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Despite quantum theory’s remarkable success at predicting the (statistical) results of experiments,
many philosophers worry that it nonetheless lacks some crucial connection between theory and ex-
periment. Such worries constitute the Quantum Measurement Problem. We can identify two kinds
of worries: 1) pragmatic: it’s unclear how to model our experiments to extract theoretical predic-
tions, and 2) realist: there is no realist narrative for the experiment underlying these theoretical
predictions. I will argue that while both deserve attention, the pragmatic worries have worse conse-
quences if left unanswered. Moreover, upon reflection, a satisfactory prediction of many of quantum
theory’s key experimental successes unavoidably involves modeling quantum fields at some point.
Without a satisfactory pragmatic theory-to-experiment link for QFT, we are at risk of losing any
right to claim evidential support for large parts of quantum theory. This is the Pragmatic QFT
Measurement Problem.

But, what makes formalizing measurements in QFT so hard? As I will discuss, attempts to
naively transplant projective measurements into QFT violate core tenets of relativity. Thus we
need a new (or at least refined) measurement theory for QFT. However, as I will argue, aiming
too directly at a new measurement theory is an incautious way to proceed and is apt to lead
us astray. Instead, we ought to first review how our non-relativistic quantum measurement
theory is rooted in notions of measurement chains and Heisenberg cuts. Next, we ought to
generalize these notions and transplant them into QFT. My analysis suggests the need for a
pragmatic QFT-cut analogous to the Heisenberg cut. Finally, we can then see what measure-
ment theory (if any) we are led to for QFT. As I will discuss, the Unruh-DeWitt detector model
is uniquely positioned to give us a wide-scoping physically-meaningful measurement theory for QFT.
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I. INTRODUCTION: A QUANTUM
MEASUREMENT PROBLEM

It is uncontestable that quantum theory has been re-
markably successful at predicting the (statistical) re-
sults of a wide range of experiments. However, despite
its many predictive successes, many philosophers and
physicists are nonetheless worried that quantum theory
lacks some crucial connection between theory and exper-
iment. Various dissatisfactions with various theory-to-
experiment disconnects each deserve the title1 “A Quan-
tum Measurement Problem”: How are we to under-
stand/model the measurement of quantum systems?

In order to differentiate the various kinds of dissatis-
factions from each other, it’s perhaps best to start from a
telling of quantum theory which (hopefully nearly) every
physicist and philosopher is dissatisfied with. I have in
mind the parts of non-relativistic quantum theory which
students are urged to focus on after they are told to
“Shut up, and calculate!”. Let us call this the sopho-
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1 This situation is rather like the mis-advertised efforts to “find
the cure for cancer”. There are many types of cancer each of
which will need their own cure. Moreover, even considering a
single type of cancer, it may be cured in several ways.

more’s quantum theory. Students are here taught to
model quantum experiments as follows: Given some ini-
tial conditions, |in⟩, we apply the given unitary evolution,

Û , and then the given projective measurement, ⟨out|.
This computation unambiguously gives a statistical pre-
diction of the experiment’s outcome via Born’s rule,
p(out| Û , in) = |⟨out| Û |in⟩|2. (A sophisticated sopho-
more may also learn about non-projective measurements,
selective measurements and non-selective measurements
as well as post-measurement state updates via Lüders
rule.) Many physicists and philosophers are dissatisfied
with the sophomore’s quantum theory and claim that it
lacks the right kind of connection between theory and
experiment, and rightly so.
One can distinguish between two types of worries sur-

rounding quantum measurement: pragmatic worries and
realist worries. Pragmatic worries are aimed at clarifying
how exactly these statistical predictions are to be pulled
out of the theory. Specifically, how should the measure-
ment process be modeled? By contrast, realist worries
are aimed at establishing a realist narrative for the mea-
surement process. How could the world be such that our
experiments have these statistics? What explains the dif-
ferent definite outcomes I see in each seemingly identical
run of my experiment? How should the measurement
process be understood?
The sophomore’s quantum theory fails on both fronts.
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Its realist failures are well known, but its pragmatic fail-
ures deserve some further comment. The sophomore’s
quantum theory does not, in fact, give us unambigu-
ous statistical predictions for an experiment’s outcomes.
While it is true that statistical predictions can be unam-
biguously associated with initial states, unitaries, and
projectors, p(out| Û , in) = |⟨out| Û |in⟩|2, these them-
selves have not yet been suitably connected with our real-
life experimental setups. Specifically, the sophomore has
no answer to the question2: “In modeling this piece of
lab equipment, exactly which projectors am I supposed
to use and when?” There may be a ready-answer to this
question pre-written on the sophomore’s problem sheets,
but show them a foreign piece of lab equipment and watch
them falter.

Often the sophomore may intuitively guess which pro-
jector to use and when. They will not always be wrong,
indeed they will often guess right. It is highly intu-
itive that in a two-slit experiment when the electrons
hit the detection screen that just then a position mea-
surement happens. And indeed for most pragmatic pur-
poses, this is effectively what happens. Indeed, it may
often be the case that the sophomore’s guesses consis-
tently give accurate-enough predictions. But ultimately
they are nothing more than just that: guesses. As I will
argue, in order to do better we need to explicitly model
the measurement process in some dynamical detail [1–3].

Of these two types of failings, which has worse con-
sequences if neglected? While both deserve attention, I
argue the pragmatic worries are by far more important
since if unanswered their consequences are far more se-
vere. While it is at least debatable whether or we need to
find a realist narrative underlying quantum theory [4], it
is not debatable that quantum theory (indeed, any phys-
ical theory) must provide us with a robust account3 of
how predictions can and should be made from it (some-
thing better than intuitive guessing, even if our intuitive
guesses are often right-enough). It is exactly this prag-
matic link to real-life experimental practice which grants
our physical theories evidential support, their connection
with reality, and arguably their physicality [1] as well.

2 The sophomore’s question will be answered in Sec. IVC. One
answer involves decoherence theory and the Born rule. It should
be noted, however, that contrary to popular belief, there may be
other methods of extracting predictions from quantum theory in
a principled way.

3 Above, I complained that the sophomore’s quantum theory
doesn’t give us unambiguous predictions. However, on reflec-
tion, demanding complete unambiguity is asking too much. As
I will discuss later, even for non-relativistic quantum theory it
is necessary to make approximations when extracting concrete
experimental predictions from our theory. Often we will have
freedom (and hence ambiguity) regarding what kind of approx-
imations we should make and where to make them. There is
nothing wrong with this so long as the consequences of these
choices are well understood and controllable. Indeed, when at-
tempting to explain our experimental data, the goal is not to give
definite unambiguous predictions but rather to give predictions
which are within the experiment’s error bars.

Without a clear understanding of this pragmatic con-
nection between theory and experiment, we are at risk
of losing any right to claim evidential support (or worse
physicality) for quantum theory. As interesting as the
realist’s worries are, I rather say: let us first work on
bringing home the spoils of experimental success, then
we can worry about what it all means later, once we
have better footing.
While above I have had non-relativistic quantum the-

ory in mind, the distinction between pragmatic and re-
alist worries about measurement can be made for any
physical theory. The relative severity of the pragmatic
worries over the realist worries (if unanswered) holds in
every case. But what, roughly, would count as a satisfy-
ing solution to these pragmatic worries? What is at risk
is our theory’s evidential support, that is, its empirically
supported connection with reality. As such any minimal
solution to these worries must give a measurement frame-
work : a principled explanation about how experimental
predictions are to be extracted from the theory at least
for the theory’s major experimental successes and poten-
tially on a case-by-case basis. Let us call this the core
pragmatic measurement problem. Solving this would re-
store empirical support to our theory’s key experiments.
One might, however, set their sights higher than

this. The core pragmatic measurement problem could
be solved with a case-by-case measurement framework
with minimal scope leaving us in the dark about how
measurements work generally in our theory. One might
further want a unified measurement theory : a principled
explanation about how experimental predictions are to
be extracted from the theory in a holistic and wide-
scoping way. Let us call this the extended pragmatic
measurement problem. While not strictly necessary for
our theory to be physically meaningful and evidentially
supported, solving the extended problem has some sig-
nificant benefits. Solving the extended problem allows us
to talk about the “observables” of the theory in a phys-
ically meaningful way. (Note, however, that one cannot
have a physically meaningful characterization of a the-
ory’s “observables” without examining the dynamics of
its measurement processes in at least some detail.)
Let’s return our attention to these pragmatic worries in

non-relativistic quantum theory. As discussed above, the
sophomore’s quantum theory fails on both the pragmatic
and realist fronts, but how do more sophisticated tellings
of quantum theory fair? I will argue (in Sec. IV) that
for non-relativistic quantum theory the core pragmatic
measurement problem has been solved in terms of mea-
surement chains and pragmatic Heisenberg cuts. These
notions give us a case-by-case measurement framework
within which we can work to extract predictions experi-
ments within the remit4 of non-relativistic quantum the-
ory.

4 As I will discuss in Sec. II the scope of quantum theory’s key
experimental successes which are analyzable entirely within non-
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Moreover, for non-relativistic quantum theory the ex-
tended pragmatic measurement problem has also been
solved. Using decoherence theory and the Born rule,
one can give a unified wide-scoping account of the mea-
surement process. Specifically, decoherence theory un-
derwrites our usual projective measurement theory.

Consequently, with both the core and extended
pragmatic measurement problem solved, within non-
relativistic quantum theory almost all attention has
shifted onto the realist’s worries. And rightly so. This
so much so that for non-relativistic quantum theory the
quantum measurement problem has become synonymous
with such realist worries.

However, as I will argue (in Sec. III) the same is not
true for quantum field theory5 (QFT) with severe con-
sequences; Without a satisfactory theory-to-experiment
link we are at risk of losing any right to claim any evi-
dential support (or worse physicality) for quantum field
theory. Given the severity of this situation, the focus
of this paper is exclusively on such pragmatic worries in
the context of quantum field theory. That is, my focus
is on The Pragmatic QFT Measurement Problem (both
core or extended). In particular, this paper will carefully
consider which parts of our non-relativistic solution can
and cannot be transferred over into QFT.

Outline of Paper

My above suggestion that we first work on “bringing
home the spoils of experimental success” raises the fol-
lowing questions: for quantum theory generally, where
were these metaphorical spoils won and what currently
blocks their way home? In Sec. II, I will discuss where
the evidential spoils of quantum theory lie so-to-speak.
I will argue (paralleling Wallace [5, 6]) for the follow-
ing perhaps surprising claim; Explaining all but maybe
a small corner of quantum theory’s experimental suc-
cesses unavoidably involves modeling quantum fields at
some point. (Importantly, this is for fairly basic concep-
tual reasons; I am not here demanding hyper-accuracy.)
Thus, if we cannot establish an adequate pragmatic link
between QFT and experimental practice then not only
quantum field theory but nearly the whole of quantum
theory is at risk of losing its evidential support. While

relativistic quantum theory and classical physics is much smaller
than one might expect [5, 6]. Indeed, a robust account of our
predictions for many of these experiments unavoidably involves
modeling quantum fields at some point along the measurement
chain. As such, solving the core pragmatic measurement problem
for quantum theory generally ultimately requires an understand-
ing of how to model measurements involving quantum fields.

5 Throughout this paper, unless specified otherwise, QFT refers to
relativistic quantum field theory (as opposed to non-relativistic
quantum field theory). Similarly, by non-relativistic quantum
theory I mean, unless specified otherwise, first quantized quan-
tum theories (e.g., not non-relativistic quantum field theory).

the argument in Sec. II is not essential for the main philo-
sophical points made in the rest of the paper, it substan-
tially raises the stakes.

Given that the route home for most of our experi-
mental spoils runs through quantum field theory, our
next question becomes: Why is it (at least currently) so
hard to properly model measurements involving quan-
tum fields? Sec. III will answer this question. As a
growing portion of the physics community is becoming
aware [7–23], one cannot naively transplant our projec-
tive measurement theory from non-relativistic quantum
theory into QFT. Why is this so?

It is often said [7–23] that the these difficulties can
be traced to certain non-trivial mathematical differences
between QFT and non-relativistic quantum theory (e.g.,
new causal and algebraic structures at play). These dif-
ferences disallow us from directly transplanting our non-
relativistic quantum measurement theory into QFT. Pro-
ceeding naively leads us to make mathematical blunders
which either violate the central ‘commandments’ of rel-
ativity (covariance, causality, and locality)[14, 18–23] or
otherwise disrespect the QFT’s local algebraic structure.
For these reasons, it has been argued we need a new (or
at least refined) measurement theory for quantum field
theory, see for instance [7, 8, 11].

While all of this is true, I argue that laying the blame
on these technical issues belies a deeper methodological
issue. Specifically, I will argue in Sec. III that, even when
one avoids all such mathematical blunders, other critical
symptoms of a deeper methodological issue still remain.
In fact, this root methodological issue is the same issue
that plagues the sophomore’s quantum theory: failure
to give concrete dynamical models of our measurement
processes, opting instead for simply guessing the right
projector.

In this paper, I propose and carry out an alternate
way forward: First, we ought to understand that our pro-
jective measurement theory for non-relativistic quantum
theory has its roots in discussions of measurement chains
and Heisenberg cuts. In Sec. IV, I will discuss how these
notions automatically give us a case-by-case measure-
ment framework for giving good models of quantum ex-
periments. This already solves the core pragmatic mea-
surement problem in the non-relativistic context. Fur-
ther, decoherence theory and the Born rule then give us
a solution to the extended pragmatic measurement prob-
lem, namely they underwrite our usual projective mea-
surement theory.

The central message of this paper is that we should
not transplant the end of this story (i.e. our projective
measurement theory) into QFT. Rather we should start
from the beginning. We ought to generalize these notions
of chains and cuts (see Sec. V and Appendix A) and
then transplant them into QFT. This will automatically
give us a case-by-case measurement framework for QFT,
solving its core pragmatic measurement problem. My
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analysis here reveals the need for a pragmatic QFT-cut6

when modeling QFT experiments which is analogous to
the need for a pragmatic Heisenberg cut when modeling
quantum experiments generally.

Finally, having understood measurement chains and
cuts for QFT, we can then see what might be done about
its extended pragmatic measurement problem. We can
then see what sort of unified wide-scoping measurement
theory (if any) is currently available to us. This is our
route to a physically meaningful identification of the ob-
servables of QFT. To this end, Sec. VI will provide an
overview of the current state of the art in the physics
literature. As I will discuss, our current best tool for get-
ting a wide-scoping measurement theory for QFT is the
Unruh-DeWitt detector model [15, 23–35], see [7].

II. WHERE THE SPOILS WERE WON

In the introduction, I claimed that while the pragmatic
portion of the quantum measurement problem is satis-
factorily solved for non-relativistic quantum theory, it’s
nowhere near to being solved for quantum field theory.
I will argue for these claims in Sec. IV and Sec. III re-
spectively. For now, however, let’s take these two claims
on faith, so that we can estimate the magnitude of their
consequences.

If it is indeed the case that we have a pragmatically
satisfactory theory-to-experiment link in one case and
not the other, it becomes relevant to ask the following.
Are the foundational experimental successes of quantum
theory more so grounded:

a) exclusively within the domain of non-relativistic
quantum phenomena (and so easily-recoverable) or,

b) at least partly within the domain quantum field
theoretic phenomena (and so non-recoverable)?

While I expect many philosophers and physicists be-
lieve the answer to be a), I rather think the answer is
b). Supposing the answer is a) one might respond to the
difficulties we currently face in modeling measurements
involving QFTs as follows. “Perhaps we can’t properly
model measurements of quantum particles moving at rel-
ativistic speeds and the esoterica of CERN and the LHC.
This is unfortunate. However, we can still adequately
model the measurements underlying the major founda-
tional experimental successes of quantum theory: the ul-
traviolet catastrophe, the spectrum of hydrogen, the dou-
ble slit experiment, etc. As such, the core of quantum
theory still has its evidential support. This is non-ideal
but it is not a foundational crisis.”

6 This concept was first introduced in [15] under the name rela-
tivistic cut. However, after publication we realized this name is
apt to cause confusion. For reasons I will discuss in Sec. V I
believe the name QFT-cut to be more appropriate.

If, rather, the answer is b) then we do have a poten-
tial foundational crisis on our hands. Concretely, suppose
things are as I claim and explaining all but maybe a small
corner of quantum theory’s experimental successes un-
avoidably involves modeling quantum fields. Then with-
out a proper understanding of how to model measure-
ments involving quantum fields, the very core of quan-
tum theory would then be at risk of losing its evidential
support.
In a recent talk [5], Wallace has similarly argued that

explaining the majority of quantum theory’s experimen-
tal successes requires quantum field theory:

Quantum field theory is not just for the eso-
terica of CERN. Quantum field theory is what
we need to understand the scattering of light
in the sky.

Several of the following examples are directly inspired by
his talk and subsequent paper [6]. As these examples
will show, while many experimentally relevant calcula-
tions can be done in terms of non-relativistic quantum
theory, the route from these calculations to our exper-
imental observations almost always goes through quan-
tum field theory at some point. In particular, even when
QFT does not feature prominently in the middle of an
experiment, it often will be crucially important for either
the initialization or (more importantly) the measurement
steps.
However, before getting to these examples some com-

ments are needed on exactly what kind of explaining a
theory must do of an successful experimental prediction
in order to claim it as evidential support.

A. Explanation and Evidential Support

My claim in this section is that in order for quantum
theory to re-secure many of its claims to evidential sup-
port, we must re-explain many of its canonical experi-
mental successes now using quantum fields to model at
least part of the experiment. But what kind of explaining
is relevant for securing evidential support?
One should recall that our concern here is with prag-

matic worries, not realist ones. As such, the relevant no-
tion of explanation (i.e., evidential-support-securing ex-
planation) does not involve giving a realist narrative for
the experiment. Rather, here our theory explains an ex-
periment when it can give a robust account of how it
predicts the (statistical) outcomes seen in this particular
experiment. This is the kind of explaining which is rele-
vant for securing evidential support. Unless stated other-
wise, this is the kind of explanation relevant throughout
this paper.
Moreover, it should be noted that securing evidential

support is not a binary issue: Incrementally better expla-
nations of an experiment give us an incrementally more
secure right to claim it as evidential support. By con-
trast, any faults, gaps, or hand-waving in our explanation
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put us at risk of losing this right; just as a home-made
car driving with loose screws is at risk of falling apart. I
have been careful throughout this text to always speak in
terms of risk and security. As in life, we can never remove
all risks. Instead, as in life, we ought to reduce our risk
to a high (but contextually reasonable) standard. But
what should go into this standard?

One’s first though is perhaps accuracy. However, as I
will now discuss this cannot be all that is relevant. When
I earlier claimed that QFT has a pragmatic theory-to-
experiment disconnect which puts it at risk of losing evi-
dential support, I anticipate there were some complaints
along the following lines: “What do you mean QFT has a
pragmatic disconnect? QFT has made many fantastically
accurate and precise predictions. For example, the muon
g − 2 experiment at Fermilab has confirmed the Stan-
dard Model to a precision of 0.46 parts per million [36].
If something were rotten or ambiguous in the way we
make predictions from QFT, it would be a miracle that
so many of them are so well confirmed.”

While, yes, it is true that QFT has been used to
make many extremely accurate predictions, so too has
the sophomore’s quantum theory discussed in the intro-
duction. Or rather it does so when we have correctly
guessed which ⟨out|, Û , and |in⟩ correspond to our real-
life lab equipment. For various reasons, we may be very
good at guessing. (It is highly intuitive that in a double
slit experiment for most pragmatic purposes we can take
a position measurement to happen when the electrons
hit the screen.) However, in order to properly explain
our experiments we need to do better than just guessing
the right projector. As I will suggest, we will generally
need to model our lab equipment [1–3] in some dynamical
detail.

