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By exhibiting a violation of a novel form of the Bell-CHSH inequality, Żukowski has recently
established that the quantum correlations exploited in the standard perfect teleportation protocol
cannot be recovered by any local hidden variables model. Allowing the quantum channel state in
the protocol to be given by any density operator of two spin-1/2 particles, we show that a violation
of a generalized form of Żukowski’s teleportation inequality can only occur if the channel state,
considered by itself, violates a Bell-CHSH inequality. On the other hand, although it is sufficient
for a teleportation process to have a nonclassical fidelity—defined as a fidelity exceeding 2/3—that
the channel state employed violate a Bell-CHSH inequality, we show that such a violation does not
imply a violation of Żukowski’s teleportation inequality or any of its generalizations. The implication
does hold, however, if the fidelity of the teleportation exceeds 2/3(1 + 1/2

√
2) ≈ .90, suggesting the

existence of a regime of nonclassical values of the fidelity, less than .90, for which the standard
teleportation protocol can be modelled by local hidden variables.

PACS numbers: 03.65.Bz, 03.67.-a

I. INTRODUCTION

It is well-known that the quantum correlations pre-
dicted by pure entangled states violate Bell-CHSH in-
equalities [1] and, therefore, cannot be recovered by any
local hidden variables model. Yet these same correlations
cannot by themselves be used to transmit information be-
tween the locations of the entangled systems. This has
sometimes been taken to suggest that quantum correla-
tions are not inherently ‘nonlocal’, but simply ‘nonclassi-
cal’. On the other hand, it is a striking fact that quantum
correlations can used, as in quantum teleportation, to
increase the information carrying capacity of a classical
channel. This new operational manifestation of quan-
tum entanglement invites a deeper analysis of the extent
to which the quantum teleportation process itself can be
modelled classically, and what role, if any, nonlocality
must play in explaining the success of teleportation.

The standard quantum teleportation protocol runs as
follows [2]. Consider three qubit systems 1, 2, and 3, fix
an arbitrary direction in space to define the z-direction
for each qubit, and let |↑〉 and |↓〉 denote the eigenstates
of σz. We can imagine that all three qubits are initially in
the possession of someone named Clare, who follows the
instructions of Alice and Bob to prepare qubits 2 + 3 in
a quantum channel state given by some density operator
D of their choice, and prepares qubit 1 in a pure state
|φ〉, unknown to Alice or Bob. Clare then feeds qubits

2 and 3 to Alice and Bob, respectively, to use as their
“quantum channel”, and Clare passes qubit 1 to Alice
so that she can teleport its unknown state to Bob. To
execute the protocol, Alice measures the “Bell operator”
on qubits 1 + 2, which has eigenstates [3]:

|Φ±〉 = 1/
√

2(|↑〉 |↑〉 ± |↓〉 |↓〉), (1)

|Ψ±〉 = 1/
√

2(|↑〉 |↓〉 ± |↓〉 |↑〉), (2)

and she obtains one of four results n = 1, ..., 4 corre-
sponding to the eigenstates above, with probabilities pn.
For each outcome n, Alice then sends classical informa-
tion, via (say) a normal telephone call, instructing Bob
to perform a corresponding unitary transformation Un on
his qubit 3. Having followed Alice’s instructions, Bob’s
qubit will be left in one of four states Dn.

If the quantum channel state D is a maximally entan-
gled pure state, the unitaries Un can always be chosen
so that no matter what Alice’s Bell operator measure-
ment outcome, Bob will have prepared his particle by
the completion of the protocol in exactly the same state
Dn = |φ〉 〈φ| (n = 1, ..., 4) as the state of qubit 1 that Al-
ice teleported. For example, when D is the singlet state,
qubit 3 has an equal probability of being in one of the four
states |φ〉 〈φ|, σx |φ〉 〈φ|σx, σy |φ〉 〈φ| σy, σz |φ〉 〈φ|σz, so
that Bob’s performing, respectively, one of the four uni-
tary transformations

U1 = I (|Ψ−〉), U2 = σx (|Φ−〉),
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U3 = σy (|Φ+〉), U4 = σz (|Ψ+〉), (3)

suffices for perfect teleportation.
For a mixed and/or non-maximally entangled quantum

channel state D, perfect teleportation of an unknown
state cannot be achieved (cf., e.g., [4]). However, one
can introduce a natural measure of success for any fixed
“strategy” n 7→ Un of associating unitary operators Un
with Alice’s Bell operator outcomes. This measure is the
fidelity F{Un}(D) of transmission to Bob, given by the
uniform average, over all possible unknown states |φ〉, of
the quantity

∑4
n=1 pnTr(Dn |φ〉 〈φ|) [5], [6]. Taking the

supremum of F{Un}(D) over all possible strategies for as-
sociating unitary operators Un with Alice’s Bell operator
outcomes, one obtains a number, Fmax(D), represent-
ing the maximum achievable fidelity of teleportation for
a given fixed quantum channel state D [7]. A density
matrix D is then regarded as useful for nonclassical tele-
portation just in case Fmax(D) > 2/3, where 2/3 is the
maximum achievable fidelity without the quantum chan-
nel, or when a classical channel is substituted in its place
[5], [8].

