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Abstract

Non-Aristotelian finitary logic (NAFL) is a finitistic paraconsistent logic
that redefines finitism. It is argued that the existence of nonstandard
models of arithmetic is an artifact of infinitary classical semantics, which
must be rejected by the finitist, for whom the meaning of “finite” is not
negotiable. The main postulate of NAFL semantics defines formal truth
as time-dependent axiomatic declarations of the human mind, an imme-
diate consequence of which is the following metatheorem. If the axioms
of an NAFL theory T are pairwise consistent, then T is consistent. This
metatheorem, which is the more restrictive counterpart of the compactness
theorem of classical first-order logic, leads to the diametrically opposite
conclusion that T supports only constructive existence, and consequently,
nonstandard models of T do not exist, which in turn implies that infinite
sets cannot exist in consistent NAFL theories. It is shown that arithmeti-
zation of syntax, Godel’s incompleteness theorems and Turing’s argument
for the undecidability of the halting problem, which lead classically to
nonstandard models, cannot be formalized in NAFL theories. The NAFL
theories of arithmetic and real numbers are defined. Several paradoxical
phenomena in quantum mechanics, such as, quantum superposition, en-
tanglement, the quantum Zeno effect and wave-particle duality, are shown
to be justifiable in NAFL, which provides a logical basis for the incom-
patibility of quantum mechanics and infinitary (by the NAFL yardstick)
relativity theory. Finally, Zeno’s dichotomy paradox and its many vari-
ants, which pose a problem for classical infinitary reasoning, are shown to
be resolvable in NAFL.

*Permanent address (for correspondence): 1102 Tejas Heights, Plot 245, Mumbai Tamil
Sangam Road, Sion East, Mumbai 400022, India.
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1 The finitist’s objection to infinite sets / clas-
sical model theory

We start with an argument for why the finitist cannot accept the existence of
nonstandard models of arithmetic, and consequently, must reject classical model
theory [1, 2] and the existence of infinite sets. Let N = {0, 1, . . . } be the set
of natural numbers. That every natural number has been exceeded within N is
expressed by the following sentence:

∀n ∃m m > n. (1)

There is no infinitely large natural number in N, as seen from:

¬∃m ∀n m ≥ n. (2)

Eqs. (1) and (2) are theorems of first-order Peano Arithmetic (PA) [3]. If we
were to interchange the quantifiers in (1) and syntactically deduce the existence
of an infinitely large natural number, we would be committing a fallacy. Instead
let us proceed model-theoretically and consider a well-known method for deduc-
ing the existence of nonstandard models of arithmetic. Let c be a constant in
the language of PA. Break up (1) into infinitely many axioms, as follows:

(∃m m = c) ∧ c > n, where n = 0, 1, . . . . (3)

Add these axioms to PA, to obtain the theory PA′ = PA + (3). It is a standard
result that if PA is consistent, every finite subset of PA′ is consistent. From
the compactness theorem of first-order logic, it follows that if PA is consistent,
then PA′ is consistent. Hence if PA is consistent, there must exist a model
for PA′, which is also a model for PA, in which the constant c exceeds every
standard natural number in N. We have deduced the existence of a nonstandard
model of PA in which c is dubbed as a nonstandard finite natural number.

Currently, PRA (Primitive recursive arithmetic), which is a weak subsystem
of PA, is widely accepted as a theory that correctly captures the principles of
finitism [4]. The existence of nonstandard models of arithmetic can also be
proven from Gödel’s first incompleteness theorem [5], which can be formalized
in PRA and is therefore considered to be finitistically valid. So currently,
the existence of nonstandard natural numbers is presumably considered to be
acceptable to the finitist.

In this paper, we take the stand that the finitist must consider the number c
in (3) as infinite. Note that any theory which proves the compactness theorem
must recognize (3) as an infinite set of axioms. When the compactness theorem
is applied to every finite subset of the infinite set of axioms in (3), finite and
infinite have already been defined in the standard sense and the number c is
infinite by this yardstick.

The existence of an infinite natural number c in a model of PA contradicts
(2), which is a theorem of PA. Those who have strong faith in classical model
theory, in the consistency of PA and in infinitary reasoning in general, will
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perhaps conclude from this contradiction that nonstandard models of PA must
exist. The finitist, however, ought to draw the straightforward conclusion that
PA, and even PRA, are inconsistent theories. What can be the source of such
an inconsistency? Consider (3) with the axioms for c removed:

∃m m > n, where n = 0, 1, . . . . (4)

Note that the compactness theorem guarantees that the infinitely many the-
orems of PA in (4) must have a model, with the consequence that infinitely
many natural numbers n have been exceeded within N, which is why we are
able to postulate the existence of c in (3). But “infinitely many natural num-
bers have been exceeded within N” means, even grammatically, that there exists
an infinitely large natural number in N. The argument that c is “externally in-
finite” but “internally finite” in nonstandard theories/models ought not to be
acceptable to the finitist, for whom the meaning of finite is not negotiable.

We stress that this inconsistency is deduced from the truth of infinitely many
sentences (4) in the standard model of PA. This model-theoretic derivation does
not have any syntactic equivalent because a proof in PA can contain only finitely
many sentences. Within the theory PA, what we can deduce from (1) and (2)
is the finitistically acceptable conclusion that any given natural number has
been exceeded within N, but not infinitely many natural numbers. The finitist
must therefore reject classical model theory and the existence of N as an infinite
set. But this does not commit the finitist to ultrafinitism. In the ensuing
sections, we will demonstrate that the finitist can indeed accept (1) and (2)
via non-Aristotelian finitary logic (NAFL) [6], in which N is an infinite proper
class and the model theory (which associates truth with provability in NAFL
theories) is nonclassical. The nonconstructive existence of the constant c in (3)
is not permitted in NAFL theories, as will be proven in the ensuing section. It
is not possible to deduce the existence of nonstandard natural numbers either
syntactically or model-theoretically in NAFL. The NAFL model of (1) correctly
captures the theoretical / syntactic notion that “given any natural number n,
there exists a natural number m greater than n”, without actually enumerating
infinitely many instances of (1), as does a classical model of (1). In other words,
the NAFL model correctly captures the notion of a potential, rather than an
actual, infinity.

2 NAFL semantics

Our goal is to replace the infinitary semantics of classical first-order logic with
finitary NAFL semantics, while retaining the finitistically unproblematic part
of classical syntax. We will break with tradition and describe NAFL semantics
first, as this will better motivate the modifications/restrictions that are required
in classical syntax in order to obtain NAFL syntax.

Classically, truths are pre-existing and the purpose of logic is to discover
these truths and describe them consistently. This, of course, is the philosophy
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of Platonism, which makes classical model theory and indeed, any nontrivial
classical reasoning, unavoidably infinitary.

2.1 The main postulate of NAFL semantics

In the logic NAFL, formal truths exist only with respect to axiomatic theories,
and there are no pre-existing truths in just the language of these theories. Let
T be a consistent NAFL theory which resides temporarily in the human mind
and let P be a sentence in the language of T. Let T* be either the theory T or
a consistent extension of T, which the human mind creates by (possibly) adding
axioms to T. Note that a sentence that is provable in T is also provable in T*,
and a sentence that is undecidable (i.e., neither provable nor refutable) in T*
is also undecidable in T. Here T* is defined as the interpretation of T, which
basically generates an NAFL model of T, as follows. The provable sentences
of T* are defined as true with respect to T. In particular, if P is provable
(refutable) in T*, then P is true (false) w.r. to T. The paraconsistency of
NAFL enters via sentences that are undecidable in T*, which are defined as
“neither true nor false” w.r. to T. If P is undecidable in T*, a nonclassical
NAFL model of T is generated in which P ∧ ¬P is true, i.e., both P and ¬P
are true, where “P” is interpreted as “¬P is not provable in T*” and “¬P”
is interpreted as “P is not provable in T*”. Clearly, when P is undecidable
in T, such a nonclassical model of T can exist if and only if the law of the
excluded middle (P ∨¬P ) and the law of noncontradiction (¬(P ∧¬P )) are not
theorems of T. Note that T does not prove P ∧ ¬P ; any NAFL theory that
proves a contradiction is inconsistent, just as in classical logic. However, the
notion of consistency for an NAFL theory T is more restrictive, in the sense that
T must admit nonclassical models for undecidable sentences. In this paper, the
terminology “consistent” / “inconsistent” for an NAFL theory is always used in
the NAFL sense; if we wish to refer to the weaker classical notion of consistency,
we will explicitly mention that.

2.2 Comments on the main postulate

Formal truths, which are only created when the human mind constructs NAFL
theories, are essentially axiomatic assertions of the human mind. There are
pre-existing (Platonic) truths in NAFL, but these are truths about NAFL the-
ories and cannot be formalized within them. E.g., the notion of provability is
not formalizable in NAFL theories. That a sentence P is either decidable or
undecidable in an NAFL theory T is taken as a Platonic truth about T that
is independent of the human mind, irrespective of whether a proof of the said
decidability/undecidability exists. Note that the interpretation T* completely
specifies the NAFL model of T via the finitary concept of provability, without
collecting together all the truths in an infinite set, as in a classical model. The
only classical truths in the NAFL model of T are the sentences provable in T*,
and all other sentences are in a nonclassical, superposed state of “neither true
nor false”.
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It should be emphasized that a given interpretation T*, and hence the truths
in the NAFL model of T, have only a temporary existence in the human mind.
At different times, the same human being could consider different theories T*
as the interpretation of T, and at a given time, different human beings could
have different interpretations T* in mind. Thus NAFL semantics admits time-
dependent truths and T* is chosen according to the free will of the human
mind, which axiomatically asserts the classical T-truths via provability in the
interpretation T*. The nonclassical T-truths have a different interpretation as
noted above, and are not axiomatic assertions because T* does not prove a
contradiction. Note that an NAFL theory T could have a classically “false”
axiom (e.g., “The sun rises in the west”), which is a true statement with respect
to T via provability in T. NAFL rejects Platonism, and there is no obligation
to keep formal NAFL truths in conformity with any pre-existing “reality”.

To obtain an NAFL theory of physics, e.g., quantum mechanics (QM), the
human mind chooses the axioms of QM and its interpretation QM* such that
the theorems of QM* agree with real-life observations, e.g., made via exper-
iments. Thus the proposition “The Schrödinger cat is alive (dead)”, which is
undecidable in QM, could be an axiom of QM* if the cat has been observed to
be alive (dead) in a real-life experiment. Therefore, even in a physical NAFL
theory, formal truths are axiomatic in nature and the connection with reality
comes indirectly, via the human mind.

2.3 Metatheorems of NAFL semantics

Important metatheorems, which capture the essence of the NAFL philosophy
of finitism, are derivable from the main postulate of NAFL semantics, and
these will guide us on how NAFL syntax must be formulated. In what follows,
“T ⊢ P” means “T proves P”, where P is a proposition or a sentence.

Metatheorem 1. If T is a consistent NAFL theory and if T ⊢ (P ∨Q), then
either T ⊢ P or T ⊢ Q, i.e., both P and Q cannot be undecidable in T.

Proof. Suppose T ⊢ (P ∨Q) with P and Q undecidable in T. Consider an NAFL
model of T generated by the interpretation T* = T. The main postulate of
NAFL semantics requires that if T is consistent, such an NAFL model of T
must exist. In this model P ∨ Q has the classical truth value of “true”, while
each of P and Q has the nonclassical truth value of “neither true nor false”.
But this contradicts the fact that P ∨Q can be classically true if and only if at
least one of the sentences P and Q has the classical truth value of “true”.

Corollary 1. If T is a consistent NAFL theory and if T ⊢ (P → Q) or if
T ⊢ ¬(P ∧Q), then both P and Q cannot be undecidable in T.

Proof. Follows from Metatheorem 1, because (P → Q) ↔ (¬P ∨Q) and
¬(P ∧Q) ↔ (¬P ∨ ¬Q).
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Remark 1. It follows from Corollary 1 that the classical inference rule corre-
sponding to conditional proof (see Sec. 3.1.1), namely,

((T+ P ) ⊢ Q) ⊢ (T ⊢ (P → Q)),

fails in NAFL when P and Q are undecidable in T. A classical proof of P → Q
in the theory T would start with a hypothesis P that leads to the conclusion
Q, following which the hypothesis P is discharged and P → Q is inferred. In
NAFL, where truth is axiomatic in nature, this hypothesis is to be treated as
an axiomatic declaration of P and therefore the conclusions Q and P → Q
follow as theorems in the theory T + P . Note that the hypothesis P is not
discharged, but is fixed as an axiomatic declaration, and hence, as a theorem of
T + P . The conclusion Q is also a theorem of T + P , and P → Q, equivalent
to ¬P ∨ Q, follows trivially from Q and the inference rule corresponding to
disjunction introduction (see Sec. 3.1.1).

Metatheorem 2 (Pairwise consistency implies consistency). Suppose the ax-
ioms of an NAFL theory T are pairwise consistent, in the sense that every pair
of axioms constitutes a consistent NAFL theory. Then T is consistent.

Proof. Suppose three arbitrarily chosen axioms of T, namely, P , Q and R,
are inconsistent in the classical sense, i.e., a contradiction is provable from
(P ∧ Q ∧ R). Consider an NAFL theory T′ with the single axiom P . Observe
that T′ is consistent by assumption (of pairwise consistency) and that T′ ⊢ P
and T′ ⊢ (P → ¬(Q∧R)). By the modus ponens inference rule (see Sec. 3.1.1),
T′ ⊢ ¬(Q ∧ R). It follows from Corollary 1 that either T′ ⊢ ¬Q or T′ ⊢ ¬R.
But then it follows that the axioms P , Q and R are not pairwise consistent,
as assumed. This contradiction implies that P , Q and R are consistent in
the classical sense, i.e., no contradiction can be deduced from (P ∧ Q ∧ R).
Consider an NAFL theory T1 with the pair of axioms P and Q. Note that T1

is consistent by assumption and define its interpretation T∗
1 = T1+R. From the

main postulate of NAFL semantics, we conclude that T∗
1 generates an NAFL

model M of T1 in which all sentences provable in T∗
1 (including its axioms P ,

Q and R) are true w.r. to T1 and all other sentences have the nonclassical truth
value of “neither true nor false” w.r. to T1. But then it follows that M is also
a model of T∗

1 generated by the interpretation T∗∗
1 = T∗

1. We have proved that
T∗

1 is a consistent NAFL theory. We conclude that every triplet of the axioms
of T is consistent.

Now let P , Q, R and S be arbitrarily chosen axioms of T. and consider the
theory T2 with the axioms (P ∧Q), R and S. The preceding arguments show
that these axioms of T2 are pairwise consistent and hence consistent. Therefore
every quadruplet of the axioms of T is consistent.

Proceeding by induction, we conclude that every finite subset of the axioms
of T is consistent. Since any inconsistency in T must be derivable from a finite
subset of its axioms, it follows that T is consistent.
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Corollary 2 (Constructive existence). Metatheorem 2 implies that, in general,
classical nonconstructive existence is not permitted, and hence arbitrary con-
stants do not exist, in consistent NAFL theories.

Proof. In the language of an NAFL theory T with equality, let c1, c2 and c3 be
constant symbols, and let T include the following three axioms:

c1 = c2, c2 = c3, c3 ̸= c1. (5)

Clearly these three axioms are inconsistent, but pairwise consistent. This is so
because classical logic permits c1, c2 and c3 to be specified nonconstructively.
However, we know from Metatheorem 2 that an inconsistent set of axioms of
an NAFL theory cannot be pairwise consistent. Therefore the axioms in (5) are
illegitimate and NAFL does not permit classical nonconstructive existence. If an
NAFL theory T proves the existence of a constant c, then T must also provide
a construction for c, i.e., T will not permit c to be an arbitrary constant. For
example, if T were a theory of arithmetic, then T must prove that c is one of the
(standard) natural numbers whose existence is also provable in T, e.g., c = 10.
It is easy to see that if the three axioms in (5) are specified with constructions
for c1, c2 and c3 (e.g. (c1, c2, c3) = (1, 1, 2)), then they will not be pairwise
consistent.

