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Abstract: Proposed quantum experiments in deep space will be able to explore quantum information
issues in regimes where relativistic effects are important. In this essay, we argue that a proper
extension of quantum information theory into the relativistic domain requires the expression of
all informational notions in terms of quantum field theoretic (QFT) concepts. This task requires a
working and practicable theory of QFT measurements. We present the foundational problems in
constructing such a theory, especially in relation to longstanding causality and locality issues in
the foundations of QFT. Finally, we present the ongoing Quantum Temporal Probabilities program
for constructing a measurement theory that (i) works, in principle, for any QFT, (ii) allows for a
first- principles investigation of all relevant issues of causality and locality, and (iii) it can be directly
applied to experiments of current interest.
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1. Introduction

Quantum theory and general relativity (GR) are the two main pillars of modern theoret-
ical physics. Each theory is highly successful in its domain. However, they are structurally
incompatible. For example, in quantum theory, the concept of measurement appears to be
a fundamental part of the formalism, while measurements in GR are derivative concepts.
Time in GR is dynamical, while in quantum theory it is described as an external parameter.
Finding a unifying theory, a theory of quantum gravity, is one of the most important goals
of current research. However, there is no functional theory of quantum gravity. This is
largely due to the lack of experimental data to guide the theory. Quantum gravitational
phenomena are estimated to be significant at the Planck scale, which is well outside our
experimental reach, at least directly.

A large part of quantum gravity research focuses on quantum phenomena at black
holes, mainly because the emergence of black hole thermodynamics is expected to be an
important feature of any quantum gravity theory. In recent years, strong emphasis has
been given on the properties of entanglement in this context (e.g., [1]), in order to relate
black hole entropy to entanglement entropy [2] and to address the problem of information
loss in black holes [3].

This development seemingly signals a convergence of quantum gravity research and
quantum information theory (QIT). After all, entanglement is the primary motive force
behind explosive developments of QIT in the last quarter of a century; it is the crucial
resource for quantum computing, quantum metrology, quantum communication, and
more.

This convergence is actually illusory. Entanglement may be a well defined mathe-
matical quantity in Quantum Field Theory (QFT) [4–6], but its status as an informational
quantity/resource must be embedded within a comprehensive quantum information the-
ory (QIT). However, this is not the case. So far, QIT has been largely developed in the
context of non-relativistic quantum mechanics, a small corner of full QFT. It is ostensibly
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inadequate when basic relativistic principles—both special and general—such as causality
and covariance, need be accounted for.

Furthermore, entanglement and other resources of QIT [7] refer to the properties of the
quantum state at one moment of time. By definition, they cannot account for information
that is contained in multi-time correlations. This is a severe limitation in its application to
black holes, because any discussion of the informational balance in the process of black
hole formation and evaporation must take the existence of multi-time correlations into
account [8].

In this paper, we contend that the proper union of QIT and QFT requires a first-
principles analysis. Information must be defined in terms of the ways that it can be extracted
from a quantum system, and this necessitates an analysis of measurements in QFT that
goes beyond the current state of the art. Furthermore, a spacetime-covariant QIT must
treat temporal correlations on the same footing with spatial correlations, and it must fully
incorporate the principles of causality and covariance. This is the motivation for the
Quantum Temporal Probabilities (QTP) program, in development by our team [9–11], that
aims to construct a general quantum measurement theory based solely on QFT, and then,
to use this as a basis of a relativistic QIT.

Building a sound theoretical foundation for relativistic QIT is not just for the sake of
theoretical completeness. Relativistic effects are indispensable in hyper-sensitive quantum
experiments in space to account for the effects of motion (relative velocity, acceleration, or
rotation) and gravity on quantum resources [12–14].

Furthermore, recent research led to the realization that there is a new class of phe-
nomena that can provide novel direct information about the coexistence of gravity and
quantum theory. The usual estimate that quantum gravity effects become important at
the Planck length-scale, Lp = 1.6× 10−35 m, follows from the assumption that particles
manifest quantum behavior at length scales of the order of their de Broglie wavelength.
This assumption holds only for a subset of quantum states, relevant to a specific class of
experiments, for example, particle scattering experiments.

It is now possible to prepare particles in states that manifest quantum behavior at
mesoscopic or even macroscopic scales—see, for example, [15–20]. Schrödinger cat states
are an example of such states, i.e., quantum superpositions of localized states for particles
of mass M, with a macroscopic distance L of their centers. For such states, the effect of
gravity becomes stronger as L and M increase [21]. The search of gravitational effects in
such states is now possible, and this raises novel theoretical issues about the interplay of
gravity and quantum, especially in relation to locality, causality and information [22–25].
In this field also, the development of a relativistic QIT is crucial.

We contend that a relativistic QIT must be based on the information content of the
probability distributions pertaining to measurement on quantum fields. To this end we
need a general and practicable theory of QFT measurements. The prototype of such a theory
is Glauber’s photodetection theory [26,27] that has been immensely successful in quantum
optics. However, Glauber’s theory has a restricted domain of applicability (photons), and
it faces problems with causality in set-ups that involve photons traveling long distances
before measurements.

The QTP method—which we intend as a primary vehicle for incorporating QIT notions
in QFT—is an improvement over Glauber’s theory. The idea of QTP is to move beyond
the description of quantum theory in terms of single-time quantum states and rely on
the notion of histories. The simplest example of a history is a sequence of properties
(measurement outcomes) of a physical system at different moments of time, but they can
also describe time-extended properties of the system, which are essential for the formulation
of a relativistic quantum information theory.

