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Abstract

This chapter serves as an introduction to the philosophical issues
raised by quantum theory. It begins with a brief overview of the for-
malism of quantum theory. The so-called “measurement problem” is
introduced, and the main approaches to it surveyed. We then discuss
the implications of quantum theory for metaphysics. One question
concerns the implications of quantum nonlocality for our understand-
ing of spacetime and of causality. Another has to do with the ontology
of quantum states. Should these be regarded as physically real, and,
if so, what sort of reality should be ascribed to them?

1 Introduction

The philosophical questions surrounding quantum theory revolve around
the question: What, if anything, does the empirical success of quan-
tum theory tell us about the physical world? Since the key papers
formulating what we now call quantum mechanics were published in
the years 1925–27, we are only a few years away from the centennial of
the theory’s inception. As we approach the centennial, there is more
intense discussion than ever about its import.
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Why is this? At the heart of the discussions is the following sit-
uation. We have in our textbooks, and teach to our students, what
amounts to an operational recipe sufficiently precise for most appli-
cations. We learn to associate quantum states with various physical
situations, and use them to calculate probabilities of outcomes of ex-
periments. This is enormously important, as it is the basis both for
the experimental testing of the theory and for its application. The
success of the theory in these contexts is the reason we are taking it
seriously at all. But the operational recipe does not, without further
ado, yield anything like a clear description of what the physical sys-
tems to which it is applied are like, or what they are doing in between
experiments.

The various approaches to the question of description of physi-
cal systems and processes (among which are those that hold that we
should refrain from describing physical systems) are sometimes re-
ferred to as interpretations of quantum mechanics. This terminology
is potentially misleading, for two reasons. The first is that it might
suggest that the task of interpreting quantum theory is akin to sup-
plying a model for an uninterpreted formal system. This is nothing at
all like the task at hand. We don’t have an uninterpreted formal sys-
tem, or a mathematical theory devoid of physical significance. What
we have is a formalism with an agreed-upon operational significance
(or, at least, sufficiently close to agreed-upon for most applications).
The question is what, if anything, is to be added to this operational
core.

The second reason that the phrase “interpretations of quantum
mechanics” is potentially misleading is that some of the avenues of
approach involve formulation of a physical theory distinct from stan-
dard quantum theory, in some cases differing in empirical content.
These are not merely different interpretations of a common theory,
but alternate physical theories.

2 What is a quantum theory?

In this section quantum theories are briefly described, with an empha-
sis on the agreed-upon operational core, which every interpretational
project must take into account. Quantum theories can be expressed
in a number of different mathematical forms that are equivalent as
far as the operational core is concerned. To avoid the pitfall of tying
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interpretational matters too closely to any particular formulation, we
focus on what all the formulations have in common. This means es-
chewing, in the first instance, talk of Hilbert spaces or wave functions.
Readers who find the presentation disconcertingly unfamiliar may be
reassured that these can be introduced when desired.

A quantum-mechanical theory is a quantum theory of a system
(such as a finite number of particles) having finitely many degrees of
freedom. A quantum theory of a system with infinitely many degrees
of freedom is a quantum field theory. We use the term quantum the-
ory to embrace both quantum-mechanical theories and quantum field
theories.

2.1 Constructing quantum theories

To construct a quantum theory, one identifies a system or systems of
interest, and the dynamical variables that are to be modelled. The
system could, for example, be the familiar textbook example of a
hydrogen atom, with the variables to be modelled being the positions
and momenta of a proton and an electron, and perhaps also their
spins.

It is a peculiarity of quantum theories that, in order to formulate
one, we begin with a classical theory and subject it to a procedure
known as quantization. This typically begins with a Lagrangian or
Hamiltonian formulation of a classical theory. In these formulations,
the configuration of a system is represented by variables {q1, . . . , qn}.
These could, for example, be positions of a number of point particles,
or they could specify the positions and angular orientations of a num-
ber of rigid bodies. One associates with each of these configuration
variables qi its conjugate momentum pi. The complete physical state
of a system is given by a specification of the values of these canonical
variables, {(qi, pi) | i = 1, . . . , n}. The set of all possible states is called
the phase space of the system. Any dynamical variable of the system
is a function of the canonical variables {(qi, pi)}.

A quantum theory is constructed by taking the canonical variables
of a system and associating with them elements of an algebra AQ with
a non-commutative multiplication.1 We will refer to the elements of
this algebra as operators. For any two operators A, B, we define the

1It is an algebra over the complex numbers. This means that any operator can be
multiplied by any complex number, that operators can be added and multiplied, and that
multiplication distributes over addition.
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commutator,
[A,B] = AB −BA. (1)

When AB is equal to BA, A and B are said to commute.
The distinctive quantum relations are the canonical commutation

relations. These specify commutators for the operators {(Qi, Pi)} that
correspond to canonical variables {(qi, pi)}. The rules are,

• Operators corresponding to different degrees of freedom com-
mute. This means that, for distinct i, j, Qi and Pi commute
with Qj and Pj .

• [Qi, Pi] = iℏ1, where 1 is the identity operator and ℏ = h/2π,
where h is Planck’s constant. The special operator 1 is the mul-
tiplicative identity; the result of multiplying any operator A by
1 is just A itself.

For any operator A, there is an operator A†, called the adjoint of
A. These satisfy,

• (A†)† = A.

• For any operators A, B, and any complex numbers a, b,

i). (aA+ bB)† = a∗A† + b∗B†.

ii). (AB)† = B†A†.