Clearly, we must ask more of our explanations than
just accurate predictions. In fact, for the purposes of
this paper, nothing hinges on issues of accuracy or preci-
sion. For securing evidential support, increased accuracy
is only helpful up to within the experiment’s error bars.
While it is true that a known quantum phenomena being
experimentally reconfirmed at ultra-high precision would
subsequently require a more precise explanation, this is
not relevant here. The experiments in question here are
not ultra-high precision, rather I consider here the rough-
est experiments which clearly demonstrate core quantum
phenomena. When I say “we need QFT” in what follows
it is never for reasons of accuracy or precision.

If not accuracy, what is at issue here? In what fol-
lows my focus will be on methodological issues (namely
explanatory gaps and hand-waving) as well as feasibility
issues. A good evidential-support-securing explanation
can withstand a thorough conceptual audit: What justi-
fies this approximation? How does the measurement ap-
paratus work? How does the experiment’s initialization
work? What happens to the signal between it being sent
and received? How does the sending work? How does the
receiving work? One may complain that such questions
can continue endlessly, to which I have two responses.

Firstly, given that we are only seeking to explain a given
experiment to within its error bars, it’s not clear such
questions can continue endlessly. And secondly, even if
they could, we ought not demand perfection. Our stan-
dards ought to be high but still contextually reasonable.
Moreover, a good evidential-support-securing explana-

tion must be computationally tractable. Recall that what
is at stake here is the empirical support our theory sup-
posedly gains from certain real-life experiments. We need
to be able to deliver real-life fleshed out explanations for
our theory’s predictions for these experiments in order to
be able to claim them as evidential support. (Whether or
not computational tractability is required for solving the
extended pragmatic measurement problem (i.e., identify-
ing the theory’s observables) will be discussed in Sec. VI.)
One may ask: Is it necessary that each individual sci-

entist be able to withstand such an stringent audit about
their field’s key experiments? Clearly this is too much to
ask. The biologist may rightfully point you to an or-
ganic chemist when you start asking too many detailed
questions about their measurement processes. Just the
same, one subfield of physics may outsource explana-
tions of its measurement processes to another subfield
of physics. What is important is that we can withstand
such an audit collectively. Similarly regarding providing
a fully fleshed out computation of our theory’s predic-
tions; no individual scientist needs to be able to do this
alone. The situation here is much like proof in mathe-
matics, we do not require mathematicians to individually
give all of the details of their proofs in terms of elemen-
tary logical operations. We do, however, demand that if
we were to press the issue then they would collectively
be able to give us such a long detailed proof.
Before getting into the examples there is one more im-

portant thing to note. In the following examples, what
is at issue is not whether an explanation with QFT is
better or worse than one without. Rather, the question
is whether we need QFT in order to withstand a rigorous
conceptual audit and to meet the explanatory standard
set above for this particular experiment.

B. Example 1: Ultraviolet Catastrophe

One of the first major successes of quantum theory
was resolving the ultraviolet catastrophe. The catastro-
phe was that classical electromagnetism predicted that
thermal bodies ought to emit unbounded amounts of en-
ergy through radiation, especially in the low-wavelength
(i.e., ultraviolet) regime. Of course, in reality this is not
the case. Casual observation of thermal bodies tells us
they radiate energy at only a finite rate.
While Planck himself was not motivated by the ul-

traviolet catastrophe [37], in 1900 he took the first
steps towards its eventual resolution. Namely, he
did so by adding to classical electromagnetism an as-
sumption that electromagnetic radiation can only be
emitted or absorbed in discrete energy packets with



6

∆Eatom = ∆Elight = ℏω where ω is the frequency of the
light in question. Equipped with this assumption, Planck
was able to derive a thermal emission distribution in
close close alignment with all known thermal spectro-
scopic data at both high and low frequencies. Repeat-
ing Planck’s calculation is a central part of most non-
relativistic quantum theory courses.

Is this textbook Planck-inspired resolution of the ultra-
violet catastrophe a good one? Does this modified theory
of electromagnetism get to claim solving the ultraviolet
catastrophe as evidential support? Certainly at the time
this explanation was the best available. If we were to then
infer to the best explanation, we would have likely in-
ferred to this one. However, in contrast with our modern
explanations this Planck-inspired explanation has some
serious explanatory gaps.

One comparative improvement is that the second part
of Planck’s assumption (that ∆Elight = ℏω) is today no
longer viewed as an assumption. To be clear this is still
an assumption in non-relativistic quantum theory, but it
is a derivable result within quantum field theory. Thus,
here quantum field theory provides the best explanation.
This is not because it’s more accurate or fundamental
but because it can derive what the others assume.

However, as discussed above, the question at hand
is not whether we can get a better explanation by us-
ing QFT than we could otherwise. Rather, the ques-
tion is whether we can meet the explanatory standard
set above without modeling some part of the experiment
within QFT. Making use of a general QFT result in a
non-relativistic context does not require us to model any
quantum fields. However, let us next consider the other
two parts of Planck’s assumption.

Firstly, there is the assumption that the energy change
in the atom matches the energy change in the field,
∆Eatom = ∆Elight. The obvious explanation for this
(available to nearly any theory) is simply energy con-
servation ultimately stemming from time-translation in-
variance. However, a better explanation would provide
us a model or mechanism for this energy exchange. But
once again, it should be stressed that the question isn’t
which explanation is best, it’s whether we can meet the
explanatory standard set above without modeling some-
thing with QFT. I will leave the issue open as to whether
mechanism-less conservation arguments meet our stan-
dards.

The final part of Planck’s assumption is that the light-
matter interaction can only exchange energy in discrete
packets. Why? Answering this question satisfactorily
requires us to give some model of the light-matter inter-
action.

At this point some brief discussion is warranted about
the possibility of modeling light within non-relativistic
quantum theory. It is impossible [38]. To elaborate, light
is fundamentally relativistic. It has a mass of zero and
therefore always travels at the speed of light. Moreover,
having zero mass means that every energy scale is sig-
nificantly above the field’s mass-energy scale, mc2 = 0.

Thus, there are only two possibilities for faithfully mod-
eling the dynamics7 of light: 1) if quantum effects are rel-
evant, then within QFT, otherwise 2) classically within
either special or general relativity. There is no conceptu-
ally coherent treatment of the dynamics of light within
non-relativistic quantum theory.
As argued above, to satisfactorily flesh out this Planck-

inspired resolution of the ultraviolet catastrophe, we need
a model of the light-matter interaction. For this inter-
action, do we need to model the light as quantum (and
hence as a quantum field)? Firstly, we know that light
is ultimately quantum and is well-approximated as clas-
sical only in a certain regime. Roughly, we can model
light classically when its quantum fluctuations are small
compared to the field’s overall amplitude. That is (even
more roughly) whenever there are many photons. For
macroscopic objects at relatively high temperatures we
can expect many photons to be emitted thermally. In
such cases we can model their emission and absorption
classically.
Unfortunately, this doesn’t work for the ultravio-

let catastrophe. The ultraviolet catastrophe is not
only about the total emission rate of thermal bodies.
Rather, it is about bringing the predicted amount of
UV-emissions (infinite) in line with the observed amount
(near zero). For any body at any temperature, if we look
deep enough into the UV we will eventually find individ-
ual photons being emitted sporadically. Explaining this
is the key to resolving the ultraviolet catastrophe. These
individual photons were emitted by individual atoms. To
resolve the ultraviolet catastrophe we need to understand
why those individual emission events are so rare. To
properly understand these isolated one-photon-one-atom
emission events requires8 a quantum treatment of the dy-
namics of light and hence quantum field theory.

C. Example 2: Spectrum of Hydrogen

Another major success of quantum theory was explain-
ing the spectrum of Hydrogen. One may have hopes that

7 It is possible to address some of the steady-state properties of
light without relativity. For instance, Snell’s law of refraction.
But how do such steady state situations arise? What interactions
produce or absorb the light? Answering any such dynamical
questions requires relativity.

8 In the period between Planck’s solution to the ultraviolet catas-
trophe and Einstein’s proposal of quantum light to explain the
photoelectric effect, much effort was made to confine the con-
sequences of Planck’s discrete assumption [37]. In particular,
Planck sought to confine this discreteness to just the matter (and
not the light) or alternatively to confine it to only the interaction
between the matter and light. However, over the next decade,
other physicists began to see that the consequences of his as-
sumption could not be so confined. Of course, we now know that
light itself is quantum. Planck-style quantum-matter classical-
light description of the micro-physical light-matter interaction
cannot withstand a modern conceptual audit.



7

this can be explained within non-relativistic quantum
theory. Indeed, calculating the spectrum of Hydrogen is
a standard part of any non-relativistic quantum theory
course. But does this undergraduate calculation alone
explain our experimental observations? Is it enough to
say, “Look, I have calculated the energetic structure of
Hydrogen using my non-relativistic theory. Its energy
gaps line up one-to-one with the readings picked up by
my spectrograph.” Case closed?

Unfortunately, this explanation fails to meet the ex-
planatory standards discussed in Sec. II A. Ultimately,
it suffers from the same kind of error as the sophomore’s
quantum theory. It is not enough to simply match up a
pattern in your theory with the patterns in the experi-
mental data. That is, it is not enough to simply find some
collection of theory objects which give you the right pre-
dictions and guess that this is what is going on in your
experiment.

Let’s begin auditing this explanation. How does the
spectrograph work? Classical optics tells us that spectro-
graphs separate light into its different frequencies. Thus,
the pattern in our spectrograph is really a pattern among
frequencies. Why are we comparing this with a pattern
of energies in the atom? Well using Elight = ℏω we can
turn frequencies into energies. This is a general QFT re-
sult, but that doesn’t mean we have to model the light’s
dynamics using QFT. Fair enough. How did the light get
to the spectrograph? Classical electromagnetism tells us
about the free propagation of light; let’s assume there is
enough light to handle this part classically.

So far so good, but where did the light come from?
The light was emitted by atoms in the way Planck as-
sumed: in discrete packets with ∆Eatom = ∆Elight. Here
we will begin to run into the same issues as in the previ-
ous example. We might accept a mechanism-less energy
conservation argument for the equality, but the discrete-
ness of the emission will require some dynamical model
of the light-matter interaction. While we may ultimately
have a classical amount of light emitted, this was surely
itself built up by the emission of individual photons by
individual atoms. Why do individual atoms emit indi-
vidual photons only at certain frequencies? To properly
understand this requires a quantum treatment of the dy-
namics of light and hence quantum field theory.

D. Example 3: Double Slit Experiment

As the previous two examples have shown, a proper
treatment of the light-matter interaction in a quantum
setting requires quantum field theory. Taking this to
heart, let’s try to get away from the light-matter inter-
action. Another major success of quantum theory was
explaining the double slit experiment. For variety, let’s
consider two versions of this experiment done with either
neutrons or electrons.

One may have hopes that this can be explained within
non-relativistic quantum theory. Indeed, calculating the

double slit interference pattern is a standard part of any
non-relativistic quantum theory course. But does this
undergraduate calculation alone explain our experimen-
tal observations? Is it enough to say: “Look, I have
calculated the neutron/electron wavefunction just before
they hit the screen using my non-relativistic theory. Its
squared amplitude lines up one-to-one with the readings
picked up by my detectors.” Case closed?
For much the same reasons as in the previous example,

this explanation fails to meet the explanatory standards
discussed in Sec. II A. The error here is of the same kind
as in the sophomore’s quantum theory. Mere pattern
matching between theory and experiment is not a good
enough explanation. It is highly intuitive that a posi-
tion measurement happens when the electrons/neutrons
hit the final screen, and moreover for most practical pur-
poses this is in fact what happens effectively. However,
as discussed above, we need to do more than simply find
some collection of theory objects which give us the right
predictions and then guess that this is what is going on
in our experiment.
Let’s begin auditing this explanation, first considering

the case with neutrons. For the concrete real-life exper-
iment in question, how was the neutron beam created?
In practice, neutron beams are created by fusing isotopes
of hydrogen. We need quantum field theory to properly
model fusion. In fairness, one might dismiss this issue9

claiming we ought to have lower standards for explaining
initializations than measurement processes. Fair enough,
but what about the measurement of neutrons?
We can also ask: for the concrete real-life experiment

in question, how were the neutrons detected? Neutrons
do not interact electromagnetically and are too light to
be detected gravitationally. It turns out that in practice,
neutrons are detected via nuclear interactions, e.g. beta
decay. We need quantum field theory to properly model
nuclear interactions. Thus, it appears that to satisfacto-
rily explain any neutron double slit experiment we need
to model at least part of it using QFT.
Let’s next audit this explanation for the case with elec-

trons. For the concrete real-life experiment in question,
how was the electron beam created? In practice, there
are many ways of creating electron beams. Let us con-
sider two of them: shining a high-intensity laser on metal
and cathode ray tubes. Modeling the creation of an elec-
tron beam via laser is going to require some description

9 Indeed, there is an intuitive sense in which initialization and mea-
surement measurement processes are different. If our measure-
ment procedure somehow unavoidably involves QFT phenomena,
one might think “Fair enough, we have to model that with QFT”.
However, if the initialization of our experiment involves thermal
sunlight, do we really need to trace this back to a QFT-model
of fusion in the sun? Of course, we can always ask for the ini-
tial conditions of our initial conditions. In practice we have to
stop somewhere, hopefully in a principled way. Such considera-
tions need to be built into our high but contextually reasonable
standards for explanation. Sec. IV discusses this point further.



8

of the quantum light-matter interaction. As discussed
above, this requires quantum field theory. However, the
other option is more hopeful. To produce an electron
beam via a cathode ray tube: a metal coil is heated until
electrons start to jump off of it. Then these free electrons
are accelerated by a classical electric field through a small
aperture. As far as I am aware, this can all be modeled
without QFT without conceptual error or critical loss of
precision.

So far so good. If the electron beam is produced by a
cathode ray tube then we can use non-relativistic quan-
tum models to carry us through the initialization step
and through the double slits right up to the point when
the electrons are detected. In practice there are many
ways of detecting electrons. Let us consider two of them:
via fluorescent screens and via a cascading avalanche in
a semiconductor.

Modeling electron detection via fluorescent screens is
going to require some description of the quantum light-
matter interaction. As discussed above, this requires
quantum field theory. However, the other option is more
hopeful. Fast-moving electrons in a semiconductor are
detectable as follows. The initial fast-moving electrons
knock other electrons out of their valence. These now-
free electrons are moving fast enough to go on to dis-
turb further electrons. This ultimately causes a cascad-
ing avalanche of electrons. This small current could then
be used to activate a transistor and change a bit of mem-
ory in a computer. As far as I am aware, this can all
be modeled without QFT without conceptual error or
critical loss of precision.

Thus, we have found a potential counter example to my
claim. In a double slit experiment with a certain kind
of initialization and a certain kind of detection mecha-
nism, we can conceivably predict the result of this exper-
iment in a satisfactory way without modeling any quan-
tum fields. I am not sure whether or not anyone has done
this particular experiment, but it’s conceivable that they
could. Does this doom the central claim of this section?
I think not.

In two ways this is rather a case of “the exception that
proves the rule”. Firstly, the existence of an exception
proves that the rule doesn’t automatically cover every-
thing by some trick of mathematics or logic. The real
possibility of exceptions makes each time the rule does
apply a substantive mark in its favor. Secondly, looking
for an exception has led us to such an odd gerrymandered
counterexample (i.e., an incredibly specific combination
initialization, evolution, and detection) that it all but
proves the rule for normal cases.

As these examples have shown, upon closer examina-
tion, explanation of a great many of quantum theory’s ex-
perimental successes requires us to model them (at least
partly) using quantum field theory. It is true that often
a key experimentally relevant calculation can be done in
terms of non-relativistic quantum theory. However, upon
modeling the initialization and (more importantly) the

measurement steps, we very often find the need for quan-
tum field theory. In particular, modeling the quantum
aspects of the light-matter interaction requires quantum
field theory. Moreover, modeling any detection mecha-
nism which involves nuclear interaction (fusion, fission,
decay, etc.) will require quantum field theory. With all
these measurement procedures removed from our tool-
box, not much is left.
While it’s conceivable some of the core quantum phe-

nomena could potentially be demonstrated from this lim-
ited toolbox, it’s not clear anyone has done this. We are
hear faced with a choice: 1) one could try to extend
this limited non-QFT experimental toolbox as much as
possible and then try to recreate as many core quantum
phenomena as one can, or 2) one could try to regain a
license to use the full toolbox by solving the Pragmatic
QFT Measurement Problem.

III. WHAT BLOCKS THEIR WAY HOME

Given the conclusion of the last section (that the route
home for most of quantum theory’s experimental spoils
runs at least momentarily through quantum field theory)
our next question becomes: Why is it so hard to properly
model measurements involving quantum fields, at least
currently?
The main pitfall which people fall into when model-

ing measurements in QFT is assuming (often implicitly)
that the projective measurement theory we had for non-
relativistic quantum theory can still be applied in QFT.
It cannot in general. Luckily, this pitfall is not impos-
sible to avoid, however doing so requires one to model
their experiment’s measurement process in some dynam-
ical detail. This section will focus on this pitfall itself,
with possible ways around it (for instance, in particle
collider experiments, e.g., the LHC) being discussed fur-
ther in Sec. VI. The question now is why can’t we do
projective measurements in QFT?
The stock answer to this question in the literature [7–

23] is as follows. There are certain non-trivial mathemat-
ical differences between QFT and non-relativistic quan-
tum theory which disallow us from directly transplant-
ing our non-relativistic measurement theory into QFT.
The first major difference is that we now have field theo-
retic degrees of freedom. Secondly, we now have a locally
Lorentzian spacetime background whose causal structure
we must respect. Thirdly, QFT has a very different lo-
cal algebraic structure than non-relativistic quantum the-
ory (now a Type III rather Type I von Neumann alge-
bra, see [39, 40] although the technicalities are not rele-
vant here). Attempting to transplant our old measure-
ment theory into QFT directly leads us to make math-
ematical blunders which either violate the central ‘com-
mandments’ of relativity (covariance, causality, and lo-
cality) [14, 18–23] or otherwise disrespect the QFT’s local
algebraic structure. For these reasons, it has been argued
we need a new (or at least refined) measurement theory
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for quantum field theory, see for instance [7, 8, 11].

I agree with all of the above and will overview some
of these technical issues in this section. However, lay-
ing the blame on these technical issues belies two deeper
methodological issues. Firstly, even when one avoids all
such mathematical blunders, we end up having the same
issues that plague the sophomore’s quantum theory in
the introduction: a failure to give concrete dynamical
models of our measurement processes, opting instead for
simply guessing the right projector. Intuitively guessing
at projectors is wrong in a non-relativistic context and it
is wrong in QFT.

Secondly in trying to understand how to model mea-
surement in QFT, our starting point shouldn’t be the
projective measurement theory we found in the non-
relativistic case. In Sec. IV, I will tell a non-relativistic
story beginning with measurement chains and Heisenberg
cuts and ending with decoherence theory and projective
measurements. In QFT we ought not assume this story
ends the same way. Rather, we ought to start from the
beginning and see what changes.

To demonstrate the above-discussed technical issues
and to show how navigating around them does not solve
the root methodological issues, I would like to consider
a dialogue between the following two characters: Al-
ice and Bob. Alice is a brilliant mathematical-physicist
with deep expertise in QFT. Bob, on the other hand,
does not know much of anything about QFT. Bob is an
experimental-physicist with an interesting new quantum
experiment which he wants to explain. Bob has been
convinced (perhaps by skimming Sec. II) that some part
of his experiment needs to be explained using quantum
field theory. Luckily, Bob has a good working relation-
ship with Alice.