A well-known histories formulation of quantum theory is the decoherent histories
framework that has been developed by Griffiths, Omnés, Gell-Mann and Hartle [28–30].
They represent histories by strings of projection operators at different moments of time,
and they define probabilities for sets of histories that satisfy a decoherence condition. The
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Histories Projection Operator theory provides a mathematically rigorous generalization for
decoherent histories that allows for the description of continuous time [31–33]. A histories
theory, developed by one of us (K.S.) [34,35], incorporated a novel temporal structure into
HPO theory and made it possible to define spacetime-extended quantum observables.

QTP employs the conceptual and mathematical tools of histories theory in order to
express quantum probabilities in terms of QFT correlation functions. The probability
density associated with n measurement events is a linear functional of a 2n unequal-time
field correlation function. The QTP method leads to probabilities in which the spacetime
point is treated as a random variable, i.e., the observables are time extended. This property is
absent from past quantum measurement formalisms that were designed for non-relativistic
quantum theory. It provides a more accurate representation of particle detection, and
it connects straightforwardly with the familiar formulations of QFT through functional
methods.

The structure of this paper is the following. In Section 2, we point out the main
differences between QFT and QIT in relation to causality and locality. In Section 3, we
analyze the difficulty in describing local measurements in QFT, which is the origin of all
difficulties in defining QIT concepts. In Section 4, we present some ideas and models on
QFT measurements, and in Section 5 we present the QTP program and its status.

2. Current Incompatibilities between QIT and QFT

In this section, we briefly describe the structures of QFT and QIT, in order to highlight
their current incompatibility.

QFT is a quantum theory that incorporates additional principles about the effect of
spacetime structure on the properties of quantum systems [36–38], with emphasis on the
causal propagation of signals. Among the principles of QFT, the following are particularly
relevant to the present discussion.

1. Observables are expressed in terms of quantum field operators Φ̂a(X), where X is a
point of Minkowski spacetime and a a label that includes both spacetime and internal
indices.

2. The quantum fields transform covariantly under a unitary representation of the
Poincaré group. The generators of the Poincaré group are local functionals of
the fields.

3. The Hamiltonian, i.e., the generator of time translations, has strictly positive spec-
trum. There is a unique ground state, the vacuum, that is invariant under Poincaré
transformations.

4. The spacetime causal structure is incorporated into the physical description
through the microcausality axiom. For X and X′ spacelike separated points, either
[Φ̂a(X), Φ̂a(X′)] = 0 or [Φ̂a(X), Φ̂a(X′)]+ = 0. The first case (commutator) corre-
sponds to bosons and the second (anticommutator) corresponds to fermions. Note
that the microcausality axiom is not necessarily equivalent to the statement that
observables in spacelike separated regions commute.

QFT is usually formulated in the framework of perturbative S-matrix theory, where
the main elements are time-ordered correlation functions. This formulation is useful for
most applications; however, it is not mathematically rigorous, and this leads to difficulties
in proving important results (e.g., the spin-statistics theorem or the CTP theorem) in
full generality. For this reason, the S-matrix formulation is complemented by axiomatic
frameworks that purport to derive QFT properties from a set of axioms. The principles
given above best fit Wightman’s axiomatization [39], where quantum fields are expressed as
operator-valued distributions on a Hilbert space. However, they can easily be implemented
in the more general axiomatization by Haag and Kastler [37] that formulates QFT through
C∗-algebras and also in the language of S-matrix theory. In the S-matrix description
of QFT, locality is incorporated primarily in the cluster decomposition property of the S-
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matrix. Cluster decomposition is a property of a specific hierarchy of correlation functions
Gn(X1, X2, . . . , Xn) defined by the S matrix; n = 0, 1, 2, . . .. It asserts that

Gn+m(X1, . . . , Xn, X′1, . . . , X′m) = Gn(X1, X2, . . . , Xn)Gn(X′1, X′2, . . . , X′m) (1)

if the cluster of points X1, . . . , Xn is spacelike separated from the cluster X′1, . . . , X′m. Cluster
decomposition follows from the locality of the Hamiltonian and the microcausality assump-
tion. Microcausality is also needed for the unitarity of the S-matrix. See Sections 4.4 and 3.5
in Reference [36].

If we compare the principles of QFT, in any of its formulations, with the usual axioms
of quantum theory (for example, [40,41]), we will notice a glaring absence. No QFT
framework contains a rule of state update after measurement, i.e., a rule for ‘quantum state
reduction’! This is a highly unsatisfactory state of affairs because no probabilistic theory is
complete without such a rule.

There are two reasons for the omission of a state update rule in QFT. First, the usual
rule of state reduction for non-relativistic physics is problematic in relativistic set-ups—see
the next section—and no replacing rule has yet been developed that works in full generality.
Second, most QFT predictions involve set-ups with a single state preparation and a single-
detection event, and they can be described in terms of the S-matrix with no need for a
state update rule. In particular, cross-sections in high-energy scattering experiments are
obtained from S-matrix amplitudes; the spectrum of composite particles, e.g., hadrons, is
determined by S-matrix poles; decay rates of unstable particles are determined from the
imaginary part of S-matrix poles. (However, if the decay rates are not constant, i.e., in
non-exponential decays, a proper measurement theory is needed in order to construct a
positive probability density for the decay time [42].)

On the other hand, in quantum optics, we need joint probabilities of detection in
order to describe phenomena that involve higher order coherences of the EM field, like
photon bunching and anti-bunching [43]. A first-principles calculation of joint probabilities
for multiple measurements is impossible without a state-update rule. In practice, joint
probabilities are expressed in terms of photodetection models, like Glauber’s, whose
derivation is rather heuristic and it avoids explicit state updating. However, planned
experiments in deep space [12–14] that involve measurement of EM field correlations will
arguably require a first-principles analysis of joint probabilities in order to take into account
the relative motion of detectors and delayed propagation at long distances.