Let us return, for the moment, to the case of perfect
teleportation, where D is a maximally entangled pure
state and Fmax(D) = 1. The striking thing is that Al-
ice only directly communicates to Bob two classical bits
of information when she conveys to him one of the four
integers n = 1, ..., 4. (We assume, as usual, that they
have agreed in advance on a strategy n 7→ Un.) Indeed,
one might think that Bob’s sure-fire reconstruction of the
unknown state |φ〉 as a state of his qubit 3 entails that
he must (somehow) have actually received a full qubit’s
worth of information (i.e., the information contained in
specifying the two of infinitely many possible real num-
bers needed to fix the normalized expansion coefficients
of the state |φ〉). A natural, though perhaps naive, ex-
planation would be that the correlations inherent in a
maximally entangled pure state carry the extra informa-
tion to Bob instantaneously and nonlocally when that
state “collapses” as a result of Alice’s Bell operator mea-
surement. Indeed, the view that the quantum channel
itself carries some share of the net information received
by Bob appears to have been favoured by the inventors
of teleportation ( [2], p. 1896; cf. also [5], p. 797), and
is the springboard for a number of different explanations
of teleportation from the point of view of particular in-
terpretations of quantum theory ( [9]– [11]). There are
sceptics, however, who have challenged the view that per-
fect teleportation requires nonlocal information transfer
of any sort ( [12]– [14]). Moreover, one should bear in
mind that the information about the unknown state |φ〉
“carried” by Bob’s qubit at the completion of a single run
of the protocol is not actually accessible to him, since it
is well-known that there is no way for him to discern the
quantum-mechanical state of a single system.

In the case of explaining imperfect nonclassical tele-

portation, where 1 > Fmax(D) > 2/3, the situation is
more complicated, and appears to favour the sceptics.
While D must still be entangled (i.e., not a convex com-
bination of product states of 2 +3), D can still satisfy all
Bell-CHSH inequalities [5]

|
〈
σ̄1 ⊗

(
σ1 + σ2

)
+ σ̄2 ⊗

(
σ1 − σ2

)〉
D
| ≤ 2, (4)

where the σ̄’s and σ’s denote arbitrary spin observables
of qubits 2 and 3, respectively, and 〈·〉D denotes expec-
tation value in the state D. More precisely, if we let
β(D) ∈ [2, 2

√
2] be the maximum over all Bell-CHSH ex-

pressions of the above form, then Fmax(D) > 2/3 does
not imply β(D) > 2, even though the converse implica-
tion does hold [7]. So nonclassical teleportation is possi-
ble even in the absence of an independent argument for
the nonlocality of the quantum channel state via Bell’s
theorem. Notwithstanding this, one could adopt the
view that the condition Fmax(D) > 2/3 itself should
be viewed as sufficient for thinking of the channel state
D as nonlocal (cf. [5], p. 799). However, the sceptic is
likely to point out that this gives further support to his
view that nonclassical teleportation can occur without
the involvement of nonlocality (cf. [12], p. 6).

All parties to this discussion are agreed that good tele-
portation is made possible by the fact that the correla-
tions of an entangled quantum channel state D are non-
classical. They only diverge on the question of whether
or not the standard teleportation protocol necessarily in-
volves nonlocality. Recently, Żukowski [15] has made an
interesting attempt to force this issue of nonlocality by
asking an extremely relevant question: Can the corre-
lations of D that are actually involved in the standard
teleportation protocol be recovered in a local hidden vari-
ables model? Żukowski attacks this question by making
a novel use of a Bell-CHSH inequality, which we explain
in the next section. The two sections following, Sections
III and IV, investigate the connection between a general-
ized form of Żukowski’s teleportation inequality and the
standard Bell-CHSH inequality for the channel state. In
particular, we show that a violation of the former im-
plies that the channel state satisfies β(D) > 2, but that
β(D) > 2 does not imply a violation of even our gener-
alized form of Żukowski’s teleportation inequality. How-
ever, in Section V we show that such a violation occurs
whenever the fidelity Fst(D) > 2/3(1 + 1/2

√
2) ≈ .90,

where Fst is the fidelity associated with the standard
choice for Bob’s unitary operators given in (3). The im-
plications of these results for the interpretation of quan-
tum teleportation as nonlocal are discussed in Section
VI.

II. ŻUKOWSKI’S ARGUMENT SIMPLIFIED

In effect, Żukowski considers the following pair of ±1-
valued functions of Alice’s Bell operator:
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A1 = |Ψ−〉 〈Ψ−|+ |Φ−〉 〈Φ−|
− |Ψ+〉 〈Ψ+| − |Φ+〉 〈Φ+| , (5)

A2 = |Ψ+〉 〈Ψ+|+ |Φ−〉 〈Φ−|
− |Ψ−〉 〈Ψ−| − |Φ+〉 〈Φ+| . (6)

The operator A1 (A2) coincides with the observable that
represents the first (second) component of the vector ob-
servable −→A introduced by Żukowski ( [15], Eqn. (12)).
It is easy to see that the information obtained in a joint
measurement of A1 and A2 on qubits 1 + 2 is equivalent
to the information one would obtain through a single Bell
operator measurement. So we can equally well think of
Alice as jointly measuring the observables Aj (j = 1, 2)
in her attempt to teleport the unknown state to Bob.