Metatheorem 3. A consistent NAFL theory of arithmetic does not admit non-
standard models, i.e., nonstandard natural numbers do not exist in NAFL.

Proof. Consider the infinitely many axioms in (3), which classically prove the
existence of a nonstandard natural number c. These axioms are classically
pairwise consistent because c has been specified nonconstructively. However,
from Corollary 2, it follows that any consistent NAFL theory of arithmetic that
proves the existence of a constant c must also prove that c is a standard natural
number with a specific construction, e.g., c = 100. We conclude that by the
NAFL yardstick, the axioms (3) are inconsistent and not pairwise consistent,
because the axiom corresponding to n = c would be the contradiction c > c.

Remark 2. In NAFL, truth for the existence of a constant c is established via
provability in a theory T, whereas classically, such a truth is pre-existing and is
imposed on T from outside. This is the main reason why NAFL, unlike classical
logic, does not permit c to be a nonstandard natural number.

Remark 3. It follows from Metatheorem 3 that Gödel’s incompleteness theo-
rems, which imply the existence of nonstandard models of arithmetic, cannot
be formalized in consistent NAFL theories. The same applies to Turing’s proof
of the unsolvability of the halting problem. We will explain this in detail while
considering the syntax of NAFL theories.

Remark 4. Note that an NAFL theory of arithmetic will prove infinitely many
instances of (1), as in (4). The main postulate of NAFL semantics, wherein
truth is equated with the finitary concept of provability, ensures that it is not
possible to deduce a contradiction (e.g., the existence of nonstandard natural
numbers) from the infinitely many sentences in (4).
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Metatheorem 4. Infinite sets do not exist in consistent NAFL theories.

Proof. In set theory, define the infinite sets En as follows:

(∀n ∈ N) En = {n, n+ 1, . . . },

where N = {0, 1, . . . }. It is provable that every finite intersection of these sets
is nonempty:

(∀n ∈ E1)

n⋂
j=0

Ej = En ̸= ∅. (6)

It is also provable that the infinite intersection is empty:

∞⋂
j=0

Ej = ∅. (7)

The finite intersections in (6) essentially state that removing the elements
(0, 1, . . . , n − 1) from the set N leaves the residue En. Therefore we may in-
terpret (6) as “Each finite set {0, 1, . . . , n − 1} has been exceeded within N by
the infinitely many natural numbers in En”. Similarly, we may interpret (7) as
“Infinitely many natural numbers have not been exceeded within N” (or equiv-
alently, “N does not contain an infinitely large natural number”). In the logic
NAFL, wherein nonstandard models of arithmetic do not exist, these are contra-
dictory interpretations, because (6) essentially expresses the fact that infinitely
many natural numbers have been exceeded within N.

This contradiction occurs because the language of a theory which admits
infinite sets has the expressive power to state infinitely many instances of (1)
(as given by (4)) in each instance of a single provable sentence, namely, (6). We
have seen in Sec. 1 that infinitely many instances of (1), as stated in (3), lead
to a classical proof of the existence of nonstandard natural numbers. Hence
classically, one can only conclude from (6) that all the standard finite natural
numbers have been exceeded within N, which does not immediately lead to a
contradiction. NAFL semantics does not permit this classical proof of the ex-
istence of nonstandard naturals, which violates Metatheorem 3. In the absence
of nonstandard models of arithmetic, the only possible interpretation of (6)
in NAFL is the contradiction that infinitely many natural numbers have been
exceeded within N. As noted in Remark 4, NAFL semantics avoids this con-
tradiction in arithmetic, wherein infinitely many provable sentences of (4) are
required to obtain the equivalent of (6). Therefore, by the NAFL yardstick, (6)
and (7) are illegal (infinitary) sentences that contradict each other. It follows
that infinite sets cannot exist in consistent NAFL theories.

Remark 5. Later, in Metatheorem 7 (see Sec. 3.2.2), we will give a syntactic
proof of the nonexistence of infinite sets in theories formulated in NFOL (the
NAFL version of first-order logic). The very definition of infinite sets requires
infinitely many instances of (1) and hence it is not surprising that nonstandard
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models of infinite sets must necessarily exist. Further, the existence of nonstan-
dard models of arithmetic can be formalized and proven in suitable set theories
that admit infinite sets. Therefore Metatheorem 3 directly implies Metatheo-
rem 4. We will later see that NAFL theories do admit infinite (proper) classes,
but to avoid sentences like (6) and (7), quantification over infinite classes must
be banned. Further, there are no variables that range over infinite classes (i.e.,
arbitrary infinite classes do not exist) in the language of NAFL theories. Infinite
classes are constants that must be defined constructively.

Remark 6 (The conflict between NAFL and classical logic). Classical model
theory requires infinite sets to exist. Working backwards, one can see that all
the metatheorems of NAFL semantics are violated by the existence of infinite
sets and hence the main postulate of NAFL semantics is classically false. The
conflict between NAFL and classical logic is then reduced to whether one ought to
accept finitism via the main postulate or accept the classical Platonic existence
of infinite sets.

3 The syntax of NAFL theories

An NAFL theory NT has two levels of syntax, namely, the proof syntax (p-
syntax) and the theory syntax (t-syntax). The language, well-formed formulas
and rules of inference of NT are, in general, the same as those of classical logic,
with possibly some additional restrictions. The p-syntax determines all the
classical theorems and the undecidable sentences that follow from the axioms
of a classical theory T. The t-syntax, which specifies the axioms and theorems
of the corresponding NAFL theory NT, contains only a proper subset of the
theorems of T. For example, if P and Q are undecidable sentences of T (and
NT) and if the p-syntax contains a proof of P ∨ Q, the t-syntax will exclude
P ∨ Q, because Metatheorem 1 requires that P ∨ Q cannot be a theorem of
NT. In particular, the law of the excluded middle P ∨¬P and equivalently, the
law of noncontradiction ¬(P ∧ ¬P ), are not theorems of NT. The basic idea
is that sentences like P ∨ Q, which are interpreted classically in the p-syntax,
may occur in proofs of the theorems of NT, but the reverse implication does
not go through, i.e., NT does not imply P ∨Q, because NT interprets P and
Q in a nonclassical sense, as noted in the main postulate of NAFL semantics.

At first sight, it may seem strange, even contradictory, that an NT-undecidable
sentence like P is treated classically in the p-syntax and nonclassically in the
t-syntax. In particular, if Q is a sentence in the language of NT and if
Q → (P ∧ ¬P ) is provable in the p-syntax of NT, then that constitutes a
proof by contradiction of ¬Q in NT, despite the failure of the law of noncontra-
diction for P in the t-syntax. This is explained as follows. Note that the main
postulate of NAFL semantics requires that formal truths exist only with respect
to axiomatic theories. There is nothing intrinsically nonclassical about P , which
may have a classical truth value with respect to another theory that decides P .
To deduce the nonclassical nature of P with respect to the theory NT, one first
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needs to determine that P is undecidable in NT, and to avoid circularity, the
p-syntax of NT cannot possibly include the notion of NT-undecidability of P
and the consequent failure of the law of noncontradiction. It is only after P
is determined to be undecidable in NT that P loses its classical meaning with
respect to NT.

3.1 Propositional logic

Let NPL denote the NAFL version of propositional logic that uses a natural
deduction system. Let T be a theory in classical propositional logic and let NT
be the corresponding NPL theory. Here we define a theory as a set of nonlogical
axioms.

3.1.1 The p-syntax of the NPL theory NT

The p-syntax of NT determines all the theorems that can be deduced from
the axioms of the classical theory T. We start with the description of classical
propositional logic [3], which is a formal system L = L(A,Ω,Z, I), where A, Ω,
Z and I are defined as follows, for a natural deduction system.

� The set A is a countably infinite set of symbols that denote atomic for-
mulas or propositional variables, e.g.:

A = {p1, q1, r1, p2, q2, r2, . . . }.

� The set of logical connectives is defined as Ω = Ω1 ∪ Ω2, where

Ω1 = {¬}, Ω2 = {∨,∧,→,↔}.

� The set of logical axioms is empty: I = ∅.

� The set Z is defined by the following eleven inference rules, where p, q, r, . . .
denote formulas:

{p → q, p → ¬q} ⊢ ¬p (negation introduction),

¬p ⊢ (p → r) (negation elimination),

¬¬p ⊢ p (double negation elimination),

{p, q} ⊢ (p ∧ q) (conjunction introduction),

(p ∧ q) ⊢ p and (p ∧ q) ⊢ q (conjunction elimination),

p ⊢ (p ∨ q) and q ⊢ (p ∨ q) (disjunction introduction),

{p ∨ q, p → r, q → r} ⊢ r (disjunction elimination),

{p → q, q → p} ⊢ (p ↔ q) (biconditional introduction),

(p ↔ q) ⊢ (p → q) and (p ↔ q) ⊢ (q → p) (biconditional elimination),

{p, p → q} ⊢ q (modus ponens),

(p ⊢ q) ⊢ (p → q) (conditional proof).
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� In addition to the logical rules of inference given above, there may be
nonlogical rules of inference [7] that are specific to a given NPL theory
NT. See Secs. 3.1.2 and 3.1.3.

The well-formed formulas of the language L are inductively defined as follows:

� Any atomic formula belonging to the set A is a formula of L.

� If p is a formula, then ¬p is a formula.

� if p and q are formulas, then (p → q), (p ↔ q), (p ∨ q) and (p ∧ q) are
formulas.

� There are no other formulas.

One can use the above inference rules to deduce all the theorems of T from
the set of nonlogical axioms (which can also be empty) of a classical theory
T in propositional logic. This completes the definition of the p-syntax of the
corresponding NPL theory NT.

3.1.2 The t-syntax of the NPL theory NT

The t-syntax of NT defines the axioms, theorems and undecidable propositions
of NT. The theorems of NT are a proper subset of the classical theorems of
T deduced in the p-syntax. The following metatheorem provides important
guidance on the definition of the t-syntax of NPL theories.

Metatheorem 5. Let P and Q be well-formed formulas of the language L of
propositional logic. A proposition of the form P ∨Q, including propositions like
P → Q and ¬(P ∧ Q), is not a legitimate axiom in the t-syntax of consistent
NPL theories.

Proof. It suffices to consider an NPL theory with the following 3 axioms in its
t-syntax:

P → Q, Q → ¬P, P.

If these axioms are legitimate, they are pairwise consistent, because each pair
of axioms decides either P or Q, so that Metatheorem 1 and Corollary 1 are
not violated. However, the above axioms are clearly inconsistent, and therefore,
their pairwise consistency violates Metatheorem 2.

Remark 7. Consider an NPL theory NT with the axioms p and p → q in its
t-syntax, where p and q are atomic propositions. At first sight this looks like
a perfectly legitimate theory with p, q and p → q as theorems in its t-syntax,
so it does seem strange that NT is inconsistent according to Metatheorem 5.
However, note that the subtheory of NT with the single axiom p → q in its t-
syntax is inconsistent, as follows from Corollary 1. This violates the requirement
that a subtheory of a consistent theory must be consistent, which is used in the
proof of Metatheorem 2.
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In order to define the t-syntax of NT, it is convenient to convert all well-formed
formulas of L to the disjunctive normal form (DNF), which is a formula of the
form:

n∨
i=1

mi∧
j=1

Lij ,

where Lij is a literal, defined as an atomic formula (i.e., a propositional variable)
or its negation. For any propositional formula A it is possible to construct an
equivalent DNF B containing the same variables as A. [8] The DNF, which is
a disjunction of one or more conjunctions of one or more literals (including the
cases where there is a single disjunct and / or a single conjunct), is generated
as follows.

� Eliminate all occurrences of → and ↔ from the formula in question. Use
logical equivalences, e.g., the following, for this purpose:

P → Q ≡ ¬P ∨Q

P ↔ Q ≡ (¬P ∨Q) ∧ (P ∨ ¬Q)

P ↔ Q ≡ (P ∧Q) ∨ (¬P ∧ ¬Q)

� Move all negations inward, so that finally, negations appear only as nega-
tions of propositional variables. Use logical equivalences, e.g., the follow-
ing, for this purpose:

¬¬P ≡ P.

¬(P ∧Q) ≡ ¬P ∨ ¬Q.

¬(P ∨Q) ≡ ¬P ∧ ¬Q.

� Use the distributive laws, e.g.

(P ∧ (Q ∨R)) ≡ ((P ∧Q) ∨ (P ∧R))

(P ∨ (Q ∧R)) ≡ ((P ∨Q) ∧ (P ∨R))

The rules for constructing the t-syntax of NT, with all well-formed formulas
assumed to be in DNF, are as follows:

� From Metatheorem 5, it follows that an axiom of NT cannot contain the
disjunction symbol ∨.

� The theorems of NT are those theorems of T for which at least one of the
disjuncts is provable in T. This follows from Metatheorem 1. In particular,
theorems of T which are conjunctions of one or more literals are theorems
of NT. Note that if there is a well-formed formula P for which each of the
disjuncts is refutable in T, then ¬P will satisfy the above requirement to
qualify as a theorem of NT.
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� If there are theorems of T that contain the disjunction symbol ∨ and
for which at least two of the disjuncts are undecidable in T and other
disjuncts, if present, are either undecidable or refutable in T, then such
theorems of T are not in the t-syntax of NT, i.e., they are neither theo-
rems nor undecidable formulas of NT. That they are not theorems of NT
follows from Metatheorem 1 and that they are not undecidable formulas
of NT follows from the main postulate of NAFL semantics (see Sec. 2),
as seen from the following example.

� Consider the law of the excluded middle P ∨¬P , which is neither a theo-
rem (as follows from Metatheorem 1) nor an undecidable formula of NT
when P is a well-formed formula that is undecidable in T. From the main
postulate of NAFL semantics, there must exist models of NT in which un-
decidable formulas are true (via provability in the interpretation NT*), or
false (via provability in NT*), or neither true nor false (via undecidability
in NT*). Clearly, there cannot exist a model of NT in which P ∨ ¬P
is classically false (via an axiomatic assertion of P&¬P in NT*) because
consistent NAFL theories, like NT*, cannot prove contradictions. Hence
P ∨ ¬P is not an undecidable formula of NT and is therefore not in the
t-syntax of NT.

� For each nonlogical axiom of T that is not present and / or is not a
legitimate axiom in the t-syntax of NT, an appropriate nonlogical rule of
inference [7], from which the axiom can be classically inferred, should be
included in the p-syntax of NT. For example, if P and Q are undecidable
in T and if P → Q is an axiom of T, then P → Q is not in the t-syntax of
NT. In this case the nonlogical rule of inference P ⊢ Q (“From P , infer
Q”), from which P → Q can be classically inferred, should be included
in the p-syntax of NT, so that the theory NT + P will prove Q. The
notion of truth as provability with respect to theories in NAFL semantics
(see Sec. 2) implies that “From P , infer Q” is to be interpreted as “From
a proof of P , infer Q”, or, equivalently, “From an axiomatic assertion of
P , infer Q”. It is important to note that this nonlogical rule of inference
does not lead to a proof of P → Q in the theory NT, as is evident from
Remark 1. Hence the nonlogical rule of inference is not equivalent to an
assertion of the illegal axiom P → Q in the t-syntax of NT. It is this
fact which permits the existence of a nonclassical model of NT in which
P ∧ ¬P and Q ∧ ¬Q hold, i.e., both P and Q are nonclassically “neither
true nor false”, as required by the main postulate of NAFL semantics. As
noted in the proof of Metatheorem 1, the existence of such a nonclassical
model is not possible if P → Q were to be asserted as an axiom of NT.

Remark 8. The above argument explains why NPL has a natural deduc-
tion system (see Sec. 3.1.1) in which there are no logical axioms, which, if
present, would be violated by the requirement of the existence of nonclas-
sical models of NPL theories.
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� The axioms of NT are those axioms of T that are legitimate in the t-
syntax of NT (i.e., the axioms that are conjunctions of one or more lit-
erals). The theorems of NT may be deduced from these axioms and the
nonlogical rules of inference that will replace any axioms of T that are
not conjunctions of one or more literals.