An operator that is its own adjoint is said to be self-adjoint. We can
associate with any operator a set of real or complex numbers called
its spectrum. If the operator is self-adjoint, its spectrum consists of
real numbers only.

We associate with any experiment a self-adjoint operator whose
spectrum is the set of possible values of the outcome variable. For an
experiment that, classically, would be regarded as a measurement of a
given quantity that is a function of the canonical variables {(qi, pi)} ,
the associated operator is the corresponding function of the operators
{(Qi, Pi)} (this does not yield a unique prescription, but this is not a
matter we will go into in this chapter).

We associate quantum states with preparation procedures that the
system can be subjected to. A quantum state is an assignment ρ of
numbers to operators, required to satisfy the conditions,

• Positivity. For any A, ρ(A†A) is a non-negative real number.

• Normalization. ρ(1) = 1.
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• Linearity. For any complex numbers a, b,

ρ(aA+ bB) = a ρ(A) + b ρ(B).

For self-adjoint A, the value of ρ(A) is to be interpreted as the expec-
tation value, in state ρ, of the outcome of an experiment with which
is associated the operator A. The positivity condition ensures that
self-adjoint operators are assigned real numbers. This condition, to-
gether with the normalization condition, ensures that, if the spectrum
of a self-adjoint operator A is bounded, ρ(A) is not above or below
the bounds of the spectrum of A. This is required in order for these
numbers to be interpreted as expectation values for the outcomes of
experiments that yield results in the spectrum of A. The linearity
condition is a non-trivial constraint, as it relates expectation values
assigned to outcomes of incompatible experiments. It is a central prin-
ciple of quantum mechanics, but is not something that is dictated by
the operational significance of ρ(A) as an expectation value of the
outcomes of an experiment (one could imagine other, non-quantum
theories that violate it).

For any state ρ, and any self-adjoint operator A, let a be the
expectation value of A in state ρ, ρ(A). We define the variance of A
in state ρ as,

Varρ(A) = ρ((A− a1)2) = ρ(A2)− ρ(A)2. (2)

This is one way to quantify the spread in the probability distribution of
outcomes of an A-experiment. It is small if the distribution is tightly
focussed near the expectation value ρ(A). It is zero only when there
is a single outcome that will be obtained with probability one. If this
is the case—that is, if Varρ(A) is equal to zero—then ρ is said to be
an eigenstate of A, with eigenvalue ρ(A). For such a state, one in
which there is a definite value of the observable corresponding to A
that will with certainty be obtained as the outcome of an appropriate
experiment, it is usual to ascribe the property of possessing this value
to the system. This is known as the eigenstate-eigenvalue link. For
example, a state that is an eigenstate of the operator corresponding
to energy, with eigenvalue E, is taken to be a state in which the
system has energy E. This has been, since the early days of quantum
mechanics, a central interpretational principle of quantum theories.

Given any two states ρ1, ρ2, and any two positive numbers p1 and
p2 that sum to one, we can always form the corresponding mixture of
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the states,
ρ̄ = p1 ρ1 + p2 ρ2. (3)

An example of a preparation procedure with which a state like that
would be associated is one that employs some randomizing device to
choose between preparation of state ρ1 and state ρ2, with probabilities
p1 and p2. Mixtures of more than two states are defined analogously.
A state that is not a mixture of any two distinct states is called a pure
state.

The content of the operational core of a quantum theory is com-
pletely encapsulated in the structure of the algebra AQ, the associa-
tion of certain operators with experimental procedures, and of states
with preparation procedures. However, for most purposes, this is not
the most convenient formulation of the theory. It is often useful to
construct a representation of the algebra as operators operating on
vectors in a Hilbert space, in which any pure state ψ can be repre-
sented by a vector |ψ⟩. If we’re willing to countenance Hilbert spaces
that are more capacious than they need to be, we can construct a
representation in which every state, pure or mixed, is represented by
state vector.

For any two distinct states ρ1, ρ2, represented by Hilbert-space
vectors |ψ1⟩, |ψ2⟩, and any complex numbers a, b, there is another
state that is represented by the vector

|ϕ⟩ = a|ψ1⟩+ b|ψ2⟩. (4)

Vector addition is also referred to as superposition, and |ϕ⟩ is said to
be a superposition of |ψ1⟩ and |ψ2⟩. Resist the temptation to talk as
if some states are superpositions, and some are not. Any vector |ϕ⟩ is
equal to infinitely many superpositions of other vectors.

If |ψ1⟩ and |ψ2⟩ are eigenvectors of some operator A, with eigen-
values a1 and a2, respectively, then the eigenstate-eigenvalue link tells
us that in states represented by those vectors, the system has the cor-
responding properties. If a1 and a2 are distinct, then |ϕ⟩, as defined
by (4), is not an eigenstate of A, and the eigenstate-eigenvalue link
is silent on whether we are to ascribe any properties corresponding to
A to the system in such a state. This is at the core of the so-called
measurement problem, which will be presented in section 4.

In a quantum-mechanical theory of a system consisting of n parti-
cles without spin, a quantum-mechanical state can be represented by
a square-integrable function ψ(x1,x2, . . . ,xn), called a wave function.
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A wave function representing the state is not unique; any two func-
tions that differ only on a set of measure zero represent the same state,
and multiplying any wave function by any complex number yields an-
other function that represents the same state. A wave function yields
probabilities for outcomes of detection experiments as follows: the
probability of finding particle 1 in a set ∆1, particle 2 in ∆2, etc., is
given by the integral of |ψ|2 over the region of configuration space with
x1 in ∆1 and x2 in ∆2, etc., divided by the integral of |ψ|2 over all of
configuration space. For a system consisting of n particles with spin,
the total spin state of the system can be represented by a vector in a
finite-dimensional Hilbert space HS . A wave function for such a sys-
tem is an assignment of a vector in HS to each point in configuration
space.

