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Abstract

It is usually thought that superluminal signaling is prohibited in
collapse theories of quantum mechanics. In this paper, I argue that
this is not the case when considering the tails problem and its solu-
tion. In collapse theories, the post-measurement state of a measuring
device or an observer is a definite result state with tails containing
other results. This leads to the well-known tails problem. In order to
solve this problem, collapse theories have to assume that a measur-
ing device or an observer being in a post-measurement superposition
already obtains a definite result. It is argued that this solution to
the tails problem will in principle permit that two ensembles with the
same density matrix can be distinguished, which further leads to the
existence of superluminal signaling.

In collapse theories of quantum mechanics, the post-measurement state
of a measuring device or an observer is a superposition of different result
branches, although the modulus squared of the amplitude of one result branch
is close to one typically (Ghirardi and Bassi, 2020). This leads to the well-
known tails problem (for a recent review see McQueen, 2015). In order
to solve this problem, collapse theories have to assume that a measuring
device or an observer being in such a superposition already obtains a definite
result. This may be via a fuzzy-link principle (Albert and Loewer, 1996), or a
principle of inaccessibility (Ghirardi et al, 1995), or a certain psychophysical
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principle (Monton, 2004; Gao, 2018).1 In this paper, I will argue that collapse
theories with a solution to the tails problem permit superluminal signaling.

Consider two ensembles of identically prepared measuring devices at a
given instant. In the first ensemble, the wave function of each device is
random, being |0〉 with probability p0 or |1〉 with probability p1, where
|0〉 and |1〉 are two different result states of the device, and p0 + p1 =
1. In the second ensemble, the wave function of each device is also ran-
dom, being

√
p0 |0〉 +

√
p1 |1〉 or

√
p0 |0〉 −

√
p1 |1〉 with the same proba-

bility 1/2. These two ensembles have the same statistical density matrix
ρ = p0|0〉 〈0| + p1|1〉 〈1|. In quantum mechanics, it is impossible to distin-
guish between these two ensembles.

On the other hand, when p0 is small enough, the two ensembles can be
distinguished in collapse theories. For example, according to the fuzzy-link
principle (Albert and Loewer, 1996), when p0 is small enough, a device being
in the superposition

√
p0 |0〉+

√
p1 |1〉 or

√
p0 |0〉−

√
p1 |1〉 already obtains the

definite result 1. Then, the above two ensembles can be distinguished;2 for
the first ensemble, the result of each device is not always “1”, and it may be
“0” with a nonzero probability p0, while for the second ensemble, the result
of each device is always “1”.

When the measuring devices are replaced by observers, the analysis is
similar. For example, according to the principle of inaccessibility (Ghirardi
et al, 1995), when p0 is small enough, an observer being in the superposi-
tion
√
p0 |0〉+

√
p1 |1〉 or

√
p0 |0〉−

√
p1 |1〉 already obtains the definite result

“1”, since the low-density matter in the tail branch |0〉 is inaccessible to the
observer. Then, the two ensembles of observers can also be distinguished in
collapse theories; for the first ensemble, an observer does not always obtain
the result “1”, and she may obtain the result “0” with a nonzero probability
p0, while for the second ensemble, every observer obtains the result “1”.

Note that collapse theories with a solution to the tails problem also permit
that the results obtained by a measuring device or an observer can be veri-
fied by other devices or observers. When verifying the result obtained by a
measuring device or an observer being in a post-measurement superposition,
the state of another device or observer is entangled with this superposition,

1Note that these principles can solve the so-called structured tails problem by assuming
that the result of a measuring device or the mental state of an observer is determined by
the whole post-measurement superposition, not only by the high mod-square result branch
(cf. McQueen, 2015). The bare theory is another example of solving the structured tails
problem by this assumption (Albert, 1992). My analysis in this paper is independent of
the concrete solutions to the tails problem.

2Similarly, the first ensemble and another ensemble with an identical reduced density
matrix can also be distinguished. This will be analyzed in more detail later.

2



and the device or observer will also record the same result by the fuzzy-link
principle or the principle of inaccessibility.

The distinguishability of two ensembles with the same density matrix in
quantum mechanics can be used to realize superluminal signaling. Suppose
there is an ensemble of entangled states of a measuring device and a particle√
p0 |0〉A |0〉B+

√
p1 |1〉A |1〉B, where p0 is small enough so that the device only

records the result “1”. The particles are in Alice’s lab, and the devices are in
Bob’s lab. Alice may send a signal to Bob’s lab by measuring the particles
on her side. It is required that Alice’s measurement makes the dynamical
collapse of each entangled state so fast that the post-measurement state is
almost |0〉A |1〉B or |1〉A |0〉B (i.e. the sum of the amplitudes of the tails
is much smaller than p0 so that these tails can be omitted relative to the
original state). Then before Alice makes her measurements, Bob has an
ensemble of entangled states

√
p0 |0〉A |0〉B +

√
p1 |1〉A |1〉B, while after Alice

makes her measurements, Bob has an ensemble of random states, each of
which is |0〉B with probability p0 or |1〉B with probability p1. For the first
ensemble of entangled states, all devices obtain the result “1”, while for the
second ensemble of random states, some devices obtain the result “0”, and the
probability is p0. Then the devices in Bob’s lab can receive the superluminal
signal. Bob can also get the superluminal signal by looking at the results
of the devices.3 In a preferred Lorentz frame, the superluminal signaling is
instantaneous.

It has been shown that collapse theories prohibit superluminal signaling
(see, e.g. Ghirardi et al, 1993). The above analysis is not inconsistent with
the existing proofs. These proofs apply to the cases in which the time for dy-
namical collapse approaches infinity. In these ideal cases, any two ensembles
with the same density matrix cannot be distinguished as in standard quantum
mechanics. While the above analysis applies to the cases in which the time for
dynamical collapse is finite. In these realistic cases, collapse theories with a
solution to the tails problem permit that two ensembles with the same density
matrix can be distinguished, which further permits superluminal signaling.
In the final analysis, collapse theories violate the superposition principle and
introduce definite nonlinear evolution at the macroscopic level such as for
measuring devices or observers via their solution to the tails problem.4 Al-

3Here it is assumed that Bob’s observation does not collapse the entangled superposition
of each device significantly. Alternatively, we may also use an ensemble of observers being
in the post-measurement state

√
p0 |0〉A |0〉B +

√
p1 |1〉A |1〉B in Bob’s lab to receive the

superluminal signal.
4One may argue that for measuring devices the fuzzy-link principle is only “a proposal

for how to use language” (Lewis, 2006). But for observers their mental states are real,
and thus the violation of the superposition principle is also real for observers.
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though the effect of definite nonlinear evolution is extremely small, it can in
principle lead to superluminal signaling when combining with wave-function
collapse, as already argued by some authors (Gisin, 1989, 1990; Polchinski,
1991; Czachor 1991). Certainly, it is arguable that this mechanism of super-
luminal signaling is practically unrealizable due to the extremely small tails
and the existence of environmental noises.

To sum up, I have argued that superluminal signaling is possible in col-
lapse theories of quantum mechanics. In order to solve the tails problem,
these theories have to assume that a measuring device or an observer being
in a post-measurement superposition already obtains a definite result. How-
ever, this will in principle permits the existence of superluminal signaling.
It remains to be seen if one can formulate a collapse theory which can solve
both the tails problem and the problem of superluminal signaling.
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