� Consider a well-formed formula P of L which is not a theorem of T, and
for which at least one disjunct is undecidable in T and other disjuncts, if
present, are either undecidable or refutable in T. Then P is an undecidable
formula of NT. In particular, if P is a conjunction of one or more literals
and if P is undecidable in T, then P is undecidable in NT.

3.1.3 Simple examples of NPL theories

Consider a classical theory T in propositional logic whose axioms are p and
p → q, where p and q are propositional variables. Using modus ponens, we
conclude that q is a theorem of T.

� Here p → q is not a legitimate axiom in the t-syntax of NT. Hence a
nonlogical rule of inference p ⊢ q (“From p, infer q”) should be included
in the p-syntax of NT. The t-syntax would have the single axiom p, from
which q may be deduced via this inference rule. Note that p → q (or
equivalently, ¬p ∨ q) is also a theorem of NT. From Remark 1, it follows
that the above inference rule does not directly lead to a proof of p → q
in NT, and hence is not equivalent to an axiomatic assertion of p → q.
Rather, the inference rule together with a proof of p leads to a proof of q,
from which we infer p → q as a theorem (but not a legitimate axiom) of
NT, via a different inference rule (disjunction introduction).

� The propositions p ∨ ¬p and q ∨ ¬q, which are theorems of T, are also
theorems of NT that can be deduced from p and q respectively.

� The proposition r ∨ ¬r, where r is a propositional variable, is a theorem
of T but is not in the t-syntax of NT because each of the disjuncts r and
¬r is undecidable in T.

� The propositions p∨ r and q ∨ r are theorems, but not legitimate axioms,
of NT.

� The formula r ∨ s, where s is a propositional variable, is an undecidable
proposition of NT. Note that r ∨ s cannot be legitimately added as an
axiom to NT, but addition of either r or s as an axiom to NT would
make r ∨ s provable in the extended theory.

Consider the case where T = ∅ is the null set of axioms. The theorems of
T are the classical tautologies, which are not in the t-syntax of NT. Hence the
corresponding NPL theory NT = ∅ has no theorems. The main postulate of
NAFL semantics requires that the interpretation NT∗ = NT (see Sec. 2) will
generate a model of NT in which P ∧¬P is the case (meaning both P and ¬P
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are true and hence nonclassically “neither true nor false”) for every proposition
P in the t-syntax of NT.

Suppose T has the single axiom p → q, where p and q are propositional
variables. Then again NT = ∅. The axiom p → q (equivalent to ¬p ∨ q) in
the p-syntax of NT does not lead to any theorems in its t-syntax. This is so
because both p and q are undecidable in NT and hence ¬p∨q, which is provable
in T, is not in the t-syntax of NT either as a theorem or as an undecidable
proposition. Here p ⊢ q should be included as a nonlogical rule of inference in
the p-syntax of NT, so that the the theory NT+ p would prove q.

3.2 First-order logic

Let NFOL denote the NAFL version of classical first-order logic (FOL) [3], that
uses a natural deduction system. As in propositional logic, NFOL theories have
a proof syntax (p-syntax) and a theory syntax (t-syntax).

3.2.1 The p-syntax of NFOL theories

The p-syntax of NFOL theories is classical, but unlike propositional logic, there
are significant restrictions demanded by the finitary reasoning of NAFL, as will
be described in Secs. 3.2.2 and 4.5.1.

Alphabet

The alphabet of the language L of an NFOL theory consists of the logical and
the non-logical symbols.

Logical symbols

� The universal quantifier ∀ and the existential quantifier ∃.

� The logical connectives ∧ (conjunction), ∨ (disjunction), → (implication),
↔ (biconditional) and ¬ (negation).

� Parentheses ( ).

� Infinitely many variables x, y, z, . . . or x0, x1, x2, . . . .

� The equality symbol =.

� The truth constants ⊤ (for “true”) and ⊥ (for “false”).

Non-logical symbols

� For each natural number n, the n-place predicate symbols Pn, Qn, Rn, . . .
or Pn

1 , P
n
2 , P

n
3 , . . . . The superscripts are often omitted. Zero-place predi-

cate symbols are identified with propositional variables and are sometimes
called sentence letters.
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� For each natural number n, the n-place function symbols fn, gn, hn, . . . or
fn
1 , f

n
2 , f

n
3 , . . . . The superscripts are often omitted. Zero-place function

symbols are constants, denoted by a, b, c, . . . , or a0, a1, a2, . . . .

Terms, formulas

The terms and formulas (also called well-formed formulas), as well as the free
and bound occurrences of variables in a formula, are defined inductively as in
FOL. The atomic formulas are of the form P (t1, t2, . . . , tn) and t1 = t2, where
P is an n-place predicate symbol and t1, t2, . . . , tn are terms. A sentence (closed
term) is a formula (term) with no free variable occurrences.

Deductive system

A natural deduction system, as defined in Sec. 3.1.1, is used, where the symbols
{p, q, r, P,Q, . . . } denote sentences rather than propositions. The inference rules
for quantifiers are universal generalization, universal instantiation, existential
generalization and existential instantiation, defined as in FOL. The following
axiom schemas for equality complete the deductive system:

� Reflexivity: For each variable x, x = x.

� Substitution for functions: For all variables x and y, and any function
symbol f ,

x = y → f(. . . , x, . . . ) = f(. . . , y, . . . ).

� Substitution for formulas: For any variables x and y and any formula ϕ(x),
if ϕ′ is obtained by replacing any number of free occurrences of x in ϕ by
y, such that these remain free occurrences of y,

x = y → (ϕ → ϕ′).

In addition to the logical rules of inference given above, there may be nonlog-
ical rules of inference [7] that are specific to a given NFOL theory NT. See
Sec. 3.2.3. The p-syntax of an NFOL theory NT is completed by specifying a
set of nonlogical axioms, corresponding to the classical FOL theory T, satisfying
all the NAFL restrictions specified in Sec. 3.2.2 below.

3.2.2 NAFL restrictions in the p-syntax of NFOL theories

Here we consider NFOL theories with a countably infinite universe. For the
NFOL theory of real numbers, see Sec. 4.3. According to the main postulate of
NAFL semantics (see Sec. 2), models of NFOL theories are generated by prov-
ability in interpretations, which are also NFOL theories. Therefore semantics
for various infinite entities, such as, an infinite universe, functions and predi-
cates, are to be provided via provability in NFOL theories. Classical semantics
treats these infinite entities as pre-existing infinite sets in a Platonic universe,
which makes truth distinct from provability. This classical distinction between
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syntax and semantics gets blurred in NAFL, which rejects Platonism and its
infinitary consequences.

Sort for n-tuples

A separate sort is required for the treatment of n-tuples and infinite classes
of n-tuples in the p-syntax of NFOL theories that admit a countably infinite
universe. The complete set of rules for this sort is described as follows.

� The sort for n-tuples in NFOL theories accepts the natural numbers,
rather than sets, as primitives. The class N = {0, 1, 2, . . . } of all natu-
ral numbers exists in this sort.

� Every NFOL theory proves the existence of n-tuples, where, for n ≥ 1, an
n-tuple is a finite sequence (or a list) defined by

(a1, a2, . . . , an) = (f(1), f(2), . . . , f(n)),

where f is a unary function defined on the domain {1, 2, . . . , n}, with the
codomain as the universe of the NFOL theory. Here the aj are constant
symbols that map to objects in the universe. Note that we have defined
n-tuples as primitives rather than as sets. These n-tuples do not belong
to the universe of objects (over which the quantifiers range) and may be
considered as a separate sort.

� Infinite sets do not exist in consistent NFOL theories (see Metatheorem 4,
Remark 5 and also Metatheorem 7 below). Infinite classes of n-tuples must
necessarily exist in NFOL theories that prove the existence of infinitely
many (finite) objects and these are proper classes that do not belong to
the universe of objects or n-tuples.

� Infinite classes of n-tuples are constants, in the sense that there are no
class variables that range over infinite classes, and hence there are no
class quantifiers. Arbitrary infinite classes do not exist and no formula of
an NFOL theory can either directly or indirectly (e.g. via coding) quantify
over infinitely many infinite classes. Since functions and predicates, when
defined on an infinite domain or universe, are infinite classes of n-tuples
(see Remark 12 below), it follows that there are no arbitrary functions or
arbitrary predicates in NFOL theories. In particular, constant symbols
are nullary functions and hence there are no arbitrary constants in NFOL
theories (see Corollary 2).

� Every NFOL theory proves the existence of infinite sequences of n-tuples
(where n ≥ 1) as mappings from the domain N, whenever the elements
of the infinite sequence can be defined constructively, in the following
sense. Given any natural number i, there must exist an algorithm (effective
procedure) that constructs the i-th element of the sequence. For example,
the infinite sequence of all prime numbers must exist in an NFOL theory
of arithmetic.

17



� Existence axiom for infinite classes: As noted in Corollary 2, NAFL
theories do not admit nonconstructive existence. Infinite classes of n-
tuples that exist in NFOL theories must be countable and constructively
specified. The class existence axiom schema may be stated as follows:

For each natural number n ≥ 1, let P (x1, . . . , xn) be a property in the
language of an NFOL theory (with a countably infinite universe) that is
satisfied by infinitely many n-tuples τn = (x1, . . . , xn). Then the τn can
be arranged in an infinite sequence of distinct n-tuples (τni )i∈N, and there
exists the corresponding infinite class of n-tuples {τni }i∈N.

The only legitimate properties in NFOL theories are those which admit
constructive existence of infinite classes of n-tuples in the above sense. In
particular, corresponding to every n-place function symbol f , there must
exist an infinite sequence, and an infinite class, of distinct (n + 1)-tuples
(x1, x2, . . . , xn, y) satisfying the relation f(x1, x2, . . . , xn) = y.

� Axiom of extensionality for infinite classes: If A and B are infinite
classes of n-tuples (where n ≥ 1) and if for all n-tuples x, x ∈ A ↔ x ∈ B,
then A = B.

� The universal class U = {x : x = x} must exist in every NFOL theory that
proves the existence of a countable infinity of finite objects. As required
by the class existence axiom, the universal class must be enumerable in
an infinite sequence. For example, in an NFOL theory of arithmetic,
U = N = {0, 1, 2, . . . }.

� Examples: In an NFOL theory of arithmetic, the property P (x) denoting
“x is prime” is satisfied by an infinite sequence of prime numbers and there-
fore there exists the corresponding infinite class of primes. The function
f(x) = x2 generates an infinite class of ordered pairs of natural numbers,
namely, {(0, 0), (1, 1), (2, 4), . . . }. If T is an NFOL theory of finite sets,
then T proves the existence of the infinite class {∅, {∅}, {{∅}}, . . . } pro-
vided T proves the existence of each element of this class, where ∅ denotes
the empty set.

Metatheorems pertaining to the p-syntax of NFOL theories

Metatheorem 6. Let A be an infinite class whose existence is provable in a
consistent NFOL theory T, and let T ⊢ ∃x (x = a). Then the proposition a ∈ A
must be decidable in T.

Proof. Assume that a ∈ A is undecidable in T. Then, upon choosing the inter-
pretation T∗ = T (see Sec. 2), the main postulate of NAFL semantics requires
that there must exist a nonclassical model of T in which (a ∈ A∧a /∈ A) is true.
But (a ∈ A ∧ a /∈ A) violates the axiom of extensionality for infinite classes,
which is a theorem of T and therefore the said nonclassical model of T cannot
exist.
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Remark 9. The axiom of extensionality ensures that infinite classes are uniquely
determined. In NAFL, truth is associated with provability in theories via the
main postulate of NAFL semantics. Therefore Metatheorem 6 requires that
uniqueness of infinite classes must hold with respect to NFOL theories, whereas
classically, this uniqueness holds in a Platonic universe. In particular, Metathe-
orem 6 implies that an infinite class must be constructively specified in an NFOL
theory T, and the construction must be provable in T, i.e., it must hold in every
model of T.

Metatheorem 7. Infinite sets do not exist in consistent NFOL theories.

Proof. Metatheorem 6 implies that NFOL theories with an infinite universe must
specify a unique construction for the universal class U. In particular, it follows
from Metatheorem 6 that the proposition that a given infinite class A ∈ U (i.e.,
A is a set) cannot be undecidable in a consistent NFOL theory T. Since there
exists a model of T in which A /∈ U, we may conclude that T ⊢ (A /∈ U), i.e.,
A is a proper class.

Remark 10. Essentially the same proof, which uses the uniqueness of the con-
struction for the universal class U, also shows that consistent NFOL theories do
not admit nonstandard models.

Metatheorem 8. Let x be a free variable in a formula of an NFOL theory T.
Let U = {aj}j∈N be the universal class of objects whose existence is provable in
T, i.e., when universally quantified, x ranges over the values aj , j ∈ N. Then x
(when free) must be in an infinite superposition state of all possible values, i.e.,

(x = a0) ∧ (x = a1) ∧ (x = a2) . . . . (8)

Proof. As noted in Sec. 3.1.3, an NPL theory NT = ∅ (with the null set of ax-
ioms) must have a model M in which every proposition in the t-syntax of NT
has a nonclassical truth value of “neither true nor false”, i.e., each proposition
and its negation are both assigned the truth value “true”. To model the seman-
tics of a free variable of an NFOL theory, let the propositions in the t-syntax
of NT include the atomic propositions x = aj for each j ∈ N. When x is a
quantified variable, possibly infinitely many interpretations NT∗ of NT (see
Sec. 2), each containing the single axiom x = aj , would be required. When x is
a free variable, we set the interpretation NT∗ = NT, and it follows that each
of the propositions x = aj must be assigned the truth value “true” in the model
M. Then it is clear that (8) must hold in M.

Remark 11 (Free variables as infinite classes). Note that the infinite superpo-
sition of values of x in (8) cannot be expressed explicitly (because formulas have
to be of finite length), unlike a finite superposition, e.g. “x = a1 ∧ x = a2”.
We overcome this limitation by postulating x = U (in a nonclassical model of
an NFOL theory) for a free variable x of a formula. Thus if U = {a0, a1, . . . },
then “x = U” is to be interpreted as a code for the infinite superposition in (8).
The key point to note is that in NAFL, a free variable is an infinitary entity
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(not belonging to the universe U of finite objects), whereas in classical logic, a
free variable x is interpreted as an “arbitrary” object belonging to the universe
(i.e., satisfying the infinite disjunction “(x = a0∨x = a1 . . . )”) and is therefore
considered finite. On the other hand, in an NFOL theory T, x ∈ U if and only
if one of the infinitely many disjuncts (x = aj) is provable in T, and this is
true only for a quantified variable x when it is assigned each of the values aj
(universal quantifier) or specific values aj (existential quantifier).

Remark 12 (Functions and predicates as infinite classes). When an n-tuple
(x1, . . . , xn) is assigned a value (a1, . . . , an), the function f(x1, . . . , xn) = y is an
(n+1)-tuple in a model of an NFOL theory, i.e., f = τn+1 = (a1, . . . , an, an+1),
where the aj belong to the universal class U and y = an+1. When the n-tuple
(x1, . . . , xn) is not assigned a value, the main postulate of NAFL semantics
requires that the function f(x1, . . . , xn) = y be in an infinite superposition of all
possible values τn+1 in a nonclassical model of an NFOL theory. In this case f
is postulated to be an infinite class of (n+1)-tuples, i.e., f = {τn+1

i }i∈N. Similar
considerations apply to a predicate P (x1, . . . , xn), which may be interpreted as
a function which maps the n-tuple (x1, . . . , xn) to a truth constant (⊤ or ⊥).