QIT is not a closed theory that can be brought into an axiomatic form, rather it is a set
of ideas, techniques and method that explores the informational properties of quantum
systems. There is no intrinsic limitation as to why QIT cannot be applied to relativistic
systems, but historically its methods originate from non-relativistic quantum theory. The
most important set of methods is provided by the Local Operations and Classical Commu-
nication (LOCC) paradigm [44], which provides a concrete implementation of the notions
of locality and causality in QIT. The Hilbert space of any informational system is split as a
tensor product ⊗iHi, whereHi is the Hilbert space of the i-th subsystem. A local operation
on the i-th subsystem is a set of completely positive maps C(i)(a) on states ofHi, such that
∑a C(i)(a) = Î; here, a are the measurement outcomes of the operation. In some abstract
frameworks, local operations constitute the events in quantum systems [45,46].

Causality is implemented through the concept of classical communication. An oper-
ation C(i)(a) on a subsystem i may depend on the outcome b of an operation D(j)(b), if
the outcome can be communicated to i through a classical channel, prior to the operation
C(i)(a). As such, QIT carries the causal structure of classical communication, which is
taken as external to the system. QIT is usually not concerned with real-time quantum
signal propagation between disconnected subsystems, which, after all, can be implemented
consistently only in a relativistic theory. Causal correlations exist along timelike direc-
tions, while quantum correlations studied in QIT are spacelike, in the sense that they are
defined with respect to the single-time properties of the quantum state. Certainly, there
exist non-classical temporal correlations in quantum systems. They are identified by the



Entropy 2022, 24, 4 5 of 16

violation of the Leggett–Garg inequalities [47], or the violation of Kolmogorov additivity
for probabilities of multi-time measurements [48], a property sometimes referred to as
non-signaling in time [49]. However, a unified theory of all correlations in relation to their
spacetime character (timelike vs. spacelike) is currently missing. We believe that such a
unified perspective requires a QFT treatment of quantum information, starting with an
analysis of measurements.

The causal structure of a quantum informational system is specified by the lattice L of
all events. This consists of elements X1, X2, . . . , Xn, where events (local operations) take
place. L is equipped with the operation ≤: we say that X1 ≤ X2 if a classical signal from
X1 can reach X2.

For a relativistic system, one could identify the elements ofLwith points of Minkowski
spacetime M and ≤ with the usual spacetime causal ordering: X1 ≤ X2 if X2 in the future
light-cone of X1. Nonetheless, we have to keep in mind spacetime points in QFT serve an
additional function: they appear as arguments of the quantum fields and they are essential
to the implementation of dynamics through the representation of the Poincaré group. The
Poincaré group in QFT plays a double role as a symmetry of both dynamics and of the
causal structure. In standard QFT, this distinction is conceptual. However, when writing
QFT as a histories theory, it is possible to define two mathematically distinct representations
of the Poincaré group, one associated with the causal structure and one associated to the
dynamics [34,35,50].

A relativistic QIT that respects causality ought to express all operations/measurements
on the quantum system in terms of quantum fields. The lack of such a representation is the
main limitation of existing approaches to relativistic QITs [51–55].

3. Problems in Describing Measurements in QFT

In the previous section, we saw that the main challenge in the development of a
relativistic QIT is the description of measurements/operations in a way that is compatible
with locality and causality In this section, we explain why the description of measurements
in non-relativistic quantum theory cannot be transferred to relativistic QFT.

3.1. Non-Covariance of Projection Rule

It has long been known that the quantum state is genuinely different when recorded
from different Lorentz frames in set-ups that involve more than two quantum measure-
ments [56,57]. To see this, consider a description of a quantum system in Minkowski
spacetime, with respect to an inertial reference frame Σ. Let the system be prepared in a
state |ψ〉. The event A corresponds to the measurement of observable Â = ∑n an P̂n, where
an are the eigenvalues of Â and P̂n the associated projectors. The event B corresponds to
the measurement of observable B̂ = ∑m bmQ̂m, where bm are the eigenvalues of B̂ and Q̂m
the associated projectors. We assume that the two events are spacelike separated.

Let the outcome of the two measurements be an and bm, respectively. According to the
usual state-update rule, the quantum state evolves as follows.

|ψ〉 t < t(A)
c1P̂n|ψ〉 t(A) < t < t(B)

c2Q̂m P̂n|ψ〉 t > t(B),
(2)

where c1, c2 are constants. This evolution of the state is depicted in Figure 1a.
Let us now describe the same process in a different reference frame Σ′. The initial state,

the observables and the associated spectral projectors must be transformed to this frame;
we denote the transformed quantities by a prime. This transformation is implemented by a
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unitary representation of the Poincaré group, but this fact is irrelevant to present purposes.
In Σ′, the quantum state evolves as follows.

|ψ′〉 t′ < t′(A)
c′1Q̂′n|ψ′〉 t′(A) < t′ < t′(B)

c′2Q̂′m P̂′n|ψ′〉 t′ > t′(B),
(3)

where c′1, c′2 are constants. This evolution is depicted in Figure 1b.

Figure 1. Evolution of the quantum state under successive measurements in a relativistic system.
(a) Reference frame Σ. (b) Reference frame Σ′. (c) The spacetime region in which the two evolutions
are incompatible.

The two evolutions give incompatible results in the parallelogram that is indicated
in Figure 1c. In this spacetime region, the quantum state is c1P̂n|ψ〉 in the reference frame
Σ, and c′1Q̂′n|ψ′〉 in the reference system Σ′. Since X̂ and Ŷ are arbitrary, there is no
transformation that depends only on the reference frames that take one state to the other.
We obtain genuinely different evolutions for the quantum state in the two reference frames.

