates an ideal Bayesian reasoner. In

many circumstances, a Bayesian agent would be well placed to survive and main-

tain homeostasis. But the precise nature of the connection between being Bayesian
and maximising one’s chances of physical survival and homeostasis is far from ob-

vious. A non-Bayesian agent might live in a ‘irrationality friendly’ environment

that maintains its homeostasis and physical integrity, even if it does not update

its subjective probability distributions that represent its environment according to

Bayesian norms. Conversely, an ideal Bayesian reasoner might live in a ‘rationality

hostile’ physical environment that changes so rapidly and dramatically that it fails

to survive or maintain homoeostasis, even if it updates its subjective probability dis-

tributions quickly and accurately according to Bayesian norms. Bayesian reasoning

is plausibly related to survival, but it is not obvious in what sense it would guarantee

it. Currently, the exact nature of the relationship between Friston’s two measures of

free energy – homoeostatic and variational – is unclear and the subject of ongoing

analysis.²8

At least two other aspects of the free-energy defence invite further scrutiny.

First, the predictive coding research programme aims to defend a universal claim:

every task that the brain faces can and should be described as minimisation of

sensory prediction error. Survival/homoeostasis is clearly one task faced by the

brain, and an important one. If the internal logic of the free-energy defence is

correct, then because the brain faces that task it also faces the task of minimising

sensory prediction error. But it is not obvious how this reasoning is meant to

generalise. Plausibly, our brains face other challenges that may be unrelated, or even

in tension with, our long-term survival or homoeostasis – e.g. problems of mate

selection, fulûlment of social roles, or arbitrary challenges set in the classroom or

wider social environments. It is not clear how the free-energy defence is intended to

handle these cases. he free-energy defence appeals to a formal connection between

survival/homoeostasis and minimising sensory prediction error, but it is largely

silent about how problems that do not (or do not obviously) improve the chances of

our long-term survival/homoeostasis are meant to be related to minimising sensory

predictive error. Even if the internal logic of the free-energy defence is correct,

it is unclear how it supports the claim that every aspect of cognition is sensory

prediction error minimisation.

²7For further discussion of this point, see Sprevak (2020), pp. 602–604.
²8For discussion of this point, see Bruineberg, Kiverstein and Rietveld (2018); Colombo and

Wright (2021); Sprevak (2020).
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Second, recall that the case-based defence required one to show not only that every

problem faced by the brain in cognition can be described as sensory prediction

error minimisation, but also that it should be described that way. he free-energy

defence appears to only speak to the ûrst issue. It attempts to establish a formal

relationship between the task of survival/homoeostasis and the task of minimising

sensory prediction error. However, even if such a connection were to exist, it

would say nothing about the merits of one task description over the other. In order

to address that issue, one would need to go beyond a purely formal equivalence

between the task descriptions and consider the value of predictive coding’s proposed
description with respect to the wider standards, interests, and goals in cognitive

neuroscience. Why shouldwe describe the task facing the brain as sensory prediction

error minimisation, even if, as the free-energy defence suggests, we could? hat

part of the argument remains to be made and it is likely to depend, at least in part,

on an examination of the beneûts oòered by predictive coding’s computational-level

description to speciûc cases of interest to cognitive neuroscience. his suggests that

the free-energy defence may not be able to entirely shortcut the exigencies of the

case-by-case defence.

9 he instrumental-value defence

he instrumental-value defence has a diòerent character from the previous two. his

third strategy for defending predictive coding helps to explain an otherwise puzzling

phenomenon: the widespread adoption of predictive coding’s computational-level

claim in cognitive neuroscience despite what we have seen as the view’s current

relatively slender epistemic support. According to the instrumental-value defence,

predictive coding should be interpreted, not as a passive claim that awaits conûrma-

tion, but as a discovery heuristic – an assumption that researchers may adopt in order

to help organise data, guide experimental design and interpretation, and formulate

further, more speciûc hypotheses for testing. Predictive coding’s computational-level

claim provides a novel way to systematise behavioural and neural data. It constrains

the way one might group behavioural and brain responses into psychologically

relevant, computationally-deûned capacities, and the kinds of experimental and

control conditions one might design. Furthermore, if one understands predictive

coding as a package that includes proposals at Marr’s algorithmic and implement-

ation levels, it provides a rich set of heuristics to guide and inspire claims about

the formal methods and neural mechanisms that underlie those computational

capacities. he focus in the previous two sections was on whether predictive coding

gets the computational-level description of the brain right or wrong (or whether it

does better than alternatives). But one might equally well ask the question of how

one should come up with a computational-level description at all. Scientiûc work
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here can potentially beneût from what predictive coding says, even if uncertainty

remains about the view’s ultimate epistemic standing.