In what follows I will sketch a long conversation be-
tween Alice and Bob. We hope that with Alice’s math-
ematical expertise and with Bob’s familiarity with his
experiment, they will together be able to come to a sat-
isfying explanation of how Bob’s experiment works. To
tip things as much in their favor as possible, let’s assume
that Alice will be able to prove/disprove any theorem and
do any calculation which Bob requests. The only vice we
will assume that either of them has is Bob’s complete
unwillingness to give a concrete model of his measure-
ment device, opting instead for simply guessing the right
projector. If Alice and Bob cannot satisfactorily explain
his experiment in these extremely favorable conditions,
we can place the blame squarely on Bob’s methodological
vice.

Of course, we can see from the outset that they will
not be able to satisfactorily explain Bob’s experiment.
Bob’s vice is exactly what causes pragmatic worries for
the sophomore’s quantum theory and it will cause the
same issues here too. The purpose of this dialogue is to
review the technical issues Bob will face and show that
even once he overcomes them his deeper methodological
issue remains.

For concreteness, specific details will be given about

Rsmall

Rbig

Figure 1. A spacetime diagram of a late stage in Bob’s ex-
periment. Bob’s lab equipment is localized in region Rbig and
appears to Bob’s ignorant-of-QFT perspective to be counting
the number of electrons in some spacetime region Rsmall.

Bob’s experiment and Alice and Bob’s conversation.
However, I stress that these are not instrumental to their
failure to satisfactorily explain Bob’s experiment.

A. Alice and Bob’s Dialogue

Bob begins by explaining the relevant part of his ex-
periment to Alice. Towards the end of Bob’s experiment
there is a piece of lab equipment localized in spacetime
region Rbig which from Bob’s ignorant-of-QFT perspec-
tive appears to count the number of electrons in some
spacetime region Rsmall. See Fig. 1. These electrons are
moving fast enough that Bob thinks he needs to model
them with QFT (but adamantly not his measurement
procedure itself).
Bob’s first thought is that his lab equipment in Rbig

tells him something like: “There are exactly three par-
ticles in Rsmall at locations x1(t), x2(t), and x3(t)” and
that this exactly determines what is going on in Rsmall.
Bob asks Alice if there is any projective operator in QFT
which fits this description, hoping that if so, maybe his
measurement device does that.
Alice says no, for many reasons that sort of thing is

not possible in QFT. The first issue that comes to Alice’s
mind is that this violates the algebraic structure of QFT.
In particular it is a theorem [18] for Type III von Neu-
mann algebras (the type relevant for QFT) that all local
projectors are of infinite rank. Since all human-doable
measurements are local (e.g., my experiment takes place
in this room for an hour) such measurement must be of
infinite rank.
As a quick refresher on what the rank of a measurement

is: Suppose I measure the angular momentum of an atom
and find that the quantum number ℓ = 1. To update
the state post-measurement I should apply the rank-3
projector:

P̂ℓ=1 = |1, 1⟩ ⟨1, 1|+ |1, 0⟩ ⟨1, 0|+ |1,−1⟩ ⟨1,−1| (1)

where |ℓ,m⟩ are the atom’s angular momentum states.
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This measurement is rank-3 because there are three per-
fectly distinguishable (i.e., orthogonal) possibilities con-
sistent with the outcome ℓ = 1, namelym = 1, 0, and −1.
Contrast this with a measurement of whether a quantum
harmonic oscillator is in an “even” or “odd” energy state.
This is an infinite-rank measurement since, in either out-
come, there are still an infinite number of distinguishable
possibilities left after the measurement.

Alice’s theorem thus tells us that in QFT all local pro-
jective measurements must leave not only multiple op-
tions open, but an infinite number. As such, no local
projective measurement can “exactly determine what is
going on in Rsmall” as Bob has requested. Bob takes this
lesson to heart. However, per his methodological vice,
Bob really doesn’t want to provide a model of his mea-
surement device. Rather Bob opts to look for a loophole.

Bob comes to Alice the next day and asks her if there
is any projective operator in QFT which could tell us
“There are three particles in Rsmall (wherever they may
be)” thinking this would leave an infinite number of
options open. Unfortunately, Alice says that this still
doesn’t work citing a theorem that there are no well-
defined local number operators, N̂(Rsmall), in QFT [18].

To give Bob some intuition she tells him that roughly
this is because N̂(Rsmall) would count +1 particles for
all of the particle-antiparticle pair production events in
Rsmall and would consequently diverge terribly. Bob
takes this lesson to heart. However, per his methodolog-
ical vice, Bob really doesn’t want to provide a model of
his measurement device. Rather, as before, Bob opts to
look for yet another loophole.

Bob comes back a week later and says to Alice, “Maybe
we can fix the divergence if we count particles and an-
tiparticles with different signs. Then pair production
events will count as +0 and therefore won’t cause a di-
vergence. Maybe when I said ‘There are three particles
in region Rsmall’ if I was being more careful I should have
said ‘There are exactly three excess un-paired particles
in R”’. Alice says “Yes Bob that’s very clever and it
does fix the divergence issue... However, when you try to
define a (signed) local number operator something goes
wrong with the commutators which leads to faster-than-
light signaling [18].”

Alice and Bob’s conversation continues on like this for
a long time. Let’s go ahead and skip to the end.

B. Limit of Alice and Bob’s Dialogue

What is the limit of Alice and Bob’s dialogue? Ulti-
mately, Bob is looking for a local operation defined on
the spacetime region Rbig which fits the description of
the behavior he sees in his lab. Specifically he is look-
ing for a local projective operator. As their conversation
continues, Bob will learn a lot about QFT and he will
make increasingly careful descriptions of what he is look-
ing for. (Perhaps, ultimately he will be forced to stop
talking in terms of localized particles, but this is besides

O1

O2

O3

Figure 2. The impossible measurement scenario considered in
Sorkin’s [14]. Notice that regions O1 and O3 are space-like
separated from one another. There is a mathematically well-
defined local projection operation in the algebra associated
with O2 such that enacting this projector allows for signaling
from O1 to O3. Thus not all mathematically well-defined local
operations are physically allowed.

the point.) This conversation seems to have been very
productive and clarifying for Bob.
Ultimately, what Alice is doing is telling Bob what lo-

cal operations are and are not well-defined in QFT consis-
tent with its causal and algebraic structure. A quick aside
about the possibility of causality violations. Sorkin [14]
was the first to notice that if one naively does projec-
tive operations in QFT then faster-than-light signaling
is possible. See Fig. 2. Roughly, there are some math-
ematically well-defined local projection operations in re-
gion O2 which will allow for signaling from region O1 to
region O3. Thus projective operators in QFT must be
physically as well as mathematically permissible.
Suppose Alice understands all of these potential

causality issues. The best that she could possibly do
in this conversation is to provide Bob with a full menu of
which local operations are relativistically safe in QFT, i.e.
consistent with its causal and algebraic structures. Let us
suppose this happens. That is, Alice provides Bob with
the relevant necessary and sufficient conditions. (We do
in fact have these conditions [8, 9] at least for real scalar
QFT in a globally hyperbolic spacetime.)
Notice, however, that Alice cannot yet in good faith

claim that these relativistically-safe local operations
characterize the “observables” of QFT. So far these op-
erations have been identified based on the following prin-
ciple: they don’t allow for faster-than-light signalling.
However, in order to properly identify a theory’s observ-
ables, one must rather give some constructive/dynamical
story about which measurement processes pick out these
observables. One cannot have a physically meaning-
ful characterization of a theory’s “observables” without
examining the dynamics of its measurement processes.
More will be said about this in Sec. VI.
Overall, this conversation seems to have gone very well.

Bob has learned a lot about QFT and Alice has proven a
beautiful interesting theorem outlining the scope of what
local operations are relativistically-safe in QFT. But is
Bob any closer to giving us a satisfying account of what
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quantum field theory predicts for his experiment? What
can Bob do given Alice’s theorem?

Bob wants a relativistically-safe local operation which
lines up well with the observed/intuitive behavior of his
lab equipment. Specifically he is looking for a local pro-
jective operator. He might search for this using Alice’s
theorem. There are two issues with Bob’s methodology.

Firstly, we currently have no reason to believe that
Bob’s search will be successful. Indeed, we have no guar-
antee that any given physical measurement processes can
be accurately modeled using a relativistically-safe projec-
tive operator. Of course, whenever a physical measure-
ment process can be modeled as a projective operator,
it must be one of the relativistically-safe one’s identi-
fied by Alice’s theorem. But what reason do we have to
expect that all physical measurement processes in QFT
can be modeled as projective? We may have good rea-
sons to expect this, but these reasons must be grounded
in detailed dynamical analysis of generic measurement
processes (something Alice has not yet done).

Secondly, suppose that Bob’s measurement process can
in fact be modeled by some relativistically-safe projec-
tion operation. Moreover, suppose that Bob finds a
relativistically-safe projective operator which lines up
well with the observed/intuitive behavior of his lab equip-
ment. Has Bob then explained how QFT predicts his ex-
perimental results? Of course not. As discussed in Sec.
II, one needs to do more than intuitively guess the right
projector. It is not enough to find a pattern among the-
ory objects which matches up with the patterns in your
experimental data. Some further explanation must be
given to meet our explanatory standards.

To review: Yes, there are non-trivial mathematical is-
sues which disallow us from straightforwardly transplant-
ing our usual projective measurement theory into QFT.
However, once these issues are carefully analyzed and we
have identified the relativistically-safe local operations,
we are still no better off. The issues are the same here as
with the sophomore’s quantum theory. We understand
which local operations are conceptually allowed by our
theory (i.e., the relativistically-safe ones) but past this
we are just guessing how these allowed local operations
relate to our concrete real-life experiments.

As I have argued above, ultimately we should not be
trying to directly transplant our projective measurement
theory into QFT in the first place. As I will discuss in
the next section, our non-relativistic measurement theory
has its roots in discussions of measurement chains and
Heisenberg cuts. We ought to instead transplant these
notions of chains and cuts into QFT. We can then see
what measurement theory (if any) we are led to.

IV. MEASUREMENT CHAINS AND
HEISENBERG CUTS

As the previous section has shown, despite the techni-
cal complications of quantum field theory, the core issue

in the Pragmatic QFT Measurement Problem is at heart
the same as it was in the non-relativistic case. As I have
claimed throughout this paper, for non-relativistic quan-
tum theory the pragmatic portion of the quantum mea-
surement problem has been satisfactorily solved in terms
of measurement chains and Heisenberg cuts10. This sec-
tion will review this situation in preparation to transplant
it into QFT.
One ought to here recall the distinction between the

core and extended pragmatic measurement problems dis-
cussed in the introduction. In the core problem we de-
mand a (potentially case-by-case) explanation of how our
theory makes its predictions for certain key experimental
successes. In the extended problem, we demand a uni-
fied account of how our theory makes predictions across
a wide range of experiments. As I will now discuss, for
non-relativistic quantum theory the solution to the core
problem is given in terms of measurement chains and
cuts. Past this, a solution to the extended problem is
given in terms of decoherence and the Born rule: these
underwrite our usual projective measurement theory for
non-relativistic quantum theory. We ought not trans-
plant the end of this story into QFT, but rather ought
to start at the beginning and see what changes.

A. Heisenberg Cuts in Theory

How have measurement chains and Heisenberg cuts
helped us overcome the core pragmatic measurement
problem for non-relativistic quantum theory? First al-
low me to review these concepts.
We can often make sense of our experiments in terms of

a measurement chain. Roughly, a measurement chain is
the sequence of interactions which carries the measured
information from the systems being measured to some
record-keeping device. An abstract example: System A
interacts with system B which then interacts with system
C which then ... which then interacts with system R, for
record-keeping device. More will be said about how one
can choose the start and end of these chains momentarily.
In Appendix A, I generalize measurement chains to fit

experiments which are not so sequential as this one. For
our present purposes, however, restricting ourselves to
the sequential A-then-B-then-C measurement chains will
suffice.

10 Although, as discussed in Sec. II the scope of quantum theory’s
key experimental successes which are analyzable entirely within
non-relativistic quantum theory and classical physics is much
smaller than one might expect [5, 6]. Indeed, a robust account
of our predictions for many of these experiments unavoidably in-
volves modeling quantum fields at some point along the measure-
ment chain. As such, solving the core pragmatic measurement
problem for quantum theory generally will ultimately require an
understanding of how to model measurements involving quantum
fields.
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Figure 3. The measurement chain of a simple atomic exper-
iment. The black lines show two possible types of models:
quantum or classical. The red arrow shows which part of the
experiment we are modeling with which theory. The dashed
blue line shows where we are taking the pragmatic Heisenberg
cut. That is, where we switch from modeling the experiment
in a quantum way to a a classical way.

For a more concrete example, we may be interested in
a certain amplitude associated with an atom in a certain
superposition. Our experiment may proceed as follows:
An atom in a superposition emits a photon which is de-
tected by a photo-multiplier which triggers a small cur-
rent which turns on a transistor which ... which displays
a number on a screen which the experimenter writes in
her notepad.

To be clear, in this paper, the measurement chain
does not refer to the linear sequence of physical sys-
tems/interactions which carry the measured information,
per se. Rather, here, the measurement chain is a formal-
ization of these systems which the experimenter invents
for the purposes of modeling her experiment. There may
be multiple acceptable ways of parsing a given physical
scenario into a formalized measurement chain.

Indeed, given an experiment, it’s not always clear
where we ought to place either end of the measurement
chain. Regarding initialization, we can always ask for the
initial conditions of our initial condition. Regarding the
late stages of measurement, it’s unclear where to stop:
the computer screen, the experimenter, her notepad, etc.
Such considerations need to be built into our high but
contextually reasonable standards for evidential-support-
securing explanations. The results of this paper do not
depend sensitively on how this is done.

The above-discussed concrete example of a measure-
ment chain is laid out horizontally in Fig. 3. It’s im-
portant to note that while in this example, moving hor-
izontally happens to move us into larger, more complex
systems with more degrees of freedom, this is accidental.
Horizontal movement in this diagram indicates only that
we are moving from one system to another sequentially
towards the end of the experiment. One can easily imag-
ine experiments where advancing forward in the experi-
ment temporarily moves the measured information into
a smaller system. (Indeed, such a scenario is displayed
in Fig. 4.) The two horizontal black lines in Fig. 3 repre-
sent two types of model that we could have for each part
of our experiment (here, either classical and quantum).

The red arrows indicate how we are going to model each
part of the experiment.
It’s important to note that the path that the red arrow

takes through this diagram is, in large part, a free choice
of the experimenter. The location of the red arrow does
not mean that this or that system is quantum/classical.
All that this indicates is that, for the purposes of mod-
eling this particular experiment, this particular experi-
menter has chosen to model this system as such.
However, importantly, it is not the case that any part

of an experiment can be successfully modeled using any
theory. In practice, there are always going to be some
restrictions. Sometimes for the sake of accuracy it will
be necessary to model a given system in a quantum way.
Sometimes for computational or technological reasons it
will not be feasible to model a given system in a quantum
way (forcing us to model it classically). Sometimes it
will be conceptually necessary to model a given system
in a quantum way. (Perhaps, sometimes for conceptual
reasons it will be necessary to model a given system in a
classical way.) For these and other reasons, the possible
routes which the red arrows may make through these
diagrams are limited.
With these restrictions in mind, it may occur that

modeling some part of our measurement chain in a quan-
tum way is both conceptually mandatory and technically
infeasible. In this case we simply cannot (yet) explain
this experiment satisfactorily.
Perhaps it’s best to work through an example. Con-

sider the double slit experiment with electrons discussed
in Sec. IID. The measurement chain for this experiment
is shown in Fig. 4. Note that two red arrows are shown.
The bottom red line opts for a quantum model when-
ever possible, whereas the top red line opts for a classical
model wherever possible.
The experiment begins with many lab operations. As

discussed above, there is some freedom in picking where
exactly the measurement chain starts. However, what-
ever one chooses, the preliminary lab operations can be
described classically. Indeed, it is infeasible to model
these lab operations with quantum theory. Recall that
our purpose here is to provide actual fully-modeled ex-
planations of real-life experiments. Thus both of the red
arrows in Fig. 4 must start on the top line.
These lab operations set up a current which travels

through a filament in our cathode ray tube. This heats
the filament which begins to thermally emit electrons.
These electrons are then grabbed by an electric field and
accelerated through a small aperture. As far as I know,
all of these steps can be modeled classically without con-
ceptual error or critical loss of accuracy. Hence the up-
per red arrow in Fig. 4 stays on the top row. As far as
I know, all of these steps can be feasibly modeled quan-
tumly. Hence the bottom red arrow in Fig. 4 jumps to
the bottom row.
The next part of the experiment (the motion of these

electrons through the double slit apparatus) must be
modeled with quantum theory. There are both concep-
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Figure 4. The measurement chain of one of the electron double slit experiments discussed in Sec. IID. The black lines show two
possible types of models: quantum or classical. Each of the red arrows shows which parts of the experiment we are modeling
with which theory. The bottom red line opts for a quantum model whenever possible, whereas the top red line opts for a
classical model wherever possible. The dashed blue line shows where these two approaches to modeling this experiment place
their respective pragmatic Heisenberg cuts.

tual issues and accuracy issues with modeling this part
classically. Hence both of the red arrows must be on
the bottom row here. Note that there is nothing per se
quantum about electrons moving through an aperture.
Whether we can ignore quantum effects present at this
point in the experiment depends sensitively on what’s
coming later.

When the electrons reach the final screen they enter
into a semiconductor. There they are detected by causing
an cascading avalanche of electric discharge as discussed
in Sec. IID. These electrons jumping over the semicon-
ductor’s band gap requires a quantummodel. Hence both
red arrows must be on the bottom row here.

However, once enough electrons are moving we can de-
scribe them collectively as a small (but classical) current.
This current activates a transistor. Some (but not all)
transistors make use of quantum effects, but let’s assume
this one doesn’t. As far as I know, all of these steps can
be modeled classically without conceptual error or criti-
cal loss of accuracy. Hence the upper red arrow in Fig. 4
moves to the top row. As far as I know, all of these steps
can feasibly be modeled quantumly. Hence the bottom
red arrow in Fig. 4 moves along the bottom row.

The sequence of events which follows the activation of
this transistor can all be described classically. Indeed
just as at the start of the experiment, it is infeasible to
model the end of an experiment quantumly. As discussed
above, there is some freedom in picking where exactly the
measurement chain ends. However, whatever one chooses
this part of the experiment can and must be described
classically. Computer screens and humans and notepads
are simply too large and complicated to model in a quan-
tum way (at least for now and possibly forever).

As this example hopefully makes clear, whenever we
have a measurement chain, part of which requires a quan-
tum model, we will have to at some point after this switch
from modeling the measurement chain quantumly to non-
quantumly (i.e., classically). This claim is formalized and
proved in Appendix A. In connection with the histori-

cal term11, let us call wherever we happen to make this
switch the (pragmatic) Heisenberg cut. As this is the only
type of Heisenberg cut considered in this paper, I may
sometimes drop the parenthetical.

This example should hopefully also make clear that
there is nothing fundamental about the placement of the
pragmatic Heisenberg cut. Indeed, one can believe the
world to be quantum through-and-through and still make
use of this cut for modeling purposes. Past the cut, we
are no longer modeling the measurement apparatus us-
ing quantum theory; This is very different from the mea-
surement apparatus no longer being quantum past the
pragmatic Heisenberg cut.

At this point one may wonder: if the application of a
pragmatic Heisenberg cut is a matter of non-fundamental
pragmatic concern only, then do we really need it to make
sense of the quantum measurement problem? One may
ask: If we believe that the world is quantum through-and-
through, then why would it be necessary to connect our
quantum model of reality with a (known-to-be-incorrect)
classical model of reality in order to model measurements
within it? Can’t we have a quantum-native understand-
ing of quantum measurements?