Nonetheless, this ambiguity in the quantum state does not lead to an ambiguity in
physical predictions, which are expressed in terms for probabilities. The joint probability
for the two measurement events is uniquely defined as 〈ψ|P̂mQ̂n|ψ〉, provided that the two
observables commute, [Â, B̂] = 0.

The ambiguity in the evolution of the quantum state has led Wigner and others [58]
to consider the probability rule for multi-time measurements and not the quantum states
as fundamental notions. This line of thought eventually led to formulations of quantum
theory in which the fundamental objects are histories of a quantum system [28–30] rather
than single-time states that evolve in time. Then, probabilities are encoded in the so-called
decoherence functional, a bilinear function in the space of histories.

From the QIT perspective, the loss of the quantum state is problematic. Crucial notions
like entropy and entanglement are defined in terms of the quantum state, hence, they also
share this ambiguity. Furthermore, if the notion of the quantum state is not fundamental,
then the mathematical objects that represent the external interventions on the system should
not be defined as completely positive maps acting on single-time states. Rather, they should
be defined at the level of multi-time measurements/histories and their probability rules.

3.2. Spatial Localization Apparently Conflicts Causality

In QIT, the notion of a local quantum system is essential. The natural interpretation of
localization in QFT is to consider a quantum system that is localized in a spatial region at a
moment of time. However, this notion leads to conflicts with causality, as it is shown by a
number of theorems.

Malement’s theorem [59] asserts that it is impossible to define localization observables,
i.e., projectors for a quantum system P̂∆ that correspond to a spatial region ∆, in a way that
is compatible with Poincaré symmetry and causality. Note that Malament’s theorem is
usually interpreted in terms of particle position observables, but it actually holds for any
localized observable.
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Theorems from Schlieder [60] and Hegerfeld [61] show that existing definitions of
localizing observables conflict with the requirement of relativistic causality. Assume, for
example, that localization is defined with respect to some spatial observable xxx, leading to a
sufficiently localized probability distribution ρ(xxx, t) for xxx at some moment of time t. Then,
time evolution leads to a probability distribution ρ(xxx, t′) that evolves superluminally at
latter times t′.

The most well-known set-up where localization appears to contradict causality is
Fermi’s two-atom problem. Fermi studied the propagation of information through quantum
fields in a system of two localized atoms [62]. He assumed that at time t = 0, atom A is in
an excited state and atom B in the ground state. He asked when B will notice A and leave
its ground state. In accordance with Einstein locality, he found that this happens only at
time greater than r. It took about thirty years for Shirokov to point out that Fermi’s result is
an artifact of an approximation [63].

Several studies followed with conclusions depending on the approximations used. It
was believed that non-causality was due to the use of bare initial states and that it would
not be present in a renormalized theory. However, Hegerfeldt showed that non-causality
is generic [64,65], as it depends only on the assumption of energy positivity and on the
treatment of atoms as localized in disjoint spatial regions—see also the critique in [66] and
a recent exactly solvable model [67].

The localization problem is not an artifact of a particle description; it holds irrespective
of whether one employs particle or field degrees of freedom. It is a fundamental issue of
QFT that pertains to the definability of local observables and the meaning of locality in
relation to quantum measurements. It has been recognized that localization observables
should not be viewed as attributes of particles (or even of their associated fields) but as
attributes of the interaction between particles (or fields) and a measuring apparatus [37,68].
In this perspective, a solution to the localization problem requires a consistent quantum
measurement theory for relativistic QFTs.

3.3. Ideal Measurements Lead to Violation of Causality

Sorkin has presented a scenario, in which the existence of ideal measurements in QFT
leads to a conflict with locality [69]. The state-update associated to an ideal measurement
transmits information faster than light. The idea is to consider operations on three spacetime
regions, O1, O2 and O3, such that O2 is a Cauchy surface, O1 is in the past of O2, O3 is in
the future of O2, but O1 and O3 are spacelike separated. In particular, if one acts with a
unitary operator on O1, one measures a global observable (corresponding, for example, to
subspaces of the QFT Hamiltonian) and then one local observable at O3. The probabilities
for the measurement outcomes at O3 depend on the intervention at O1, even if O1 and O3
are spacelike separated.

To avoid this problem one has to abandon the notion of ideal measurement in QFT and
its associated rule of state update. The problem here is that the notion of ideal measurement
is essential in the formulation of QIT. The maximum amount of information that can be
extracted from quantum systems corresponds to ideal measurements. In fact, the very
notion of a qubit depends implicitly on the accessibility of ideal measurements.

4. QFT Measurement Models

We argued that the development of consistent relativistic QIT requires a measurement
theory that respects causality and locality while being expressed in terms of quantum
fields. Furthermore, this measurement theory ought to be practical, i.e., it should lead to
non-trivial predictions for set-ups that are accessible now or in the near future. In this
section, we will give a brief overview of existing models of QFT measurements.

The earliest discussion of QFT measurements was by Landau and Peierls [70], who
derived an inequality for the localization of particles. Bohr and Rosenfeld criticized some
of their assumptions [71] and proved the crucial result that the measurement of field
properties requires a test particle of macroscopic scale, in the sense that its charge Q must
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be much larger than the charge quantum e. This analysis implies a distinction with no
classical analogue: we will call a microscopic physical system that interacts with a quantum
field a probe when it is too small to directly measure field properties and leave a macroscopic
record (for example, an electron or an ion). A probe can be measured by a macroscopic
apparatus after it has interacted with the field and thus provide information about the
field. We will call any system that can record field properties detector. According to the
Bohr–Rosenfeld analysis and by a later theorem of Yanase [72], any detector must be a
macroscopic system.