Remark 13. Observe that the nonclassical postulations of free variables and
functions as infinite classes in Remark 11 and Remark 12 respectively must
hold in every model of an NFOL theory. Therefore these postulations must be
provable in the sort for n-tuples of a consistent NFOL theory T, i.e.,

T ⊢ (x = U) & T ⊢ (f = {τn+1
i }i∈N), (9)

whenever x is a free variable in a formula and the argument (x1, . . . , xn) of the
n-place function f is unspecified. Note that, as demanded by consistency, T does
not formally prove a contradiction in (9) despite the fact that the nonclassical
interpretation of (9) in a model of T involves infinite superpositions of values
for x and f , which are indeed contradictions. We believe that these infinite
superpositions are appropriately encoded by infinite classes in (9) because an
infinite class is indeed a contradictory object in NAFL. But NAFL semantics
blocks the deduction of a contradiction from infinite classes, for which infinitely
many sentences are required (see Sec. 2, in particular, Remark 4 and Remark 5).

Metatheorem 9. Arithmetization of syntax and Gödel’s incompleteness theo-
rems cannot be formalized in consistent NFOL theories.

Proof. The symbols of an uninterpreted classical theory, such as function /
predicate symbols, are treated as finite objects and encoded by Gödel numbers,
even if they denote infinite sets in an interpretation. This classical separation
of syntax and semantics does not go through in NAFL. The interpretation T*
of an NAFL theory T (see Sec. 2) necessarily exists. If the human mind does
not explicitly specify T*, then T*=T, i.e., no axioms have been added to T.
Hence uninterpreted NAFL theories do not exist and at least some symbols
of a specified NFOL theory, such as variables, functions and predicates, must
necessarily be treated as infinite classes (see Remarks 11, 12 and 13). In other

20



words, the appropriate codes for these symbols of specified NFOL theories are
infinite classes and not Gödel numbers, which can only be used to encode fi-
nite objects. By the rules stated in Sec. 3.2.2, no formula of an NFOL theory
can either directly or indirectly (e.g. via coding) quantify over infinitely many
infinite classes. Hence infinitely many of these symbols cannot be specified as
objects of an NFOL theory, i.e., there are no “arbitrary” symbols and there is
no universe of symbols, to quantify over.

Suppose the human mind does not specify any NFOL theory, but merely con-
siders the infinitely many symbols used in NFOL theories. In this case, these
uninterpreted symbols are to be treated as (approximate) geometric shapes, and
must be encoded by specific geometric constructions, rather than by Gödel num-
bers. For example, the symbol “o” may be encoded by a circle of a given radius,
which, from the point of view of Euclidean geometry, is a finite construction.
But clearly the algebraic construction of geometric objects, such as, circles, re-
quires a continuum of real numbers and is therefore not finite. We will later see
that in the NAFL version of real analysis, the objects of Euclidean geometry are
superclasses of real numbers and are encoded by infinite sequences of rational
numbers. Hence uninterpreted symbols are infinite objects and infinitely many
of these cannot be (encoded as) objects of the universe of a consistent NFOL
theory, for example, via encoding by Gödel numbers.

Remark 14. Classically, symbols are introduced as primitives and treated as
finite objects. In NAFL, this procedure is valid only for finitely many symbols.
When infinitely many symbols are under consideration, their infinite structure
as geometric objects (for uninterpreted symbols) or as infinite classes (e.g. for
symbols interpreted as functions, predicates and variables) cannot be ignored.
Hence infinitely many symbols cannot be introduced as primitives in NFOL the-
ories.

Metatheorem 10. The halting problem of classical computability theory (and
Turing’s proof of the unsolvability of the halting problem) cannot be formalized
in NFOL theories.

Proof. The halting problem is the problem of determining whether an arbitrary
computer program will halt on an arbitrary input. A computer program per-
forms the role of a unary function P that maps infinitely many possible inputs
x to either “halts” (P (x) = 0) or “not-halts” (P (x) = 1). In NFOL theories,
such a function is an infinite class (see Remark 12) and as noted in Sec. 3.2.2,
arbitrary infinite classes do not exist. Hence arbitrary functions, and in par-
ticular, an arbitrary computer program, do not exist in NFOL theories, and
quantification over computer programs is illegal.

Metatheorem 11. Various forms of the diagonal argument (for example, as
used in Gödel’s incompleteness theorems, Turing’s proof of the unsolvability
of the halting problem, Cantor’s proof that there are uncountably many real
numbers, the diagonal lemma) cannot be formalized in NFOL theories.
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Proof. The common feature of all forms of the diagonal argument is that it either
requires arbitrary infinite classes (such as, arbitrary functions) or quantification
over infinitely many infinite classes, which are illegal in NFOL theories, as noted
in Sec. 3.2.2. For example, Cantor’s diagonal argument requires an infinite
list of real numbers, each of which is represented by an infinite sequence of
rationals.

Remark 15. As noted in Remark 3, Gödel’s incompleteness theorems and Tur-
ing’s proof of the unsolvability of the halting problem are infinitary results by the
NAFL yardstick. Indeed, the unsolvability of the halting problem implies that
there must exist a program P for which it is true, but unprovable, that P does
not halt. In the NAFL version of finitism, the assertion that P does not halt
is meaningful if and only if there exists a proof that P does not halt. If such a
proof does not exist, then the claim that P does not halt implies that P passes
through infinitely many states sequentially, which in turn implies that all the
natural numbers in N can be counted, one at a time. This tacit assumption of
classical computability theory enables Turing’s proof, which is rejected in NAFL
as infinitary.

3.2.3 The t-syntax of NFOL theories with an infinite universe

All the theorems in the sort for n-tuples and infinite classes of n-tuples carry over
from the p-syntax to the t-syntax of NFOL theories with an infinite universe.
In what follows, “t-syntax” is an abbreviation for the main sort of the t-syntax.
The building blocks of the t-syntax of NFOL theories are basic sentences, defined
as follows:

Q1x1Q2x2 . . . QnxnL. (10)

Here each Qj is a quantifier, i.e., either ∀ or ∃, and L is a literal (an atomic
formula of FOL or its negation) possibly containing either none or all of the free
variables (x1, x2, . . . , xn). See Sec. 3.2.1 for the definition of atomic formulas.
In particular, note that if L does not contain any free variables (for example,
if all the free variables of a literal are substituted with closed terms) then the
quantifiers Q1, . . . , Qn may be removed from (10).

Observe that the negation of a basic sentence in (10) is also a basic sentence;
the negation symbol can be moved inwards to the literal when ∀xj and ∃xj are
replaced by ¬∃xj¬ and ¬∀xj¬ respectively and double negations are eliminated.
The well-formed formulas of the t-syntax of NFOL theories are sentences built
up inductively from (10) using propositional logic, as follows.

� Any basic sentence is a formula of the t-syntax of NFOL theories.

� If p is a formula, then ¬p is a formula.

� if p and q are formulas, then (p → q), (p ↔ q), (p ∨ q) and (p ∧ q) are
formulas.

� There are no other well-formed formulas in the t-syntax of NFOL theories.
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Let NT be an NFOL theory and let the p-syntax of NT correspond to the
classical theory T which satisfies the NAFL restrictions specified in Sec. 4.5.1
or Sec. 3.2.2. In particular, T is either a theory of real numbers or has a
countably infinite universe of finite objects, each of whose existence is provable
in T. The t-syntax of NT may be defined by following a procedure analogous
to that described in Sec. 3.1.2. The well-formed formulas of the t-syntax (as
defined above) can be converted to a disjunctive normal form (DNF), as follows:

n∨
i=1

mi∧
j=1

Bij , (11)

where Bij is a basic sentence. The rules for constructing the t-syntax of NT,
with all well-formed formulas assumed to be in DNF, are as follows:

� From Metatheorem 5, it follows that an axiom of NT cannot contain the
disjunction symbol ∨.

� The theorems of NT are those theorems of T for which at least one of the
disjuncts is provable in T. This follows from Metatheorem 1. In particular,
theorems of T which are conjunctions of one or more basic sentences are
theorems of NT. Note that if there is a well-formed formula P for which
each of the disjuncts is refutable in T, then ¬P will satisfy the above
requirement to qualify as a theorem of NT.

� If there are theorems of T that contain the disjunction symbol ∨ and for
which at least two of the disjuncts are undecidable in T and other dis-
juncts, if present, are either undecidable or refutable in T, then such the-
orems of T are not in the t-syntax of NT, i.e., they are neither theorems
nor undecidable formulas of NT. For example, the law of the excluded
middle P ∨ ¬P is neither a theorem nor an undecidable formula of NT
when P is a well-formed formula that is undecidable in T.

� For each nonlogical axiom of T that is not present and / or is not a
legitimate axiom in the t-syntax of NT, an appropriate nonlogical rule of
inference [7], from which the axiom can be classically inferred, should be
included in the p-syntax of NT. See Remarks 16 and 17.

� The axioms of NT are those axioms of T that are legitimate in the t-
syntax of NT (i.e., the axioms that are conjunctions of one or more basic
sentences). The theorems of NT may be deduced from these axioms and
the nonlogical rules of inference that will replace any axioms of T that
are not conjunctions of one or more basic sentences.

� Consider a well-formed formula P of the t-syntax of NT which is not a
theorem of T, and for which at least one disjunct is undecidable in T and
other disjuncts, if present, are either undecidable or refutable in T. Then
P is an undecidable formula of NT. In particular, if P is a conjunction
of one or more basic sentences and if P is undecidable in T, then P is
undecidable in NT.
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Remark 16. Note that a sentence like ∀x (P (x) ∨ Q(x)), where P and Q are
unary predicate symbols, is legitimate in the p-syntax of NT, but is not a well-
formed formula of the t-syntax. Consider the following simple illustrative exam-
ple. Let T include the axioms

∀x (P (x) ∨Q(x)), (12)

∀x (P (x) ∨Q(x)) → ∀x ∃y R(x, y), (13)

where R is a two-place predicate symbol. By modus ponens, T proves

∀x ∃y R(x, y). (14)

Note that (14), being a basic sentence, is a well-formed formula of the t-syntax
and is therefore a theorem of NT. But neither (12) nor (13) is a legitimate sen-
tence in the t-syntax of NT. Let U denote the universal class whose constructive
existence is required to be provable in T. Infinitely many instances of (12), of
the form P (aj) ∨Q(aj), where aj ∈ U , are theorems of T and are well-formed
formulas of the t-syntax of NT. Whether each of these instances is a theorem
of NT or is excluded from its t-syntax must be determined by the rules given
above. The point of this example is that axioms like (12) and (13), which contain
infinitely many disjunctions, are excluded from the t-syntax of NT. Therefore
NT does not have any axioms. The theorems of NT may be deduced from the
following nonlogical rules of inference corresponding to(12) and (13):

∀x (¬P (x) ⊢ Q(x)),

∀x (¬P (x) ⊢ Q(x)) ⊢ ∀x ∃y R(x, y).

3.2.4 First-order Peano arithmetic

LetNPA be the NFOL version of classical first-order Peano arithmetic (PA). [3]
The signature of PA has symbols for the constant 0, addition (+), multiplication
(×) and the successor function (S(x)). The p-syntax of NPA corresponds to the
theory PA, together with the NAFL restrictions given in Sec. 3.2.2. In particu-
lar, from Metatheorem 9, functions cannot be defined in PA via arithmetization
of syntax, and hence the signature of PA must include function symbols other
than S(x) as required. The p-syntax of NPA contains the nonlogical axioms of
PA, which are specified as follows:

∀x ¬(0 = S(x)), (15)

∀x ∀y (S(x) = S(y) → x = y), (16)

∀x(x+ 0 = x), (17)

∀x ∀y (x+ S(y) = S(x+ y)), (18)

∀x (x× 0 = 0), (19)

∀x ∀y (x× S(y) = (x× y) + x), (20)

∀y1 . . . ∀yk ((ϕ(0, ȳ) ∧ ∀x (ϕ(x, ȳ) → ϕ(S(x), ȳ))) → ∀x ϕ(x, ȳ)). (21)
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where (21) is the induction axiom schema for each formula ϕ(x, ȳ) in the lan-
guage of PA and ȳ stands for y1, . . . , yk. The axioms (15) and (17) – (20) are
basic sentences as defined in (10) and hence are theorems in the t-syntax of
NPA. The axiom (16) is not a well-formed formula of the t-syntax, but leads to
infinitely many theorems (which are basic sentences) in the t-syntax, as follows:

∀x ¬(S(n)(x) = x), for n = 1, 2, . . . , (22)

where, for n ≥ 1, S(n)(x) is the successor function applied n times to x, i.e.,
S(1)(x) = S(x), S(2)(x) = S(S(x)), etc. Consider the induction axiom schema
(21), which is also not a well-formed formula of the t-syntax. From the premise

ϕ(0, ȳ) ∧ ∀x (ϕ(x, ȳ) → ϕ(S(x), ȳ))

one may conclude

ϕ(0, ȳ), ϕ(S(0), ȳ), . . . , ϕ(S(n)(0), ȳ)

for any natural number n ≥ 1 and the reverse implication also holds. We
conclude that a sentence equivalent to (21) is as follows:

∀y1 . . . ∀yk ((ϕ(0, ȳ) ∧ ∀x ϕ(S(x), ȳ)) → ∀x ϕ(x, ȳ)). (23)

Drop the quantifiers for y1, . . . , yk and treat these as free variables:

(ϕ(0, ȳ) ∧ ∀x ϕ(S(x), ȳ)) → ∀x ϕ(x, ȳ). (24)

Upon eliminating the implication symbol from (24), we obtain the following
equivalent of (21):

¬ϕ(0, ȳ) ∨ ∃x ¬ϕ(S(x), ȳ) ∨ ∀x ϕ(x, ȳ). (25)

With ϕ(x, ȳ) restricted to be a well-formed formula of the t-syntax, (25) can be
put in the standard form (11) and each of the infinitely many instances of (25)
(for every possible value of ȳ) is a theorem in the t-syntax of NPA.

Remark 17. The axioms in the t-syntax of NPA may be chosen as (15) and
(17) – (20). The following nonlogical rules of inference, from which (16) and
(21) can be classically inferred, must be included in the p-syntax:

∀x ∀y (S(x) = S(y) ⊢ x = y),

∀y1 . . . ∀yk ((ϕ(0, ȳ) ∧ ∀x (ϕ(x, ȳ) ⊢ ϕ(S(x), ȳ))) ⊢ ∀x ϕ(x, ȳ)).

These axioms / nonlogical rules of inference are all needed, and NPA is the
weakest theory of arithmetic that is possible in NAFL, if we reject ultrafinitism.
Dropping any of these axioms / inference rules will lead to nonstandard models
of arithmetic, not permitted in NAFL (see Metatheorem 3 and Remark 10).
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Remark 18. The sort for n-tuples in the NFOL theory NPA accepts the nat-
ural numbers and the infinite proper class N = {0, 1, . . . } as primitives (see
Sec. 3.2.2). The axioms (15) – (21) in the p-syntax prove the existence of the
universal class U = {0, S(0), S(S(0)), . . . } and may be viewed as defining the
(pre-existing) natural numbers in terms of numerals. This is the minimum level
of Platonism that one must accept when considering theories that prove the ex-
istence of infinitely many objects. Given that nonstandard models of NPA do
not exist (see Metatheorem 3 and Remark 10), the induction axiom schema (21)
(or equivalently, (23)) may be stated in the form

∀y1 . . . ∀yk (∀x ∈ U ϕ(x, ȳ) → ∀x ϕ(x, ȳ)). (26)

Note that (26) follows trivially from the definition of universal quantification.
Similarly, all the other axioms in (15) – (20) may also be proven once the
existence of the universal class U has been established, which identifies U with the
pre-existing N. But to make such an identification, all the axioms / nonlogical
rules of inference are needed, as noted in Remark 17.

Remark 19. The classical theory Robinson arithmetic (RA) [3] has the axioms
(15) – (20) and the following additional axiom:

∀x (¬(x = 0) → ∃y (S(y) = x)). (27)

Classically, the induction axiom (21) is required to prove (27). The theory NPA
proves (27) in the p-syntax and the infinitely many instances of (27) in the t-
syntax, which follow trivially from (15) and (22). The sentence (27) is not a
well-formed formula in the t-syntax of NPA.