Firstly, this conflates the realist and pragmatic worries
about quantum measurements which I have taken care to
distinguish: i.e., modeling versus understanding. If one
wants to make such all-quantum-all-the-time demands on
the realist side of the debate, you are more than welcome.
However, as the above discussion has hopefully shown,
this attitude is not tenable in the pragmatic side. The
goal here is an actual tractable connect-the-dots model-
to-model account of real-life quantum experiments. This
is necessary in order to claim them as evidential support
for quantum theory. My claim is that (at least currently

11 I make no claim that the way that I am using the term “Heisen-
berg cut” here has any connection with Heisenberg’s understand-
ing of quantum theory. Rather, I employ the term here as it is
used colloquially in modern discussions. No exegesis is attempted
or implied.
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and likely forever) a pragmatic Heisenberg cut is neces-
sary for this.

It is perhaps possible (although I strongly doubt it)
that we will one day be able to model the late parts of
our experiments (including the experimenter) as quan-
tum systems. However, even this possibility would not
necessarily avoid the need for a Heisenberg cut. Sup-
pose that somehow I can model an experiment up to
and including the experimenter in a quantum way. It
could still be the case that I can only parse the result of
that experiment by means of taking some sort of classi-
cal approximation (i.e., taking a Heisenberg cut) on the
experimenter right at the end [41]. We cannot have a
quantum-native understanding of measurement without
a quantum-native understanding of the observer. Thus,
in the absence of both tremendous computing capabil-
ities and a quantum-native understanding of observers,
taking a pragmatic Heisenberg cut is necessary for any
satisfactory explanation of any quantum experiment.

In fact, not only is it necessary to take a pragmatic
Heisenberg at some point, we ought to do so explicitly
and in a carefully formalized way. Indeed, a mishandling
of the pragmatic Heisenberg cut is one of the main dan-
gers in trying to explain quantum experiments. It is at
the interface between our quantum and classical mod-
els that we need the most care both mathematically and
conceptually. Handling this cut somewhere explicitly in
the terms of either the dynamics or kinematics of our
models is far superior to the sophomore’s strategy of in-
tuitively guessing the right projector. Indeed, as I will
soon discuss, the success of our hand-waving about pro-
jective measurements is largely underwritten in terms of
measurement chains and Heisenberg cuts in combination
with decoherence theory and the Born rule. However,
before discussing this, it is worthwhile to provide a tax-
onomy of all the ways one might take a Heisenberg cut.

B. Taxonomy of Heisenberg Cuts

As discussed above, a pragmatic Heisenberg cut oc-
curs wherever along the measurement chain we switch
from modeling our experiment quantumly to classically.
This section lays out three interdependent dichotomies
for classifying Heisenberg cuts: forward vs reverse, verti-
cal vs diagonal, and with or without back-reaction. These
distinctions will be formalized in Appendix A.

The forward/reverse distinction just simply indicates
which direction we are crossing the cut: here this means
whether we are moving from a quantum model to a clas-
sical model or vice versa. Fig. 3 does not have a reverse
Heisenberg cut, whereas Fig. 4 does. When no qualifier is
applied, reference to any cut should be assumed to mean
a forward cut, rather than a reverse one.

The vertical/diagonal distinction is as follows. Given
that a measurement chain is ultimately just a collection
of interactions which are ordered in some way, there are
only two ways to cross the cut: in between interactions,

Quantum 
Model

Classical 
Model

Diagonal
Heisenberg

Cut

Vertical
Heisenberg

Cut

System A System B System X System Y System Z

Figure 5. The two possible ways of taking a Heisenberg cut:
diagonally (during an interaction) and vertically (in between
interactions). On the left we have an example of a diagonal
cut: system A is modeled quantumly and system B classically.
Their interaction couples two systems modeled in different
theories. On the right, we have an example of a vertical cut:
The interaction between system X and Y is modeled within
quantum theory, whereas the interaction between Y and Z is
modeled classically. In between these interactions we apply
some classical approximation scheme to Y while it is isolated.

or during an interaction. Let us call these vertical and
diagonal respectively (for reasons which will become clear
soon, see Fig. 5).
Regarding vertical cuts: consider an interaction be-

tween three systems: system X (which we model quan-
tumly) and system Y (which we can model either quan-
tumly or classically) and system Z (which we model clas-
sically). We model the interaction between X and Y
quantumly and the interaction between Y and Z clas-
sically. In between these two interactions (after X and
before Z) we take some classical approximation scheme
on system Y in isolation. See the right side of Fig. 5 and
notice that the red arrow moves vertically at system Y,
hence the name “vertical cut”.
Examples of a vertical Heisenberg cuts of varying qual-

ity from quantum to classical are:

1) taking some sufficiently decohered quantum state,
and using the Born rule to map it onto a probability
distribution,

2) taking a quantum state whose Wigner function [42]
(i.e., the state’s quasi-probability distribution in
phase space) happens to be positive and reinter-
preting it as a genuine probability distribution,

3) taking a minimum uncertainty quantum state and
mapping onto the definite classical state with
matching expectation values.

among many other possibilities [43]. Each of these may
or may not be justified to differing degrees in different
contexts.
The above are all examples of vertical forward cuts. We

can also, of course, have vertical reverse cuts. That is,
we may have principled ways of mapping classical states
onto quantum states. For example, the reverse of each of
the above discussed examples are sometimes justified.
Regarding diagonal Heisenberg cuts: Consider an in-

teraction between system A (which we model quantumly)
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and system B (which we model classically). See the left
side of Fig. 5 and notice that the red arrow moves diago-
nally between systems A and B, hence the name “diago-
nal cut”. The interaction between systems A and B is not
entirely within quantum theory nor is it entirely within
classical theory; It has a foot in both camps. That is, a di-
agonal cut involves a dynamical interaction between sys-
tems modeled in fundamentally different theories: here
quantum and classical. This is in strong contrast with the
vertical Heisenberg cuts discussed above which applied to
only one system not two, and describe it in isolation not
in interaction. There are reasons to favor vertical cuts
over diagonal ones ceteris paribus, however as these are
fairly general I will delay discussion of them to Sec. V.
Before that, let’s see some examples of diagonal Heisen-
berg cuts.

Albeit artificial, consider the following pair of coupled
differential equations:

∂t |ψA(t)⟩ =
(

p̂2A
2mA

+ UA(x̂A) + V (x̂A − yB(t))

)
|ψA(t)⟩

mB ∂
2
t yB = −∂yBUB(yB)− ∂yBV (yB − ⟨x̂A(t)⟩) (2)

for some potential functions UA, UB and V . Here we
have a wavefunction, |ψA(t)⟩, and a classical position,
yB(t), each evolving under their free dynamics, UA and
UB, plus an interaction term, V . The dynamics of |ψA(t)⟩
depends on yB(t) while simultaneously the dynamics of
yB(t) depends on |ψA(t)⟩ through its expectation value,
⟨x̂A(t)⟩ = ⟨ψA(t)| x̂A |ψA(t)⟩.
The above is an example of a diagonal forward cut.

We can also, of course, have diagonal reverse cuts. For
example, by reversing the indices A↔ B.

In either a forward or reverse diagonal cut, a help-
ful approximation that one can make is to ignore back-
reactions. In the above example this corresponds to re-
moving the V term from system A’s dynamical equation
but not B’s. We can only remove V from A’s dynam-
ics because in order for the measurement information to
progress along the measurement chain, system B needs
to be responsive to system A.

We can, of course, remove V from B’s dynamics if we
reverse the roles of A and B (i.e., if we take A to be
after B in the measurement chain). Here we actually
find something which is very commonly done in prac-
tice. Consider a quantum system which interacts with
a classical electromagnetic field through a classical po-
tential. The electromagnetic field may even evolve dur-
ing this interaction under its own free dynamics, thereby
changing the classical potential, and driving the quan-
tum system. Note however, that in this example, there
is no back-reaction on the classical electromagnetic field
by the quantum system.

C. Heisenberg Cuts in Practice

Having reviewed the notion of measurement chains and
Heisenberg cuts and classified them into various types, we

are now ready to discuss how they work in practice. How
do they help us overcome the core pragmatic measure-
ment problem for non-relativistic quantum theory? How
do they, as I claim, overcome the extended pragmatic
measurement problem which combined with decoherence
theory and the Born rule? How do they underwrite our
usual projective measurement theory?

We have so far established that it is necessary to take a
pragmatic Heisenberg cut at some point in any satisfac-
tory explanation of any quantum experiment. Moreover,
as we have seen, there will in general be many ways and
points along the chain where we might take this prag-
matic Heisenberg cut. Given the mathematical and con-
ceptual dangers inherent in crossing the Heisenberg di-
vide, it is important that we take our Heisenberg cut
explicitly and in a carefully formalized way.

Analyzing a given quantum experiment in terms of
measurement chains and various potential Heisenberg
cuts gives us a road map to guide us in modeling its
specific measurement processes. In particular, the road
maps given to us by these notions have the dangerous
areas ahead clearly marked out, as well as multiple pos-
sible routes to navigate them. Given our task, this is an
indispensable tool.

By using these road maps we can go about giving sat-
isfactory predictions for quantum experiments and gain-
ing evidential support from them, at least on a case-by-
case basis. This goes a long way towards solving the
core pragmatic measurement problem. In essence, we
now have a measurement framework for non-relativistic
quantum theory. This is a much better position to be in
than relying on the sophomore’s strategy of merely in-
tuitively guessing the right projector. We now have the
tools to say, on a case-by-case basis, what it is that non-
relativistic quantum theory predicts for any experiment
within its remit (although this remit is much smaller than
one might think, see Sec. II).

But what about the extended pragmatic measurement
problem? These case-by-case road maps for model-
ing non-relativistic quantum experiments cannot help us
here; they give us a case-by-case measurement frame-
work, not a unified measurement theory. It would be
nice if there was something we could say about quantum
measurement processes generally (although, a priori we
have no reason to expect this is possible).

We are tremendously lucky that such a thing is, in fact,
possible for non-relativistic quantum theory. If our goal
is to provide a wide-scoping analysis of non-relativistic
quantum measurement processes, then we need to find
one route across the Heisenberg divide which is available
near-universal across all experiments. In terms of wide
applicability, one way of crossing the Heisenberg divide
stands out: namely, by using decoherence theory and the
Born rule.

It should be stressed that within my analysis the only
thing special about crossing the pragmatic Heisenberg di-
vide in this decoherence way is its general applicability.
As suggested above, we may be able to explain quantum
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measurements on a case-by-case basis without it. How-
ever, it is decoherence theory’s general consideration of
measurement processes which allows it uniquely to un-
derwrite a unified wide-scoping measurement theory. If
one could find another equally general way of crossing
the Heisenberg divide, one can equally well use that to
underwrite a different complementary measurement the-
ory. This is an interesting possibility which may shed
new light on justifications for the Born rule, but this is
outside of the scope of this paper.

With that said, let us restrict our attention to verti-
cal Heisenberg cuts which are facilitated by decoherence
theory and the Born rule. Where along the measurement
chain are we justified in taking this specific kind of prag-
matic Heisenberg cut? Luckily, to this we have a com-
pletely general answer: one can take such a pragmatic
Heisenberg cut once enough decoherence has occurred
that the possibility of spontaneous wide-scale recoherence
(although not mathematically impossible) is practically
inconceivable. That is, for modeling purposes, it does
not matter where we put such a pragmatic Heisenberg
cut so long as it is at a scale where quantum effects are
(and will forever remain) irrelevant in practice.

The above “and will forever remain” caveat is a crit-
ically important one. It reinforces the warning that the
pragmatic Heisenberg cut should not be thought of as
being fundamental. Indeed, the validity of such a Heisen-
berg cut approximation will always depend on the con-
text surrounding the measurement procedure under con-
sideration. In particular, one cannot simply decide in the
middle of modeling a measurement to take such a Heisen-
berg cut without knowing beforehand what the rest of the
measurement procedure will be like.

No matter how small quantum coherence effects appear
to be in the middle of an experiment, there is always a
possibility that the coherence effects are brought back to
their full force12. Moreover, even if within one experi-
ment the quantum coherence effects never again become
relevant, they may once again become relevant in other
future measurements involving correlated systems. The
consideration of measurements made by observers who
themselves live inside of a giant quantum computer capa-
ble of wide-scale (observers included) recoherence, leads
to interesting Wigner’s friend-like puzzles.

With these caveats noted, in general once enough de-
coherence has occurred one can take such a pragmatic
Heisenberg cut. The decoherence process naturally picks
out the relevant basis against which we are going to take
our classical approximation. That is, the projectors for
our measurement are picked out by this dynamical pro-
cess. The classical approximation is then facilitated by
the Born rule (i.e., mapping diagonal density matrix ele-
ments to classical probabilities). We have thus arrived at
an answer to the sophomore’s question: In modeling this

12 Such a carefully orchestrated large-scale recoherence is, in fact,
exactly what quantum computers are designed to do.

piece of lab equipment, exactly which projectors am I
supposed to use and exactly when? The relevant projec-
tors are those approximately picked out by decoherence
theory, and the relevant time is any time which is late
enough.
The story about measuring quantum systems doesn’t

end here however. Taking this vertical Heisenberg cut
has just moved the measured information into a now-
classically-modeled system. How do we then model the
measurement of this system? To answer this we can
appeal to our classical measurement theory. Let us as-
sume that we are satisfied with our classical measurement
theory. In this case, the general considerations above
effectively give us a wide-scoping measurement theory
for non-relativistic quantum theory. That is, our non-
relativistic quantum measurement theory is just what-
ever is induced when our classical measurement the-
ory is applied after any late-enough decoherence-based
Heisenberg cut. Working this out mathematically, one
finds that generic measurement processes are associated
with projector-valued measurements (PVMs) or positive-
operator-valued measurements (POVMs).
This is the solution to the extended pragmatic mea-

surement problem given by decoherence theory. In the
next section I will discuss which parts of the above story
can be carried over to QFT. We cannot a priori expect ev-
ery feature of the above discussion to generalize to QFT.
To preview, the ideas which will generalize are the mea-
surement chain and the various kinds of Heisenberg cuts
available to us. As above, these automatically give us a
case-by-case measurement framework for QFT, i.e., a so-
lution to its core pragmatic measurement problem. How-
ever, if we then want a solution to the extended prag-
matic measurement problem for QFT then some more
work must be done.
It is at this point that the QFT story begins to diverge.

All of the later details of the above story (the decoher-
ence process picking out a basis, the Born rule associating
probabilities to elements of the density matrix, the asso-
ciation of measurements with PVMs and POVMs) do not
transfer straightforwardly into QFT. If they did then we
would be able to do generic projective measurements in
QFT. As discussed in Sec. III we cannot.
In order to get a wide-scoping measurement theory for

QFT we would need to find a near-universally applica-
ble way of crossing between QFT-models and non-QFT
models. We might then be able to induce a wide-scoping
measurement theory for QFT.

V. GENERALIZED MEASUREMENT CHAINS
AND CUTS

The above introduced conceptual apparatus of mea-
surement chains and Heisenberg cuts is clearly going to
be useful outside of its original context. Let’s review
some of the key features discussed above but stripping
away any incidental details.
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Firstly, we need an experiment which is analyzable in
terms of a measurement chain. Until now we have as-
sumed our measurement chains are sequential (i.e., Sys-
tem A interacts with system B which then interacts with
system C which then ... which then interacts with sys-
tem R, for record-keeping device). However, clearly not
all experiments are able to be broken down in this way.

In Appendix A I generalize my discussion of measure-
ment chains to include experiments which are not so se-
quential. Some of these generalizations are designed to
better accommodate QFT. Roughly, an experiment is an-
alyzable in terms of a measurement chain exactly when:
1) it can be understood in terms of a finite number of
distinct systems/fields undergoing a finite number of dis-
tinct interactions, 2) at each interaction for every system
there-involved it is being modeled in some theory, and
3) these interactions are related to each other by some
notion of inputs and outputs. For our present purposes,
however, restricting ourselves to the sequential A-then-
B-then-C measurement chains will suffice.

Let’s formalize sequential measurement chains. There
may be many ways to parse such an experiment into a
measurement chain especially at the ends (see Sec. IV).
Whatever choices we end up making, they ought to stand
up to a reasonable level of scrutiny. However, once parsed
we will have the following sort of structure. A (mod-
eling of) a sequential measurement chain is a 5-tuple
⟨S,<, T,Hearly, ,Hlate⟩. S is a finite non-empty set con-
taining labels for the systems (or fields) being modeled
for our experiment. S comes along with some total or-
dering < over S, i.e., A < B < C < ... < R. These
systems interact pairwise between adjacent systems from
start to end. T is a finite non-empty set containing la-
bels for the theories which are being used to model parts
of our experiment. Hearly : S → T and Hlate : S → T
are functions which tell us within which theory s ∈ S is
modeled before and after its period of isolation, i.e., in
its interaction with its predecessor or successor. A more
general formalization of measurement chains is given in
Appendix A.

In the above formalization, a vertical cut happens
at s ∈ S when Hearly(s) ̸= Hlate(s). That is, when
s is modeled in different theories in its two interac-
tions. Note that, between these we must somehow map
its state from one theory to the other. Note that we
could also have a vertical cut right at the end as well if
Hearly(R) ̸= Hlate(R). In this case, our record keeping
device is modeling in one way during its only interaction,
then after this we take some approximation on it before
its final analysis at the end of the experiment.

A diagonal cut occurs between s, t ∈ S when s and t
are adjacent with s < t and Hlate(s) ̸= Hearly(t). That is,
when in their interaction s and t are modeled in different
theories. Diagrammatically, these two types of cuts are
represented just as before, see Fig. 6. These definitions
and diagrams are generalized in Appendix A.

Allow me to now introduce some generalized nomen-
clature. Suppose that somewhere along the measurement

Theory #1

Theory #2

Diagonal
Generalized

Cut

Vertical
Generalized

Cut

System A System B System X System Y System Z

Figure 6. The two possible ways of taking a generalized cut:
diagonally (during an interaction) and vertically (in between
interactions). On the left we have an example of a diagonal
cut: system A is modeled in Theory 1 and system B in Theory
2. Their interaction couples two systems modeled in different
theories. On the right, we have an example of a vertical cut:
The interaction between system X and Y is modeled within
Theory 1, whereas the interaction between Y and Z is modeled
within Theory 2. In between these interactions we apply some
approximation scheme to Y while it is isolated.

chain we switch from modeling using theories in V ⊂ T to
another theory inW ⊂ T with V ∩W = ∅. Let’s call this
a (V,W )-cut. In particular, a vertical (V,W )-cut occurs
at s ∈ S whenever Hearly(s) ∈ V and Hlate(s) ∈ W . By
contrast a diagonal (V,W ) cut this occurs between two
adjacent systems, s and t with s < t when Hlate(s) ∈ V
and Hearly(t) ∈ W . In either case, when W = T − V is
the complement of V under T we can just call a (V, T−V )
cut simply a V cut. Moreover, when either V or W is
a singleton we can just refer to it by its only element.
Finally, we can call a (W,V ) cut a reverse (V,W ) cut.

Applying this terminology to the Heisenberg cut we
find the following. Recall that a Heisenberg cut occurs
whenever we jump from a quantum model to a non-
quantum model (i.e., a classical model). Collecting all
of our quantum theories into a set Q and all of our clas-
sical theories into a set C, the Heisenberg cut is a (Q,C)
cut, that is a quantum-classical cut. Since presumably
C = T −Q we could alternately call the Heisenberg cut
a Q cut, namely a quantum cut.

Under what conditions are generalized cuts (be they di-
agonal or vertical) necessary? As in the Heisenberg case,
when choosing how to model our measurement chain we
may find we are restricted in numerous ways. This could
be for reasons of accuracy, conceptual coherence, techno-
logical feasibility, or many other reasons. We may find
that, once these restrictions have been analyzed, that
modeling some part of our measurement chain in a cer-
tain way is both conceptually mandatory and technically
infeasible. In this case we simply cannot (yet) explain
this experiment satisfactorily. Let us hope this doesn’t
happen.