The first explicit model for QFT measurement was Glauber’s photodetection theory [26,27].
The theory was developed as a quantum generalization of the classical theory of coherence
for the EM field. It expresses unnormalized probabilities. for photon detection in terms of
the electric field operators E(X) and the field state |ψ〉. The probabilities are unnormalized
because most photons in the initial state escape detection.

The (unnormalized) probability density P(X) that a photodetector of photons with
polarization parallel to the vector n records a photon at spacetime point X is given by

P(X) = 〈ψ|E(−)(X)E(+)(X)|ψ〉, (4)

where E(+) is the positive frequency component and E(−) the negative frequency com-
ponent of the projected field vector field n · E(X). Similarly, the joint probability density
P(X1, X2) for one photon detected at X1 and another at X2 is given by

P(X1, X2) = 〈ψ|E(−)(X1)E(−)(X2)E(+)(X2)E(+)(X1)|ψ〉. (5)

The joint detection probability of photons at different moments of time is essential for
the definition of higher order coherences of the electromagnetic field and for describing
phenomena like the Hanbury-Brown–Twiss effect, photon bunching and anti-bunching [43].
The expressions above were originally suggested by the form of the leading-order terms in
perturbation theory for the interaction of the EM field with matter. They were not meant to
be universal but merely to model the behavior of a general class of photodetectors.

Glauber’s theory has been immensely successful in quantum optics. While it originally
refers to photons, its analogues can be constructed for all types of relativistic fields. Its
main limitation is that the field splitting into positive and negative frequency components
is non-local, and it follows from the so-called Rotating Wave Approximation (RWA) for the
interaction of the field to the detector. The RWA misrepresents the retarded propagation
of the electromagnetic field, and for this reason Glauber’s theory may face problems with
causality in set-ups that involve photons traveling long distances before measurements.

A very common class of models employed for QFT measurements are the Unruh–
deWitt (UdW) detectors [73,74]. They first appeared in the study of the Unruh effect, in
order to clarify the physical properties of the field that are experienced by accelerated
observers. In an Unruh–deWitt detector, the quantum field is coupled to a point-like system
that moves along a pre-determined spacetime trajectory X(τ), where τ is the trajectory
proper-time. The Hamiltonian is of the form Ĥ0 ⊗ Î + Î ⊗ ĥ + ĤI , where Ĥ0 is the field
Hamiltonian and ĥ is the Hamiltonian of the detector. The most general form of the
interaction Hamiltonian is

ĤI = Ô(X(τ))⊗ m̂, (6)

where Ô(X(τ)) is a scalar composite operator for the field and m̂ is a self-adjoint operator
on the detector Hilbert space.

The UdW coupling has been used to model the interaction of both probes and detectors
with quantum fields, sometimes with misleading terminology. The crucial difference is,
as it had been pointed out by Bohr and Rosenfeld [71], that in detectors the backreaction
from the field to the detector is negligible. The inclusion of backreaction leads to effective
open-system dynamics with dissipation and noise, which are appropriate to probes of the
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field, rather than detectors. For detectors, the leading order terms in perturbation theory
provide an accurate characterization of detection probabilities [75], and they provide a
rule of state-update [76] For a large sampling of applications of the UdW detectors, see
Reference [77].

UdW detector models are simple and practical. Their main limitation is that the
detector degrees of freedom are not described by a QFT. As a result, they may lead to
non-causal signals in systems that involve more than one detector [67,78–81].

Finally, we must note the analyses of the measurement process in relation to causality
and locality within algebraic QFT [82–85]. In particular, Reference [85] considers a system
and a probe, both described by a QFT. The two field systems are independent and they
interact within a bounded spacetime region. Their interaction can be described by an S
matrix, thus leading to correlations between observables on the system and records on the
probe. One can define probabilities for the latter using the measurement theory for some
operators that are well defined on the probe Hilbert space. This method is quite general
and it avoids the problems of ideal measurements that were described in Section 3.3 [86].
However, it has not yet been developed into a practical tool, leading to concrete physical
predictions, for example, photodetection probabilities.

5. The Quantum Temporal Probabilities Program

5.1. Key Ideas

In this section, we describe the QTP approach to QFT measurements, which we have
been developing for a number of years [9–11,87,88]. The QTP approach aims to construct
a framework for measurements that (i) works, in principle, for any QFT, (ii) allows for
a first-principles investigation of all issues of causality and locality in relation to QFT
measurements, and (iii) it can be directly applied to experiments of current interest.

The main points in the QTP approach are the following.

1. A measurement requires the interaction between a quantum system and a measure-
ment apparatus. The latter must be a macroscopic system that behaves effectively
as classical. This means that the pointer variables must be highly coarse-grained
observables and that the histories of measurement outcomes must satisfy appropriate
decoherence criteria, as established in the decoherent-histories approach to quantum
mechanics [28].

2. Physical measurements are localized in space and in time. For example, an elementary
solid state detector has a specific location in a lab and it records a particle at a specific
moment of time that is determined with finite accuracy. In principle, both position
and time can be random variables. For example, when directing a single particle
towards an array of detectors, both the elementary detector that records the particle
(i.e., the location of the detection record) and the time of recording vary from one
run of the experiments to the other. Hence, the predictions of the theory must be
expressed in terms of probability densities

P(X1, λ1; X2, λ2, . . . , Xn, λn), (7)

for multiple detection events. Here, Xi are spacetime points, λi stand for any other
observable that is being measured and P is a probability density with respect to both
Xi and λi.