Now take D to be the maximally entangled state
|Φ+〉 〈Φ+|, consider two alternative unknown states given
by

|φ1〉 =
1√
2

(|↑〉+ |↓〉), (7)

|φ2〉 =
1√
2

(|↑〉+ i |↓〉), (8)

and consider the following two alternative spin compo-
nents of qubit 3,

σ1 = e−iπ/4 |↑〉 〈↓|+ eiπ/4 |↓〉 〈↑| , (9)
σ2 = eiπ/4 |↑〉 〈↓|+ e−iπ/4 |↓〉 〈↑| . (10)

(It is easily checked that the choices in (7)–(10) corre-
spond to the choices Żukowski ( [15], p. 2) makes for
the parameters he labels as β, φ, β′, φ′.) Żukowski shows
that the following Bell-CHSH-type inequality∣∣∣∣ 〈A1 ⊗ σ1〉|φ1〉〈φ1|⊗D + 〈A1 ⊗ σ2〉|φ1〉〈φ1|⊗D

+ 〈A2 ⊗ σ1〉|φ2〉〈φ2|⊗D − 〈A2 ⊗ σ2〉|φ2〉〈φ2|⊗D

∣∣∣∣ ≤ 2,

(11)

which we henceforth for convenience call a “Bell tele-
portation inequality”, is violated by a factor of

√
2.

Żukowski appears to interpret this violation as signify-
ing that the quantum component of a perfect telepor-
tation process involving the maximally entangled state
D = |Φ+〉 〈Φ+| must be nonlocal.

This interpretation is not without plausibility. The
idea is that to assess the nonlocality of D qua the
quantum component of Alice’s teleportation process, we
should continue to have Alice measure the Bell opera-
tor but drop the classical channel, her phone call, from
consideration. Although this frustrates any attempt to
complete the process by Bob performing an appropri-
ate unitary transformation on his qubit, it does not pre-
clude asking whether what remains of the process can
be modelled by a local hidden variables theory for any
conceivable unknown state. One can imagine, then, that

after preparing the quantum channel state, Clare ran-
domly feeds to Alice one of two unknown states |φj〉, and
makes a covert agreement with Bob that he should sim-
ply ignore all of Alice’s phone calls and randomly mea-
sure one of two spin components σj on his qubit. Af-
ter many measurement trials, Clare and Bob then reveal
their charade to Alice, who grudgingly agrees to com-
bine the information from her Bell operator outcomes
with their information to see whether the Bell telepor-
tation inequality (11) is violated. When they find that
it is violated, the standard argument for Bell’s theorem
(cf. [15], Eqns. (16),(17)) shows that no hidden variables
model according to which: (i) Alice’s and Bob’s measure-
ment outcomes are statistically independent at the level
of the hidden variables; (ii) Alice’s outcomes are indepen-
dent of the spin component Bob measures; and (iii) Bob’s
outcomes are independent of the unknown state Alice at-
tempts to teleport, can possibly account for the observed
correlations.

Right after pointing out that inequality (11) is violated
in the state D = |Φ+〉 〈Φ+|, Żukowski remarks:

It is an interesting fact, that needs further in-
vestigation, that the Bell inequality presented
here is violated by the same factor

√
2 as the

CHSH inequality for the usual Bell theorem
involving a pair of particles in a maximally
entangled state. This may imply that the
quantum component of the teleportation pro-
cess cannot be described in a local and real-
istic way, as long as the initial state of B [2]
and C [3] admits no such model ( [15], p. 3).

Żukowski’s conjecture appears to be that if the channel
state violates any local hidden variables theory inequal-
ity, perhaps even collective measurement ones, then the
correlations involved in the quantum component of tele-
portation will also violate a local hidden variables theory
inequality. If this is indeed the conjecture, it would be
difficult to decide, since we would need to take into ac-
count all possible local hidden variables theories inequali-
ties for all possible measurement protocols on the channel
particles alone and determine whether a violation of any
such inequality suffices to prevent the recovery, within a
local hidden variables model, of the correlations of the
channel state that are exploited in the teleportation pro-
cess. Consequently, we narrow our focus to the standard
Bell-CHSH inequality for the channel state and a gen-
eralized form of (11)’s Bell teleportation inequality for
qubits 1–3 where the observables A1 and A2 are allowed
to be any bivalent functions of Alice’s Bell operator.
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III. VIOLATION OF A BELL TELEPORTATION
INEQUALITY IMPLIES VIOLATION OF A

BELL-CHSH INEQUALITY BY THE CHANNEL
STATE

We first generalize Żukowski’s scheme to include a
wider class of observables compatible with Alice’s Bell
operator, by letting Aj (j = 1, 2) be any pair of self-
adjoint unitary ‘spin’ operators that are each bivalent
functions of her Bell operator. Thus,