More often, it may occur that one part of the experi-
ment must be modeled some way and another later part
must be modeled in some other way. In such cases, some-
where in between we need to make some kind of cut.
Concretely, suppose that we are forced by such consid-
erations to have H(s) ∈ V ⊂ T and H(t) ∈W ⊂ T with
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V ∩W = ∅ and s ≤ t. It’s easy to see that at some point
between s and t we need to make a (V,W )-cut (be it ver-
tical or diagonal). This claim is formalized and proved
in Appendix A for non-sequential measurement chains.

Often then, we are forced to take some sort of cut, but
which kind should we choose? What are the relative ben-
efits of diagonal and vertical cuts in general? As I see it,
vertical cuts have two principal advantages over diagonal
cuts, and are therefore preferable ceteris paribus. Firstly,
we often have a clearer prescription about how and when
we are allowed to take vertical cuts than diagonal ones.
It is generally expected in physics that our later theories
reduce to our earlier theories under some approximation
scheme in some relevant regimes. There is a wide litera-
ture on theoretic reduction [43, 44]. Such considerations
give a prescription as to how and when we are allowed to
take vertical cuts.

By contrast, however, it is generally not expected for
our physical theories to tell us how they ought to dynam-
ically couple to each other. As such some extra-theoretic
work will often be needed to bridge the divide in a prin-
cipled way. Significant care will need to be taken not
to wildly violate the principles of either theory as they
dynamically talk to each other.

Secondly, and relatedly, a diagonal cut involves, in a
sense, mixed ontologies and mixed fundamental princi-
ples simultaneously present and interacting. By con-
trast, while a vertical cut makes reference to the ontolo-
gies/principles of both theories, it does so one at a time.
Since our purpose here is only in pragmatics and model-
ing, this issue of mixed ontologies is not damning. How-
ever, we still demand that our models are conceptually
coherent which is far from automatic for diagonal cuts.

As discussed in Sec. IV, in the Heisenberg case, mea-
surement chains and cuts give us a case-by-case mea-
surement framework for non-relativistic quantum theory
thereby solving its core pragmatic measurement problem.
Indeed, we there saw that making some sort of cut (i.e.,
diagonal or vertical) was necessary and moreover ought
to be taken intentionally and explicitly.

The same is true for the core pragmatic measurement
problem for any theory T0. Let M be the set of all theo-
ries within which we know how to model measurements
well and suppose T0 /∈ M . In any experiment involving
T0, at some point along the measurement chain we will
need to make a cut into M . (This claim is formalized
and proved in Appendix A.) Analyzing this experiment
in terms of measurement chains and various potential
generalized cuts gives us a road map to guide us in mod-
eling its specific measurement process. In particular, as
before, these road maps have the dangerous areas ahead
clearly marked out, as well as multiple possible routes
to navigate them. Hence for any theory we have a case-
by-case measurement framework, thereby solving its core
pragmatic measurement problem.

However, as in the Heisenberg case, the measurement
framework alone does not solve the extended pragmatic
measurement problem. For this, we would need to iden-

tify some near-universally available way of making the
needed generalized cuts. Only then could we achieve a
unified wide-scoping measurement theory. While a priori
we have no reason to expect this is possible, such a mea-
surement theory would give us a physically meaningful
way to identify the theory’s observables.
We are now ready to apply these generalized notions

to the pragmatic QFT measurement problem.

A. The QFT-cut and its cousins

Given that we cannot feasibly model the late stages
of any experiment using QFT, if we need to model some
part of an experiment using QFT then at some later point
we need to take some kind of cut away from QFT. Specif-
ically, at some point in our modeling of this experiment
we will need to switch from modeling our experiment us-
ing QFT, to not using QFT. According to the notation
established above, this is a QFT-cut.
This idea has already been introduced in [15] although

it was there called a relativistic cut. However, this name
is apt to cause confusion because it’s not relativity per se
which we must cut away from. The following discussion
will hopefully clarify this.
A few other related cuts deserve mentioning and nam-

ing at this point. If one feels that the particularly trouble-
some part of QFT is the fact that it describes things as a
field, one might be interested in a field-cut. This is where
we switch from modeling our measurement chain as a
field (e.g., a relativistic quantum field, a non-relativistic
quantum field, or a classical field) to not as a field (e.g., a
qubit, a collection or classical point particles, or a nuclear
spin degree of freedom).
Alternatively, one might feel that the troublesome part

of QFT is the fact that things are relativistic, i.e., that
our models are set in a locally Lorentzian spacetime. In
this case one might be interested in a relativistic cut.
If that name is already taken, we might instead call
this a Lorentz-cut where we switch from modeling our
measurement chain in a locally Lorentzian spacetime to
something else, e.g., a locally Galilean spacetime. For
instance, we might move from relativistic QFT to non-
relativistic QFT.
Finally, one might feel that the troublesome part of

QFT is the fact that its algebraic structure is that of
a Type III rather than a Type I von Neumann alge-
bra [39, 40]. In this case one might be interested in a
Type III algebra-cut where we switch from modeling our
measurement chain with a Type III algebraic structure
to anything else, e.g. a Type I algebraic structure. For
instance, we might move from relativistic QFT to non-
relativistic quantum theory.
One might be interested in all of the above, or many

other subtle variations thereof. However, if we are be-
ginning from a QFT then all of the above are examples
of a QFT-cut (or in the terminology of [15], a relativis-
tic cut). As such, for the rest of this paper I will focus
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Figure 7. Two examples of QFT-cuts showing their possible
relations to Heisenberg cuts. In the top half of the figure we
first take a QFT-cut and then later take a Heisenberg cut. In
the bottom half of the figure we take both cuts simultaneously.

exclusively on QFT-cuts, where we switch from model-
ing using a QFT to using anything else. Of particular
interest, however, is switching from QFT to anything we
know better how to model measurements of (i.e., classi-
cal physics, special relativity, general relativity, or even
non-relativistic quantum theory).

As an example of a QFT-cut, consider the top half of
Fig. 7. At some point in modeling the detection of a
Higgs boson, we may switch from modeling things using
QFT to modeling using non-relativistic quantum theory.
This would be a QFT-cut (note this could be either a
vertical or a diagonal cut). At some point later we may
switch to modeling things classically. This would be a
Heisenberg cut (again this could be either a vertical or
diagonal cut).

It is possible to take both cuts simultaneously, con-
sider the bottom half of Fig. 7. Suppose in the middle of
modeling our Higgs boson experiment that we are mod-
eling some state of light using QFT. We may be able to
make some approximation on this state to then describe
the light as a classical electromagnetic wave propagat-
ing in Minkowski space. This would be a QFT-cut since
we are no longer using QFT to model the light. This
would also be a pragmatic Heisenberg cut since we are
no longer using anything quantum to model the light.
This is not, however, a Lorentz cut. Note that because
this theory switching happens in isolation (not during an
interaction), both of these cuts are vertical.

It is an interesting question under what circumstances
we are allowed to take certain kinds of cuts before or after
other kinds of cuts. Could a Heisenberg cut ever be done
before a QFT-cut? As these terms are defined in this

paper, this is impossible: a Heisenberg cut would take us
from a QFT into any classical theory, i.e., not a QFT.
Hence, beginning from a QFT, all Heisenberg cuts are
QFT-cuts. However, a Heisenberg cut may come either
before or after a field cut for instance. It could also come
before or after a Lorentz cut.
Let’s review our situation: As I discussed in Sec. II,

explaining all but maybe a small corner of quantum the-
ories experimental successes unavoidably involves mod-
eling quantum fields at some point. Moreover, as dis-
cussed in this section, whenever we are explaining an
experiment which involves modeling quantum fields we
need to at some point take a QFT-cut. Cuts, in general,
are dangerous and tricky things both mathematically and
conceptually. Thus, an explicit and carefully formalized
handling of the QFT-cut is necessary for any satisfactory
explanation of almost any quantum experiment. Given
this, it seems extremely important that we have robust,
flexible, widely applicable ways of making QFT-cuts.
To get a better handle on what types of QFT-cuts are

available to us, and what their scopes are, both collec-
tively and individually, I will next review the state of the
art in the physics literature as it applies to QFT-cuts.
As I will discuss, the current front-runner for getting us
a wide-scoping measurement theory [7] for QFT is the
Unruh-DeWitt detector model [15, 23–35].

VI. THE STATE OF THE ART

Hopefully, the above discussion raises a great many
questions for you: Is the need for an explicit and for-
malized QFT-cut recognized in current scientific prac-
tice? Do physicists have good tools for making QFT-
cuts? What are the current possibilities and limitations
for various kinds of QFT-cuts? Diagonal or vertical cuts?
With or without back-reaction? Crossing over into non-
relativistic quantum theory or into classical physics? Are
these tools collectively good enough to broadly cover all
of quantum theory’s QFT-model-needing experimental
successes? Moreover, is any one of these tools of sufficient
generality to allow us to induce a wide-scoping measure-
ment theory for QFT from it? In order to answer these
questions I will need to review the current state of the
art in the physics literature.
Firstly, is this need recognized? Unfortunately not.

For instance, in particle physics it is common to think
in terms of scattering scenarios. Two input-states are
assumed to come in from infinity and then interact in
some unitary way. One can then compute various cross
sections and the amount of amplitude which scatters out
into some solid angle. It is common to end the story here
and say that there is amplitude-squared probability that
a detector covering that solid angle will detect something.
This is not enough, it amounts to simply guessing that
your particle detectors enact a certain intuitive projective
operation. This guess may be effectively correct and give
the right statistics for most pragmatic purposes, but it is
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are the Fewster Verch (FV) framework [10–12], the Unruh-
DeWitt (UDW) detector model [7, 15, 23–35], and various
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not a good explanation of the experiment. More must be
said about the dynamics of the detection process. If we
model this detection process in terms of a measurement
chain, then at some point along this chain we will need
to make a QFT-cut. Moreover, this QFT-cut ought to
be taken intentionally and explicitly.

What about the experiments conducted at the LHC?
Surely, the engineers who design and build particle detec-
tors at the LHC are doing things right, right? I am not
qualified to judge their methods, but I take it on faith
that the engineers have detailed dynamical models of the
detection process. Their accounts will meet the explana-
tory standards set in this paper if: 1) they do not implic-
itly assume that projective measurements are available
in QFT, 2) they make an intentional and explicit QFT-
cut somewhere in their modeling, 3) they do not make
sophomore-like intuitive guesses about which projective
measurements happen in a non-relativistic context.

As far as I am aware very few experimental groups
make use of explicit formalized QFT-cuts in their mod-
eling and only a few theoretical research groups [7, 9–
13, 15–17] are engaged with these topics. What follows
is an non-exhaustive literature review of some of the the-
oretical physics papers which touch on this topic.

Supposing that a theoretical or experimental physicist
was interested in using an explicitly formalized QFT-cut
in their modeling, what tools are currently available to
them? What follows is a catalog of the various well de-
veloped ways of approaching and crossing a QFT-cut in
the physics literature. This catalog will be organized
into three sections: horizontal moves, diagonal QFT-
cuts, and vertical QFT-cuts. See Fig. 8. Following this
I will briefly discuss the scope of experiments that these
tools cover collectively. Additionally, I will briefly dis-
cuss whether any individual tool has the wide-scoping
applicability needed to induce a measurement theory for
QFT.

A. Horizontal Moves

Before discussing how one might make a QFT-cut, al-
low me to first talk about how to approach one horizon-
tally. The general shape of a horizontal move is shown
on the left side of Fig. 8. Essentially, one QFT (QFT#1)
couples to another QFT (QFT#2). Clearly, this is not a
QFT-cut and so no collection of moves of this kind is the
whole story.
However, of course, such moves may still be helpful in

advancing us along the measurement chain until we are
in a better position to make a QFT-cut. There is no issue
with using a horizontal move as part of our measurement
chain. The issue comes when one models an experiment
involving QFT using only moves of this kind while ne-
glecting to mention where exactly they take a QFT-cut.
Or worse such an account might implicitly dismiss the
need for a pragmatic QFT-cut altogether.
Before discussing what possibilities there are for de-

scribing interactions between QFTs, let’s first talk about
what sorts of isolated systems we know how to describe
well with QFT. Neglecting momentarily their interaction,
what types of systems QFT#1 and QFT#2 might go into
the open slots in Fig. 8? (Or QFT#3 and QFT#4 for
that matter?) Firstly, it should be said that we know
well how to describe a wide variety of free systems us-
ing Lagrangian QFT: free scalar fields with or without
mass, free electrons, free neutrinos, free photons, free
Higgs particles, free gravitons (in the linearized gravity
regime), etc. We can even model systems like a free pro-
ton or neutron as a free massive spinor field (assuming, of
course, we ignore their quarky internal structure). Bose-
Einstein condensates and some other condensed matter
systems can also be treated within QFT. We can also
include any small perturbative interaction term between
any of these and calculate their joint evolution within
perturbation theory.
What is much more difficult to do within QFT is to

describe strongly interacting systems, including bound
states such as atoms, or bound quark systems, or atomic
nuclei. In principle, one ought to be able to consider the
electromagnetic field interacting with the electron field
and the proton field (pretend such a thing exists). We
then ought to be able to find bound state solutions to this
strongly interacting QFT which correspond to the various
energy states of a first-quantized Hydrogen atom. How-
ever, these bound states of QED are remarkably difficult
to either simulate or treat analytically. This is difficult
for such systems in isolation, let alone interacting with
an external field.
To summarize: even when we are just moving along the

bottom line of Fig. 8 we have a rather limited mobility
here currently. We have feasibility restrictions in terms
of both what systems we can consider (i.e., QFT#1 and
QFT#2) as well as how they might interact with each
other.
Suppose that within computational feasibility, we have

two QFTs in mind and an interaction between them.
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What mathematical formalisms do we have for model-
ing this interaction? As is typical in physics, one can
begin from either a Lagrangian or from a Hamiltonian
formulation. However, in the case of QFT some opt to
put the theory on even more secure mathematical footing
by formulating it in algebraic terms, namely in Algebraic
QFT [39]. For a recent philosophical debate about the
differences in these approaches see [46–49]. A significant
trade-off between these approaches are their differences
in mathematical rigor and in practical utility.

As discussed in Sec. III, there are many technical issues
which arise when one tries to apply our projective mea-
surement theory to QFT, see Fig. 2. As fraught as this
area is with mathematical stumbling blocks, some have
looked to Algebraic QFT in hopes of a more secure way
to approach modeling (at least parts of) measurement
processes of quantum fields. In particular, the Fewster
Verch (FV) framework [10–12] does this. Allow me to
provide a brief overview.

Fewster Verch framework

Suppose that we can break at least a part of the mea-
surement process down into a series of local interactions
between QFTs. In particular, suppose that each of these
interactions is localized in space and time, i.e. with one
QFT acting as a local probe on another. The Fewster
Verch (FV) framework [10–12, 16, 50] provides a model
for such interactions within the mathematical rigor of
Algebraic QFT. By doing so, one can be assured to be
completely respectful of the central ‘commandments’ of
relativity for at least part of the measurement chain. In
particular, by describing this part of the measurement
process entirely within Algebraic QFT, no causality vio-
lations of the kind shown in Fig. 2 are possible; Algebraic
QFT has the fundamental principles of relativity built
right into it.

To have something concrete in mind, let us consider a
simple example (taken from [10, 16]) which just so hap-
pens to have an equivalent representation in Lagrangian
QFT. Consider a scenario where one massive Klein Gor-

don field (“the probe field”), ψ̂(t, x), acts as a local

probe another (“the system field”), ϕ̂(t, x). The joint
Lagrangian for our simple example is,

L =
1

2
(∇µϕ̂(t, x))(∇µϕ̂(t, x))− m2

1

2
ϕ̂2(t, x)︸ ︷︷ ︸

Lϕ

(3)

+
1

2
(∇µψ̂(t, x))(∇µψ̂(t, x))− m2

2

2
ψ̂2(t, x)︸ ︷︷ ︸

Lψ

− λ ρ(t, x) ψ̂(t, x) ϕ̂(t, x)︸ ︷︷ ︸
LI

.

The first and second terms are the free Lagrangians of

the system field, ϕ̂(t, x), and the probe field, ψ̂(t, x), re-

spectively. The third term couples these two fields to-
gether. In the third term, λ determines the strength of
the interaction and ρ(t, x) is a spacetime function which
determines the interaction profile. That is, ρ(t, x) deter-
mines where in space and time the two fields interact.
For the purposes of modeling localized interactions, we
can take ρ(t, x) to be compactly supported in some space-
time region K, (i.e., ρ(t, x) = 0 outside of K). See Fig.
9. Here N is some “processing region” in the future of
K where the probe field undergoes further measurement
processes.

It is important to note that the scope of interactions
considered by the FV framework is much more general
than this simple example. I have only specified the above
interaction Lagrangian to have something concrete in
mind for later comparison. In general in the FV frame-
work, one quantum field acts as a local probe upon an-
other quantum field. The nature of these two fields is left
completely open so long as they can both be formulated
within Algebraic QFT. The nature of their interaction is
left open, except that it all happens within a bounded
spacetime region, K, see Fig. 9. The spacetime back-
ground for such an interaction is even left open, i.e., it
could be curved.

By using these sorts of local QFT-to-QFT interactions,
one might be able to describe a part of a QFT-involved
measurement chain. Of course, as discussed above, we
cannot hope to provide a complete modeling of any real-
life measurement process exclusively in terms of QFT-
to-QFT interactions. This is for two reasons. Firstly, as
discussed above, we currently have a rather limited tech-
nological and computational capacity for describing in-
teracting bound states within Lagrangian QFT (let alone
Algebraic QFT). Thus, the FV framework suffers here on
grounds of feasibility, at least currently.

Secondly, once one QFT acts as a probe on another,
we are still left with the problem of how to model the
measurement of the second QFT. Indeed, the FV frame-
work does not claim to solve the quantum measurement
problem (pragmatic or realist) but rather their interest
is “describing a link in the measurement chain, in a co-
variant spacetime context” [10]. In particular, they “take
it for granted that the experimenter has some means of
preparing, controlling and measuring the probe and suf-
ficiently separating it from the QFT of interest” [10] or
put more simply that “someone, somewhere, knows how
to measure something” [51].

In total therefore the FV framework is potentially use-
ful (within its presently limited computational feasibil-
ity) for modeling parts of the QFT-involved measurement
chains for real-life experiments. In combination with the
yet-to-be-discussed diagonal and vertical cuts, it may be
helpful in solving the core pragmatic measurement prob-
lem for QFT.

But what about the extended pragmatic measurement
problem? Our goal there is to give a unified wide-scoping
account of measurements in QFT, i.e., to identify its ob-
servables. In this extended problem we care less about
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computational feasibility. One might therefore expect
the FV framework (and horizontal moves generally) to
be more useful in the extended problem.

For instance, recent work claims to have used the
FV framework to provide an “Asymptotic measurement
schemes for every observable of a quantum field the-
ory” [50] in order to “determine the set of system ob-
servables that can be measured by FV measurement
schemes”. Concretely, their objective is “to analyze
how information about one physical structure (system)
is transferred to another physical structure (probe) that
is controlled by an external experimenter” [52]. In par-
ticular their interest is in the case where both the system
and field are QFTs and the information is transferred
via a local interaction. This is exactly the sort of thing
that the FV framework is good at: working out how in-
formation moves between quantum fields which interact
with each other in localized regions. This attempts to go
beyond Alice’s full menu discussed in Sec. III by giving
a constructive/dynamical story about the measurement
processes associated with each supposed observable.

