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Sadi Carnot’s 1824 Reflections on the Motive Power of Fire created the new 

science of thermodynamics. It succeeded in its audacious goal of finding a very 

general theory of the efficiency of heat engines, by introducing and exploiting the 

strange and unexpected notion of a thermodynamically reversible process. The 

notion is internally contradictory. It requires the states of these processes to be 

both in unchanging equilibrium, with a perfect balance of driving forces, while 

also changing. The work of Sadi’s father, Lazare Carnot, on the efficiency of 

ordinary machines provided Sadi with a template of a very general theory of the 

efficiency of ordinary machines; and a characterization of the most efficient 

processes in them as those that minimize differences of driving forces and can be 

run in reverse. Lazare’s work could provide these resources because of its choice 

of a dissipative ontology of inelastic collisions among hard bodies. This 

historically ill-fated choice meant that Lazare’s machines were analogous to 

Sadi’s heat engines in their key aspects: they are built from essentially dissipative 

processes. Lazare’s strategies for controlling dissipation and optimizing his 

machines were transferrable to the analogous problems Sadi found in heat 

engines. The unanswerable historical question is whether Sadi would have sought 

a general theory of heat engines at all or found these general theoretical devices 

without the template provided in analogy by the prior work of Lazare. 

 
1 I thank Rawad El Skaf and Paolo Palmieri for helpful discussion. 
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1. Introduction 

1.1 On the Origin of Novel ideas in Science 

 This is a paper about the origin of novel idea in science. How did the prominent figures in 

the history of our science arrive at their greatest ideas? Might the best answer be that these ideas 

are the products of genius and emerge through a process impenetrable to rational analysis? 

 This easy answer is, I believe, mistaken. No doubt, some part of the answer will be that a 

brilliant mind can make connections that no prosaic analysis can dissect. Such moments, opaque 

to later analysis, time and again prove to be only a smaller part of the discovery. Even the 

greatest minds have no superhuman powers. They must draw on the resources around them, even 

if they are able to exploit them better than their peers. I have found repeatedly that the larger 

process of discovery is one that can be dissected and understood. Einstein founded his special 

theory of relativity in 1905 with an extraordinary idea concerning time, the relativity of 

simultaneity. A careful reconstruction (Norton, 2004) of his earlier work shows that years of 

exploration left it as the only viable option. In the same year, Einstein proposed the revolutionary 

idea of the light quantum. Similar analysis (Norton, 2006) shows how Einstein’s expertise in 

statistical physics enabled him to see the proposal as encoded in the macroscopic properties of 

heat radiation. 

1.2 Sadi Carnot’s Réflexions 

 This paper recounts another story of a great discovery in science and identifies the 

resources in earlier science that made it possible. Sadi Carnot’s Réflexions sur la Puissance 

Motrice du Feu of 1824 is an extraordinary work in science comparable to those of Einstein. Its 

great contributions are of both facts and methods. First, as to facts, Carnot wrote while the 

industrial revolution was reaching its zenith. This revolution was powered by heat derived from 

burning coal. The heat liberated was used to raise steam that would then drive the engines that 

turned the wheels of industry. Carnot addressed the most practical of problems. Just how much 

motive power can be derived from some fixed quantity of heat? What design of heat engine is 

best? Should it employ steam as its operating fluid, or perhaps vapors of alcohol or mercury or 

sulfur? To these eminently practical questions of industrial economy, Carnot supplied answers of 
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extraordinary generality and simplicity. There is a limit to the motive power that can be 

generated; and it is set solely by the temperature of the source of the engine’s heat and the 

temperature of the sink to which the spent heat is discharged. The design of a machine that 

achieves this limit is one whose operation minimizes all unbalanced thermal forces. Achieving 

this minimum is all that matters for optimizing the efficiency of the heat engine. That optimum is 

the same, no matter which fluid—steam, alcohol, mercury or sulfur—is used and which design is 

chosen for the engine. 

 Carnot could arrive at these extraordinary results because he introduced a new and 

powerful way of reasoning about thermal systems. It became the foundation of the new science 

of “thermodynamics”2. The core of his method is the idea of the thermodynamically reversible 

process. They are processes that are in apparent internal contradiction. They are both always at 

equilibrium, or infinitesimally removed from it, and also proceed from start to finish, even 

though equilibrium systems are unchanging.3 Comprehending these processes is the great 

obstacle each student faces in learning to think thermodynamically. It is not so different from the 

challenge of grasping infinitesimals when learning calculus after the manner of Newton. They 

are quantities somehow smaller than any non-zero magnitude, but not themselves zero. 