Aj = aj |Ψ+〉 〈Ψ+|+ bj |Ψ−〉 〈Ψ−|
+cj |Φ+〉 〈Φ+|+ dj |Φ−〉 〈Φ−| , j = 1, 2, (12)

where aj, bj, cj, dj = ±1. Now fix, once and for all, the
channel state density operator D. By analogy with β(D),
define the number τ(D) to be the maximum of the Bell
teleportation expression∣∣∣∣ 〈A1 ⊗ σ1〉|φ1〉〈φ1|⊗D + 〈A1 ⊗ σ2〉|φ1〉〈φ1|⊗D

+ 〈A2 ⊗ σ1〉|φ2〉〈φ2|⊗D − 〈A2 ⊗ σ2〉|φ2〉〈φ2|⊗D

∣∣∣∣ (13)

over all choices of the unknown state vectors |φj〉 and all
choices of the bivalent Bell operator functions Aj , i.e., all
±1 choices for the numbers aj , bj, cj, dj.

Notice that, since there is a unitary operator U on the
state space of qubit 1 mapping |φ2〉 to |φ1〉, (13) equals∣∣∣〈A1 ⊗ (σ1 + σ2) + (UA2U

−1)⊗ (σ1 − σ2)
〉
|φ1〉〈φ1|⊗D

∣∣∣ ,
(14)

which is just the absolute value of the expectation value
of a Bell-CHSH operator on the bipartite system (1 +
2) + 3. Thus, necessarily, τ(D) ∈ [2, 2

√
2]. Note also

that if the unknown states |φ1〉 and |φ2〉 are compatible
(i.e., either the same up to an irrelevant phase or or-
thogonal), then U can always be chosen so that UA2U

−1

is again a bivalent function of the Bell operator. This
is most easily seen when |φ1〉 = |↑〉 and |φ2〉 = |↓〉, in
which case the unitary that simply permutes these two z-
eigenstates maps the four Bell operator eigenspaces into
each other. (The general case can be reduced to this
one by first applying a unitary transformation to the
unknown states to bring them in line with the z-basis.)
Thus, when the two alternative unknown states are com-
patible, [A1, UA2U

−1] = 0. In that case, it follows that
expression (14), and thus (13), cannot exceed 2, and the
corresponding Bell teleportation inequality cannot be vi-
olated. This is to be expected, since it is known [16] that
perfect teleportation of any collection of mutually com-
patible unknown states can be achieved with a separable
channel state (all of whose correlations, including those
involved in the teleportation, can be modelled by a local
hidden variables theory).

It is not difficult to show that τ(D) = β(D) = 2
√

2 if
and only if D is a maximally entangled pure state (by us-
ing the fact that any maximally entangled state is related

to Żukowski’s choice D = |Φ+〉 〈Φ+| by a unitary oper-
ator on Bob’s qubit). We now concentrate on proving,
quite generally, that β(D) ≥ τ(D).

If τ(D) = 2 the claim is trivial, so we suppose τ(D) >
2. Thus, there are unknown states |φj〉 of qubit 1, biva-
lent Bell operator functions Aj, and spin components σj
of qubit 3 such that∣∣∣∣ 〈A1 ⊗ σ1〉|φ1〉〈φ1|⊗D + 〈A1 ⊗ σ2〉|φ1〉〈φ1|⊗D

+ 〈A2 ⊗ σ1〉|φ2〉〈φ2|⊗D − 〈A2 ⊗ σ2〉|φ2〉〈φ2|⊗D

∣∣∣∣
= τ(D) > 2. (15)

Consider the pair of self-adjoint operators Xj on qubit
2’s state space defined via the following matrix elements
in the σz eigenbasis:(

〈φj| 〈↑|Aj |φj〉 |↑〉 〈φj| 〈↑|Aj |φj〉 |↓〉
〈φj| 〈↓|Aj |φj〉 |↑〉 〈φj| 〈↑|Aj |φj〉 |↑〉

)
, j = 1, 2.

(16)

Since each Aj is self-adjoint, the matrices in (16) are self-
adjoint; thus each Xj is self-adjoint as well. By linearity,
(16) implies:

〈v|Xj |w〉 = 〈φj | 〈v|Aj |φj〉 |w〉 , j = 1, 2, (17)

for all qubit 2 vectors |v〉 , |w〉. In particular, when we
set both |v〉 and |w〉 equal to any unit eigenvector of Xj
with corresponding eigenvalue µj , it follows that |µj | ≤
‖Aj‖ = 1. Thus each Xj is a self-adjoint contraction, i.e.,
satisfies ‖Xj‖ ≤ 1.