Remark 20. To the extent that undecidable sentences lead to nonstandard mod-
els of arithmetic, consistency of the NFOL theory NPA rules out undecidable
sentences in its t-syntax. Note that this is diametrically opposite to the conclu-
sion that follows from Gödel’s incompleteness theorems, e.g., for the FOL theory
PA. From Metatheorem 9, it follows that Gödel’s incompleteness theorems can-
not be formalized in NPA. Given the complex structure of the Gödel sentence,
it is unlikely that it will even be a well-formed formula (of the form (11)) in
the t-syntax of NPA. However, Gödel’s proof that this sentence is true in the
standard model of PA implies that infinitely many instances of this sentence
will be provable in NPA.

Remark 21. Interestingly, consistency of NPA requires that Fermat’s last the-
orem (FLT), which is a legitimate sentence in the t-syntax of NPA (with the ex-
ponentiation function added to its signature), must be either provable or refutable
in NPA. Hence NAFL requires that FLT, if true, must necessarily have an el-
ementary proof in NPA. Wiles’s proof of FLT [9, 10] assumes the consistency
of classical theories stronger than PA and hence cannot be formalized in NPA.
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4 Real analysis in NAFL

NAFL theories do not admit infinite sets, arbitrary infinite classes or quantifi-
cation over a universe that includes infinite classes. We will demonstrate how
the restrictions on infinite classes may be relaxed in order to carry out a limited
version of real analysis in NAFL.

4.1 Integers

The integers may be defined as the infinite class

Z = {. . . ,−2.− 1, 0, 1, 2, . . . },

where each integer is represented by an ordered pair of natural numbers (m,n),
which intuitively stands form−n. Thus−1 = (k, k+1), 0 = (k, k), 1 = (k+1, k),
etc., for any given natural number k. The abstract definition of integers as
equivalence classes of ordered pairs of natural numbers requires set theory and
is not possible in NAFL (note that these equivalence classes are infinite (proper)
classes in NAFL and quantification over these is not allowed). For our purposes,
we only need to be concerned with defining integers constructively in terms of
natural numbers, as unique canonical representatives of the corresponding equiv-
alence classes. We make the following definitions of equality and the arithmetical
operations on the integers [11]:

(m,n) = (i, j) ↔ m+ j = n+ i,

(m,n) + (i, j) = (m+ i, n+ j),

−(m,n) = (n,m),

(m,n)× (i, j) = (mi+ nj,mj + ni),

(m,n) < (i, j) ↔ m+ j < n+ i.

0 = (0, 0), 1 = (1, 0).

The NFOL theory NPA (see Sec. 3.2.4) can be suitably extended to the theory
NPAZ by adding the above defining axioms for the integers to the p-syntax of
NPA in a separate sort. The t-syntax of NPAZ may be defined in a separate
sort, according to the rules described in Sec. 3.2.3. Thus NPAZ has two sorts,
one for the natural numbers and one for the integers, in both the p-syntax and
the t-syntax.

We prefer not to transfer the above defining axioms for the integers in terms
of the natural numbers from the p-syntax of NPAZ to its t-syntax. Thus the
sort for integers in the t-syntax of NPAZ will only contain statements about
integers, without any reference to natural numbers. In particular, if nonlogical
axioms that refer only to the integers are added to the p-syntax of NPAZ, they
may be transferred to its t-syntax. The proofs in the p-syntax of NPAZ may
be considered as being executed via a translation of statements about integers
in the t-syntax of NPAZ to statements about natural numbers in NPA.
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4.2 Rationals

Rational numbers may be similarly defined as ordered pairs of integers (a, b) such
that b > 0. Intuitively, (a, b) = a

b and we may require a and b to be coprime in
order to obtain the infinite class Q of unique canonical representatives of rational
numbers. We make the following definitions of equality and the arithmetical
operations on the rationals:

(a, b) = (c, d) ↔ ad = bc,

(a, b) + (c, d) = (ad+ bc, bd),

−(a, b) = (−a, b),

(a, b)× (c, d) = (ac, bd),

0 = (0, 1), 1 = (1, 1),

(a, b) < (c, d) ↔ ad < bc.

The above definitions for the rationals may be added to the p-syntax of the
theory NPAZ in a separate sort to obtain the theory NPAQ. The t-syntax
of NPAQ may be defined in a separate sort, as described in Sec. 3.2.3. Thus
NPAQ has three sorts, one each for the natural numbers, the integers and the
rationals, in both the p-syntax and the t-syntax.

We prefer not to transfer the above defining axioms for the rationals in
terms of the integers from the p-syntax of NPAQ to its t-syntax. Thus the
sort for rationals in the t-syntax of NPAQ will contain statements only about
rational numbers, without any reference to natural numbers or integers. In
particular, if nonlogical axioms that refer only to the rationals are added to
the p-syntax of NPAQ, they may be transferred to its t-syntax. The proofs in
the p-syntax of NPAQ may be considered as being executed via a translation
of statements about rationals in the t-syntax of NPAQ to statements about
integers in NPAZ.

4.3 Real numbers

The theory NPAQ permits the construction of infinite sequences of rationals
(see Sec. 3.2.2), which we denote as (qn)n∈N, or just (qn). We view the real
numbers as originating from Euclidean geometry, i.e., as points on the real
line. A real number may be represented (or encoded) as a Cauchy sequence of
rationals, which is a sequence of rationals (qn) such that

∀ϵ (ϵ > 0 → ∃m ∀n (m < n → |qm − qn| < ϵ)).

Here ϵ ranges over Q. If x = (qn) and y = (q′n) are real numbers, we define
x = y to mean that limn→∞ |qn − q′n| = 0, i.e.,

∀ϵ (ϵ > 0 → ∃m ∀n (m < n → |qn − q′n| < ϵ)),

and we define x < y to mean that

∃ϵ (ϵ > 0 ∧ ∃m ∀n (m < n → qn + ϵ < q′n)).
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Also define

x+ y = (qn + q′n), x× y = (qn × q′n), −x = (−qn), 0 = (0), 1 = (1),

where (0) and (1) are infinite rational sequences of 0 and 1 respectively.

4.4 Superclasses of real numbers

The above axioms constructing the real numbers as Cauchy sequences of ra-
tionals cannot be immediately added to the p-syntax of the theory NPAQ,
which treats infinite sequences (which are infinite classes of ordered pairs) as
constants. There are no variables in NPAQ that range over infinite sequences.
The question then would be how we can characterize collections of real numbers,
over which variables can range. Note that a class of real numbers does not exist,
because each real number is an infinite proper class.

At first sight this looks like an intractable problem and it is tempting to
conclude that real analysis requires infinitary reasoning that is not compatible
with NAFL. But there is a surprisingly simple solution. The finitist should
surely accept Euclidean geometry and therefore there ought to be a finitistically
acceptable way to characterize the collection of real numbers in a geometric
object, say, a line segment, in the theory NPAQ. The following notion of a
superclass of real numbers [12] achieves this objective.

Definition of superclass

A superclass S is a collection of real numbers that exists if and only if there
exists a sequence (qn)n∈N of rationals whose limit points are all members of S
and every member of S is a limit point of (qn)n∈N. We may set S = (qn)n∈N,
i.e., every member of S is identified with a Cauchy subsequence of (qn)n∈N.

Remark 22. If S is a superclass of real numbers then S is closed, i.e., every
limit point of S is a member of S. This follows from the definition of S and the
classical result that the set of limit points of a set is closed.

Remark 23. As an example, consider the real interval [0, 1], which geometri-
cally represents a line segment. We conclude that [0, 1] is a superclass because
an enumeration of all the rationals in the rational interval [0, 1] has precisely
the real interval [0, 1] as its limit points. The open / semi-open intervals of
reals (0, 1), [0, 1) and (0, 1] do not have any geometric equivalents (in the di-
agrammatic sense) and are not superclasses. Note that all these intervals are
of unit length, and diagrammatically, it is impossible to extend a line segment
to unit length without including the end points. Thus our encoding of reals as
superclasses is strictly faithful to Euclidean geometry.

Remark 24. The standard real line (−∞,∞) is not a superclass. But the
extended real line [−∞,∞] is a superclass. This follows from the fact that any
sequence of rationals that has all the standard real numbers as its limit points
(i.e. a sequence that enumerates all the rationals in Q) also has ±∞ as its limit
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points in the extended real number system. [13] In other words, NAFL only
supports the extended real number system. For example, the set { 1

x : x > 0} in
the standard real number system is not a superclass because it excludes the limit
points 0 and +∞. But { 1

x : x ≥ 0} in the extended real number system is a
superclass. Here we define 1

0 = limx→0+
1
x = +∞ (see Sec. 4.5.3).

Remark 25. Every object in three-dimensional Euclidean geometry is a su-
perclass that can be encoded as a sequence of rational 3-tuples in the theory
NPAQ.

4.5 The theory NPAR of real numbers

NPAR may be defined as an NFOL theory that extends NPAQ and has all
the machinery of NFOL defined in Sec. 3.2.1 and Sec. 3.2.3. However, Sec. 3.2.2
does not apply and needs to be modified, as in Sec. 4.5.1 below, because the
objects of NPAR are the real numbers, each of which is an infinite sequence of
rationals.

The axioms for the real numbers in the p-syntax of NPAR are those stated
in Sec. 4.3. These axioms are added to the p-syntax of NPAQ in a separate
sort, and are not transferred to the t-syntax of NPAR. Thus NPAR has four
sorts, one each for the naturals, integers, rationals and reals, in both its p-syntax
and t-syntax. Note that NPAQ does not have variables that range over infinite
classes (in particular, infinite sequences), which are treated as constants. The
proofs in the p-syntax of NPAR may be considered as being executed via a
translation of statements about reals in the t-syntax to statements about Cauchy
sequences of rationals in an extended version of NPAQ. This extended theory
contains class quantifiers and variables ranging over the Cauchy sequences of
rationals that represent reals.

4.5.1 NAFL restrictions in the p-syntax of NPAR

For the extension of NPAQ mentioned above to be finitistically acceptable, it
is necessary that all collections of reals whose existence is implied by NPAR
be restricted to be superclasses, which are represented by infinite sequences of
rationals in NPAQ (see Sec. 4.4). These restrictions may be spelled out as
follows.

� NPAR admits only constructive reasoning, and every statement about
real numbers should be translatable to statements about Cauchy sequences
of rationals in an extended version of NPAQ. Arbitrary constants, arbi-
trary functions and arbitrary predicates do not exist in NPAR.

� The variables of NPAR range over the universal superclass of reals, which
is the extended real line R = [−∞,∞]. Note that R is represented in
NPAQ by any infinite sequence that enumerates all the rationals in Q.

� Nonstandard models of NPAR do not exist because nonstandard models
of NPAQ do not exist (see Metatheorem 3 and Remark 10).

30



� The class N of all natural numbers does not exist in NPAR, which only
admits the superclass NR = {0, 1, . . . ,∞}. In other words, when the
naturals in N are embedded in R, the real number +∞ cannot be excluded
and hence a countable infinity does not exist in NPAR.

� The theory NPAR proves the existence of every superclass, finite or infi-
nite, of n-tuples of reals (for n ≥ 1) that can be represented constructively
by an infinite sequence of n-tuples of rationals in NPAQ. Here n-tuples
are defined as in Sec. 3.2.2 and an infinite sequence of n-tuples of rationals
is a sequence of the form (qi1, . . . , qin)i∈N. Canonical Cauchy subsequences
of (qi1, . . . , qin)i∈N represent the n-tuples of reals. There are no variables
ranging over superclasses of n-tuples of reals, which are treated as con-
stants in a separate sort.

� The only legitimate predicates P (x1, . . . , xn) are those for which NPAR
proves the constructive existence of a superclass of n-tuples (x1, . . . , xn)
that satisfy the predicate. The predicate y = f(x1, . . . , xn), where f is a
continuous real-valued function, is admissible if and only if NPAR proves
the constructive existence of a superclass of (n+ 1)-tuples (x1, . . . , xn, y)
that satisfy the predicate. The domain and range of f must necessarily
be superclasses. If the function f has discontinuities at isolated points,
then the above restrictions apply to every subdomain (separated by the
discontinuities) on which f is continuous. At points of discontinuity, f will
have multiple values which could be either real numbers or superclasses of
real numbers (see Sec. 4.5.2). More general discontinuous functions will
be considered in future work. For example, consider the sentence

∀x (x > 0 → f(x) =
1

x
).

Here the predicate (x > 0 → f(x) = 1
x ) is illegal in NPAR because it

attempts to define a function f on the domain x > 0, which is not a
superclass (see Remark 22).

4.5.2 Multivalued functions

NPAR admits multivalued functions [14, 15], where the multiple values occur
at points of discontinuity of the function. For example, consider the following
classical definition of a step function:

f(x) = −1, x < 0,

= 0, x = 0,

= 1, x > 0.

This definition is illegal in NPAR because the domains x < 0 and x > 0 are
not superclasses (see Remark 22). The definition acceptable in NPAR is as
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follows.

f(x) = −1, x ≤ 0, (28)

= {−1, 1}, x = 0, dom(f) not specified, (29)

= 1, x ≥ 0. (30)

Here dom(f) is the domain of the relevant branch of the function f and {−1, 1}
is a superclass. Note that f(0) has three distinct values:

f(0) = lim
x→0−

f(x) = −1, dom(f) = [−∞, 0], (31)

= {−1, 1}, dom(f) not specified, (32)

= lim
x→0+

f(x) = 1, dom(f) = [0,∞]. (33)

In (28), the domain x ≤ 0 implies that x is constrained to approach 0 from
below. But whenever x → 0− via a superclass containing a sequence of reals
whose limit point is 0, the superclass must also contain the limit point (see
Remark 22). Hence the limiting value of f(x) as x → 0− must necessarily be a
value of f(0). This is the rationale for (31). A similar explanation applies for
(33).

Whenever the axiom f(0) = −1 (f(0) = 1) is added to NPAR to obtain
the interpretation NPAR* (see Sec. 2), it is understood that the domain of
f(x) in the extended theory is restricted to x ≤ 0 (x ≥ 0) in accordance with
(28) and (30). Thus the contradiction (f(0) = −1 ∧ f(0) = 1) is not deducible
in either of the extended theories. In (29) and (32) no direction of approach to
x = 0 is specified. Here “f(0) = {−1, 1}” is essentially a code for the superposed
state “f(0) = −1 ∧ f(0) = 1”, which results from the main postulate of NAFL
semantics when the value of f(0) is not specified by the human mind that
interprets NPAR. This superposed state is interpreted as “Neither f(0) = −1
nor f(0) = 1 is provable in NPAR*”. In conclusion, a discontinuity breaks up a
multivalued function into its different branches, which are chosen axiomatically
by the human mind, in accordance with the main postulate of NAFL semantics.

Remark 26. The above definition of a step function is strictly faithful to Eu-
clidean geometry (see Remark 23) and is best understood when x is a variable
representing physical time. In this case there is a clear intuition behind the
multiple values of f(x) at x = 0, namely, that f(x) jumps from −1 to +1 in
zero time as x passes from 0− to 0+; so it is only logical to expect that both
values of f are present at x = 0. At any given time x, we may axiomatically
specify either direction of approach to x = 0, in which case f(0) = ±1, with the
domain for f restricted as in (28) or (30). If no direction of approach to x = 0
is specified at any given time x, the superposed state f(0) = {−1, 1} essentially
implies that there is no physically meaningful definition of f(0), which has a
purely logical interpretation as noted above. This time-dependent definition of
f(0) fits in perfectly with NAFL semantics, which admits time-dependent truths
as axiomatic declarations of the human mind (see Sec. 2.2). Examples of such
time-dependent truths that are relevant to physics are given in Sec. 5.
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Remark 27. Consider the example in which a rod of unit length is rotating
at uniform angular velocity from θ = 0 to θ = π, in a polar coordinate system
(r, θ). At θ = π

2 the slope of the rod tan θ is classically undefined and has an
infinite discontinuity. In NPAR, we may define this slope as follows:

tan(π/2) = ∞, dom(tan) = [0, π/2],

= {−∞,∞}, dom(tan) not specified,

= −∞, dom(tan) = [π/2, π].