The principal limitation in [50] however is that (as
is always the case with the FV framework) it explic-
itly assumes that the experimenter has full control over
the probe field. In particular, it is assumed that they
know how to extract classical information from the probe,
i.e. “someone, somewhere, knows how to measure some-
thing” [51]. While this is potentially a step in the right
direction, these results ultimately end up assuming that
we know what the observables in the probe field are. Con-
trary to this methodology, I argue that the only physi-
cally meaningful way to identify the observables within
QFT is to connect them with observables outside of QFT
by some measurement chain which includes a QFT-cut.

Allow me to briefly give the technical details of [50]
by first introducing some terminology. Within Alge-
braic QFT, each bounded region of spacetime R is as-
sociated with an algebra, commonly called the “algebra
of obesrevables”. However, this remains to be justified as
what is an observable is exactly what is at question here.

This algebra includes the field operator ϕ̂(t, x) integrated
against all smooth functions compactly supported over
R. Additionally, the algebra includes products and sums
of these smeared field operators. An FV measurement

scheme for a field ϕ̂(t, x) (“the system field”) specifies

four things: a probe field ψ̂(t, x) labeled P, an initial
state for the probe field, ρP , a unitary interaction, S,

between ϕ̂(t, x) and ψ̂(t, x) localized in some region K,
(e.g., Eq. (3)) and finally an element of the probe algebra,
B, associated with a processing region N in the future of
K, see Fig. 9.

While the results of [50] are proven in terms of Alge-
braic QFT, it here suffices to give their translation into
the usual language of Hilbert spaces. A FV measurement
scheme gives a way of indirectly addressing elements of
the system algebra associated with the regionK. Namely

N

K

Figure 9. The bounded spacetime regions considered in [16].
The two quantum fields interact only within the coupling re-
gion K. In the future of this interaction is the “processing
region” N where the probe field undergoes further measure-
ment processes.

for every FV measurement scheme we have

TrSP(ρS ⊗ ρP S
†11⊗B S) = TrS(ρS Bind) (4)

for some induced Bind in the system algebra associated
with K.
Ultimately, the question addressed by [50] is: Which

elements of the system field’s algebra at K can be in-
directly measured via an FV measurement scheme (as-
suming we can measure any element of the probe algebra
at N)? Their answer is roughly that for every element
A of the system algebra at K there exists a sequence
of FV measurement schemes which indirectly measure it
arbitrarily well in the limit. Namely, for every A in the
system algebra associated with K, we have [52]

TrSPα(ρS ⊗ ρPα S
†
α11⊗Bα Sα) → TrS(ρS A) (5)

for some sequence of FV measurement schemes indexed
by an integer α. Thus, given full control over the probe
system in the region N there is some sequence of probes,
probe states and local interactions such that we can ad-
dress any A in the system’s algebra arbitrarily well.

In summary, the FV framework is a great tool for work-
ing out how information moves between quantum fields
which interact with each other in localized regions. How-
ever, to solve either the core or extended pragmatic mea-
surement problems for QFT it alone is not enough. We
need to at some point take a step outside of QFT via a
QFT-cut.

B. Vertical QFT-cuts

Let’s next consider what vertical QFT-cuts are avail-
able to us currently. The general shape of a vertical
QFT-cut is shown on the right side of Fig. 8. Essen-
tially, we begin with something being modeled as a QFT
(QFT#4) and then take some sort of approximation on
this to arrive the very same thing now modeled as some-
thing other than a QFT (Something#2). Our freedoms
in designing a vertical QFT-cut are: which theory we
approximate into, what kind of QFT we begin from and
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relatedly what kind of non-QFT system we land on, as
well as the details of our approximation scheme.

We have discussed already in the previous subsection
the sorts of systems which we have a grip on how to model
in QFT: free systems plus perturbative interactions and
some condensed matter systems but not strongly inter-
acting systems or bound states. Our options for QFT#4
are fixed to be among these. As for which theory to cross
into, the “nearest” theory to QFT would likely be non-
relativistic QFT (i.e., QFT with c → ∞, or rather QFT
in a Galilean spacetime). For such a approximation to
work our initial QFT#4 must be massive, i.e., not light
nor gravity. Massive fields may limit onto particles in a
non-relativistic limit, but massless ones will not [38, 43].
For massive free states, taking such a limit gives us non-
relativistic quantum particles. This alone is not enough
unless we understand well how to model the measure-
ment of non-relativistic QFTs. I am not aware of any
research in this direction, but it could be a fruitful way
forward.

The next nearest theory we could cut into is non-
relativistic quantum theory. The question then is what
we should take as Something#2? An obvious experimen-
tally relevant system would be a first-quantized Hydro-
gen atom. However, this would mean that QFT#4 needs
to be some second quantized description of the Hydrogen
atom. As I have already discussed, describing such bound
states in QFT is difficult. More research in this direction
is warranted.

Another intriguing option for what non-relativistic
quantum system to put for Something#2 is an Unruh-
DeWitt (UDW) detector [7, 15, 23–35]. These will be
described in more detail in the next subsection, but
roughly they are atom-like non-relativistic quantum sys-
tems which can be coupled to a quantum field in a way
motivated by the light-matter interaction. In fact, recent
work [45] has developed a “second quantized UDW de-
tector”, i.e., a QFT which reduces to a UDW detector in
the non-relativistic limit. This an interesting avenue for
future research, worthy of further development.

Finally, we can consider the possibility of approximat-
ing a QFT as a classical state of some sort. An example
of this kind has already been discussed in Sec. V. One
might have a state of light described as a QFT and then
switch to describing this as a classical electromagnetic
field in Minkowski space. Vertical cuts of this kind seem
to be experimentally relevant and deserve to be devel-
oped further.

One might also be tempted to try to use decoherence
theory and the Born rule to make a vertical cut into clas-
sical physics just as we did previously for non-relativistic
quantum theory. If this is possible, it is not straight-
forwardly so. Indeed, if it were then we would be licensed
to make generic projective measurements in QFT, which
we are not, see Sec. III. At least one roadblock is the fol-
lowing: The Type III algebraic structure of QFT means
that we cannot associate Hilbert spaces with bounded
regions of spacetime. In particular this means we can-

not associate a density matrix to bounded spacetime re-
gions. As such, we cannot evaluate when via decoherence
they become approximately diagonal. As such, we can-
not identify their diagonal entries to apply the Born rule
to.
In summary, vertical QFT-cuts are a promising possi-

bility deserving of further research. If technical limita-
tions surrounding second quantized atoms can be over-
come, then these could have a substantial scope including
many experimentally relevant systems.

C. Diagonal QFT-cuts

Finally, let’s next consider what diagonal QFT-cuts are
available to us currently. The general shape of a diago-
nal QFT-cut is shown in the center of Fig. 8. Essentially
one QFT (QFT#3) couples directly to something which
is not being modeled as a QFT (Something#1). As is
the case for any diagonal cut, the direct coupling be-
tween system’s described in fundamentally different the-
ories poses conceptual challenges. Here, there is an inher-
ent risk that coupling to a non-QFT system will end up
breaking one of the central ‘commandments’ of relativity.
However, on the bright side, since quantum field theory

itself provides us with no prescription for how such sys-
tems ought to interact, we have a great deal of freedom
in how one might model such an interaction. In partic-
ular, our freedoms in designing a diagonal QFT-cut are:
what kind of QFT we begin from, which theory we cut
into, what kind of non-QFT system we cut into, and the
nature of the interaction between the systems.
We have discussed in the previous subsection the sorts

of systems which we have a grip on how to model in QFT:
free systems plus perturbative interactions and some con-
densed matter systems but not strongly interacting sys-
tems or bound states. Our options for QFT#3 are fixed
to be among these. As for which theory take a QFT-
cut into, the “nearest” theory to QFT would likely be
non-relativistic QFT (i.e., QFT with c → ∞, or rather
QFT in a Galilean spacetime). As far as I am aware,
not much work has been put into the study of sensible
dynamical couplings between QFT and non-relativistic
QFT. One immediate concern is the possibility of un-
controlled faster-than-light signaling. We might have a

relativistic field ϕ̂Rel(x) couples to ϕ̂Non-Rel(x) which can

then send an instantaneous signal to ϕ̂Non-Rel(x+a) which

is coupled to ϕ̂Rel(x+ a). This seems problematic. More
work may be needed in this direction.
The next “nearest” theory we could try to take a QFT-

cut into is non-relativistic quantum theory. Significant
work has been done in this direction, which will be dis-
cussed momentarily.
The last option which comes to mind is to couple our

QFT to a classical system (e.g., something modeled in
special relativity or general relativity). This doesn’t seem
terribly problematic, we could for instance have a clas-
sical Klein Gordon field interacting with the expectation
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value of a quantum Klein Gordon field, perhaps without
back reaction. More work would need to be done moti-
vating why such an interaction is an accurate reflection
of some part of a real-life experiment, but there don’t
seem to be insurmountable technical difficulties here.

Unruh-DeWitt Detector Models

Let’s return to the possibility of diagonal cuts into non-
relativistic quantum theory. We have a lot of freedom
here in designing this interaction. Of course, there are
also certain things we want from this diagonal theory-to-
theory coupling if it’s going to be a productive part of
an experimental prediction. So what ought to guide us
in designing this interaction? As a first guide, we may
rely on a desire to preserve the central ‘commandments’
relativity (covariance, causality, and locality) as much as
possible. Moreover, as a second guide we may rely on a
desire to accurately model parts of real-life experiments.

For instance, we might take the Something#1 system
in Fig. 8 to be something atom-like and we might take
QFT#3 to be the electromagnetic field (or some scalar
analog thereof). In this case, under such guidance, one
is quickly led [53–55] to something very much like the
Unruh-DeWitt (UDW) detector model first introduced
in [24].

Alternatively, we might take QFT#3 to be a gravi-
ton field (in the linear gravity regime). In this case, one
is quickly led to a certain variant of the Unruh-DeWitt
detector model [56–58].

One can also take Something#1 to be a fermionic
quantum system which interacts with QFT#3 being a
neutrino field. In this case one is led to another variant
of the Unruh-DeWitt detector model [59, 60].

The possibilities for which real-life interaction we
might attempt to mimic here are very general. In each
case, the resulting interaction model is within the fam-
ily of Unruh-DeWitt-like models. Moreover, much of the
above can be done in arbitrarily curved spacetime back-
grounds as well [56].

Enough discussion of abstract possibilities, concretely
what do these models look like? To have something con-
crete in mind, let us consider a simple example (taken
from [15]). Consider a simple example in which a UDW
detector µ̂ coupled to a massive Klein Gordon fields

ϕ̂(t, x) with joint Lagrangian,

L =
1

2
(∇µϕ̂(t, x))(∇µϕ̂(t, x))− m2

1

2
ϕ̂2(t, x)︸ ︷︷ ︸

Lϕ

(6)

+ LUDW − λ ρ(t, x) µ̂(τ) ϕ̂(t, x)︸ ︷︷ ︸
LI

.

The first term is the free Lagrangian of the field. The
second term LUDW is the free Lagrangian of the non-
relativistic probe system, the UDW detector. We have

total freedom to pick the internal dynamics of the non-
relativistic probe system. For instance, it could be a
qubit, or a quantum harmonic oscillator, or a first quan-
tized Hydrogen atom.
In the third term, λ determines the strength with

which the non-relativistic probe and field couple to each
other. In the third term, ρ(t, x) is a spacetime func-
tion determining the interaction profile. In this con-
text, ρ(t, x) is often called the probe’s smearing function,
and is taken to describe the size and shape of the probe
through time (more will be said about this later). Just
as in the FV framework, for the purposes of modeling
local measurements, we can take ρ(t, x) to be compactly
supported in some spacetime region, K, (i.e., ρ(t, x) = 0
outside of K). In the third term, µ̂ is the degree of free-
dom of the non-relativistic probe which couples to the
quantum field. For instance, if the probe is a harmonic
oscillator, µ̂(τ) might be its number operator n̂ or one of
its quadrature operators q̂ or p̂.
The major difference between the FV and UDW ap-

proaches (Eq. (3) and Eq. (6)) is just that in the first

case the probe system is a quantum field, ψ̂(t, x), and in
the second case it is a non-relativistic quantum system,
µ̂. For a more in depth comparison of the UDW detector
model and the FV framework, see [15].
It’s important to note that the UDW detector is de-

signed as a “pointer” measurement device, i.e., one which
translates a “needle” proportional to some targeted op-
erator in the probed field. Rather, the UDW detector
is designed to be atom-like. If one measures the UDW
detector after its interaction with the field, one ought
to interpret this roughly as one would if an atom had
coupled to the field. For instance, if the UDW probe is
initially in its ground state and then is later measured to
be in an excited state, one might infer that it absorbed
a photon from the quantum field.
More complexly, one can use UDW detectors to

model an entanglement harvesting experiment [16, 29–
35]. Roughly, in such an experiment two initially uncor-
related probe systems interact locally with a quantum
field in such a way that they do not have time to signal
to each other. Despite this, these two probes become en-
tangled because there was already entanglement present
between the two space-like separated regions they inter-
acted with. The benefit of such an experiment is that the
entanglement in the field has been transferred into more
accessible systems, both physically and mathematically.
We cannot associate a Hilbert space to bounded regions
in QFT and as such cannot straightforwardly compute
the entanglement between these regions. The final en-
tanglement of these probes is a witness to the initial en-
tanglement in the field.
A great many theoretical investigations of this sort

have been carried out using UDW detectors [29–35]. Such
studies can even be done in curved spacetimes: one can
study the entanglement structure around a black hole
near the event horizon for instance.
Thus, in addition to providing a good model for
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many experimentally relevant systems, the UDW detec-
tor model covers a wide range of interesting hypothetical
experiments, all while remaining computationally feasi-
ble.

In Sec.V I suggested that we ought to prefer verti-
cal cuts over diagonal ones all else being equal. Have
we here overcome the natural disadvantages of diagonal
cuts? The first disadvantage was a lack of prescription
from either theory about how they ought to couple to
each other. However, as discussed above, we can use this
freedom to design our theory-to-theory coupling as we
wish. In particular, above we used this freedom to build
an interaction which closely resembles certain experimen-
tally relevant couplings. The second disadvantage was
a clash of principles between the two coupled theories.
How do we fare here? That is, how well do UDW-like
detectors preserve the central ‘commandments’ of rela-
tivity: covariance, causality, and locality? Do they for
instance lead to uncontrolled faster-than-light signaling
in the QFT?

Before answering this, a distinction needs to be made
between two modes of applications of the UDW model.
It was mentioned above that we will often wish to lo-
calize the probe’s smearing function ρ(t, x) within some
bounded spacetime region. For instance, when the UDW
detector model is derived from the light matter interac-
tion [53–55], the smearing function ρ(t, x) turns out to
be determined by the overlaps of certain atomic orbitals.
That is, ρ(t, x) is a near-literal description of the shape
of the atom in space and time.

When the size of the UDW is much smaller than all
other relevant scales and the detailed shape of the de-
tector doesn’t matter much, we can also approximate
the detector as being point-like. Consider a point-like
detector traveling through spacetime on some time-like
trajectory, z(t). We can localize the interaction to this
trajectory by taking ρ(t, x) = χ(t)δ(x− z(t)). Here χ(t)
controls where along the trajectory the probe couples to
the field (it may turn on and off) and the δ function local-
izes the interaction to the detector trajectory, z(t). Let
us call these the point-like detectors.

With this established, let us return to the question
of how well do UDW-like detectors preserve the central
‘commandments’ of relativity. In brief, they do so im-
perfectly, but with well understood and controllable is-
sues [17, 61]. For smeared detectors (i.e., non-point-like
detectors) there are some slight faster-than-light signal-
ing issues. Essentially, the issue is that if some infor-
mation is taken up by the left half of the detector it
can “immediately” jump to the right half of the detector
and then back into the field. Basically, signals can jump
across the detector instantly. This breaks no-signaling
and causes some issues with the relativity of simultaneity
(this coupling does not treat all relativistically compati-
ble time-orderings equally).

However, these issues are ultimately minor [17, 61].
The time ordering issues do not appear at the lowest
orders of perturbation theory. If the light-matter in-

teraction is weak enough, then the time-ordering issues
are strongly suppressed. Moreover, the size of the no-
signaling violations is set by the size of our detector. Re-
call ρ(t, x) might have compact support. If the UDW
detector has a width of 3 nm then signals can only ar-
rive at most 10 atto-seconds early. Ultimately if we care
about such time-scales (of the order of the light crossing
time for the atom) then we shouldn’t even be allowed to
talk about first-quantized atoms in the first place. In-
deed, all of these commandment-breaking issues go away
when we use point-like detectors.

D. The Scope of these Tools

Having reviewed the state of the physic literature, for
feasible ways of crossing the QFT-cut, what ultimately
are the scope of these tools? In my assessment while each
tool has its limitations and more development of each of
them is needed, collectively these tools have a substantial
scope. Thus, I believe that collectively these tools give us
a good handle on a case-by-case measurement framework
for QFT. That is, collectively they can give us a solution
to the core pragmatic measurement problem for QFT.
But what about the extended pragmatic measurement

problem for QFT? Can these tools help us identify the
observables of QFT? As discussed in Sec. V, in order to
get a wide-scoping unified measurement theory for QFT
we would need some near-universally available way of
making QFT-cuts. In particular, we would need for at
least one of these tools to have a sufficiently wide range
of applicability such that nearly all QFT-involving ex-
periments can be modeled using it. Which of the above
discussed tools has the widest scope?
As I have discussed above, at least currently the UDW

detector model by far has the widest scope of applica-
bility of any of the tools currently available. Thus, if
one wants to develop a wide-scoping measurement theory
for QFT and to identify its observables, this is currently
the most promising way forward. Indeed, a recent paper
claims to have used the UDW detector model to establish
a detector-based measurement theory for quantum field
theory [7].

VII. CONCLUSION

This paper began by distinguishing between the prag-
matic and realist portions of the quantum measurement
problem specifically for quantum field theory (QFT). Of
these, I have argued that the pragmatic worries are by far
more important since if unanswered their consequences
are more severe. If we lose the pragmatic connection be-
tween theory and experiment, we are at risk of losing
any right to claim evidential support (or worse physical-
ity) for quantum field theory theory. This is the Prag-
matic QFT Measurement Problem. To alleviate these
pragmatic worries we must at a minimum demand a
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case-by-case explanation of the QFT’s predictions for
key experimental successes (solving the core pragmatic
measurement problem). One might further demand a
wide-scoping explanation of QFT’s predictions for nearly
all possible experiments (solving the extended pragmatic
measurement problem, and thereby identifying QFT’s
observables).

I have argued that for non-relativistic quantum theory,
all of these pragmatic worries have been satisfactorily
handled in terms of measurement chains and Heisenberg
cuts. However, the same is not true for QFT, with se-
vere consequences. Indeed, as I have argued in Sec. II,
explaining all but maybe a small corner of quantum the-
ory’s experimental successes unavoidably involves model-
ing quantum fields [5, 6]. Thus the Pragmatic QFT Mea-
surement Problem threatens to spread across almost all
of quantum theory. In particular, if we cannot establish
an adequate linkage between QFT and experiment then
not only quantum field theory but the whole of quantum
theory is at risk of losing its evidential support.

With the stakes so raised, I turned my attention to-
wards what exactly the difficulty is with properly mod-
eling the measurement of quantum fields. Blame is of-
ten placed on certain technical mathematical difficul-
ties which prevent us from straightforwardly transplant-
ing our projective measurement theory into QFT [7–23].
Naive attempts to apply our non-relativistic measure-
ment theory lead one to commit mathematical blunders
which either violate the central ‘commandments’ of rel-
ativity (covariance, causality, and locality) [14, 18–23]
or otherwise disrespect the QFT’s local algebraic struc-
ture. For these reasons, it has been argued we need a
new (or at least refined) measurement theory for quan-
tum field theory, see for instance [7, 8, 11]. However,
focusing on these technical mathematical issues belies a
deeper methodological issue: the need to provide a con-
crete model of our measurement processes. Acknowledg-
ing this fact shuts down an otherwise promising looking
approach to solving the Pragmatic QFT Measurement
Problem.