3. Hence, QFT measurements require the construction of probabilities for observables
that are intrinsically temporal. This is why QTP grew out of a formalism for the
description of the time-of-arrival in quantum theory [89]. The key idea is to distinguish
between the time parameter of Schrödinger equation from the time variable associated
to particle detection [34,35]. The latter time variable is then treated as a macroscopic
quasi-classical one associated to the detector degrees of freedom. Hence, although
the detector is described in microscopic scales by quantum theory, its macroscopic
records are expressed in terms of classical spacetime coordinates.
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5.2. The Probability Formulas

QTP expresses quantum probabilities in terms of QFT correlation functions. The
probability density associated with n measurement events is a linear functional of a 2n
unequal-time field correlation function. For example, the probability density P(X) that a
particle is detected at spacetime point X is of the form

P(X) =
∫

d4ξK(Y)G2(X− 1
2

ξ, X +
1
2

ξ), (8)

where K(ξ) is a kernel that contains all information about the structure and state of motion
of the detector, and

G2(X, X′) = 〈ψ|Ô(X)Ô(X′)|ψ〉, (9)

is the (two-point) Wightman function associated to a local composite operator Ô(X) on the
Hilbert space of the quantum field. The composite operator describes the coupling of the
system to the detector.

Equation (8) can be derived from a first-principles decoherent histories analysis of
the measurement process, in which the spacetime coordinate of the measurement event
is a coarse-grained macroscopic observable—see [11] and also [90] for full details in the
derivation. Equation (8) is the leading-order term in a perturbation expansion with respect
to the system-apparatus coupling. Like in Glauber’s theory, it is useful to treat this term as
the signal of our measurement theory and to treat higher order terms as noise rather than
as corrections. A heuristic derivation of Equation (8) is contained in the Appendix A.

Equation (8) defines a Positive Operator Valued Measure (POVM) on the field Hilbert
space—a POVM is the most general way of rigorously defining quantum probabilities
associated to measurements. From this POVM, we can derive a novel relativistic time–
energy uncertainty relation [11], localization measures for massive relativistic particles, and
define tunneling time for relativistic particles [87].

It is important to emphasize that the kernels K are not arbitrary functions, but they are
derived from the physical characteristics of the detector. For example, the kernel K(ξ) that
appears in Equation (8) is defined as

K(ξ) = 〈ω|e−ip·ξ |ω〉, (10)

where p is the four-momentum operator for the detector degrees of freedom and |ω〉 an
appropriate vector state on the Hilbert space of the detector. The fact that K has this specific
form is crucial for proving important properties of the probability distribution (8).

For n detection events at spacetime points X1, X2, . . . , Xn, the QTP probability density is

Pn(X1, X2, . . . , Xn) =
∫

d4Y1d4Y2 . . . d4YnK1(Y1)K2(Y2) . . . Kn(Yn)

G2n(X1 −
1
2

Y1, X2 −
1
2

Y2, . . . , Xn −
1
2

Yn; X1 +
1
2

Y1, X2 +
1
2

Y2, . . . , Xn +
1
2

Yn), (11)

where K1, K2, . . . Kn are kernels associated to the n detectors, and

G2n(X1, X2, . . . , Xn; X′1, X′2, . . . , X′n) =

〈ψ|A[Ô(X1)Ô(X2) . . . Ô(Xn)]T[Ô(X′1)Ô(X′2) . . . Ô(X′n)]|ψ〉, (12)

is a 2n-point function of which the first n indices are anti-time-ordered and the last n
indices are time-ordered. Versions of Equation (11) have been employed for the analysis of
temporal aspects of quantum entanglement in non-relativistic systems [10], quasi-classical
paths in quantum tunneling [88], and correlations in Hawking radiation [8].

Correlation functions like Equation (12) do not appear in S-matrix theory, as they
describe real-time causal evolution. They involve both time-ordered and anti-time-ordered
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entries, as in the so-called Schwinger–Keldysh formalism [91,92], now broadly used in
many areas of physics from condensed matter physics to cosmology [93]. The Schwinger–
Keldysh formalism has close links to histories theory, for example, the associated generating
functional is the functional Fourier transform of the decoherence functional in the associated
histories theory [94].

The key feature of the QTP probability formula is the explicit relation between a
macroscopic notion of causality and the cluster decomposition of the correlation functions
(12). Consider, for simplicity, the case n = 2. If X1 and X2 are spacelike separated, then we
expect that

P2(X1, X2) = P1(X1)P2(X2) (13)

Let us assume that the kernels K1 and K2 vanish outside a region of compact support C.
For any Y1, Y2 ∈ C, we have two clusters: one consisting of points X1 ± 1

2 Y1 and the other
consisting of points X2 ± 1

2 Y2. If the two clusters are spacelike separated for all Y1, Y2 ∈ C,
then the cluster decomposition property for G2n implies the locality condition (13). Hence,
if X1 and X2 have a strong spacelike separation, i.e., X1 − X2 is sufficiently far from the
lightcone, causality is expected.

However, the problem is that physical kernels K1 and K2 may not be of finite support,
possibly leading to small violations of Equation (13). This does not necessarily imply
a violation of causality, because Equation (13) does not take into account the noise from
higher order interaction processes. A violation of causality would require a faster-than-light
signal. We conjecture that, with appropriate constraints on the kernels K1 and K2, most, if
not all, apparent violations of causality will be so small as to be hidden by the noise from
higher-order processes.

6. Conclusions

We have argued that the extension of quantum information theory to relativistic
systems—including quantum gravity—requires the formulation of a consistent and prac-
ticable quantum measurement theory for QFT. We presented the challenges that must be
overcome by such a theory, and we presented the main ideas of the QTP program that aims
to provide such a theory.