Next, multiplying both sides of (17) by 〈x|σl |y〉 , with
|x〉 , |y〉 arbitrary qubit 3 vectors, we obtain

〈v| 〈x|Xj ⊗ σl |w〉 |y〉
= 〈φj | 〈v| 〈x|Aj ⊗ σl |φj〉 |w〉 |y〉 , j, l = 1, 2. (18)

Now, since D is Hermitian, D =
∑4
k=1 λk |ek〉 〈ek|, where

the {ek} form an orthonormal basis for the 2+3 space.
Since product vectors span this space, (18) implies by
linearity

〈ek|Xj ⊗ σl |ek〉 = 〈φj| 〈ek|Aj ⊗ σl |φj〉 |ek〉
k = 1, ..., 4; j, l= 1, 2. (19)

Multiplying both sides of (19) by λk and summing over
k results in:

〈Xj ⊗ σl〉D = 〈Aj ⊗ σl〉|φj〉〈φj|⊗D j, l = 1, 2. (20)

Combining this with (15) yields∣∣∣∣ 〈X1 ⊗ σ1〉D + 〈X1 ⊗ σ2〉D
+ 〈X2 ⊗ σ1〉D − 〈X2 ⊗ σ2〉D

∣∣∣∣ = τ(D) > 2. (21)

Finally note that, although the Xj are in general only
self-adjoint contractions, convexity arguments [17] show
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that if a bipartite state (here, our channel state D) vio-
lates a Bell-CHSH-type inequality with respect to self-
adjoint contractions (as in (21)), then that state also
violates, by at least the same amount, a standard Bell-
CHSH inequality with respect to observables all of which
are self-adjoint unitary spin components. This completes
the proof that β(D) ≥ τ(D).

An immediate corollary of this result is that there are
channel states that permit nonclassical teleportation yet
violate no Bell teleportation inequality. For example,
consider the ‘Werner state’ [18]

DW =
(
1− 1√

2

)1
4
I ⊗ I +

1√
2
|Ψ−〉〈Ψ−|. (22)

Since spin operators, and hence Bell-CHSH operators,
are traceless,

β(DW ) =
1√
2
β(|Ψ−〉〈Ψ−|)

=
1√
2

2
√

2 = 2 ≥ τ(DW ), (23)

which forces τ(DW ) = 2. On the other hand, the tele-
portation fidelity of DW relative to the standard choice
of Bob’s unitary operators (which, in fact, gives the max-
imum achievable fidelity) is

Fst(DW ) = (1− 1√
2

) × 1
2

+
1√
2
× 1

=
2
3

(1 +
3
√

2− 2
8

) >
2
3
. (24)

IV. A CHANNEL STATE BELL-CHSH
VIOLATION DOES NOT IMPLY A VIOLATION
OF A BELL TELEPORTATION INEQUALITY.

We now exhibit a family of channel states D for which
the converse inequality τ(D) ≥ β(D) fails; indeed, for
which β(D) > 2 while τ(D) = 2. It follows that if one
were to interpret Żukowski’s conjecture (discussed in Sec-
tion II) to be that a channel state Bell-CHSH violation
implies a violation of his original inequality, then this
particular conjecture is false.

By the reasoning in the previous section which led to
Eqn. (21), we know that the maximum Bell teleporta-
tion violation given a channel state D is attained by an
expression of the form |〈Z〉D| where

Z = X1 ⊗ σ1 +X1 ⊗ σ2 +X2 ⊗ σ1 −X2 ⊗ σ2, (25)

and the self-adjoint contractions Xj (j = 1, 2) have ma-
trix elements given by (16). We may calculate these ma-
trix elements explicitly by parameterizing the two alter-
native teleported states as

|φj〉 = sin θj |↑〉+ cos θjeiϑj |↓〉 , θj , ϑj ∈ [0, 2π). (26)

An elementary but tedious calculation then shows

Xj =
1
4

(aj + bj + cj + dj)I

+
1
4

(aj − bj + cj − dj) sin 2θj cos ϑjσx

+
1
4

(aj + dj − bj − cj) sin 2θj sinϑjσy (27)

+
1
4

(aj + bj − cj − dj) cos 2θjσz,

where the numbers aj, bj, cj, dj = ±1 correspond to the
different choices that can be made for the bivalent func-
tions Aj of Alice’s Bell operator. The value of τ(D) is,
therefore, given by

τ(D) = max
θj,ϑj∈[0,2π);aj ,bj,cj ,dj=±1;σj

|〈Z〉D|. (28)

Consider, now, the two parameter family of channel
density operators given by

Dλ,α = (1 − λ)
1
4
I ⊗ I + λ|ψα〉〈ψα|, λ, α ∈ [0, 1], (29)

where

|ψα〉 = α|+〉|+〉+
√

1− α2|−〉|−〉, (30)

|±〉 =
1±
√

3√
2(3±

√
3)
| ↑〉+

1 + i√
2(3±

√
3)
| ↓〉. (31)

For later reference, note that

〈ψα|I ⊗ σn|ψα〉 =
1√
3

(2α2 − 1), n = x, y, z, (32)

〈ψα|σm ⊗ σn|ψα〉 =
1
3

(1 + 4α
√

1− α2),

(m, n) = (x, y), (y, x), (z, z), (33)

〈ψα|σm ⊗ σm|ψα〉 = 〈ψα|σm ⊗ σz|ψα〉
= 〈ψα|σz ⊗ σm|ψα〉 (34)

=
1
3

(1− 2α
√

1− α2), m = x, y.