Here dom(tan) is the domain of the relevant branch of the tan function.This
is an example of a multivalued function in which an infinite discontinuity is
correctly handled by the extended real number system of NPAR.

4.5.3 Division by zero

If q = (a, b) and q′ = (c, d) are rational numbers represented by ordered pairs of
integers (see Sec. 4.2) such that b > 0, d > 0 and c ̸= 0, then we define division
for rationals as follows:

q/q′ = (a, b)/(c, d) = (ad, bc).

If y = (qn)n∈N and x = (q′n)n∈N are real numbers represented by Cauchy se-
quences of rationals (see Sec. 4.3), where q′n ̸= 0, then we define division for real
numbers as follows:

y/x = (qn/q
′
n)n∈N. (34)

In particular, if y > 0 and x = 0, then y/x has multiple values:

(y/x) = ∞, x → 0+,

= {−∞,∞}, x = 0,

= −∞, x → 0−.

The above notation is explained as follows. If x is represented by a Cauchy
sequence of positive (negative) rationals, then x → 0+ (x → 0−). If the Cauchy
sequence representing x approaches the limit x = 0 from both directions, then
y/x is the superclass {−∞,∞}. Thus we see that the value of y/x depends on
how x is specified. For example, consider the superclass { 1

x : x ≥ 0}. As noted
in Remark 24, we define 1

0 = limx→0+
1
x = ∞ in this context, because when

x ≥ 0, x is constrained to approach 0 from above, i.e., x → 0+. Similarly, when
considering the superclass { 1

x : x ≤ 0}, we may define 1
0 = limx→0−

1
x = −∞.

4.5.4 0/0 and dy/dx

If y = x = 0 in (34), then the value of y/x could be any real number (including
±∞) or a superclass of real numbers, depending on how the sequences (qn) and
(q′n) are specified. This is in confirmation with the observation that 0× r = 0,
where r is any real number (including possibly ±∞ in specific contexts).
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Remark 28. Note that 0 × ∞ and ∞/∞ can be put in the form 0/0. In
the theory NPAR, the value r obtained for 0/0 in any specific context (i.e.,
when specific Cauchy sequences are specified for the zeroes) can be viewed as the
axiomatic assertion 0/0 = r. There is no contradiction in making multiple such
assertions because we do not expect 0/0 to be a uniquely defined real number.
If no Cauchy sequences are specified for the zeroes in 0/0, then from the main
postulate of NAFL semantics (see Sec. 2), 0/0 is in a superposed state of all
possible values, which may be encoded in NPAR as 0/0 = R. Here R is the
superclass corresponding to the extended real line [−∞,∞] and is represented in
NPAR by a sequence that enumerates all the rationals in Q (see Remark 24).

Remark 29. If y = f(x), where f(x) is a differentiable function, then by
definition

f ′(x) =
dy

dx
= lim

∆x→0

f(x+∆x)− f(x)

∆x
. (35)

To evaluate the limit in (35), one substitutes a sequence S of real numbers
for ∆x, where S has a single limit point 0. This results in a sequence S′ of
approximations for f ′(x) and the limit point of S′ is the value of f ′(x) at a
given value of x. In the theory NPAR, x is represented by a Cauchy sequence
of rationals, and S and S′ are represented by superclasses which are sequences
of rationals (see Sec. 4.4). From Remark 22, it follows that S and S′ must
contain their limit points, namely, 0 and f ′(x) respectively. We conclude that
in NPAR, f ′(x) is indeed 0/0, evaluated according to a specific procedure that
amounts to an axiomatic assertion (see Remark 28). Note that the classical
Weierstrass ϵ− δ argument for the evaluation of f ′(x) in (35) does not hold in
NPAR because it requires the existence of open intervals of reals, which are not
superclasses.

4.5.5 The t-syntax of NPAR and its extensions

As noted in Sec. 4.5, the defining axioms for the real numbers in terms of Cauchy
sequences of rationals are not transferred to the t-syntax of NPAR, which
will only contain theorems that are statements about real numbers. Because
open intervals and a countable infinity of real numbers do not exist in NPAR
(see Secs. 4.4 and 4.5.1), many of the proofs of classical real analysis and
number theory cannot be formalized in NPAR. In particular, Cantor’s diagonal
argument for the uncountability of the set of real numbers cannot be formalized
in NPAR. Fermat’s last theorem cannot be formalized in NPAR because it
would be an illegal statement about embedded natural numbers x, y, z and n
that are restricted to be finite, i.e., x ̸= ∞, etc.

At first sight, NPAR appears to be severely restricted, but because multi-
valued functions and division by zero are legal (see Secs. 4.5.2, 4.5.3 and 4.5.4)
it is still possible to recover many of the results that are needed for physical the-
ories. In future work, we will consider the detailed development of real analysis
in NPAR. We will also consider extensions of NPAR that formalize Euclidean
geometry, Newtonian mechanics and quantum mechanics. In particular, we will
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demonstrate that non-Euclidean geometries and relativity theory are infinitary
theories by the NAFL yardstick and cannot be formalized in NAFL.

5 Resolution of classical and quantum paradoxes
in NAFL

In the rest of this paper, we will demonstrate how the logic NAFL resolves,
or has the potential to resolve, longstanding paradoxes in classical / quantum
physics.

5.1 The logical incompatibility of quantum mechanics and
special relativity theory

Quantum mechanics (QM) is a spectacularly successful theory, but its logical
foundations are highly controversial. One of the most intractable problems of
theoretical physics is the incompatibility between QM and special relativity
theory (SR). [16] The import of the arguments of Ref. [16] is that SR is not
a “true” theory and needs to be replaced in order to match the requirements
of QM. Most of the classically minded theoreticians tend to believe that SR,
which can be formalized in classical first-order logic [18], is a logically consistent
theory.

In Ref. [17], we have pointed out the existence of a meta-inconsistency (i.e.,
an inconsistency at the metamathematical level) in SR, even from the point
of view of classical logic. In the logic NAFL, this meta-inconsistency trans-
lates to a straightforward logical inconsistency in SR, as follows. The Lorentz
transformations of SR require that the velocity (v) of a material object with
respect to an inertial frame of reference can attain all values less than c (the
velocity of light in vacuum), but not v = c. But the domain 0 ≤ v < c is not a
superclass (see Remark 22) and hence SR cannot be formulated as a consistent
NAFL theory. This is a fatal objection because there is no obvious way in which
SR can be extended to hold at the singular point v = c. On the other hand,
NAFL successfully formalizes and justifies several of the “weird” phenomena of
QM, such as, quantum superposition, entanglement and wave-particle duality,
as outlined in the ensuing sections. Therefore NAFL supports QM and rejects
SR as an infinitary theory. In this sense, NAFL points to a fundamental logical
incompatibility between QM and SR. It is our belief that QM, unlike SR, does
not rely on classical infinitary reasoning in an essential way, and in future work,
we will consider how QM can be formalized in NAFL.

5.2 Quantum superposition and the collapse of the wave
function

Consider the following famous thought experiment of Schrödinger [19] in quan-
tum mechanics. A cat is placed inside a sealed box along with a radioactive
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source and a flask of poison. If an internally placed Geiger counter detects ra-
dioactivity (caused by the decay of a single atom), a mechanical device shatters
the flask, thus releasing the poison and killing the cat. There are many possible
interpretations of this experiment. According to the Copenhagen interpretation,
[20] while the box is closed, the system (i.e., the cat along with the radioactive
atom) exists in a superposition of the states ⟨decayed atom + dead cat⟩ and
⟨undecayed atom + living cat⟩, and when the box is opened and an observation
is made, the wave function of the system collapses into one of the two states,
and hence the superposed state can never be observed.

There are several questions that arise from this interpretation, for example,
what constitutes a measurement or an observation? Does the Geiger counter
perform a measurement? What does it mean for the cat to be in a superposed
state of “alive and dead”? Is the collapse of the wave function an objective
occurrence independent of the human mind? An observer inside the sealed box
would always observe the cat to be either alive or dead, so how can the super-
posed state exist for an observer outside the box? If the cat is observed to be
alive when the box is opened, can we not conclude from a precise measurement
of the cat’s age that the cat was always alive, in which case how could the cat
have been in a superposed state while inside the sealed box? Similarly, if the
cat is observed to be dead when the box is opened, a precise measurement of
the time of death is in principle possible, say, via an autopsy, which may lead
to the apparent contradiction that the cat was both dead and in a superposed
state while inside the sealed box. All these questions are answered elegantly
and in a logically consistent manner in what we denote as the NAFL interpre-
tation, [6] outlined below. The NAFL interpretation can be thought of as the
correct logical framework for the Copenhagen interpretation, which was always
intended to be non-realist.

5.2.1 The NAFL interpretation of quantum superposition

Let NQM be the theory that formalizes quantum mechanics in NAFL. Let the
Schrödinger cat experiment be set up at time t = 0, when the box is sealed.
Let the box be opened at t = 1, when an observation is made of the cat’s state.
Let P (¬P ) denote the proposition “The cat is alive (dead)”. Note that P is
undecidable in NQM. According to the main postulate of NAFL semantics (see
Sec. 2), P (¬P ) is true with respect to NQM if and only if the interpretation
of NQM, namely, NQM*, proves P (¬P ). Thus truth for P is axiomatic in
nature and NQM* is chosen according to the free will of the human mind, i.e.,
NAFL does not recognize any external reality for the state of the cat. However,
the connection with reality is made when the human mind (in this case, the
observer) decides to keep the axiomatic declarations (made in NQM*) in tune
with the observations made in real life.

Therefore, according to this convention, if the cat is observed to be alive
(dead), the observer may choose NQM∗ = NQM+P (NQM∗ = NQM+¬P )
at time t = 1. For 0 ≤ t < 1, the observer makes no observations (and hence,
no axiomatic declarations) for the state of the cat, i.e., NQM∗ = NQM. In
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this case NQM* generates a nonclassical model M of NQM in which the cat
is in a superposed state of “neither alive nor dead”, i.e., P ∧¬P is the case. In
M, “P”(“¬P”) is interpreted as “NQM* does not prove ¬P (P )”. Further,
when t ≥ 1, the observer may deduce (in a suitable theory NQM*) that the
cat was alive during 0 ≤ t ≤ 1 or that the cat died before t = 1, say, at t = 0.5.
These are time-dependent truths that only apply for t ≥ 1, and hence do not
clash with the superposed state that applied when 0 ≤ t < 1.

The alert reader may have noticed that the above informal description makes
use of the domain 0 ≤ t < 1, which is not a superclass, for the superposed state
of the cat. The precise state of the cat can be formally defined within the theory
NQM* only when t ≥ 1 (after the box has been opened) because when the box
is sealed, the superposed state of the cat (P ∧ ¬P ) is not formally provable in
NQM*. This is so because NAFL theories do not prove contradictions and
the superposed state only exists in the model M of NQM generated by the
interpretation NQM*. Thus NQM* only makes use of the domain t ≥ 1,
which is a superclass.

The precise definition of the cat’s state within NQM* is as follows. Let the
state of the cat be denoted by the function f(t) defined on the domain 0 ≤ t ≤ 1
and with the range {0, 1}, where f(t) = 1 (f(t) = 0) denotes that the cat is
alive (dead) at time t. Suppose the cat was observed to be alive (dead) at t = 1.
Then the theory NQM* will prove, from a precise determination of the cat’s
age (time of death) that

f(t) = 1, 0 ≤ t ≤ 1 (f(t) = 0, 0.5 ≤ t ≤ 1). (36)

Note that (36) determines, at t = 1, that the cat was alive (dead at t = 0.5) while
inside the sealed box. This is a time-dependent truth that only applies when
t ≥ 1 and hence there is no clash with the superposed state that existed earlier,
when the box was sealed. In other words, the observer makes the axiomatic
declaration at t = 1 that the cat was alive (dead) during 0 ≤ t ≤ 1 (0.5 ≤ t ≤ 1),
whereas the superposed state indicates that when the box is sealed, i.e., when
t ∈ [0, 1), there is no proof in NQM* that the cat is either alive or dead, leading
to the nonclassical truth value of “neither alive nor dead” for the state of the cat.
Thus, at t = 1, the observer moves from a state of ignorance, namely,“The cat
was in the superposed state when the box was sealed”, to a state of knowledge,
namely, “The cat was alive (dead at t = 0.5) when the box was sealed”, and
there is no contradiction here because the NAFL interpretation does not ascribe
any physical reality to the superposed state.

Let us now turn to the issue of how the superposed state of the cat can be
represented consistently in NQM*. As noted earlier, there is a temptation to
deduce the following apparent contradiction. Does the fact that the cat was
observed to be alive (dead) at t = 1 imply that NQM* generates a model M of
NQM in which the superposed state existed for the time period 0 ≤ t < 1, which
is not a superclass (see Remark 22), and does this make NQM an inconsistent
NAFL theory? To answer this question in the negative, we would need a separate
theory of the model M that makes use of only superclasses in the definition of
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the superposed state. Note that while NAFL theories like NQM* do not prove
the existence of the superposed state, we may encode the superposed state,
within NQM* and without any contradiction, as follows.

Let the state of the cat be denoted by the function f(τ, t), where τ ≥ 0,
t ≥ 0, and τ is the physical time, i.e., t = τ represents the present and t < τ
(t > τ) represents the past (future). Let f = 0 (f = 1) denote that “The cat
is dead” (“The cat is alive”) and let f = 2 stand for the superposed state of
the cat, i.e., “The cat is neither alive nor dead”. Note that we cannot define
f = {0, 1} to denote the superposed state because superclasses (like {0, 1}) are
constants that can only occur as values of f at isolated points of discontinuity
in the range of a function (see Sec. 4.5.1). Consider the case when the cat is
observed to be alive at t = 1, and assume that the cat lives up to some finite time
c > 1. The full time evolution of the state of the cat in the model M is encoded
by the following multivalued function f defined in NQM* (see Sec. 4.5.2):

f(τ, t) = 2, τ ∈ [0, 1], t ∈ [0, 1], (37)

= {1, 2}, τ = t = 1, dom(f) not specified, (38)

= 1, τ ∈ [1, c], t ∈ [0, c]. (39)

Here dom(f) is the domain of the relevant branch of f . Equation (37) states
that when τ ∈ [0, 1], the cat is in the superposed state, even as a prediction
for future times up to t = 1. In (38), f = {1, 2} expresses the fact that when
τ = t = 1, the (theory of the) model M does not prove that the cat is either
alive or in the superposed state, because the direction of approach to t = 1 (i.e.,
from the past or the future) is not specified. When τ ∈ [1, c], i.e., after the box
has been opened, we see from (39) that the observer has axiomatically declared
that the cat is alive for all t ∈ [0, c]. Note that the state of the cat has multiple
values when t ∈ [0, 1], depending on whether t is in the present, past or future.

In the case when the cat is observed to be dead at t = 1 and is proven to
die at t = 0.5, the following multivalued function of NQM*, with a similar
interpretation as above, represents the time evolution of the state of the cat in
the model M:

f(τ, t) = 2, τ ∈ [0, 1], t ∈ [0, 1],

= {0, 2}, τ = t = 1, dom(f) not specified,

= 0, τ ≥ 1, t ≥ 0.5,

= 1, τ ≥ 1, t ∈ [0, 0.5],

= 2, τ ≥ 1, t = 0.5.

Note that an observer present inside the sealed box would observe the cat to
be either alive or dead, i.e., such an observer would not detect the superposed
state of the cat. Nevertheless, for an external observer, the superposed state of
the cat still exists and the observer in the box is outside the system, according
to the NAFL interpretation, which does not ascribe any physical reality to the
wave function. This is in contrast to many current interpretations of quantum
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mechanics, according to which an observer inside the sealed box is entangled
with the cat and would collapse the wave function of the cat. We conclude
that the NAFL interpretation of quantum superposition correctly answers all
the questions raised by other interpretations, such as, the Copenhagen inter-
pretation (see Sec. 5.2). Indeed, the NAFL interpretation can be thought of
as upholding the implied non-realist stance of the Copenhagen interpretation.
Also note that the notions of past, present and future are indispensable for the
NAFL interpretation. The axiomatic nature of NAFL truth provides the correct
framework for handling the time-dependent truths of quantum mechanics.