2.2 Entangled and unentangled states

Consider a quantum theory of two non-overlapping systems. The al-
gebra of observables AQ has two commuting subalgebras, AA and AB,
corresponding to the observables of the two subsystems. A state ρ is
a product state if any only if

ρ(AB) = ρ(A)ρ(B) (5)

for all A in AA and B in AB. A state that is either a product state
or mixture of product states is called a separable state. A state (pure
or mixed) that is not a separable state is an entangled state.

We can also characterize pure entangled states more directly. A
pure state ρ of AQ is a product state if the restriction of ρ to AA is a
pure state of AA; it is an entangled state if the restriction of ρ to AA

is a mixed state of AA.
For any state that is not a product state, the state of a composite

system is not uniquely determined by the states of the components,
even if the state of the composite is pure. This is a striking differ-
ence between quantum and classical theories. For a classical theory,
the restriction of any pure state—that is, a maximally specific state
description—of a composite to one of its components is a pure state
of the component, and specification of the states of the components
uniquely determines the state of the composite. Following Howard
(1985), this feature of classical theories has come to be known as sep-
arability, and the fact that it is not satisfied by quantum theories, as
nonseparability.
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2.3 Temporal evolution: Schrödinger and Heisen-
berg pictures

Suppose that we have a system whose dynamical variables are {(qi(t), pi(t))}.
To construct a quantum theory of the system, we require operators
{(Qi(t), Pi(t))} to represent the dynamical variables.

The dynamical laws of our quantum theory specify how expecta-
tion values of variables at different times are related to each other.
The basic equation of evolution is,

iℏ
d

dt
ρ(A(t)) = ρ(A(t)H −HA(t)), (6)

where H is the operator corresponding to the system’s Hamiltonian
H.

Suppose, now, we want to construct a Hilbert space representation
of our theory. This means assigning, to each operator A(t), a Hilbert
space operator Â(t), and choosing, for each time t, a density operator
ρ̂(t) to represent the state, in such a way that

ρ(A(t)) = Tr[ρ̂(t)Â(t)]. (7)

As we have to specify both Â(t) and ρ̂(t), this gives us some lee-way.
One way to do this is to choose the same Hilbert space operators
(Q̂i, P̂i) to represent (qi(t), pi(t)) at all times. Then the density oper-
ators ρ̂(t) will have to satisfy,

iℏ
d

dt
ρ̂(t) = Ĥρ̂(t)− ρ̂(t)Ĥ. (8)

For a pure state represented by a state vector |ψ(t)⟩, we have,

iℏ
d

dt
|ψ(t)⟩ = Ĥ|ψ(t)⟩. (9)

This is the Schrödinger equation, and the choice of Hilbert space rep-
resentation on which the operators representing (qi(t), pi(t)) are time-
independent, is called the Schrödinger picture.

Another choice is to choose a fixed density operator ρ̂ to represent
the state at any time. This requires the operators Â(t) to satisfy

iℏ
d

dt
Â(t) = Â(t)Ĥ − ĤÂ(t). (10)

8



This is the Heisenberg equation of motion, and the Hilbert space rep-
resentation on which the density operator representing the state is
time-independent, is called the Heisenberg picture.

It should be emphasized that these two choices are two Hilbert
space representations of one and the same quantum theory ; the phys-
ical content is the same. It would be a mistake to take the time-
independence of the Heisenberg-picture density operator to suggest
that what is being modelled is an unchanging physical situation. What
is changed is the location of the time dependence in the mathematical
apparatus used to model a changing physical situation.

In some cases a clear meaning can be given to the idea that quanti-
ties associated with a system at different times are values, at different
times, of the “same” dynamical variable. For example, in a theory set
in Galilean spacetime one can choose a reference frame, and consider
the position-coordinate of a particle, at different times, as differing
values of the same dynamical variable. This, of course, requires a
notion of trans-temporal identity of particles.

In other cases it may be inconvenient to do so. Consider a classical
field theory on Minkowski spacetime. A particular solution of the
field equations will specify, for each spacetime point, a field value at
that point. One can pick a set of timelike lines that jointly cover the
spacetime (whether or not these are inertial trajectories), and consider
how the field value changes with position on a line. If one is considering
the response of some device that monitors the field, it makes sense
to consider how the field variable changes along the worldline of the
detector. But the structure of the theory may be more perspicuously
represented without such considerations, and without identifying any
two field values as values of the “same” dynamical quantity at different
times. For this reason, the Heisenberg picture is usually regarded as
more suitable for relativistic quantum field theories.

3 The collapse postulate: some his-

tory

Textbook formulations of quantum mechanics usually include an ad-
ditional postulate about how to assign a state vector after an exper-
iment, according to which one replaces the quantum state with an
eigenstate of the “measured” observable, corresponding to the result
obtained. Unlike the unitary evolution applied otherwise, this is a
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discontinuous change of the quantum state, sometimes referred to as
collapse of the state vector, or state vector reduction. There are two
interpretations of the postulate about collapse, corresponding to two
different conceptions of quantum states. If a quantum state represents
nothing more than our knowledge about the system, then the collapse
of the state to one corresponding to the observed result can be thought
of as representing nothing more than an updating of knowledge. If,
however, quantum states represent physical reality, in such a way that
distinct pure states always represent distinct physical states of affairs,
then the collapse postulate entails an abrupt, perhaps discontinuous,
change of the physical state of the system. Considerable confusion can
arise if the two interpretations are conflated.