Since spin operators are traceless, the corresponding ex-
pectation values in the state Dλ,α are obtained by mul-
tiplying each of the above values by λ.

Again, because spin operators are traceless, the first
maximally mixed component of Dλ,α does not contribute
to any Bell-CHSH operator average; hence β(Dλ,α) > 2
just in case λβ(|ψα〉〈ψα|) > 2. It can be shown that [1]

β(|ψα〉〈ψα|) = 2
√

1 + 4α2(1− α2), (35)
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thus the condition for β(Dλ,α) > 2 is simply

λ
√

1 + 4α2(1− α2) > 1, λ, α ∈ [0, 1]. (36)

We now determine two additional conditions on λ and
α, consistent with (36), which together are sufficient for
τ(Dλ,α) = 2.

The set of 16 possible value assignments to the num-
bers aj, bj, cj, dj can be divided into three relevant
classes. Class I: All assignments for which both A1 and
A2 involve two value assignments of both signs (for exam-
ple, the two value assignments aj = bj = −cj = −dj =
−1, where j = 1, 2). Class II: All assignments for which
exactly one of A1 and A2 involve two value assignments
of both signs and the other involves three values assign-
ments of one sign (for example, a1 = b1 = −c1 = −d1 =
−1 and a2 = b2 = c2 = −d2 = −1). Class III: All
assignments for which both A1 and A2 involve exactly
three values assignments of one sign (for example, the
value assignments aj = bj = cj = −dj = −1). Note
that whenever aj = bj = cj = dj for at least one value
of j—i.e., whenever either A1 or A2 is multiple of the
identity—no violation is possible, thus such assignments
can be ignored.

Class I: Following [1], we introduce the new spin op-
erators

σ̂1 =
σ1 + σ2

2 cos ξ
, σ̂2 =

σ1 − σ2

2 sin ξ
, (37)

so that (25) becomes

Z = 2(X1 ⊗ σ̂1) cos ξ + 2(X2 ⊗ σ̂2) sin ξ. (38)

Using the fact that, whenever M,N ∈ R, M cos ξ +
N sin ξ ≤

√
M2 +N2, we have

|〈Z〉Dλ,α | ≤ 2
√
〈X1 ⊗ σ̂1〉2Dλ,α + 〈X2 ⊗ σ̂2〉2Dλ,α . (39)

Using similar reasoning,

〈Xj ⊗ σ̂j〉Dλ,α ≤
√ ∑
n=x,y,z

〈Xj ⊗ σn〉2Dλ,α , j = 1, 2, (40)

therefore

|〈Z〉Dλ,α | ≤ 2
√ ∑
n=x,y,z;j=1,2

〈Xj ⊗ σn〉2Dλ,α . (41)

Assuming a Class I value assignment to the numbers
aj, bj, cj, dj, each self-adjoint contraction in (27) has the
form Xj = rjσmj where rj ∈ [−1, 1] and mj = x, y, z.
Since |〈Z〉Dλ,α | cannot exceed the classical bound 2 when
[X1, X2] = 0, we need only consider the three cases where
m1 6= m2, i.e.,

X1 = r1σx, X2 = r2σy, (42)
X1 = r1σy, X2 = r2σz, (43)
X1 = r1σx, X2 = r2σz, (44)

and the other three cases obtained by interchanging 1 and
2. For the first case, substitution into inequality (41) and
using the expectation values given in (33) and (34), we
find

|〈Z〉Dλ,α | ≤
2λ
3

√
(r2

1 + r2
2)(3 + 24α2(1− α2))

≤ 2
√

2λ√
3

√
1 + 8α2(1− α2). (45)

The other two cases in (42) yield the same inequality (45),
as do the cases obtained by interchanging 1 and 2 (which
leaves the right-hand side of inequality (41) unchanged).
Thus, a sufficient condition for no Class I value assign-
ment to yield a violation of a Bell teleportation inequality
is

λ
√

2/3
(
1 + 8α2(1− α2)

)
≤ 1. (46)

Class II: In this case, we can see from (27) that exactly
one of X1 and X2 takes the form rσm, where m = x, y, z
and r ∈ [−1, 1], while the other is of the form ±I/2+σ/2
where σ is a spin-1/2 operator. Thus,

Z = rσm ⊗
(
σ2 + σ̄2

)
+ 1/2(σ ± I) ⊗

(
σ1 − σ̄2

)
(47)

= ±I ⊗ (σ1 − σ̄2)/2 + rσm ⊗ (σ1 + σ̄2)/2 + B′/2,

where σ̄2 = ±σ2 and B′ is a Bell-CHSH-type operator
constructed out of self-adjoint contractions that are not
necessarily unitary (unless r = ±1). Transforming the
spin operators (σ1, σ̄2) 7→ (σ̂1, σ̂2) via Eqns. (37), and
substituting into Eqn. (47) yields

Z = ±(I ⊗ σ̂2) sin ξ + r(σm ⊗ σ̂1) cos ξ + B′/2. (48)

Therefore,

|〈Z〉Dλ,α |
≤ | ± 〈I ⊗ σ̂2〉Dλ,α sin ξ

+ r〈σm ⊗ σ̂1〉Dλ,α cos ξ|+ 1/2|〈B′〉Dλ,α |

≤
√
〈I ⊗ σ̂2〉2Dλ,α + r2〈σm ⊗ σ̂1〉2Dλ,α (49)

+ 1/2|〈B′〉Dλ,α |.