It is worth stressing that individuating the mass of human behavioural and neural

responses into discrete, well-deûned computational capacities is hard. Cognitive

neuroscientists do not have an agreed methodology to do this. Formulating a

computational-level description of the brain usually requires adopting some broad

theoretical orientation about the overall purpose of the brain’s activity. It is not

obvious where an empirically minded researcher should look to for inspiration or

guidance here. Traditionally, folk psychology has provided one possible source of

inspiration. Someone might, for example, start by assuming that the brain is trying

to use roughly ‘belief ’-like states and ‘desire’-like states to produce outcomes that

satisfy what it represents as desired. Bringing this general framework to bear on

empirical data might motivate a researcher to formulate more speciûc hypotheses

about particular kinds of belief-like and desire-like states inside the brain, the

relationships between them, the processes that transform them, and how sensory

and behavioural responses update those beliefs and fulûl those desires.²9

Machery (forthcoming) describes an alternative source of inspiration thatmight lead

a researcher in a diòerent direction to a set ofmore speciûc, testable hypotheses about

the computational tasks the brain faces and its underlying computational capacities,

states, and mechanisms. He argues that one feature of evolutionary psychology is

that, irrespective of its other epistemic properties, it provides a potentially valuable

set of discovery heuristics. Some of these speak directly to the problem of coming up

with hypotheses at Marr’s computational level. For example, the ‘forward-looking’

heuristic suggests that our computational capacities may be identiûed by looking at

the problems that were encountered by our ancestors that regularly bore on their

ûtness.³0 Hypotheses about the computational capacities that our brains have today

can be inferred from the problems faced by our evolutionary ancestors (Cosmides

and Tooby, 1989). Hypotheses about our computational capacities arrived at in this

fashion of course need to be empirically conûrmed. But even in advance of securing

epistemic support, it may make sense to accept a framework like evolutionary

psychology (or folk psychology) pro tem as a discovery heuristic, in order to make

the problem of task description tractable at all.

Predictive coding could potentially play a similar role for cognitive neuroscience.

It suggests that neural and behavioural responses should be organised around the

central notion that those responses are all attempts by the brain to minimise long-

term, precision-weighted sensory prediction error. Even if the evidential basis for

that claim is slight, it may still function as a useful discovery heuristic to guide

²9See Machery (forthcoming), Section 1.1.
³0ibid.
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design of experiments, measurement, and as a means of generating more speciûc,

testable proposals about physical responses.

For example, Fletcher and Frith (2009), inspired by predictive coding’s

computational-level claim, hypothesise that a range of positive symptoms of

schizophrenia – including hallucinations, delusions, abnormal saliences in

perception, disturbances in low-level motor functioning – should be categorised as

instances of a single, unitary dysfunction in the computational ability to minimise

precision-weighted sensory prediction error. hey go on to propose that this

dysfunction is unwritten by both a single computational mechanism and a single

physical basis, again prompted by predictive coding’s claims at those levels.³¹

Such work suggests novel experimental designs that might attempt to dissociate

the relevant factors in schizophrenia, probe how they might be quantitatively

aòected by manipulating sensory prediction errors, and explore analogues of

schizophrenia in healthy subjects with designs that induce similar eòects on their

sensory prediction errors.³² Corlett and Fletcher (2014) describe how predictive

coding could function as a discovery heuristic for clinicians to ûnd new therapeutic

interventions for patients (including pharmacological treatments). he idea that the

brain aims to minimise its sensory prediction error might function as the starting

point for any number of theoretical, experimental, and therapeutic developments.

In contrast to both the case-based defence and the free-energy defence, the focus

here is not primarily on truth, but on predictive coding’s utility. he relevant kind

of utility should be understood as broader than merely a concern with achieving a

narrow instrumental outcome. Cognitive neuroscience needs to make assumptions

regarding the overall purpose of brain activity in order to make any sense of that

activity at all. hose assumptions need to come from somewhere. It is reasonable to

assume that any candidate source of these assumptions should be understood to be

uncertain and exploratory. Predictive coding provides one among many possible

sources (and one distinct from folk psychology or evolutionary psychology). Its

sheer novelty and boldness is undoubtedly an attraction. It allows us to see familiar

behavioural and neural responses in a new light and group them together in diòerent

ways from previous research programmes.

It should be clear that using predictive coding in this way – as a heuristic to guide dis-

covery rather than as a claim that passively awaits conûrmation – does not somehow

magically confer justiûcation on the view. Merely believing something to be true

does not make it so. Justiûcation for predictive coding only accrues if it can predict

and explain better than alternative theoretical approaches.³³ he instrumental-value

³¹ibid., pp. 53–55; Corlett, Frith and Fletcher (2009).
³²For example, see Fletcher and Frith (2009), p. 55–56.
³³See Machery (forthcoming), Section 3.2 for a similar point regarding evolutionary psychology.
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defence does not reduce the need to gather conventional empirical evidence to con-

ûrm predictive coding. However, it does explain why someone might be rational to

accept what predictive coding says now, even in advance of such evidence being

obtained.

10 Conclusion

In its boldest form, predictive coding proposes that the only computational problem

that the brain faces is to minimise its long-term, prediction-weighted sensory pre-

diction error. It is natural to wonder what would happen if one were to qualify this

claim.³4 Perhaps predictive coding describes some, but not all, problems the brain

faces. One might imagine a variety of ways in which the scope of predictive coding’s

ambition at the computational level might be reigned in. At the more modest end

would be the relatively anodyne claim that in early vision one thing the brain tries

to do is minimise its sensory prediction errors. At the more speculative end would

be the revolutionary claim that this is the only problem that the brain tries to solve.

Advocates of predictive coding might wish to allow for the possibility that their view

will fall between these two extremes. It is worth noting however, that to the extent to

which the scope of the view is restricted, its unifying power is also compromised. If

predictive coding is to fulûl its original promise of oòering a grand unifying theory,

the research programme should aim to deliver as broad and comprehensive a theory

of brain function as possible.
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