The collapse postulate is found already in Heisenberg’s The Phys-
ical Principles of the Quantum Theory, based on lectures presented in
1929 (Heisenberg 1930a, 27; 1930b, 36). Von Neumann, in his refor-
mulation of quantum theory a few years later, distinguished between
two types of processes: Process 1., which occurs upon performance
of an experiment, and Process 2., the unitary evolution that takes
place as long as no measurement is made (von Neumann 1932; 1955,
§V.I). He does not take this distinction to be a difference between two
physically distinct processes. Rather, the invocation of one process or
the other depends on a somewhat arbitrary division of the world into
an observing part and an observed part (see von Neumann 1932, 224;
1955, 420).

There is a persistent misconception that, for von Neumann, col-
lapse is to be invoked only when a conscious observer becomes aware
of the result. This is the opposite of his attitude; for him it is essential
that the location of the boundary between the observed part of the
world and the observing part is somewhat arbitrary. It may be placed
between the system under the study and the experimental apparatus.
On the other hand, we could include the experimental apparatus in
the quantum description, and place the cut at the moment when light
indicating the result hits the observer’s retina. Or we could go further,
and include the retina and relevant parts of the observer’s nervous sys-
tem in the quantum system. That the cut may be pushed arbitrarily
far into the perceptual apparatus of the observer is required, according
to von Neumann, by the principle of psycho-physical parallelism.

The collapse postulate does not appear in the first edition (1930)
of Dirac’s Principles of Quantum Mechanics; it is introduced in the
second edition (1935), which appeared subsequent to von Neumann’s
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treatment. Dirac, in contrast to Heisenberg and von Neumann, ap-
pears to take the distinction between unitary and collapse evolution
to be a distinction between two physical processes. Also, for Dirac
it is an act of measurement, not observation, that causes a system to
“jump” into an eigenstate of the observable being measured (Dirac,
1935, 26). According to Dirac, this jump is caused by the interaction
of the system with the experimental apparatus.

A formulation of a version of the collapse postulate according to
which a measurement is not completed until the result is observed is
found in London and Bauer (1939). For them, as for Heisenberg, this
is a matter of an increase of knowledge on the part of the observer.

Wigner (1961) combined elements of the two interpretations. Like
those who take the collapse to be a matter of updating of belief in light
of information newly acquired by an observer, he takes collapse to take
place when a conscious observer becomes aware of an experimental
result. However, like Dirac, he takes it to be a real physical process.
His conclusion is that consciousness has an influence on the physical
world not captured by the laws of quantum mechanics. This involves
a rejection of von Neumann’s principle of psycho-physical parallelism,
according to which it must be possible to treat the process of subjective
perception as if it were a physical process like any other.2

4 The so-called “measurement prob-

lem”

If it is possible for any quantum theory to be a comprehensive physical
theory, it must be capable of treating of our experimental apparatus,
and, indeed, everything else. Suppose, then, we analyze an experi-
mental set-up quantum-mechanically.

Let S be the system to be experimented on, which we call the
studied system. We suppose that it has at least two distinguishable
states, |+⟩S and |−⟩S , and that an apparatus, A, can be devised that
distinguishes these states. This means that there are distinguishable
sets A+ and A− of states of the apparatus, which we will call indicator
states, such that the apparatus can be coupled to the system S in such
a way that, if the apparatus is started out in a ready state and the

2Despite this, Wigner’s proposal is sometimes wrongly attributed to von Neumann,
and is sometimes called the “von Neumann-Wigner interpretation.”
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studied system in the state |+⟩S , the apparatus will evolve to a state
in A+, and, if the apparatus is started out in a ready state and the
studied system in the state |−⟩S , the apparatus will evolve to a state
in A−. We do not assume that the apparatus is isolated from its
environment, and so we include the relevant parts of the environment
in our description.

The evolution of the composite system should satisfy,

|+⟩S |R⟩AE ⇒ |‘ + ’⟩SAE ;
|−⟩S |R⟩AE ⇒ |‘− ’⟩SAE ;

(11)

where |R⟩AE is a state of the apparatus plus its environment in which
the apparatus is ready to perform an experiment, and |‘ + ’⟩SAE and
|‘ − ’⟩SAE are states of the composite system in which the apparatus
is indicating the results + and −, respectively.

Suppose, now, that the system A is started out in a state that is
a nontrivial superposition of |+⟩S and |−⟩S ,

a|+⟩S + b|−⟩S ,

with a and b both nonzero. If the evolution of the composite system
is linear, as it must be if the Schrödinger equation applies, then we
must have,

(a|+⟩S + b|−⟩S)|R⟩AE ⇒ a|‘+’⟩SAE + b|‘–’⟩SAE . (12)

What to make of a state like this? It is not a state in which the ap-
paratus is in either one of the indicator sets A+ or A−. It is not an
eigenstate of the apparatus indicator variable, but a superposition of
distinct eigenstates. The eigenstate-eigenvalue link, therefore, offers
no guidance. The interaction of the apparatus with its environment
may result in an entangled state of the apparatus and its environment
that is such that the state of the apparatus is a mixture of distinct
indicator states—a process known as decoherence—but this does not
help with the interpretational issue, as the system containing the ap-
paratus and a sufficiently wide portion of its environment is still a
superposition of macroscopically distinct states. It is often said that a
state like (12) conflicts with our experience, according to which exper-
imental apparatus is, at the end of an experiment, always indicating
some determinate result. This is highly misleading, because the real
issue is whether we can make sense of (12) as a possible state of a sys-
tem containing the experimental apparatus. If we don’t know what it
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would be like to find the apparatus in such a state, then it makes no
sense either to affirm or to deny that we have ever found the apparatus
in such a state.