¿From (35) it follows that

|〈B′〉Dλ,α | ≤ 2λ
√

1 + 4α2(1− α2) (50)

and, clearly,

r2〈σm ⊗ σ̂1〉2Dλ,α = λ2r2〈σm ⊗ σ̂1〉|ψα〉〈ψα | ≤ λ2. (51)

Moreover,
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〈I ⊗ σ̂2〉2Dλ,α
≤ 〈I ⊗ σx〉2Dλ,α + 〈I ⊗ σy〉2Dλ,α + 〈I ⊗ σz〉2Dλ,α (52)

= λ2(2α2 − 1)2,

using Eqn. (32) for the last equality. Upon substitution
of these last three inequalities back into inequality (49),
we obtain

|〈Z〉Dλ,α | ≤ λ
(√

2(1− 2α2(1− α2))

+
√

1 + 4α2(1− α2)
)
. (53)

Thus, a sufficient condition for no Class II value assign-
ment to yield a violation of a Bell teleportation inequality
is

λ
(√

2(1− 2α2(1− α2)) +
√

1 + 4α2(1− α2)
)
≤ 2. (54)

Class III: In this case, Z takes the form I ⊗ σ +B/2
where σ is a spin-operator and B a standard Bell-CHSH
operator. Note that this is just a special case of the Class
II expression for Z in Eqn. (48), taking the ± sign to be
+, σ̂2 = σ, ξ = π/2, and B′ = B. Thus inequality (54) is
also sufficient for no Class III value assignment to yield
a violation of a Bell teleportation inequality.

Combining our results for each class, we see that
β(Dλ,α) > 2 while τ(Dλ,α) = 2 if and only if λ and
α satisfy conditions (36), (46) and (54). The family of
channel density operators satisfying these conditions is
indeed nonempty. For example, the conditions are satis-
fied by taking λ =

√
3/5 ≈ .77 and α =

√
3/2 ≈ .87, and

in that case we have β(D√
3/5,
√

3/2
) = 2

√
21/20 ≈ 2.05.

Note, also, that choosing λ = 1 does not satisfy the
conditions, nor does choosing α2(1 − α2) = 1/4. Thus
no channel density operator in the family is pure, and
the pure entangled component |ψα〉〈ψα| of Dλ,α is never
maximally entangled. Finally, since β(D) > 2 implies
Fmax(D) > 2/3 [7], each density operator in the family
supplies another example of a state that permits nonclas-
sical teleportation without violating any Bell teleporta-
tion inequality.

V. FIDELITY VALUES THAT IMPLY A
VIOLATION OF A BELL TELEPORTATION

INEQUALITY.

In light of our previous results, it is natural to ask
what values of the fidelity are sufficient for the quantum
correlations in the standard teleportation protocol not
to admit a local hidden variables explanation. We shall
show in this section that Fst(D) > 2/3(1 +1/2

√
2) ≈ .90

implies τ(D) > 2.
It is known [19] that for any Bell-CHSH operator B,

〈B〉D = a ·T(D)(b + b′) + a′ ·T(D)(b− b′) (55)

where a, a′,b and b′ are unit vectors in R3 defining the
four spin operators that occur in B, and the 3×3 matrix
T (D) has components

Tmn(D) = Tr[D(σm ⊗ σn)], m, n = x, y, z, (56)

encoding the inter-particle correlations in state D. Set-
ting a = x, a′ = y, b = (x+y)/

√
2, and b′ = (x−y)/

√
2,

we obtain

〈B〉D = 〈σx ⊗ σb + σx ⊗ σb′ + σy ⊗ σb − σy ⊗ σb′〉D
=
√

2(Txx(D) + Tyy(D)). (57)

Now choose the operators Aj in Eqn. (12) that corre-
spond to a1 = c1 = −b1 = −d1 = +1 and a2 = d2 =
−b2 = −c2 = +1, and the unknown states |φj〉 in (26)
that correspond to θ1 = π/4, ϑ1 = 0, θ2 = π/4, and
ϑ2 = π/4. Substituting these values into (27), we obtain
X1 = σx and X2 = σy. Hence the Bell-CHSH operator
B in (57) has the form of a Z operator as given in (25),
and |〈B〉D| provides a lower bound for τ(D), i.e.,

τ(D) ≥
√

2|Txx(D) + Tyy(D)|. (58)

(As check on the correctness of this bound, note from
(34), that it falls below 2 when D = D.77,.87, as it must.)