In particular, one might think we can more-or-less keep
our non-relativistic measurement theory if we just cut out
the bad bits (those which violate causality) and patch up
any causality violations stemming from naive state up-
date maps. Considerations of this sort might lead one to
prove theorems [8, 9] which cleanly separate those pro-
jective measurements which violate causality from those
that don’t. This may usefully identify what measure-
ment operations are relativistically-safe in QFT, but it
falls short of giving us a principled way which of these
measurement operations, if any, my real-life lab equip-
ment is doing. Indeed, the authors of [8] recognize that
“it would be useful to construct an explicit dictionary
between update maps and specific probe models”. If we
are to offer a better explanation than simply guessing the
right projector, we need to provide a concrete model of
our measurement process.

Indeed, any such attempt to directly transplant our

non-relativistic projective measurement theory into QFT
will be methodologically unsatisfying. Rather than try-
ing to transplant our existing projective measurement
theory into QFT, I have in this paper proposed an al-
ternate approach. Firstly, one ought to understand how
our non-relativistic projective measurement theory has
its roots in discussions of measurement chains and prag-
matic Heisenberg cuts. Then, one ought to generalize
these notions and transplant them into QFT. From this
position we will be able to evaluate what measurement
theory, if any, we are led to for QFT.

First in Sec. IV, I discussed how the core prag-
matic measurement problem has been overcome for non-
relativistic quantum theory, using measurement chains
and Heisenberg cuts. I have discussed how in satisfac-
torily modeling any quantum experiment we need to ex-
plicitly and formally take a pragmatic Heisenberg cut at
some point along the measurement chain. As I discussed,
often in modeling a given experiment, we will have free-
dom regarding what kind of Heisenberg cut to take and
where to take it. In fact, I have given a full taxonomy of
the various kinds of pragmatic Heisenberg cuts available
to us. Exactly which of these kinds of pragmatic Heisen-
berg cuts are appropriate and when must be determined
on a case-by-case basis. Thus, for each experiment under
consideration, we have a road map to guide us in model-
ing its specific measurement processes. These road maps
have the dangerous areas ahead clearly marked out, as
well as multiple possible routes to navigate them. Given
our task, this is an indispensable tool.

Using these road maps we can explain our experiments
and gain evidential support from them on a case-by-case
basis. However, case-by-case considerations may give us
a measurement framework, but they do not give us a
wide-scoping measurement theory. That is, they do not
address the extended pragmatic measurement problem.
Luckily, for non-relativistic quantum theory one way of
crossing the Heisenberg divide is of near-universal ap-
plicability and so gives us a wide-scoping measurement
theory. Namely, by using decoherence theory and then
the Born rule once a sufficient amount of decoherence
has happened. Ultimately, this is what underwrites our
non-relativistic quantum measurement theory. It is just
whatever is induced when our classical measurement the-
ory is applied after any late-enough decoherence-based
Heisenberg cut.

The central message of this paper is that we should
not transplant the end of this story (i.e. projective mea-
surements) into QFT. Rather we should start from the
beginning. We ought to generalize these notions of chains
and cuts and then transplant them into QFT. This will
automatically give us a case-by-case measurement frame-
work for QFT, solving its core pragmatic worries. We can
then see which (if any) measurement theory we are led
to for QFT.

As I have shown in Sec. V, these notions of chains and
cuts can be readily generalized to help orient ourselves
in responding to the Pragmatic QFT Measurement Prob-
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lem. My analysis has revealed that (in close analogy to
the Heisenberg cut) whenever we are modeling experi-
ments involving quantum fields, that at some point along
the measurement chain we also need to make a pragmatic
QFT-cut (i.e., a switch from a QFT model to a non-QFT
model). As I have argued, in Sec. II such situations are
far more common than one might at first think.

As with Heisenberg cuts, we will often have freedom
regarding what kind of QFT-cut to take and where to
take it. As above, these generalized notions of measure-
ment chains and cuts provide us with a road map to guide
us in modeling individual measurement processes. This
is an indispensable tool in recovering quantum theory’s
experimental spoils. However, these considerations alone
give us, at best, a case-by-case measurement framework
for QFT, not a unified measurement theory. In order
to get a wide-scoping measurement theory for QFT, we
need some widely applicable principled way of making
QFT-cut, with scope analogous to decoherence theory.
This is necessary to identify the observables of QFT.

What then is the current state of the physics literature
on these topics? Is the need for a QFT-cut recognized?
Do physicists have good tools for making QFT-cuts? Are
their tools collectively good enough to resecure eviden-
tial support for quantum theory? Is any individual tool
wide-scoping enough to underwrite a measurement the-
ory for QFT? In brief, my considered answers are: No,
the need for a QFT-cut is not currently widely recog-
nized. Nonetheless, the physicists who do care about
this topic have several tools for approaching (the Few-

ster Verch (FV) framework [10–12, 16]) and crossing the
QFT-cut (UDW detector model [15, 23–35], and a hand-
ful of approximation schemes [43, 45].

In my assessment, collectively these tools have a sub-
stantial scope. Thus, collectively these tools give us a
good handle on a case-by-case measurement framework
for QFT solving its core pragmatic measurement prob-
lem. But is any one of these tools on its own sufficient
to give us wide-scoping unified measurement theory for
QFT? As I have discussed, the UDW detector model by
far has the widest scope of applicability of any of the
tools currently available. Thus, if one wants to develop a
wide-scoping measurement theory for QFT or to identify
its observables, this is the way to go. Indeed, a recent
paper claims to have used the UDW detector model to
establish a detector-based measurement theory for quan-
tum field theory [7].
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Appendix A: Generalize, Formalize and Prove:
Measurement Chains and Cuts

In Sec. IV and Sec. V I have made much use of the no-
tions of sequential measurement chains and cuts. In this
appendix these notions will be generalized and formal-
ized. Ultimately, this appendix has four goals: First, to
substantially widen the scope of experiments analyzable
in terms of measurement chains. Second, to formalize
this situation. Third, to show how this formalization can
handle at least one non-trivial QFT experiment. And fi-
nally, to prove the main claims of the paper within this
formalization.

1. Non-sequential Measurement Chains

In Sec. IV and V all measurement chains considered
were sequential. In particular, the systems involved in
the experiment were ordered in a definite non-repeating
sequence of pairwise interactions: System A interacts
with system B which then interacts with system C which
then ... which then interacts with system R. This final
system acts as the experiment’s ultimate record-keeping
device. Such measurement chains were visualized in the
main text using figures along the lines of Fig. 10. In such
figures, the sequence of systems is laid out horizontally
and each system only ever interacts with the systems
which are just before and just after it.

In this example, each system might (in either of its two
interactions) be modeled in either Theory 1 or Theory 2.
In Fig.10 the red arrow traces out which systems are be-
ing modeled in which theory when with Theory 1 on the
top line and Theory 2 on the bottom line. Specifically,
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Theory #1

Theory #2

A B C D R

Figure 10. An example of how one might represent a sequen-
tial measurement chain of the kind considered in Sec. IV and
Sec. V.

in the measurement chain depicted by Fig. 10: System
A is modeled in Theory 2 in its later interaction (it has
no earlier interaction). System B is modeled in Theory
2 in both its earlier and later interactions. System C is
modeled in Theory 1 in both its earlier and later inter-
actions. System D is modeled in Theory 1 in its earlier
interaction and Theory 2 in its later interaction. Finally,
system R is modeled in Theory 2 in its earlier interaction
(it has no later interaction).

Notice that system D switches from Theory 1 to The-
ory 2 between its interactions with C and with E. This is
marked by the vertical arrow in Fig. 10. This is a verti-
cal cut. Notice also that the BC interaction has system
B modeled in Theory 2 and system C modeled in Theory
1. This is marked by the diagonal arrow in Fig. 10. This
is a diagonal cut. All other interactions are between sys-
tems being modeled within the same theory. These are
marked by the horizontal arrows in Fig. 10.

While these sorts of sequential measurement chains
were good enough to spell out the central claims of this
paper, they are of a rather limited scope for actual ap-
plication. To address this, I will now generalize away
from such sequential examples. The principal limitation
of this way of representing measurement chains is that
moving in the horizontal direction represents both mov-
ing from one system to another, and advancing in time.
We can only represent measurement chains in this way
if the experiment is arranged as sequentially as time is.
In order to generalize upon such examples, we need to
change how we are representing things.

In particular, we can revise the representation shown
in Fig. 10 to the one shown in Fig. 11. The principle dif-
ference is that we now distinguish between moving from
one system to another (moving vertically in Fig. 11), and
moving forward in time (moving horizontally in Fig. 11).
The incidental coincidence of these in the present exam-
ple is made manifest in our new representation as things
are arranged roughly diagonally. This overall diagonal
arrangement is incidental and I will generalize away from
it soon (see Fig. 12).

In this new representation, what do the lines, boxes,
circles, and “X”s represent? The horizontal lines
(whether they are single or double) represent the continu-

A X

B X

C X

D VD X

R

IAB

IBC

ICD

IDE

Figure 11. An improved representation of the sequential mea-
surement chain shown in Fig.10. Here moving from one sys-
tem to another is represented vertically and moving horizon-
tally advances in time towards the end of the experiment. The
boxes indicate which systems interact with each other. The
type of line used (single or double) indicates which theory
the system is being modeled in. The circles indicate where a
system switches within which theory it is being modeled in
between interactions.

ity of the systems through time, progressing rightwards.
The square box labeled “IAB” which crosses lines A and
B represents an interaction occurring between systems A
and B. Similarly, for all other boxes. The “X”s at the
end of each line indicate that these systems are no longer
relevant for modeling the experiment.

The lines being either single or double represents the
system being modeled in either Theory 1 or Theory 2
respectively. Notice that each of systems A, B, C, and
E are modeled in the same way through the duration of
the experiment. System D, however, is at first modeled
with Theory 1 before later being modeled with Theory
2. This switch happens between system D’s interactions
with systems C and E and is marked in Fig. 11 by the
circular box labeled “VD”.

In our old representation, vertical and diagonal cuts
were represented by vertical and diagonal arrows (that’s
how they got their names). But how are they repre-
sented in our new representation? By definition, vertical
cuts occur when, in between its interactions with other
systems, we switch which theory we are using to model
a system. Such situations are marked with circles in our
new representation e.g., VD in Fig. 11. By definition, di-
agonal cuts occur when we have an interaction between
systems which are modeled in different theories. In our
new representation, such situations are marked by boxes
with multiple kinds of lines entering and exiting them,
e.g., IBC in Fig. 11.

To see what else this new representation is capable
of, let us consider a more general example, e.g., Fig. 12.
This is not just some contrived example, it comes from a
considering the following quantum teleportation experi-
ment [62] outlined below.
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Figure 12. A representation of a non-sequential measurement
chain, modeled after a quantum teleportation experiment [62].
The dashed line marks Alice’s lab (top) off from Bob’s lab
(bottom). The various systems involved in this measurement
chain are arranged vertically. Moving horizontally advances
in time towards the end of the experiment. The boxes in-
dicate which systems interact with each other. The type of
line used (single or double) indicates which theory the sys-
tem is being modeled in. The circles indicate where a system
switches within which theory it is being modeled in between
interactions.

There are two parties in this experiment, Alice and
Bob. Alice’s lab contains those systems above the dashed
line, Bob’s lab contains those below. Bob has a quantum
state ψ which he wants to communicate to Alice, however
he has no direct way to reliably send quantum informa-
tion to her. He can, however, reliably send her classical
information. Concretely, the journey from Bob’s lab to
Alice’s lab is rough, such that all fragile quantum effects
(superposition, entanglement, etc) are likely to be lost or
distorted along the way. Given this situation, it would
appear that there is no way for Bob to communicate his
quantum state ψ to Alice.

However, surprisingly there is a way for Bob to “tele-
port” the quantum information to Alice. All that is re-
quired is for Alice and Bob to be able to reliably produce
shared entangled states. Their procedure is as follows.
Firstly, perhaps in the distant past, Bob and Alice’s sys-
tems A and B undergo some interaction, I6, which gets
them maximally entangled. Bob then has B interact with
ψ in a unitary way at I5. At this point, A is maximally
entangled with the joint system Bψ.

Bob then has B and ψ interact with some measurement
device, MB , in a unitary way at I1. In the meantime
Alice’s A undergoes free evolution at I4. The state ofMB

following I1 is such that it can be described classically
without major error. Hence we are justified in taking
the vertical cut at V1. Throughout this example, a single
wire means modeled in quantum theory, while a double
wire means modeled classically.

States which can be described classically without ma-

jor error are just the kind of states that Bob can reliably
send to Alice. He does so. Alice then interacts MB with
A in some unitary way at I2. In particular, this interac-
tion is a controlled unitary with a different unitary trans-
formation happening to A conditionalized on the state of
MB. Incredibly, the result of this interaction is that the
state of A after I2 is identical to the initial state of ψ.
In particular, whatever measurement system, MA, Alice
then interacts with A at I3, the result will be just the
same as if MA had interacted with the initial state of ψ.
Bob has thus successfully communicated the state of ψ
to Alice without sending her any quantum information
directly.
This example has three features which cannot be cap-

tured in our old representation. Firstly, this example
includes a 1-party interaction, I4, and a 3-party inter-
action, I1, whereas before we could only handle 2-party
interactions. Secondly, before all of our interactions were
in a definite ordering whereas here I4 might be simultane-
ous (or more generally space-like separated) with either
I5 or I1. Thirdly, as I will now discuss, this example
includes some non-Markovianity: systems may interact
with things which they are already correlated with.
This experiment is non-Markovian in the following

sense. The step-by-step evolution of system A cannot be
understood in terms of its reduced state and the reduced
state of the system’s it directly interacts with. System
A begins in a pure state but after I6, A is maximally en-
tangled with B such that its reduced state is maximally
mixed. Its free evolution I4 is unitary, such that after this
its reduced state is still maximally mixed. The interac-
tion I2 is a controlled unitary, with a different unitary
being applied depending on the state of MB . Any such
unitary would map the maximally mixed state to itself.
As such after I2 the reduced state of A should still be
maximally mixed. However, it is not. The state of A af-
ter I2 is pure, namely it is whatever pure state ψ initially
had. The error in the above analysis is neglecting the fact
that the states of A and MB at the beginning of I2 are
already correlated with each other. This ability of pre-
vious states of a system to come back and non-trivially
influence its later evolution, is non-Markovianity.
Thus, unlike figures such as Fig. 10, figures such as

Fig. 11 and Fig. 12 can represent non-sequential mea-
surement chains. However, it is important to distinguish
three ways of being sequential:

- Strong: In a strongly sequential measurement chain
we can place the systems involved in the experi-
ment in a total ordering. For example, in Fig. 10
and Fig. 11 we have A < B < C < D < R. The
only interactions between these systems are pair-
wise between adjacent systems.

- Global: In a globally sequential measurement
chain, we can place the interactions involved in
the experiment into a total ordering. For ex-
ample in Fig. 12 if we neglect I4 then we have
I6 < I5 < I1 < I2 < I3.
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- Local: In a locally sequential measurement chain,
for each system we can place its interactions in a
total order. For example, Fig. 12 is not globally
sequential because we cannot totally order all of
the interactions (now including I4). However, if we
restrict our attention to any individual system, its
interactions are totally ordered (from left to right).
E.g., for system A we have I6 < I4 < I2. This mea-
surement chain is therefore locally sequential.

These three definitions are formalized in the following
subsection.

So far every measurement chain which we have con-
sidered has been locally sequential. Indeed, this is often
natural. In particular, when one of our systems are each
localized around some spacetime trajectory, we can easily
give a total ordering to its interaction: we just order them
as they happen along the trajectory. However, when con-
sidering extended systems (such as QFTs) this will not
always be possible. An extended system might be “si-
multaneously” be involved in two interactions at once.
That is, two of its parts might be undergoing interac-
tions in space-like separation. In QFT, we cannot easily
dodge this issue by considering these parts themselves
to be separate systems: due to its Type III algebra, we
cannot partition the global Hilbert space into two tensor
factors associated with bounded spacetime regions.

One might think that we therefore ought to generalize
away from being locally sequential by allowing a system’s
interactions to be only partially ordered. However, as I
will discuss in Appendix A3, even this is not enough
to cover many QFT experiments. We might for instance
have one field undergo two interactions which are in some
sense both before and after each other, see Fig. 14. Thus,
I will actually assume nothing about the way that the
interactions are ordered.

I have not yet found a good way to represent non-
locally-sequential measurement chains pictorially. This,
and the need to prove things about measurement chains,
means we need to now formalize things.

2. Formalizing Measurement Chains and Cuts

The above subsection gestured at how we can move
away from sequential measurement chains (strongly,
globally, and locally) to no-sequential measurement
chains. In this subsection I will formalize these general-
ized non-sequential measurement chains. The following
subsection will then apply this formalization to a QFT
experiment. After this I will prove the central claim of
the paper within this formalization.

A (modeling of) a measurement chain is a 7-tuple
⟨S, I, T,@, H, {7→s}s∈S , Z⟩ where:

1. S is a finite non-empty set containing labels for the
systems (or fields) being modeled for our experi-
ment.

2. I is a finite non-empty set containing labels for the
interactions being modeled for our experiment.

3. T is a finite non-empty set containing labels for the
theories which are being used to model parts of our
experiment.

4. @ is a binary relation between S and I telling us
which systems are involved in which interactions.
That is, s@i if and only if system s is involved
in interaction i. Let Is := {i ∈ I : s@i} be the
subset of interactions which s is involved in. Let
Si := {s ∈ S : s@i} be the subset of systems which
are involved in interaction i. We require that at
least one system is involved in each interaction,
|Si| > 0 for all i ∈ I. We also require that every
system is involved in some interaction, |Is| > 0 for
all s ∈ S.

5. H : S@I → T is a function into the set of the-
ories, T , from the subset of S × I with s@i, i.e,
S@I := {(s, i) ∈ S × I : s@i}. This function tells
us within which theory each system is being mod-
eled at each interaction.

6. 7→s is, for each s ∈ S, a relation over Is which coor-
dinates the inputs and outputs of each interaction.
In particular, i 7→s j if and only if some output of
s at i is an input of s at j. More will be said about
how to identify 7→s in practice later, especially re-
garding QFTs.

7. Z : S@I → T ∪ {X} is a function from S@I into T
which can also take a special value X. After each
of its interactions any system might have an output
which is not relevant as an input for any further in-
teractions, but is nonetheless relevant for the final
result of the experiment. Z(s, i) = X tells us that
the output of s at i has no direct relevance for the
end of the experiment (it may still be indirectly rel-
evant however as an input to further interactions).
Otherwise, Z(s, i) tells us which theory s after i is
to be modeled in for use at the end of the experi-
ment.

Any 7-tuple satisfying the above constraints is a mea-
surement chain.

Given a modeling of a measurement chain, we can iden-
tify its vertical and diagonal cuts within this formaliza-
tion as follows:

V) A vertical cut occurs under two conditions. Firstly,
a vertical cut occurs at s ∈ S between i and j ∈ Is
whenever i 7→s j and H(s, i) ̸= H(s, j). In this
case, s switches theories between i and j. Secondly,
a vertical cut occurs at s ∈ S after i ∈ Is whenever
Z(s, i) ̸= X and H(s, i) ̸= Z(s, i). In this case, s
switches theories after one of its interactions and
before the end of the experiment.
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D) A diagonal cut occurs at i ∈ I between s and t ∈ Si
wheneverH(s, i) ̸= H(t, i). In this case, interaction
i is modeled as coupling together systems from dif-
ferent theories.