Though we have chosen an experimental set-up as an illustra-
tion, situations in which linear evolution would yield superpositions of
macroscopically distinct states are ubiquitous. Nonetheless, the prob-
lem of what to make of this fact—that applying linear evolution to
quantum states involving macroscopic objects will lead to superposi-
tions of macroscopically distinct states—has come to be known as the
measurement problem.

If there is a unique outcome of the experiment, and if (12) is the
correct quantum state, then the outcome fails to be represented by the
quantum state, which must be supplemented by something that does
indicate the outcome. On the other hand, it might be that neither
Schrödinger evolution nor any other linear evolution applies to situa-
tions like the one envisaged, and that the correct evolution leads to a
state that we can take to be indicating a determinate outcome. These
two options were summarized by J.S. Bell in his remark, “Either the
wavefunction, as given by the Schrödinger equation, is not everything,
or it is not right” (Bell 1987a, 41; 1987b and 2004, 201). This gives
us a (prima facie) neat way of classifying approaches to the so-called
“measurement problem.”

• There are approaches that involve a denial that a quantum wave
function (or any other way of representing a quantum state)
yields a complete description of a physical system.

• There are approaches that involve modification of the dynam-
ics to produce a collapse of the quantum state in appropriate
circumstances.

• There are approaches that reject both horns of Bell’s dilemma,
and hold that quantum states undergo unitary evolution at all
times and that there is no more to be said about the physical
state of a system than can be represented by a quantum state.

We include in the first category approaches that deny that a quantum
state should be thought of as representing anything in physical reality
at all. If quantum states do not represent anything, and if there is
something rather than nothing, then quantum states do not represent
everything. In this category are Bohrian approaches, according to
which there are principled reasons not to seek a complete description,
and Einsteinian approaches, according to which seeking a theory that
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need not leave anything out in its descriptions is a project worthy of
pursuit.

Also included in the first category are approaches that take quan-
tum states to represent something, but not everything, in physical
reality. These include “hidden-variables” theories, and modal inter-
pretations (see Lombardi and Dieks 2017). The best-known and most
thoroughly worked-out theory of this sort is the de Broglie-Bohm pilot
wave theory, which takes particles with definite trajectories as the ba-
sic ontology. The role of the wave function is to provide dynamics for
the particles. See Bacciagaluppi and Valentini (2009) for a historical
introduction, and Dürr et al. (1992) and Pearle and Valentini (2006)
for current perspectives.

The second category embraces the dynamical collapse theory pro-
gramme, which seeks a modified dynamics that approximates unitary
evolution in the domains in which we have good evidence for its cor-
rectness, and approximates collapse in other situations, including, but
not limited to, experimental set-ups. The best-known version of this
is the Ghirardi-Rimini-Weber (GRW) theory (Ghirardi, Rimini, and
Weber 1986), referred to by its creators as Quantum Mechanics with
Spontaneous Localization (QMSL). On this theory, Schrödinger evo-
lution of the quantum state is punctuated by discontinuous jumps.
The GRW theory has the defect that it does not respect the sym-
metrization/antisymmetrization requirements for states of a system
containing identical particles. This is remedied in a successor theory,
the Continuous Spontaneous Localization (CSL) theory (Pearle 1989;
Ghirardi, Pearle, and Rimini 1990).

Approaches that reject both horns of Bell’s dilemma are typified
by Everettian, or “many-worlds” interpretations. The basic idea is
denial that there is a unique experimental outcome; rather, there is
a splitting, and different results obtain on different branches of the
multiverse. These have their roots in the work of Hugh Everett III (see
Barrett and Byrne 2012). See Saunders et al. (2010), Wallace (2012),
and Carroll and Singh (2019) for some recent approaches along these
lines.

An approach that does not fit neatly into these categories is the
relational interpretation advocated by Carlo Rovelli. It is akin in some
ways to Everett’s original conception, which he called the relative-state
interpretation. It differs from it in not taking quantum states to be
representational. For more on this, see Rovelli’s contribution to this
volume, and also Laudisa and Rovelli (2019), and references therein.
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5 Bell’s theorem, nonlocality, and rel-

ativity

“Bell’s theorem” is a term used for a family of theorems of the fol-
lowing form. From a condition on probabilities that is motivated, in
part, by locality considerations, an inequality is derived constraining
correlations between results of spatially separated experiments, which
is violated by the predictions of quantum mechanics. See the Stanford
Encyclopedia of Philosophy entry (Myrvold, Genovese, and Shimony
2019) for an overview more detailed than found here.

The distinctive condition needed to derive Bell-type inequalities
is the condition that correlations between outcomes of spatially sepa-
rated systems be locally explicable. This has two parts: that the corre-
lations be explicable in a certain sense, and the explanation be local.
The explicability condition was taken by Bell to be the condition that
correlations between events that are not in a direct cause-effect rela-
tion with each other be attributable to a common cause (see Bell 1981,
C2–55; 1987b and 2004, 152). This is a version of a principle that has
been called by Reichenbach (1956, §56) the Principle of the Common
Cause, and, though Reichenbach made no pretense to originality, has
been called Reichenbach’s Common Cause Principle. The Common
Cause Principle, together with the assumption that experimental out-
comes at spacelike separation are not in a direct cause-effect relation
with each other, yields the condition that Shimony (1986; 1990) has
called outcome independence. Causal locality requires that a choice
of experiment made at one location does not affect the probabilities
of outcomes of another experiment performed at spacelike separation.
This condition is called parameter independence. In some of his writ-
ings Bell combined locality and causality considerations in a principle
he called “The Principle of Local Causality” (Bell, 1976, 1990).