It can be shown quite generally that [7]

Fst(D) =
1
8

4∑
n=1

(1 +
1
3

Tr[T †nT (D)On]) (59)

where

T1 = diag(−1,−1,−1), T2 = diag(−1, 1, 1), (60)
T3 = diag(1,−1, 1), T4 = diag(1, 1,−1), (61)

and the matrices {On} are determined by the standard
choice for Bob’s unitary operations in (3) via the require-
ment that Un(b · σ)U−1

n = (O†nb) · σ for all b ∈ R3.
Calculating out these latter matrices explicitly yields

O1 = diag(1, 1, 1),O2 = diag(1,−1,−1), (62)
O3 = diag(−1, 1,−1), O4 = diag(−1,−1, 1). (63)

(For example, for n = 2, U2 = σx, and, using the fact that
σ2
x = I and orthogonal spin components anti-commute,

σx(b · σ)σx = σx(bxσx + byσy + bzσz)σx (64)
= bxσx − byσy − bzσz (65)

= (O†2b)xσx + (O†2b)yσy + (O†2b)zσz, (66)

which implies O2 = diag(1,−1,−1).) Plugging all the
matrices {Tn} and {On} back into (59) gives

Fst(D) = 1/2− 1/6(Txx(D) + Tyy(D) + Tzz(D)). (67)

Finally, combining (58) with Eqn. (67), we have
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τ(D) ≥
√

2|Tzz(D) + 6Fst(D) − 3|. (68)

Assuming Fst(D) > 2/3(1 + 1/2
√

2) = 2/3 +
√

2/6, and
noting that Tzz(D) ≥ −1, it follows that

√
2(Tzz(D) + 6Fst(D) − 3)

>
√

2(−1 + 4 +
√

2− 3) = 2, (69)

and therefore τ(D) > 2, as claimed. Note that we have
made no attempt to find the minimum value for Fst(D)
that implies τ(D) > 2. However, for the Werner state in
(22), we know that Fst(DW ) = 2/3(1 + (3

√
2 − 2)/8) ≈

.85, yet τ(DW ) = 2; so our bound of .90 cannot be de-
creased below .85.

VI. DISCUSSION

We have compared a new class of “Bell telepor-
tation inequalities”—our generalization of Żukowski’s
inequality—to the well-known class of Bell-CHSH in-
equalities for the particle pair that makes up the quan-
tum channel of a standard teleportation process. We
found that while a Bell teleportation inequality cannot
be violated unless the channel state already violates a
Bell-CHSH inequality, the latter is no guarantee that the
correlations of the channel state actually involved in the
teleportation process will violate a Bell teleportation in-
equality. This suggests that it is generally easier for a
local hidden variables theory to simulate teleportation
than to simulate the results of a standard Bell correlation
experiment on the channel particles alone. Moreover, if
one were to interpret Żukowski’s conjecture (discussed in
Section II) to be that a channel state Bell-CHSH viola-
tion implies a violation of his original inequality, then we
have shown this particular conjecture to be false.

Our results also contribute to the larger debate (dis-
cussed in our introduction) over the role that nonlocality
plays in teleportation. We showed that a Bell telepor-
tation inequality is always violated when the fidelity of
transmission in the standard teleportation protocol ex-
ceeds the classical limit of 2/3 by a factor of 1 + 1/2

√
2.

If one accepts that the violation of an inequality to which
any local hidden variables theory is committed implies
the presence of nonlocality, it follows that standard tele-
portation with a fidelity exceeding 2/3(1 + 1/2

√
2) ≈ .90

cannot occur without the involvement of nonlocality. On
the other hand, our results suggest the existence of a
range (.67, .90) of nonclassical values of the fidelity for
which a local hidden variables theory of the teleportation
process may be possible. Thus, the ability of an entan-
gled channel state, such as DW or D.77,.87, to permit
nonclassical teleportation cannot by itself suffice for con-
cluding that the channel state itself, or the teleportation
it facilitates, is nonlocal; attention must also be paid to
the magnitude of the fidelity achievable using the state.

Our tentative conclusion that local hidden variables
models of quantum teleportation may exist for nonclas-
sical fidelities up to ≈ 0.90 is compatible with Gisin’s
[6] demonstration that the end results of quantum tele-
portation can be classically simulated up to a fidelity of
≈ 0.87. However, this comparison should not be given
too much weight because Gisin’s simulation has little to
do with what actually goes on in the standard quantum
teleportation protocol. In his simulation, Alice does not
measure any Bell operator on qubits 1+2. Rather, it is
assumed that she has full knowledge of the ‘unknown’
state’s expansion coefficients, and her task is simply to
classically communicate to Bob as much information as
she can about these coefficients by using only 2 bits.
While it is certainly of interest to study how well telepor-
tation can be achieved classically using various protocols
different from the standard quantum protocol (see also
[20]), we have confined ourselves in this paper to the pos-
sibility of local classical explanations of the latter only.
While we have reached a negative conclusion for fidelities
exceeding ≈ .90, our results strongly suggest a positive
answer for fidelities in the range (.67, .90).
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