Connecting with the nomenclature of Sec.V, we
say a vertical cut is a vertical (V,W )-cut just
when H(s, i) ∈ V ⊂ T and either H(s, j) ∈W ⊂ T or
Z(s, i) ∈W ⊂ T , whichever is relevant. Similarly,
a diagonal cut is a diagonal (V,W )-cut just when
H(s, i) ∈ V ⊂ T and H(t, i) ∈W ⊂ T .
The above description of a measurement chain pre-

supposes no structure on 7→s. That is, we have not yet
made any restrictions as to how the measurement chain’s
inputs and outputs are allowed to be arranged. As I will
soon discuss, this allows us to generalize away from the
locally sequential measurement chains considered so far.
However, before discussing this, let’s see how this formal-
ization works in a more familiar case. In particular, let’s
formalize the measurement chain shown in Fig. 12.

For this measurement chain the labels for our systems
are S = {MA, A,B, ψ,MB}. The labels for our interac-
tions are I = {I1, I2, I3, I4, I5, I6}. Finally, the labels for
our theories are T = {T1, T2} where T1 is represented by
a single line and T2 is represented by a double line. The
relation @ and the function H : S@I → T are given by
the following table:

H(s, i) | I1 I2 I3 I4 I5 I6
MA | ∅ ∅ T1 ∅ ∅ ∅
A | ∅ T1 T1 T1 ∅ T1
B | T1 ∅ ∅ ∅ T1 T1
ψ | T1 ∅ ∅ ∅ T1 ∅
MB | T1 T2 ∅ ∅ ∅ ∅

The presence of ∅ in row s and column i means that,
¬s@i, and that therefore H is not-valued here. In all
other cases the value in row s and column i is the value
that H takes at s and i. Thus, in this example, MB at
I2 is modeled in T2, but otherwise every system at every
interaction is modeled within T1.

From the above table we can read off this measurement
chain’s diagonal cuts. Its only one is at I2 which couples
A modeled in T1 and MB modeled in T2.
For this measurement chain the arrow relations can be

read off of the connectivity of the boxes. These relations
are given by the following directed graphs:

S | Directed Graph of 7→s over Is
MA | I3
A | I6 7→A I4 7→A I2 7→A I3
B | I6 7→B I5 7→B I1
ψ | I5 7→ψ I1
MB | I1 7→MB

I2

The fact that all of these directed graphs are linear (and
consequently acyclic) are accidental facts about this ex-
ample which we will generalize away from later. This only
occurs in this example because the measurement chain is
locally sequential.

The function Z : S@I → T ∪ {X} is given by the
following table:

Z(s, i) | I1 I2 I3 I4 I5 I6
MA | ∅ ∅ T2 ∅ ∅ ∅
A | ∅ X X X ∅ X
B | X ∅ ∅ ∅ X X
ψ | X ∅ ∅ ∅ X ∅
MB | X X ∅ ∅ ∅ ∅

As before, the presence of ∅ in row s and column i means
that ¬s@i and therefore that Z is not-valued here. In all
other cases the value in row s and column i is the value
that Z takes at s and i. As noted above, if Z(s, i) = X
tells us that (outside of being an input to further inter-
actions) s is not relevant after i. In this example, only
the state of M4 after I3 is directly relevant to the end of
the experiment. Everything else in S@I is only relevant
through its further interactions.

From the above table and the above directed graphs
we can read off this measurement chain’s vertical cuts.
It has two: one at MB between interactions I1 and I2,
and one atMA between I3 and the end of the experiment.
The fact that Z takes a value of X in all but one row is

accidental to this example. This motivates the following
definition. Let us define a measurement chain’s record-
keepers to be those systems s ∈ S, such that Z(s, i) ̸= X
for at least one i ∈ Is. Let us define a measurement
chain’s record-keeping interactions to be those interac-
tions i ∈ I, such that Z(s, i) ̸= X for at least one s ∈ Si.
All examples considered up to this point have had a
unique record keeper and a unique record-keeping inter-
action. This is in addition to all being locally-sequential.

But, what exactly changes when we move away from
non-locally-sequential measurement chains? In order to
address this question, I must first make a number of defi-
nitions leading to a characterization of strongly, globally
and locally sequential measurement chains in this formal-
ization.

For any measurement chain we can define a new
relation, 7→, such that i 7→ j if and only if there exists
an s ∈ S with i, j ∈ Is and i 7→s j. That is, 7→ tells
whether any 7→s connects i and j. In the above example
the directed graph for 7→ is:

I6

I5

I4

I1

I2 I3

Note that, in this example, the directed graph of 7→ is
not linear even though the graphs of each 7→s are. This
reflects the fact that while this example is locally sequen-
tial, it is not globally sequential.
Before characterizing this distinction in this formaliza-

tion another key definition is needed. Given any measure-
ment chain we can define another new relation by taking
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the reflexive transitive closure13 of 7→ (notated 7→RTC).
According to this new relation i 7→RTC j just in case ei-
ther i = j or some sequence of systems and interactions
connect i to j via their inputs and outputs.

In many cases, it will be natural to demand that each
interaction i has i 7→RTC j for some record keeping in-
teraction j. Otherwise, it seems like i is irrelevant to the
end state of the experiment. In our running example, I3
is the only record keeping interaction and moreover every
interaction i has i 7→RTC I3.
We can now characterize strongly, globally, and locally

sequential measurement chains in this formalization.
A measurement chain is globally sequential just in case

7→RTC is a total ordering. Our running example is not
globally sequential, but would be if we dropped interac-
tion I4.

A measurement chain is strongly sequential just in case
it is globally sequential, all its interactions are pair-wise
(with |Si| = 2) and moreover |S| = |I| + 1. This allows
us to define a total ordering over S.
By contrast, in this formalization, a measurement

chain is locally sequential when for each s ∈ S we have
that 7→RTC

s is a total ordering along with a compatibility
constraint. Specifically, the set of relations {7→s} is com-
patible if and only if 7→RTC is at least a partial ordering.
Note that our running example is locally sequential.

But what exactly is this compatibility constraint do-
ing? In general, for any relation Q we have that QRTC

is a partial order if and only if Q is acyclic: there is no
N > 1 and no sequence a1, . . . , aN such that anQan+1

and aN = a1. Thus, explicitly, the compatibility criteria
here for {7→s}s∈S is just that 7→ is acyclic. The mea-
surement chain having 7→ acyclic means that there are
no circular dependencies.

How could this have failed for a locally sequential mea-
surement chain? Consider Fig. 12, with each 7→s being
linear but having different orientations, some right-to-left
and some left-to-right. In such a case 7→ would have been
cyclic. Compatibility ensures all of our systems agree
about what “later” means.

Given this characterization, if we are to move away
from locally sequential measurement chains, we need to
consider 7→s which do not lead to 7→RTC

s being a total
ordering. As I will now discuss, it is useful to characterize
measurement chains which are not locally-sequential into
two types depending on whether 7→RTC

s is partial ordering
or not.

Let us then define a measurement chain to be locally
partially ordered when for each s ∈ S we have that 7→RTC

s

is a partial ordering and moreover the 7→s relations are

13 Roughly, the reflexive transitive closure of a relation Q is this
relation plus aQa for every a and aQb for every a and b where
for some c we have aQc ∧ cQb. This last step is done repeatedly
until convergence. Concretely, QRTC is the smallest extension of
Q which is transitive and reflexive. Namely, it is the intersection
of all of the extensions of Q which are reflexive and transitive.

R1

R2

R3

R4

R6 R5

R0

Figure 13. The space-time regions involved in the entangle-
ment harvesting experiment formalized in Appendix A.

compatible such that 7→RTC is also a partial ordering. De-
manding that each 7→RTC

s is a partial ordering is equiv-
alent to demanding that each 7→s is acyclic. Thus an
alternate name for such measurement chains might be
to call them locally acyclic measurement chains. In the
following subsection we will see a QFT-based example of
a locally acyclic measurement chain which is not locally
sequential.
By contrast, let us then define a measurement chain to

be locally cyclic when for at least one s ∈ S we have 7→s

being cyclic. From this it follows that neither 7→RTC
s nor

7→RTC are partial orders. In the following subsection we
will see a QFT-based example of a cyclic measurement
chain.

3. Two QFT-based Examples

Let us now apply this formalization to a QFT exper-
iment. In particular, let us consider an entanglement
harvesting experiment [16, 29–35] of the kind described
in Sec. VIC.
Consider the following experiment: A quantum field,

ϕ, comes to a cold global thermal equilibrium by some
process in the past of our experiment (in region R0 in
Fig.13). Following this entanglement is harvested from
this field by local interactions with two initially uncorre-
lated probe systems, let’s call them Probe 1 and Probe
2. Specifically, Probe 1 undergoes local interactions with
ϕ in regions R1, R2, and R3. Probe 2 interacts with ϕ
in region R4. Each of these probes later interact with
some measurement device M1 and M2 in regions R5 and
R6 respectively. The correlation between the outputs of
these measurement devices confirms that the probes were
entangled after their interaction with ϕ. Our experiment
might then investigate how the amount of entangle har-
vested depends on various factors: the initial tempera-
ture of ϕ, the strengths of various interactions, etc.
Let us now design a measurement chain to help us

guide us in modeling this experiment. Firstly, regarding
the thermalization of the field, ϕ, we may reasonably
leave this process out of our modeling and just assume
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that ϕ starts in a global thermal state. Next we must
consider how to model the probe systems. Roughly, our
options are either to model them as QFTs (e.g., in the FV
framework) or as non-relativistic quantum systems (e.g.,
as a UDW detector) localized around some trajectory.
See Sec. VI for details.

Given the spacetime relations between R1, R2 and R3

we cannot model Probe 1 as a non-relativistic system
localized around some trajectory. No time-like trajectory
can get us from R1 to R3. Thus, we are forced to model
Probe 1 as a QFT, let’s call it ψ. Regarding Probe 2, no
such barrier exists. Let us suppose that we can model
this probe well as a UDW detector.

The interactions in R5 and R6 are with measure-
ment devices M1 and M2. It is doubtful we can model
these systems or the measurement processes within QFT.
Thus, between R1-R3 and R5 we will need to switch
to describing ψ within non-relativistic quantum theory.
These measurements can then both be handled well
within our already established non-relativistic quantum
measurement theory.

Let’s transfer the above considerations into a formal-
ized measurement chain. We have five systems: ϕ the
field the entanglement is being harvested from, ψ a probe
field, UDW a Unruh-DeWitt detector, two measurement
apparatuses, M1 and M2. Three theories are relevant to
this measurement chain: T1, quantum field theory, T2,
non-relativistic quantum theory, and T3 being classical
theory. These systems undergo six interactions as indi-
cated by the following table:

H(s, i) | I1 I2 I3 I4 I5 I6
ϕ | T1 T1 T1 T1 ∅ ∅
ψ | T1 T1 T1 ∅ T2 ∅

UDW | ∅ ∅ ∅ T2 ∅ T2
M1 | ∅ ∅ ∅ ∅ T2 ∅
M2 | ∅ ∅ ∅ ∅ ∅ T2

Already we can see that our measurement chain involves
a diagonal cut in I4 between ϕ and our UDW detector.
This is a diagonal QFT-cut because a QFT is coupled to
a non-QFT.

Next we need to specify 7→s. How do these spacetime
relations in Fig. 13 determine the relations 7→s? We can
understand an interaction’s “outputs” in the above for-
malization as meaning any future oriented time-like or
light-like trajectories leaving the spacetime region asso-
ciated with an interaction. We can similarly understand
an interaction’s “inputs”. Thus, in this context14 we can
define i 7→s j if and only if s@i and s@j and there is
future directed time-like or light-like curve beginning in

14 Applied to other problems, one may want to add an extra con-
dition here that these time-like or light-like trajectories are not
allowed to travel through other interaction regions. If all paths
from RA to RC lead through RB , it makes more sense to un-
derstand IA as having no output into IC . Rather, we can then
understand IA to output into IB which then outputs into IC .

Ri and ending in Rj . Taking 7→s to be determined in
this way, we have:

S | Directed Graph of 7→s over Is
ϕ | I1 7→ϕ I2 7→ϕ I3, I4
ψ | (See Below)

UDW | I4 7→UDW I6
M1 | I5
M2 | I6

The relation 7→ψ in this case is:

I1

I2 I3

I5

The first thing to notice here is that the directed graph
for 7→ϕ is composed of two disjoint subgraphs. It follows
from this that 7→RTC

ϕ is not a total order and therefore
this measurement chain is not locally sequential. Next,
notice that one interaction may have multiple outputs for
a single system: I1 7→ψ I2 and I1 7→ψ I5. This has not
occurred in any previous example. Secondly, notice that
it is not the case that I1 7→ψ I3 even though I1 7→ψ I2
and I2 7→ψ I3. That is, 7→ψ is not transitive. The rela-
tion, 7→RTC

ψ , however is transitive but importantly can’t
be interpreted straightforwardly in terms of spacetime
regions.
The directed graph for 7→ is:

I1

I2 I3

I6

I5

I4

Notice that the directed graph for 7→ is composed of two
disjoint subgraphs. This has not happened before in any
previous examples. The fact that this happens here actu-
ally reflects a central consideration in this entanglement
harvesting experiment. For the entanglement between ψ
and UDW to be cleanly associated with space-like en-
tanglement in the field ϕ their interactions and measure-
ments need to be isolated from each other.
The last thing we need to do to specify our measure-

ment chain is to define the Z function. Z here is given
by:

Z(s, i) | I1 I2 I3 I4 I5 I6
ϕ | X X X X ∅ ∅
ψ | X X X ∅ X ∅

UDW | ∅ ∅ ∅ X ∅ X
M1 | ∅ ∅ ∅ ∅ T3 ∅
M2 | ∅ ∅ ∅ ∅ ∅ T3
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RjRi

Figure 14. Spacetime regions which would lead to a cyclic
measurement chain. Regions Ri and Rj are both before and
after each other in a sense.

The only interactions which are directly relevant to the
end of the experiment are the measurements at I5 and
I6. As the above table indicates, the states of M1 and
M2 following these interactions will be modeled in T3,
i.e., classically.

The vertical cuts in this measurement chain are as fol-
lows. Between I1-I3 and I5 we have a vertical cut on ψ
from T1 to T2. That is, after ψ is done probing ϕ we
need to switch to modeling it as a non-relativistic quan-
tum system. There are many options available as to how
one might do this, see Sec. VI. In any case, this is a ver-
tical QFT-cut. There are also two vertical Heisenberg
cuts on M1 and M2 following the interactions I5 and I6
respectively.

We have thus formalized a non-locally-sequential mea-
surement chain. This measurement chain was, however,
acyclic. That is, 7→ is acyclic such that 7→RTC is a partial
order. As I suggested in the previous subsection, this will
not always be the case. Consider for instance, the space-
time regions shown in Fig. 14. Consider a field f which
undergoes interactions i and j localized in these regions.
In accordance with our above discussion we would have
i 7→f j and j 7→f i. This is because a part of Ri is in the
future of Rj and likewise part of Rj is in the future of Ri.
The formalization presented in the previous subsection is
flexible enough to handle such examples.

4. Proving the Necessity of Cuts

Having so formalized modelings of measurement
chains, let’s now prove the claim in the main paper re-
garding under what conditions cuts are required. In par-
ticular, let us now prove the following claim: If one part
of the experiment must be modeled some way and an-
other later part must not be modeled in this way then
somewhere in between these we need to make a certain
kind of cut.

Formalizing this claim we understand the first part of
the experiment as referring to a system s at one of its
interactions i with s@i. The second part of the experi-
ment mentioned above could is understood as a system

t either at or after one of its interactions j with t@j. In
the first case we will be concerned with H(t, j) and in
the second case Z(t, j). We understand the “must (must
not) be modeled in some way” here as specifying some
subset of our theories V ⊂ T and fixing H(s, i) ∈ V and
H(t, j) /∈ V (or alternatively Z(t, j) /∈ V ). We under-
stand the claim that the second part of the experiment is
“later” as15. Finally, we can understand the “the certain
kind of cut” here to mean either a vertical or a diagonal
V cut.
Thus the formalized claim is as follows. Suppose we are

given any modeling of a measurement chain and are given
some s0, t0 ∈ S and i0, j0 ∈ I with s0@i0 and t0@j0 and
i0 7→RTC j0. Suppose further that H(s0, i0) ∈ V and ei-
ther H(t0, j0) /∈ V or if Z(t0, j0) ̸= X then Z(t0, j0) /∈ V .
In such cases, there must be some interaction k with
i0 7→RTC k 7→RTC j0 where either a diagonal or vertical
V cut happens.

Proof: Suppose for contradiction that no such cut oc-
curs. I will show that this implies that H(t0, j0) ∈ V and
if Z(t0, j0) ̸= X then Z(t0, j0) /∈ V . This would be in
explicit contradiction with our above assumptions.

First, note that no vertical V cuts implies that for
all s ∈ S and i, j ∈ Is with i 7→s j we have
H(s, i) ∈ V =⇒ H(s, j) ∈ V . Similarly, if Z(s, i) ̸= X
then H(s, i) ∈ V =⇒ Z(s, i) ∈ V . Similarly, no diago-
nal V cuts implies that for all i ∈ I and s, t ∈ Si we
have H(s, i) ∈ V =⇒ H(t, i) ∈ V . As I will now show,
our desired result follows from a series of applications of
these three implications.

To see this, begin by noting that i0 7→RTC j0
means that there exists some sequence of interactions
k1, . . . , kN ∈ I and some corresponding sequence of sys-
tems x0, . . . , xN ∈ S with,

i 7→x0
k1 7→x1

· · · 7→xN−1
kN 7→xN j. (A1)

This follows from the definition of 7→RTC as the reflexive
transitive closure of 7→ and the definition of 7→ in terms of
7→s. For the above sequence to make sense it is required
that kn ∈ Ixn ∩ Ixn−1

That is, the interaction kn must
involve both xn and xn−1.

We can decompose any such sequence into a series of
“runs” where xn = · · · = xn+m−1 = y for some m > 0
and some fixed y ∈ S. Such runs make repeated use of
some 7→y as,

kn 7→y kn+1 7→y · · · 7→y kn+m. (A2)

Note that because no vertical V cuts are allowed
we have H(y, kn) ∈ V =⇒ H(y, kn+1) ∈ V . Ap-
plying this logic repeatedly we ultimately have
H(y, kn) ∈ V =⇒ H(y, kn+m) ∈ V . Thus, moving

15 Note that given the discussion in the previous subsection, one
must be careful when trying to interpret 7→RTC in terms of space-
time relations.
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along one of these 7→y runs cannot help us switch from
theories in V to theories in T − V .
What about at the interface between such runs?

Namely,

· · · 7→y kℓ−1 7→y kℓ 7→z kℓ+1 7→z . . . . (A3)

with y ̸= z and y, z ∈ Skℓ . Must we have H(z, kℓ+1) ∈ V
if H(y, kℓ) ∈ V ? Yes, because we are not allowed diago-
nal cuts we must have H(y, kn) ∈ V =⇒ H(z, kn) ∈ V .
Since y and z are both involved in the interaction
kn they must both be modeled in V , anything other-
wise would give rise to a diagonal V cut. However,

then by our above logic, without vertical cuts we have
H(z, kℓ) ∈ V =⇒ H(z, kℓ+1) ∈ V .

Thus, without allowing for vertical cuts or diagonal
V cuts, we ultimately have H(s, i) ∈ V =⇒ H(t, j) ∈ V
and therefore H(t, j) ∈ V . If Z(t, j) ̸= X then we have
further that Z(t, j) ∈ V since no vertical V cuts implies
H(t, j) ∈ V =⇒ Z(t, j) ∈ V .

In order to avoid this conclusion we need to allow for
vertical or diagonal V cuts. In particular, the above proof
shows that we must either take a vertical V -cut right at
the end, or otherwise at some point in sequence, Eq. (A1)
connection i and j either type of cut must happen.
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