In addition to this condition of local explicability, there are sup-
plementary assumptions of the sort taken for granted in all experi-
mental science, such as the assumption that it is possible, via some
randomizing procedure, to render one’s choice of experiment statisti-
cally independent of the state of the system on which the experiment is
done. This condition is referred to as a “no-conspiracies” assumption,
or “measurement independence,” or, in some of the recent literature,
“statistical independence.” Though the assumption has been denied
by some, we will in what follows restrict our attention to views con-
sistent with this assumption.
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Violation of Bell inequalities has been abundantly confirmed by
experiment. What does this tell us?

It is sometimes said that violation of Bell inequalities straightfor-
wardly entails violation of relativistic causality. Things are not so
simple, as there is no interpretation-independent answer to the ques-
tion of compatibility with relativity.

The question is most straightforward in connection with hidden-
variables theories such as the de Broglie-Bohm theory. Any deter-
ministic theory that violates Bell inequalities must violate parameter
independence, and thus must have cause-effect dependencies between
spacelike separated events.

Because, in a multi-particle system, the velocity of each particle
may depend on the positions of all the others, the de Broglie-Bohm
theory requires a preferred relation of distant simultaneity for its for-
mulation. There is a series of theorems that show that any theory of
this sort, on which the quantum state is supplemented by extra vari-
ables that are required to have a probability distribution given by the
Born rule, must employ a distinguished relation of distant simultane-
ity, as it is not possible to satisfy the postulate about probabilities on
arbitrary spacelike hypersurfaces. See Berndl et al. (1996); Dickson
and Clifton (1998); Arnztenius (1998); Myrvold (2002, 2009). This
has the consequence that such theories require a dynamically distin-
guished relation of distant simultaneity; see Myrvold (2021, §5.5.1) for
the argument.

Dynamical collapse theories, on the other hand, do not require a
preferred relation of distant simultaneity for their formulation. There
is an extension of the GRW theory to a relativistic context (Dove,
1996; Dove and Squires, 1996; Tumulka, 2006), which involves a fixed,
finite number of noninteracting particles. There are also extensions
of the CSL theory to the context of relativistic quantum field theories
(Bedingham, 2011a,b; Pearle, 2015).

These theories involve probabilistic correlations between spacelike
separated events that are not attributable to events in their common
past. That is, they involve a rejection of the Reichenbach Common
Cause Principle. The question of whether a theory such as this is
in violation of any restriction on causal relations that is motivated
by considerations of special relativity has been a hotly debated one.
Several authors have argued over the years, in different ways, in favour
of the compatibility of theories like that with the requirements of
special relativity; these include Shimony (1978, 1984, 1986), Jarrett
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(1984), Skyrms (1984), Redhead (1987), Ghirardi and Grassi (1996),
and Ghirardi (2012). See Myrvold (2016) for a recent argument for
compatibility of special relativity with violations of Bell inequalities.

6 Ontological questions concerning quan-

tum states

6.1 The question of quantum state realism

We have introduced quantum states via their operational significance:
they encode probabilities of outcomes of experiments. Should we think
of them as representing some feature of the system to which they are
ascribed?

Positions that deny that quantum states represent features of phys-
ical reality have a history as old as quantum theory itself. This is one
thing that Bohr and Einstein agreed upon. For Bohr, all description
of physical reality must be couched in classical terms, and the limits of
classical physics are the limits of physical description; quantum wave
functions have only “symbolic” status (see Bohr 1934, 17). Einstein
argued, in several places (see, e.g., Einstein 1936), that quantum states
should be regarded as akin to the probability distributions of classical
statistical mechanics, that is, as representing incomplete knowledge of
some deeper underlying physical state. The chief locus of difference
between the two had to do with the propriety of seeking a deeper level
of description.

The idea that quantum states are like that is an attractive one. It
faces considerable obstacles, and it should be non-controversial that
quantum states are not just like classical probability distributions.

A useful way of sharpening the question of realism about quan-
tum states is afforded by the framework constructed by Harrigan and
Spekkens (2010). This framework makes explicit some principles that
are deeply embedded in our reasoning about the world.

Suppose that Alice has a choice of two or more preparation pro-
cedures that she can subject a system to. Having made the choice,
she passes the system on to Bob, who can do an experiment on the
system, and, from the outcome, reliably identify the procedure Alice
has chosen. We would take this as an indication that distinct choices
of preparation on Alice’s part result in physical differences in the sys-
tem being prepared, and that the outcome of Bob’s experiment is
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informative about these differences.
Suppose, now, that we begin to consider what a theoretical model

of a set-up like this would look like. This would involve some set Λ
of possible physical states of the system (Harrigan and Spekkens call
this the ontic state space). We associate with a preparation procedure
ψ a probability distribution Pψ over appropriate subsets of Λ. Sup-
pose that Bob’s experiment has potential outcomes {o1, . . . , ok}. We
associate with Bob’s experiment response probability functions fk(λ).
The function fk(λ) yields the probability that the kth outcome of the
experiment is obtained, if the state of the system experimented on is
λ.

We say that the preparations ψ and ϕ are distinguishable if there
is an experiment whose outcome discriminates between them with
certainty. If ψ and ϕ are distinguishable, then (as one would expect)
there is no set of states that has nonzero probability of being realized
on both preparations. Call a pair of preparations ψ, ϕ ontically distinct
if there is no subset of the state space Λ that has nonzero probability
of being realized on both preparations.