This issue is of particular importance for deep space experiments, which provide a
new frontier for quantum information science and for fundamental physics, especially
quantum foundations. These experiments will allow us to measure quantum correlations
at distances of the order of 105km and for detectors with large relative velocities. The
Deep Space Quantum Link (DSQL) mission envisions such experiments with photons that
involve either Earth-satellite- or intra-satellite communications [13,14]. These experiments
will allow us to test for the first time the foundations of QFT in relation to causality and
locality and by extension to test between different photodetection models appropriate for
this novel regime.

Deep space experiments will also enable us to understand the influence of relativistic
effects on quantum resources, like entanglement. These effects include relative motion of
detectors, retarded propagation at long distance, distinction between timelike and spacelike
correlations and gravity gradients. It will also allow us to consider novel types of quantum
correlations that are more ”relativistic” in nature, e.g., correlations between temporal
variables and qubit variables. A consistent QFT measurement theory ought to provide
precise predictions for all effects of this type.
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Appendix A. An Elementary Derivation of the QTP Probability Formula

Consider a QFT described by a Hilbert space F , which carries a unitary representation
of the Poincaré group. Working in the Heisenberg picture, we denote the fields by φ̂r(X).

The apparatus is a physical system described by a Hilbert space K. The apparatus
follows a world tubeW in Minkowski spacetime. We assume that the size of the apparatus
is finite but still much larger than the scale of microscopic dynamics (the atomic scale
usually) so that it is meaningful to treat the ground state |Ω〉 of the apparatus as invariant
under spatial translations generated by the energy-momentum vector p̂µ for the apparatus.
We also assume that there is a gap between the ground state and any excited state of
the apparatus.

We assume a coupling between the system and the apparatus with support only in
a small spacetime region around point X. The finite spacetime extent of the coupling is
arguably unphysical, but it serves to mimic the effect of a detection record localized at
X. To leading order in perturbation theory, the resulting probabilities coincide with those
obtained from a more detailed modeling of the measurement act through localized POVMs
that are correlated to position [11]. The interaction term is

V̂X =
∫

f (X, Y)Ôa(Y)⊗ Ĵa(Y), (A1)

where Ôa(X) is a composite operator on F that is local with respect to the field φ̂r(X) and
a is a label that includes both spacetime and internal indices. The current operators Ĵa(X)
are defined on K. We must assume that 〈ω| Ĵa(X)|ω〉 = 0

The switching functions f (X, Y) are dimensionless; they depend on the motion of
the apparatus and they vanish outside the apparatus world tube and at times when the
interaction is switched off. For an apparatus that is static in a specific inertial frame, we can
simply choose f (X, Y) = f (X−Y).

For an elementary detector, i.e., a detector that supports a single detection record, it is
convenient to work with a Gaussian f ; for X = (t, x),

f (t, x) = exp
(
− t2

2δ2
t
− |x|

2

2δ2
x

)
, (A2)

where δt is the duration of the interaction and δx is the size of the detector. Both are
assumed to be macroscopic scales, in order to make contact with the detailed measure-
ment theory employed in QTP, in particular with the existence of macroscopic records of
observation [11].

The Gaussian switching functions satisfy a useful identity

f (X) f (X′) = f 2
(

X + X′

2

)√
f (X− X′). (A3)

The volume υ of the spacetime region in which the field-apparatus interaction is switched
on is

υ =
∫

dtd3x f (t, x)2 = π2δtδ
3
x. (A4)

We note that the function F(X) := 1
υ d2(X) is a normalized probability density on M.
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The probability Prob(X) that the detector becomes excited after the interaction is
completed is, to leading order in perturbation theory,

Prob(X) =
∫

d4Y1d4Y2 f (X−Y1) f (X−Y2)Gab(Y1, Y2)〈Ω| Ĵa(Y1)
(

Î − |0〉〈0|
)

Ĵb(Y2)|Ω〉, (A5)

where

Gab(X, X′) = 〈ψ|Ôa(X)Ôb(X′)|ψ〉, (A6)

is a correlation function for the quantum field. We have assumed a factorized initial state
|ψ〉 ⊗ |Ω〉 for the total system; |ψ〉 is an arbitrary state for the field.

Let X = 0 be a reference point on the world-tube of the apparatus. Then, we can write
Ĵa(X) = e−i p̂·X Ĵa(0)ei p̂·X . For a translation-invariant |0〉, 〈Ω| Ĵa(Y1)

(
Î − |Ω〉〈Ω|

)
Ĵb(Y2)|Ω〉

= Kab(Y2 −Y1), where

Kab(Y) := 〈Ω| Ĵa(0)e−i p̂·Y Ĵb(0)|Ω〉 − 〈Ω| Ĵa(0)|Ω〉〈Ω| Ĵb(0)|Ω〉. (A7)

The probability Prob(X) of Equation (A5) is not a density with respect to X; X appears as
a parameter of the switching function. In classical probability theory, we could define an
unnormalized probability density W(X) with respect to X by dividing Prob(X) with the
effective spacetime volume υ. Then, using Equation (A3) we find,

W(X) =
∫

d4XF(X− X′)P(X′), (A8)

where

P(X) =
∫

d4ξ
√

f (ξ)Kab(Y)Gab(X− 1
2

ξ, X +
1
2

ξ). (A9)

The definition (A8) of a spacetime density with respect to time is not rigorous for quantum
probabilities, because it involves the combination of probabilities defined with respect
to different experimental set-ups, i.e., different switching functions for the Hamiltonians.
There are numerous theorems asserting that such combinations may not be acceptable in
quantum theorem. Nonetheless, Equation (A8) can be derived as a genuine probability
density in the context of the QTP method [9–11], as long as we restrict to the leading order
of perturbation theory.