5.3 Quantum entanglement and the EPR paradox

Quantum entanglement occurs, for example, in a pair of particles, when the
quantum state of either of the particles cannot be described independently of
the state of the other particle. According to standard interpretations of quan-
tum mechanics, such as, the Copenhagen interpretation, a measurement of a
given property (such as, position, momentum or spin) on one of the particles
collapses the wave function of the entangled pair of particles, so that both par-
ticles instantaneously acquire a definite value of that property and the outcome
of a measurement of the same property on the other particle is predicted with
certainty. The EPR paradox [21] occurs when the entangled pair of particles is
separated by a large distance, so that information about a measurement made
on one of the particles is seemingly communicated to the other particle at a
velocity exceeding the speed of light, which is prohibited by special relativity
theory.

5.3.1 The NAFL interpretation of quantum entanglement

Let X and Y be a pair of spatially separated entangled particles with comple-
mentary properties A and B respectively, such that the proof syntax (p-syntax)
of the NAFL theory NQM proves the equivalence A ↔ B. For example, if a
spin-zero particle decays into a pair of spin-1/2 particles X and Y, then con-
servation of angular momentum would require that the total spin before and
after decay should be zero. In this case, A (B) could denote the property “The
spin of particle X (Y) is spin up (spin down) on some axis”. Since A and B
are undecidable in NQM, A ↔ B is not a legitimate proposition, and hence,
not a theorem, in the theory syntax (t-syntax) of NQM (see the rules for con-
structing the t-syntax in Sec. 3.1.2). Hence prior to any measurement, both A
and B are in the superposed state of “neither true nor false” in a nonclassical
model of NQM. If at time t a measurement confirming the property A of the
particle X is made, then the observer adds the axiom A to NQM to obtain the
interpretation NQM* (see Sec. 2). It follows that NQM* proves both A and
B, so that the observer instantly knows, at time t, that both A and B are true
(with respect to NQM). Thus in the NAFL interpretation, the measurement
made on the particle X is also simultaneously a measurement on the particle
Y, and nothing gets communicated between the distant particles because the
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collapse of the wave function is not a physical occurrence. Further, the fact that
the observer instantly knows a property of a distant particle without any local
measurement on that particle implies that the concept of absolute simultane-
ity is inherent in NQM, which is not a problem because NAFL rejects special
relativity theory as infinitary (see Sec. 5.1).

5.4 Wave-particle duality and the Afshar experiment

In the double-slit interferometer experiment, one observes an interference pat-
tern at the detection screen whenever path information is not available for the
photons, which is taken as confirmation of the wave nature of light. When path
information is available, one observes the expected diffraction pattern at the
detection screen, which is a confirmation of particle-like behavior of the pho-
tons. According to Bohr’s complementarity principle (BCP), one can observe
(or infer) either the wave nature or the particle nature of light, but not both at
the same time in any given experiment, such as, the double slit interferometer.
Afshar [22] performed a variation of the double slit experiment in which a wire
grid is placed at the minima of the interference pattern. From the fact that the
wire grid does not alter the beams, Afshar infers the existence of an interference
pattern, while suitably placed detectors confirm the path information. Afshar
claimed that the detection of an interference pattern and path information in
his experiment is a violation of BCP and the Englebert-Greenberger duality
relation. There have been many mutually contradictory criticisms of Afshar’s
argument, which has not been conclusively refuted by these authors.

5.4.1 The NAFL interpretation of the Afshar experiment

Srinivasan [23] has argued that Afshar’s claim that both an interference pattern
and path information are present can be granted to be correct, but this does
not entail a violation of BCP and the Englebert-Greenberger duality relation,
essentially because of two reasons. Firstly, Afshar does not take into account
the time dependence of formal truth, which is present in the NAFL interpreta-
tion. Secondly, Afshar, like many others and unlike the NAFL interpretation,
takes a realist view of the superposed state of the photons and the supposedly
consequent wave nature of light,

Let NQM be the theory that formalizes quantum mechanics in NAFL and
let the proposition P (¬P ) denote “The photon took path A (path B) in the
Afshar experiment”. Note that P is undecidable in NQM and let NQM* =
NQM be the interpretation of NQM (see Sec. 2). In the NAFL interpretation,
the superposed state of the photon is represented by P ∧ ¬P in a nonclassical
model of NQM generated by NQM*, where P is interpreted as “There is no
proof of ¬P in NQM*” and ¬P is interpreted as “There is no proof of P in
NQM*”. Here both P and ¬P have a nonclassical truth value of “neither true
nor false” in the said nonclassical model of NQM.

Thus the NAFL interpretation does not ascribe any “reality” to the wave
nature of the photon, as represented by the superposed state P∧¬P , which has a
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purely logical meaning given above (amounting to an assertion of the absence of
path information for the particle-like photon). Note that consistency of NQM
requires that it does not prove P ∧¬P . Hence the NAFL interpretation does not
preclude the possibility of path information becoming available at a later time,
say, via observations in the detectors of the Afshar experiment, in which case the
observer can retroactively assert P (¬P ) by taking NQM∗ = NQM+ P (¬P ).
Note that consistency requires that the observer cannot assert P ∧ ¬P as an
axiom and this corresponds to the requirement that the wave nature of the
photon can never be observed; any measurement can only yield path information
for particle-like photons.

In the NAFL interpretation, while the presence of an interference pattern
at any given time is a logical consequence of absence of path information at
that time, the reverse implication does not hold, i.e., the absence of path in-
formation (represented by P ∧ ¬P ) cannot be inferred from the presence of an
interference pattern. Indeed, this is a requirement of the consistency of NQM.
It is this logical fact, along with the time dependence of NAFL truth, that en-
ables the retroactive assertion of path information in the Afshar experiment.
Indeed, an interference pattern is present even in a single-photon version of the
Afshar experiment [24, 25], and the NAFL interpretation asserts that a sin-
gle photon is indeed particle-like and it is absurd to claim any “reality” for
the“self-interference” of a single photon. At least in the single photon case, one
must grant that the interference pattern can only be interpreted as a probability
distribution for particle-like photons.

The time evolution of the state of the photons in the Afshar experiment is
encoded by the following multivalued function in NQM*:

f(τ, t) = 2, τ ∈ [0, 1], t ∈ [0, 1], (40)

= {1, 2}, τ = t = 1, dom(f) not specified, (41)

= 1, τ ≥ 1, t ≥ 0. (42)

In analogy with (37) - (39), t = τ represents the present and t < τ (t > τ)
is the past (future). Here f = 2 encodes the superposed state of the photon
(P ∧ ¬P ) and f = 1 indicates the availability of path information (P ∨ ¬P ).
The photons pass through the dual pinholes at t = 0 and strike the detectors
at t = 1. When τ ∈ [0, 1], (40) indicates that the photons are (predicted to
be) in the superposed state, for all t ∈ [0, 1]. At t = τ = 1, the state of
the photons is represented in (41) by the superclass {1, 2}, which essentially
indicates that it is impossible to determine if f = 1 or f = 2 when the direction
of approach of t to τ (from the past or future) is not specified. When τ ≥ 1, (42)
asserts path information for the photons retroactively for t ≥ 0. This retroactive
assertion, which is valid only for τ ≥ 1 (after the photons have impinged on the
detectors) does not entail a violation of the Bohr complementarity principle and
the Englebert-Greenberger duality relation because at any given time t = τ , the
photon is in only one state, and no reality can be ascribed to the superposed
state. Note again that the notions of past, present and future are indispensable
for the NAFL interpretation, which is in violation of relativity theory.
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5.5 The quantum Zeno effect and Zeno’s arrow paradox

When frequent measurements are made on a quantum system, its evolution will
be slowed down and transition to states different from the initial state will be
hindered. This phenomenon, known as the quantum Zeno effect (QZE), has
attracted considerable attention in the literature. [26, 27]. The analogy with
Zeno’s arrow paradox was first noted by Misra and Sudarshan [28].

5.5.1 The NAFL interpretation of the quantum Zeno effect

A detailed analysis of the NAFL interpretation of the QZE would have to await
a formalization of quantum mechanics in NAFL. However, at this stage, one
can already conclude that the NAFL interpretation supports the theoretical
and experimental findings on the QZE in two important ways.

� When the number of measurements is finite, we quote the following con-
clusions of Pascazio and Namiki, [29] which are corroborated by other
authors [30, 31]:

“We have shown the QZE is liable to a purely dynamical ex-
planation, which does not involve any projection operator. We
claim therefore, contrary to widespread belief, that a quantum
Zeno-type dynamics is not an argument in support of the col-
lapse of the wave function, provided we observe the same state
as the initial one at the final detector D0. The Schrödinger
equation alone can yield a satisfactory explanation of the phe-
nomenon. [...] We believe that a projection does not correspond
to any physical operation and therefore should be regarded only
as a convenient expedient (a ‘working rule’) in order to account
for the loss of quantum mechanical coherence (the ‘collapse’ of
the wave function). In this sense, von Neumann’s projection
postulate is to be considered as purely mathematical and no
physical meaning should be ascribed to it.”

This conclusion is fully supported by the NAFL interpretation of quantum
superposition, in which no reality can be ascribed to the collapse of the
wave function (see Sec. 5.2).

� The limit of infinitely many measurements (in which the quantum system
is “frozen” in its initial state) is not physically attainable in finite time,
even in principle, as seen from the following conclusion of Nakazato et al.:
[32]

“We stress that in any conceivable experiment, only the QZE,
with N finite (and rather small), can be observed. Our aim
is to show that the N → ∞ limit is physically unattainable,
even as a matter of principle, and is rather to be regarded as
a mathematical limit (although a very interesting one). In this
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sense, we shall say that the quantum Zeno effect, with N finite,
becomes the quantum Zeno paradox when N → ∞.”

Again the NAFL interpretation fully supports this conclusion. There is
no quantum Zeno paradox in the NAFL interpretation because the notion
of infinitely many measurements cannot be formalized in any consistent
NAFL theory of quantum mechanics. In particular, a superclass of in-
finitely many measurements does not exist in any consistent NAFL the-
ory because superclasses must include their limit points (see Remark 22).
But in this case the N → ∞ limit is physically unattainable and therefore
cannot be considered as a valid limiting measurement.

Note also that, according to the main postulate of NAFL semantics (see
Sec. 2) each measurement or observation is added as an axiomatic dec-
laration to the NAFL theory formalizing quantum mechanics. Again,
infinitely many such axiomatic declarations (as a function of time) cannot
be conceivably be made in finite time because no such mapping exists,
although the observer can add an infinite (but finitely expressed) axiom
scheme at any given time.

5.5.2 The NAFL interpretation of Zeno’s arrow paradox

Motion, say, of an arrow in flight, must necessarily occur in between instants of
time. Zeno asserted that if time consisted only of instants, motion is impossible.
To see precisely what Zeno had in mind, we quote Aristotle ([33], VI: 9, 239b5),
where the emphasis is ours:

If everything when it occupies an equal space is at rest at that instant
of time, and if that which is in locomotion is always occupying such a
space at any moment, the flying arrow is therefore motionless at that
instant of time and at the next instant of time but if both instants
of time are taken as the same instant or continuous instant of time
then it is in motion.

Clearly, Zeno required that if time consisted only of instants, then given any
instant, there must exist a next instant and between those two instants motion
cannot occur. This process, when iterated infinitely many times, leads to Zeno’s
conclusion that motion is impossible. The analogy with the quantum Zeno
effect comes from the fact that if one could observe the evolution of time from
one instant to the next, motion cannot conceivably occur and the arrow would
remain frozen at its initial location.

Zeno’s argument is refuted classically by the modern concept of the con-
tinuum: between any two instants, there must exist an uncountable infinity of
instants and there is no such thing as a next instant. In other words, time does
not evolve by passage from one instant to the next, as Zeno required; intervals
of time must necessarily pass. The classical continuum is an infinitary object
and is by no means uncontroversial. The intuitionists, for example, reject the
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classical notion of the continuum. Therefore, one can sympathize with Zeno’s
point of view.

In the logic NAFL, there must necessarily exist a superclass of instants
between any two instants of time, which corresponds geometrically to a line
segment, i.e., a closed time interval (see. Sec. 4.4). The NAFL interpretation
rejects both the classical continuum and Zeno’s arrow paradox by requiring
that a time interval cannot be broken up into an uncountably infinite set of
discrete points. The infinitely many observations or measurements of the arrow’s
position at every conceivable instant of time that Zeno was looking for cannot
be made, even in principle, in analogy with the refutation of the quantum Zeno
paradox in the NAFL interpretation.

5.6 Zeno’s dichotomy paradox and supertasks

Achilles starts at x = 0 and runs at uniform velocity dx/dt = 1 along the x-axis.
Before reaching his target at (x, t) = (1, 1), Achilles would first have to cover half
of the distance to reach x = 1/2 at t = 1/2. Assuming he does so, he would then
have to cover half of the remaining distance to reach x = 3/4 at t = 3/4, and so
on, ad infinitum. Zeno’s ingenious and insightful observation was that in order
to reach the target, Achilles would have to complete the infinite task (supertask)
[34] of reaching infinitely many points x ∈ {0, 1/2, 3/4, . . . } at infinitely many
times t ∈ {0, 1/2, 3/4, . . . }. Zeno concluded that the supertask can never be
completed in finite time, and this is the dichotomy paradox. Note that there is
a purely temporal version of the dichotomy paradox, namely, that Achilles can
never experience the instant t = 1 because to do so, he would have to complete
the supertask of experiencing infinitely many instants t ∈ {0, 1/2, 3/4, . . . }.

In Ref. [17], it is demonstrated that, contrary to widespread belief, mod-
ern mathematics does not really refute Zeno’s paradox and its variants, which
lead to meta-inconsistencies in classical infinitary reasoning. Metatheorem 1,
Metatheorem 2 and Corollary 1 of Ref. [17], reproduced below as Metatheo-
rem 12, Metatheorem 13 and Corollary 3, are the main results that establish
these meta-inconsistencies (see Sec. 2, in particular, Remarks 10 and 11, of
Ref. [17]).

Metatheorem 12. Consider a physical process in which the time t passes
through a strictly increasing, convergent sequence {tn}, n ∈ N, within a fi-
nite time interval, and let tb = limn→∞ tn. Let S1 be the supertask defined by
t assuming, in sequence, each of the infinitely many values in {tn}. Then the
minimum value of the time at which S1 gets completed is t = tb.

Proof. The proof consists of two simple steps which follow from the fact that tb
is the limit point of the strictly increasing sequence {tn}.

� S1 is incomplete if t < tb, as seen from:

t < tb ↔ ∃n (t < tn < tb) ↔ (S1 is incomplete).
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� S1 is complete if t = tb, which is obvious because tb exceeds every value
in {tn}.

Remark 30. It follows from Metatheorem 12 that if the supertask S1 is com-
plete, that is, if t sequentially passes through all the infinitely many values in
{tn}, then t must necessarily attain the limiting value tb. This establishes that
a time of completion, namely, t = tb, exists for the supertask S1.

Metatheorem 12 can be generalized to a wider range of supertasks, as will be
seen from Metatheorem 13 below.

Metatheorem 13. Suppose that, in a given physical process, an object has a
time-dependent state S(t), where t ∈ [ta, tc] and tc > ta. Here t is defined on
the standard real number system R, while, for our purposes, S(t) is defined on
the extended real number system R̄. [13] At a given time tb, where ta < tb ≤ tc,
suppose that limt→t−b

S(t) exists. Then S(tb) = limt→t−b
S(t).