Preparations corresponding to distinguishable quantum states must
be ontically distinct. The question to be addressed is whether, for all
pairs of distinct pure quantum states, including those that are not
distinguishable, the corresponding preparations are ontically distinct.
Harrigan and Spekkens say that a theory is ψ-ontic if, according to the
theory, preparations corresponding to distinct pure quantum states
are always ontically distinct. They define ψ-epistemic as the nega-
tion of ψ-ontic. This is potentially misleading terminology. Consider,
for example, a classical system, whose ontic state is represented by
a point in its phase space. Suppose that one could learn either its
position, or its momentum, but not both, though it always has de-
terminate position and momentum. Any position is compatible with
any momentum, and hence, for any position x and momentum p, the
set of ontic states corresponding to position x overlaps with the set of
states corresponding to momentum p. That doesn’t mean that there
is anything epistemic about position or momentum. Furthermore, to
call a model “ψ-epistemic” if there are distinct pure quantum states
whose associated probability distributions have some overlap, no mat-
ter how small, is potentially misleading, as it might suggest that the
goal of constructing an interpretation on which quantum states are like
classical probability distributions has been achieved. This, however,
would require that the model be what has been called a maximally
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ψ-epistemic model (Barrett et al., 2014). On such a model, the indis-
tinguishability of quantum states is fully explained by overlap of the
corresponding probability distributions on ontic state space.

There are a number of theorems concerning the viability of the
programme of constructing a theory that is maximally ψ-epistemic, or,
failing that, a theory that is not ψ-ontic. In particular, Barrett et al.
(2014) show that no theory that reproduces quantum probabilities for
outcomes of experiments and fits into the framework just sketched
can be maximally ψ-epistemic, or even come close to being so. Pusey,
Barrett, and Rudolph (PBR) show that, provided that the theory
satisfies a postulate called the Preparation Independence Postulate,
it must be ψ-ontic in order to reproduce quantum probabilities for
outcomes of experiments (Pusey, Barrett, and Rudolph 2012).

The Preparation Independence Postulate is a postulate to the ef-
fect that it is possible to subject a pair of distinct systems A and B to
preparation procedures that render their ontic states probabilistically
independent of each other. This postulate involves an assumption,
called the Cartesian Product Assumption, to the effect that, for a
preparation of that sort, the state of the composite system AB can
be fully represented by specifying a state of A and a state of B. This
is a non-trivial restriction on the state spaces employed in the the-
ory. A weaker assumption, called the Preparation Uninformativeness
Condition, which makes no assumptions about the structure of the
state spaces, was suggested by Myrvold (2018c, 2020). On the basis
of this weaker assumption, a weaker conclusion can be derived. The
conclusion that is derived from this condition is that, on any theory
that satisfies it, pure quantum states |ψ⟩ and |ϕ⟩ that are not too close
to each other are ontically distinct. Here, the condition of not being
too close is that the absolute value of their inner product be less than
1/
√
2.

6.2 The ontological status of quantum states

Suppose that we are realists about quantum states. This means that
distinct pure quantum states represent physically distinct states of
affairs. This still leaves open the question of what sorts of physical
reality these states represent. In this section we briefly discuss some
options.
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6.2.1 Quantum state monism

Could there be nothing more to the world than what is represented
by a quantum state?

Recall that a quantum theory is not an uninterpreted formalism.
A quantum theory involves an identification of physical quantities to
be represented, and an association of operators with those quantities.
The eigenstate-eigenvalue link yields property attributions in the spe-
cial case of eigenstates. If we had a dynamical collapse theory that
produced eigenstates of the right sorts of dynamical quantities—if, for
example, it yielded definite mass or energy content for regions of space
that are small on the macroscopic scale—then such a theory could, in
a straightforward way, be a quantum state monist theory. Sometimes
skepticism is expressed about this, but this skepticism seems aimed at
a different project, a project that would involve starting with a math-
ematical formalism devoid of physical interpretation and attempting
to interpret it physically.

Things are not so simple, because dynamical collapse theories do
not produce eigenstates of appropriate physical quantities, and there
are principled reasons for not expecting a dynamical collapse theory
to do that. For this reason, Ghirardi and collaborators proposed a
weakening of the eigenstate-eigenvalue link, according to which a sys-
tem is to be ascribed a property if its quantum state is sufficiently
close to being an eigenstate of the corresponding operator (Ghirardi,
Grassi, and Pearle 1990, 1298; see also Ghirardi, Grassi, and Benatti
1995, 13). This modification has been dubbed, by Clifton and Monton
(1999), the fuzzy link.3 For a defense of quantum state monism along
the lines proposed by the originators of the GRW and CSL theories,
see Myrvold (2018a, 2019).

Everettian theories seem to be best interpreted along these lines.
Since such theories eschew collapse, on such a theory a quantum state
will not typically be anywhere near an eigenstate of familiar macro-
scopic variables. However, the quantum state of any bounded region

3Peter Lewis (2016, 86–90) distinguishes between a fuzzy link, according to which there
is some precise threshold p such that a system possesses the property A = a if and only
if the probability of finding some other value is less than p, and a vague link according
to which possession of a definite property is a matter of degree. It is hard to imagine
what arguments there could be (or even what it might mean) for there to be a precise
threshold. Albert and Loewer (1996) argue, correctly in my opinion, that there could be
no such precise threshold, and that the modified link must be somewhat vague. This is
what I mean by a fuzzy link.
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of spacetime will typically be a mixture of states in which macroscopic
variables are near-definite, and the terms of these mixtures will evolve
independently, and can be taken to represent quasi-classical domains.