QTP leads to different predictions from the method presented here at higher orders of
perturbation theory. In QTP, the interaction is present at all times, as it should be in any
first-principles derivation. The smearing functions f (X) are not interpreted in terms of a
switching-on of the interaction, but they describe the sampling of a temporal observable
associated to a point X of the apparatus’ world tube through a detection record. Sampling
functions in QTP incorporate the coarse-graining necessary for the definition of classicalized
pointer variables.

The probability distribution W(X) is the convolution of P(X) with the probability
density F(X) that incorporates the accuracy of our measurements classically. If P(X) is
non-negative and the scale of variation in X is much larger than both δt and δx, we can
treat P(X) as a finer-grained version of W(X) and employ this as our probability density
for detection.

The kernel Kab(ξ) is typically characterized by some correlation length-scale ` and
some correlation time-scale τ, such that Kab(ξ) ' 0 if |t(ξ)| >> τ or |x(ξ)| >> `. Both
scales ` and τ are microscopic and characterize the constituents of the apparatus and their
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dynamics. If ` << σx and τ << σt, then Kab(ξ)
√

f (ξ) ' Kab(ξ) and the QTP probability
formula simplifies to

P(X) =
∫

d4ξKab(Y)Gab(X− 1
2

ξ, X +
1
2

ξ). (A10)

References
1. Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black Holes: Complementarity or Firewalls? J. High Energy Phys. 2013, 2, 62.

[CrossRef]
2. Solodukhin, S.N. Entanglement Entropy of Black Holes. Living Rev. Relativ. 2011, 14, 8. [CrossRef]
3. Unruh, W.G.; Wald, R.M. Information Loss. Rep. Prog. Phys. 2017, 80, 092002. [CrossRef]
4. Calabrese, P.; Cardy, J. Entanglement Entropy and Quantum Field Theory: A Non-Technical Introduction. Int. J. Quant. Inform.

2006, 4, 429. [CrossRef]
5. Casini, H.; Huerta, M. Entanglement Entropy in Free Quantum Field Theory. J. Phys. A 2009, 42, 504007. [CrossRef]
6. Hollands, S.; Sanders, J. Entanglement Measures and Their Properties in Quantum Field Theory; Springer: Berlin/Heidelberg, Germany,

2018.
7. Chitambar, E.; Gour, G. Quantum Resource Theories. Rev. Mod. Phys. 2019, 91, 025001. [CrossRef]
8. Anastopoulos, C.; Savvidou, N. Multi-Time Measurements in Hawking Radiation: Information at Higher-Order Correlations.

Class. Quant. Grav. 2020, 37, 025015. [CrossRef]
9. Anastopoulos, C.; Savvidou, N. Time-of-Arrival Probabilities for General Particle Detectors. Phys. Rev. 2012, A86, 012111.

[CrossRef]
10. Anastopoulos, C.; Savvidou, N. Time-of-Arrival Correlations. Phys. Rev. 2017, A95, 032105. [CrossRef]
11. Anastopoulos, C.; Savvidou, N. Time of arrival and Localization of Relativistic Particles. J. Math. Phys. 2019, 60, 0323301.

[CrossRef]
12. Rideout, D.; Jennewein, T.; Amelino-Camelia, G.; Demarie, T.F.; Higgins, B.L.; Kempf, A.; Kent, A.; Laflamme, R.; Ma, X.;

Mann, R.B.; et al. Fundamental Quantum Optics Experiments Conceivable with Satellites—Reaching Relativistic Distances and
Velocities. Class. Quantum Grav. 2012, 29, 224011. [CrossRef]

13. Mazzarella, L.; Mohageg, M.; Strekalov, D.V.; Zhai, A.; Israelsson, U.; Matsko, A.; Yu, N.; Anastopoulos, C.; Carpenter, B.;
Gallicchio, J.; et al. Goals and Feasibility of the Deep Space Quantum Link. In Proceedings of the SPIE 11835, Quantum
Communications and Quantum Imaging XIX, San Diego, CA, USA, 1 August 2021.

14. Mohageg, M.; Mazzarella, L.; Strekalov, D.V.; Yu, N.; Zhai, A.; Johnson, S.; Anastopoulos, C.; Gallicchio, J.; Hu, B.L.; Jennewein, T.
The deep space quantum link: Prospective fundamental physics experiments using long-baseline quantum optics. arXiv 2021,
arXiv:2111.15591.

15. Leggett, A.J. Testing the Limits of Quantum Mechanics: Motivation, State of Play, Prospects. J. Phys. C Solid State Phys. 2002, 14,
R415. [CrossRef]

16. Leggett, A.J. Probing Quantum Mechanics Towards the Everyday World: Where do we Stand? Phys. Scr. 2002, 102, 69. [CrossRef]
17. Romero-Isart, O.; Pflanzer, A.C.; Blaser, F.; Kaltenbaek, R.; Kiesel, N.; Aspelmeyer, M.; Cirac, J.I. Large Quantum Superpositions

and Interference of Massive Nanometer-Sized Objects. Phys. Rev. Lett. 1022, 107, 020405. [CrossRef] [PubMed]
18. Arndt, M.; Hornberger, K. Testing the Limits of Quantum Mechanical Superpositions. Nat. Phys. 2014, 10, 271. [CrossRef]
19. Chen, Y. Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics. J. Phys. B At. Mol. Opt. Phys.

2013, 46, 104001. [CrossRef]
20. Kaltenbaek, R.; Aspelmeyer, M.; Barker, P.F.; Bassi, A.; Bateman, J.; Bongs, K.; Bose, S.; Braxmaier, C.; Brukner, Č.; Christophe, B.;
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