Proof. Consider any strictly increasing Cauchy sequence of times {tn}n∈N, de-
fined within the time interval [ta, tb) such that limn→∞ tn = tb. For example,
taking (ta, tb, tc) = (0, 1, 2), consider the sequence {tn}n∈N defined as:

tn = 1− (1/2)n, n = 0, 1, 2, . . . , . (43)

Given the arrow of time in a physical process, the object in question com-
pletes the supertask S2 of attaining, in sequence, an actual infinity of states
S(tn), n ∈ N. Clearly, S2 occurs simultaneously with the supertask S1 defined
in Metatheorem 12, in the sense that there is a one-to-one correspondence in
time between the steps of S1 and S2. It follows that a time of completion,
namely, t = tb, exists for the supertask S2. We claim that as t attains its
limiting value tb upon completion of S1, the completion of S2 must also hap-
pen with S(t) attaining its limiting value limn→∞ S(tn), which exists, because
limn→∞ S(tn) = limt→t−b

S(t). Clearly, as t passes through an actual infinity of

values tn, the following must hold:

∀ϵ > 0 (|S(t)− lim
n→∞

S(tn)| < ϵ). (44)

Here |S(t)− limn→∞ S(tn)| can be viewed as a distance on the real line, which,
upon the completion of the supertask S2, must shrink to less than every positive
real number ϵ. It is a direct mathematical consequence of (44) that the comple-
tion of S2 must happen with S(t) jumping to the value limn→∞ S(tn). What
is being asserted here is that both the values t = tb and S(t) = limn→∞ S(tn)
must be physically realized upon completion of the supertask S2. It follows that
S(tb) = limn→∞ S(tn) = limt→t−b

S(t), and the metatheorem follows.

Corollary 3. In the physical process defined in Metatheorem 13, suppose

lim
t→t−b

S(t) ̸= lim
t→t+b

S(t).
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Then such a discontinuous physical process is not time reversible.

Proof. Without loss of generality, assume (ta, tb, tc) = (0, 1, 2). Metatheorem 13,
as applied in the physical time variable t, implies that S(1) = limt→1− S(t).
Make the change of variable t′ = 2 − t and let S′(t′) = S(t). To arrive at
a contradiction, apply Metatheorem 13 in the variable t′, with (t′a, t

′
b, t

′
c) =

(0, 1, 2). We find that S(1) = S′(1) = limt′→1− S′(t′) = limt→1+ S(t), which
contradicts the previous application of Metatheorem 13 in the variable t.

From Metatheorem 13, we may infer that in general, supertasks cannot be
completed:

Metatheorem 14. Let S(t) denote the state of an object in an arbitrary physi-
cal process defined in Metatheorem 13, where we take, without loss of generality,
t ∈ [0, 2] and (ta, tb, tc) = (0, 1, 2). Let {S(tn)}n∈N be the supertask generated
by tn assuming all the values in the sequence {tn}n∈N, where tn is defined as in
(43) . Metatheorem 13 implies that {S(tn)}n∈N cannot be completed.

Proof. Consider a physical process in which the state function S̄(t) is defined
on t ∈ [0, 2] by

S̄(t) = 0 if t ∈ [0, 1) and S̄(t) = 1 if t ∈ (1, 2]. (45)

Here we take “S̄(t) = 0” to encode “∃n ∈ N(tn > t)”, which is equiva-
lent to “{S(tn)}n∈N is incomplete at time t”. Similarly, “S̄(t) = 1” encodes
“∀n ∈ N(tn < t)”, which is equivalent to “{S(tn)}n∈N is complete at time
t”. Metatheorem 13, with (ta, tb, tc) = (0, 1, 2), requires that S̄(1) = 0, which
encodes “{S(tn)}n∈N is incomplete at t = 1”. This contradiction proves that
{S(tn)}n∈N cannot be completed.

Remark 31. Note that the proof of Metatheorem 14 does not make use of the
failure of time reversal invariance [35] implied by Corollary 3, which can also
be considered as a proof by contradiction that supertasks cannot be completed.

Remark 32. Metatheorem 14 implies a meta-inconsistency in classical infini-
tary reasoning, which requires that supertasks (such as, those arising in Zeno’s
dichotomy paradox and its variants considered in Ref. [17]) can be completed.

5.6.1 Resolution of the dichotomy and related paradoxes in NAFL

In the NAFL theory of real numbers NPAR (see Sec. 4.5), the only collections
of real numbers that are admissible are superclasses, defined in Sec. 4.4. In
particular, open / half-open intervals and a countable infinity of real numbers
do not exist inNPAR (see Remark 22 and Sec. 4.5.1). This immediately implies
that Zeno’s dichotomy paradox, which requires the existence of the half-open
interval of reals [0, 1), cannot be formulated in NAFL. The classical definition
of a supertask, which requires a countable infinity of real numbers, is also not
admissible in NAFL. Hence paradoxes involving supertasks (such as, Thomson’s
lamp experiment, [36] the “beautiful supertask” of Laraudogoitia [37] and its
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variant wherein a baton is passed on with each elastic collision (see the infinite
relay paradox in Ref. [17])) cannot be formulated in NAFL.

The proofs of Metatheorems 13 and 14 cannot be formalized in NAFL be-
cause they make use of the classical notion of supertasks. This raises the issue of
the definition of supertasks in the NAFL theory NPAR, and whether they can
be completed. As noted in Sec. 4.5.1, when the natural numbers are embedded in
the extended real line of NPAR, one obtains the superclass NR = {0, 1, . . . ,∞}.
Consider a physical process with state S(t) defined as in Metatheorem 13. Con-
sider any strictly increasing Cauchy sequence of times {tn}n∈N, defined within
the time interval [ta, tb) such that limn→∞ tn = tb. The NAFL supertask (de-
noted as n-supertask) corresponding to the classical supertask {S(tn)}n∈N is
defined as the superclass

{S(tn)}n∈NR = {S(t1), S(t2), . . . , lim
n→∞

S(tn)}. (46)

Note that limn→∞ S(tn) = limt→t−b
S(t).

Metatheorem 15. In the physical process with state S(t) defined as in Metathe-
orem 13, the n-supertask {S(tn)}n∈NR given by (46) must necessarily get com-
pleted, i.e., the limiting value limn→∞ S(tn) = limt→t−b

S(t) gets realized physi-

cally.

Proof. The metatheorem follows from the definition of superclasses, which must
necessarily include their limit points (see Sec. 4.4 and Remark 22), and the
requirement that the domain and range of the function S must be superclasses
(see Sec. 4.5.1).

Remark 33. Metatheorem 15 implies that S(tb) = limt→t−b
S(t) whenever the

domain of the function S is restricted to t ∈ [ta, tb]. Because the NAFL theory
NPAR permits multivalued functions (see Sec. 4.5.2), it does not follow that
this value of S(tb) holds when the domain of S is specified as t ∈ [tb, tc], in which
case S(tb) = limt→t+b

S(t), and it is possible that limt→t−b
S(t) ̸= limt→t+b

S(t).

It follows that Corollary 3, which cannot be formalized in NPAR, does not
hold and time reversal invariance is upheld in the NAFL version of the physical
process defined by S(t), even at points of discontinuity of S.

Consider Zeno’s dichotomy paradox as stated in Sec. 5.6, where t ∈ [0, 2], and
add the requirement that Achilles dies at t = 1 upon reaching his target (this
is the “spatial dichotomy paradox” discussed in Sec. 1.5.1 of Ref. [17]). From
Metatheorem 13, we may deduce the contradiction that Achilles must be alive
at t = 1. Assuming Achilles is dead for times t > 1, Corollary 3 implies
that in the time-reversed version of Achilles’s run with the change of variable
t′ = 2 − t, Achilles must be dead at t′ = t = 1, with the consequent failure of
time reversal invariance, which is another contradiction. However, in the NAFL
theory NPAR, these contradictions are avoided and time reversal invariance
holds. Achilles’s state of “alive” or “dead” is specified inNPAR by the following
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multivalued function:

f(t) = 0, t ∈ [0, 1],

= {0, 1}, t = 1, dom(f) unspecified,

= 1, t ∈ [1, 2].

Here f = 0 (f = 1) means that Achilles is alive (dead), and dom(f) is the
domain of the function f .

5.7 Benacerraf’s shrinking genie

Benacerraf [38] proposed a version of Zeno’s dichotomy paradox in which Achilles
is replaced by a genie whose height h(t) shrinks continuously in proportion to
the distance covered on x ∈ [0, 1], as follows.

h(t) = h0(1− t), x(t) = t, t ∈ [0, 1], (47)

where we assume that the genie is a one-dimensional creature and h0 > 0 is
the initial height of the genie. Clearly, the genie, which runs at unit velocity,
reaches every point x ∈ [0, 1), but does not reach x = 1, where it vanishes. Here
it is assumed that the genie no longer exists when its height has reduced to zero.

Consider a hypothetical universe in which the only objects are identical
shrinking genies, so that the genies have no length scale available other than
their own height. In addition to the above traveling genie, let there be a station-
ary genie at x = 0 and a target genie at x = 1 in the postulated hypothetical
universe. The stationary genie would consider its height to be fixed at h0 (as-
sumed to be the only available length scale) and would therefore observe that
both the traveling genie and the target genie are also at fixed height h0, at
a fixed unit distance from each other, and are both receding at an increasing
velocity proportional to (1 − t)−2, as can be seen from the following. Recall
that the traveling genie starts at x = 0 and travels at unit velocity (as stated
in (47)). Let (x1(t), h1(t)) and (x2(t), h2(t)) be the coordinates of the traveling
genie and the target genie respectively, from the point of view of the stationary
genie, which fixes its height at h0 as the standard unit of length. It is easy to
see that

x1(t) =
t

1− t
, x2(t) =

1

1− t
, t ∈ [0, 1) → (h1(t) = h2(t) = h0),

dx1

dt
=

dx2

dt
=

1

(1− t)2
, t ∈ [0, 1) → (x2(t)− x1(t) = 1),

x1(1) = x2(1) =
dx1

dt
(1) =

dx2

dt
(1) = +∞, (48)

where x1(t) ∈ R̄, x2(t) ∈ R̄, t ∈ [0, 1] and R̄ denotes the extended real number
system, [13] which has been used to remove the singularity at t = 1. From the
point of view of an observer external to the postulated hypothetical universe, the
infinities occur here because the length scale of the stationary genie has shrunk
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to zero at t = 1. Observe that (x2(1) − x1(1)), being of the form (∞−∞), is
undefined in the extended real number system. We also need to define h1(1)
and h2(1). There are three possibilities here, all of which lead to contradic-
tions, as follows. A natural definition, which follows from an application of
Metatheorem 13, would be

x2(1)− x1(1) = 1, h1(1) = h2(1) = h0, (49)

which implies that the traveling genie does not complete the two supertasks of
catching up with the target genie and also vanishing (along with the target genie)
at t = 1. Alternatively, we could define, in partial violation of Metatheorem 13,

x2(1)− x1(1) = 0, h1(1) = h2(1) = h0. (50)

Here the viewpoint of the stationary genie would confirm the contradiction that
the traveling genie catches up with the target genie at nonzero height h0 and
collides with it before both vanish instantaneously. Thirdly, we could set, in
violation of Metatheorem 13,

h1(1) = h2(1) = 0. (51)

In this case, by assumption, neither the genies nor their coordinates x1(1) and
x2(1) exist at t = 1 and therefore the traveling genie does not complete the
supertask of catching up with the target genie before both vanish.

Similar contradictions can be deduced from an application of Metatheo-
rem 13 and Corollary 3 to (47). These contradictions must be attributed to the
underlying classical assumption that supertasks can be completed.

5.7.1 Newtonian kinematics versus relativistic kinematics

It should be emphasized that from the point of view of Newtonian kinematics,
(47) and (48) are entirely equivalent. An observer external to the postulated
hypothetical universe would hold the view that the genies are shrinking as in
(47), while the genies would maintain that their universe is expanding with
respect to their fixed height h0, as in (48). Purely from the point of view
of kinematics, it ought to be impossible to say which of these two scenarios
is the underlying “reality”, if one rejects Platonism as a philosophy of physics.
However, this equivalence between (47) and (48) does not hold in the kinematics
of special relativity theory (SR), wherein the Lorentz transformations apply and
according to which (48) is illegal, essentially due to an illegitimate choice of the
standard of length by the genies. Indeed, SR requires that the length standard
be chosen such that the velocity of light in vacuum is a defined constant c, in
order to conform with the light postulate of SR. Assuming that the standard
of length in the coordinate system of (47) is chosen to uphold the defined value
c of the velocity of light, the time τg taken by light to traverse the height
of the genies would be measured, by an observer external to the postulated
hypothetical universe, as

τg =
h0(1− t)

c
, t ∈ [0, 1). (52)
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Hence the external observer would conclude that the genies are shrinking, and
that their height is h0(1−t). The genies in the postulated hypothetical universe
would also measure exactly the same value of τg as in (52) for light to traverse
their height, which they fix at the value h0 as their standard of length. It follows
that the velocity of light in vacuum (cg) in the coordinate system of (48) would
be measured by the genies as

cg ≈ c

1− t
, t ∈ [0, 1), (53)

where the approximation is valid to leading order as c → ∞ or as h0 → 0 or, in
general, as h0/c → 0. Clearly, (53) is in violation of the light postulate of SR
and it follows that (48) is illegitimate in SR. Note also that the velocities of the
genies in (48) exceed the velocity of light cg in (53) by an order of magnitude as
t → 1−, which is also not allowed in SR. Thus relativistic kinematics picks out
(47) as a Platonic reality and one may conclude that Platonism, rejected in the
proposed finitistic logic NAFL, is inherent in SR. The inability of relativistic
kinematics to support (48) in the postulated hypothetical universe suggests a
possible meta-inconsistency in SR, because our contention is that (48) ought
only to be rejected, if at all, by invoking alternative theories, such as, dynamics.

5.7.2 The NAFL resolution of Benacerraf’s shrinking genie paradox

We have seen that in the NAFL theory of real numbers NPAR, Metathe-
orem 13, Corollary 3 and Metatheorem 14 cannot be formalized. Instead,
Metatheorem 15 and Remark 33 apply. This entails that the traveling genie
(or at least its center of mass) must continue to exist at t = 1 because existence
of the genie cannot be formulated on the half-open interval [0, 1), which is not
a superclass. In the coordinate system of (48), the distance (x2(t)− x1(t)) and
the height h(t) are specified in NPAR by the following multivalued functions:

f(t) = (x2(t)− x1(t)) = 1, dom(f) = [0, 1],

= {0, 1}, t = 1, dom(f) unspecified,

= 0, t = 1 and dom(f) = [1,∞].

h(t) = h0, dom(h) = [0, 1],

= {0, h0}, t = 1, dom(h) unspecified,

= 0, t = 1 and dom(h) = [1,∞].

Here dom(.) is the domain of the indicated function.
Note that (x2(1)−x1(1)) and h(1) drop discontinuously to 0 at t = 1. These

multivalued functions resolve the various contradictions reported in (49) - (51)
and fully establish the kinematic equivalence of (47) and (48). Post t = 1, the
genies are point masses and their evolution can be continued with a different
length scale chosen as in (47), which will replace (48).
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6 Concluding remarks

The exposition of non-Aristotelian finitary logic (NAFL) in this paper upholds
virtually all the ideas expressed in the author’s previous work, [6, 12, 17, 23]
but presents these and several new results with much greater clarity and pre-
cision. We have demonstrated that the scope of finitism is expanded from just
a theory (Primitive recursive arithmetic) [4] within classical logic to an entire
logic (NAFL) that, in our opinion, rivals classical logic and intuitionism. The
distinguishing feature of finitism in NAFL is that classical infinitary reasoning
is not banned arbitrarily, but is refuted via logical principles deducible from
finitary NAFL semantics. NAFL has profound consequences for the logical
foundations of physics, both classical and quantum. The paraconsistent, time-
dependent and axiomatic truths of NAFL provide the correct logical framework
for resolution of the paradoxes of quantum mechanics, such as, superposition,
entanglement, wave-particle duality and the quantum Zeno effect, as well as
classical paradoxes, such as, Zeno’s dichotomy paradox and its variants, which
have remained unresolved for almost 2500 years. Future work will focus on
the logical foundations of quantum mechanics, which will require further de-
velopment of real analysis in NAFL. For the sake of brevity, we had to omit
discussion of philosophical paradoxes, such as, those arising from self-reference
or the Platonic nature of classical truth. These will be elaborated upon in future
work.
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