6.2.2 The project known as “wave function realism”

Consider again a quantum theory of n distinguishable particles, and
suppose that we choose to represent quantum states in this theory by
wave functions on the configuration space of the particles (recall from
section 2.1 that this is optional). The wave function representation
is not unique; a wave function representing a quantum state ρ is rep-
resented by a class of functions, not a single one; two functions that
differ only on a set of measure zero, or differ only by a multiplicative
constant, represent the same quantum state.

When de Broglie introduced the precursors of our quantum-mechanical
wave functions, the thought was that these would be akin to electro-
magnetic fields. A stumbling-block for an interpretation of this sort is
that multi-particle wave functions are functions of n points in space,
and have to be, to encode correlations between the positions of parti-
cles. That is, they are what Belot (2012) has called “multi-fields.”

Suppose, however, one wanted—perhaps out of a commitment to
separability—to construct an alternative to standard quantum theory
according to which the basic ontology consisted of a specification of
local conditions at every point of some fundamental space (see Al-
bert 1996). This is a project that has come to be known as wave
function realism—a misleading terminology, as every form of realism
about quantum states will maintain that wave functions, as one way
of representing quantum states, represent something physically real.

The basic idea is that quantum theories are to be embedded in a
more encompassing framework that would include theories with no re-
lation to quantum theories as we have characterized them. We are to
imagine some class of dynamical laws for fields in this framework that
are such that for some—but not all—choices of dynamics the evolution
of the field on a 3n-dimensional fundamental space will mimic the evo-
lution of a wave function defined at n points in a 3-dimensional space;
the theory restricted to evolutions of the sort will then be functionally
equivalent to a quantum theory.

I describe this as a project because those engaged in it have not yet
said in any detail what the field on the fundamental space is thought to
be, except in the case of the nonrelativistic theory of n distinguishable
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particles. One can perhaps dimly see how the case of particles with
spin is to be handled, and even more dimly, that of a quantum field
theory (see Myrvold 2015 for some options). It is also unclear what
sort of structure is presumed for the fundamental space: does it have
some built-in metric or causal structure, or is this to be regarded as
emergent also?

The project should be regarded as a work-in-progress. See Ney and
Albert (2013) for a collection of essays connected with this project.
Among the matters that require clarification are the goals and mo-
tivations of the project. For some discussion of this, see Ney (2019,
2021).

6.2.3 Primitive ontology, and the nomic view of quan-
tum states

As mentioned above, the originators of dynamical collapse theories
originally advocated a quantum state monist ontology, with a mod-
ified version of the eigenstate-eigenvalue link. In recent years this
proposal has somewhat fallen out of favour, to be replaced with a
“primitive ontology” approach on which a theory must posit some ba-
sic ontology, which is the stuff of which ordinary objects are made,
and the role of quantum states is to provide dynamics for that ontol-
ogy. On this view, what quantum states represent physically is more
like a dynamical law than “stuff” as usually construed. See Allori
et al. (2008, 2014) and Allori (2013) for exposition and defense of this
view. This sort of conception applies most straightforwardly to the
de Broglie-Bohm theory, on which the primitive ontology is particles
with definite trajectories, and the wave function is a guiding wave.

One advantage of this view is that it makes transparent how quan-
tum wave functions should transform under dynamical symmetries. If
one starts with the primitive ontology, and takes the role of the wave
function to provide dynamics for it, then the condition that the set
of dynamically possible trajectories be invariant under a symmetry
operation yields guidance as to how the mathematical representation
of the wave function should change under symmetry transformations.

It should be emphasized that the nomic view of quantum states
is a realist conception of quantum states, in the sense used in section
6.1. Preparation procedures have an influence on quantum states,
and there is a matter of fact about which quantum state has been
prepared. Where the nomic view differs from other conceptions of
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quantum states has to do with what sort of matter of fact it is.

6.2.4 A comment on “Spacetime State Realism”

Wallace and Timpson (2010) introduce the term “Spacetime State
Realism,” which they characterize as “a view which takes the states
associated to spacetime regions as fundamental.” This strikes me as
misleading, as the terminology suggests that what is being proposed is
some alternative to other sorts of realism about quantum states. But
recall that a quantum state is an assignment of expectation values to
operators representing physical quantities. If the basic quantities are
taken to be ones that pertain to bounded spacetime regions (which
are the ones that are relevant to outcomes of experiments, as these
take place within bounded spacetime regions), then for any spacetime
region there is an associated algebra, and hence an associated state.
This is explicit in the algebraic formulation of quantum field theory,
but any presentation of quantum theory will have to make sense of
“observables” associated with bounded spacetime regions. Spacetime
state realism, then, is simply realism about quantum states, and a
view that takes states associated to spacetime regions as fundamental
is simply a view that takes quantum states as fundamental.

7 Conclusion

This has by no means been an exhaustive overview of the philosoph-
ical discussions surrounding quantum mechanics. Among topics not
touched upon are interpretational and conceptual issues peculiar to
quantum field theories. We have said little about the arguments of-
fered by those who reject realism about quantum states in favour of
such a position. Also omitted is the project of reconstructing quantum
theory on operational or information-theoretical principles, and any
detailed discussion of the classical-quantum interface. The Stanford
Encyclopedia of Philosophy article, “Philosophical Issues in Quantum
Theory” (Myrvold, 2018b) provides some pointers to the relevant lit-
erature on these topics.
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