1.3 Sadi and Lazare 

  How did Sadi Carnot arrive at these extraordinary results? This paper seeks to show that 

Sadi Carnot arrived at key elements of his Réflexions through an analogy with the work of his 

father, Lazare Carnot, on the efficiency of ordinary machines, most notably his 1783, Essai sur 

les machines en général. The connection to his father’s work has long been recognized. In his 

short biographical note on Sadi, his brother, Hippolyte, remarked vaguely on similarities in 

various unpublished memoranda by Sadi (H. Carnot, 1897, p. 36): 

 
2 So named later through the adjective “thermo-dynamic” by Thomson, 1852. 
3 See Norton (2016) for an examination and historical survey of the concept that I call “The 

Impossible Process,” the thermodynamically reversible process. 
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I find in them, for my part, touching analogies with the thoughts of my father, 

although the father and son had, unfortunately, lived almost always apart, by force 

of circumstances.*[4] 

That Lazare Carnot’s work on machines, specifically, strongly influenced Sadi Carnot’s analysis 

of heat engines is a guiding theme of the researches into the two Carnots of Charles Gillispie and 

Raffaele Pisano.5 “It appeared to me that Sadi Carnot’s analysis may be read as an application of 

his father’s invention of the science of machines to heat engines,” Gillispie wrote in his 

Foreward to Gillispie and Pisano (2014, p. v). Their concluding chapter 11 summarizes the 

connections between the work of Lazare and Sadi. Their goal is expansive. They seek to collect 

as many commonalities as they can. What results is eight tables of commonalities of the same 

type. Each table in turn lists numerous individual commonalities. This will satisfy readers who 

seek an account of uncompromising thoroughness and attention to every detail. A more casual 

reader, however, will be rapidly overwhelmed; and a slightly more dedicated reader will struggle 

to separate the many insignificant commonalities from the few of importance. 

1.4 The Heuristic Analogies 

 My goal here is narrower. It is to provide a simplified account of the connection between 

the work of the two Carnots and to identify what in that connection was of the greatest 

importance in the novelty of Sadi’s work. In my view, there are two extraordinary elements in 

Sadi’s Réflexions and we can identify sources for both in Lazare’s Essai. 

 First, it is simply extraordinary that Sadi would even seek, let alone find, a general theory 

of such simplicity for complicated devices like steam engines, which are composed of so many 

disparate parts. Here Sadi could take his orientation directly from Lazare’s work. The explicit 

goal of Lazare’s Essai is just such a theory for ordinary machines that transmit motive power, no 

 
4 Hippolyte’s footnote: “See the Appendix for these memoranda and for other previously 

unpublished matter.” 
5 Gillispie and Pisano (2014) are unable to identify much opportunity for collaboration in person 

by Lazare and Sadi on the latter’s work on heat engines. They note (p. 77) merely a visit of “a 

few weeks in 1821” by Sadi with Lazare. After that, however, Sadi concentrated on his work on 

heat engines. 
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matter which of many possible components of diverse character are combined in the machines. 

Sadi sought the same for heat engines. 

 Second, Sadi’s analysis depended on the internally contradictory notion of a 

thermodynamically reversible process. Here a fortuitious element of Lazare’s analysis proved 

suggestive. Lazare’s analysis took its basic process to be the dissipative, inelastic collisions of 

hard bodies. In them vis viva—the forerunner of the modern notion of kinetic energy—is 

destroyed. His analysis is unlike the foundational studies in mechanics of the ensuing century in 

which elastic collisions and energy conservation are taken as fundamental. Yet just this ill-fated, 

dissipative foundation was precisely what made it valuable as a model for Sadi’s work on heat 

engines. For the thermal processes of heat engines are also dissipative, but in another way. In 

later terms unknown to Sadi, thermal processes only advance if they are increasing the overall 

entropy of the system in a unidirectional process. 

 Working within his dissipative ontology, Lazare developed concepts and methods that 

identified those processes that minimize dissipation and optimize the efficient transfer of motive 

power in machines. He concluded that the greatest efficiency is found in processes that minimize 

or eliminate shocks or percussions in the collisions of the bodies; and such processes are realized 

by what he called “geometrical movements.” These last movements are characterized by their 

reversibility: they can proceed with equal facility in either forward or reverse direction. 

 At a suitable level of abstraction, the analyses of the thermal and mechanical systems can 

be the same, since they both implement dissipative processes. When imbalances in driving 

forces—mechanical or thermal—are minimized, we have processes that are least dissipative. 

That they are so is suggested by the fact that the minimization of the imbalances is realized in 

processes that are reversible. That means that we can fully restore the initial conditions merely 

by reversing the process, so that nothing is lost in the processes that cannot be recovered. 

 Both of these notions reappear as foundational in Sadi’s work. They form the basis of his 

conception of the thermodynamically reversible process. Where Lazare sought the elimination of 

the transmission of motive power by discontinuous shocks and percussions, Sadi sought the 

elimination of all heat transfer by discontinuities of temperature. Where Lazare’s geometrical 

movements were reversible, so also were Sadi’s least dissipative process in which heat is always 

transferred by insensible differences in temperature. The reversibility of these processes is key to 
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Sadi’s whole account. They provide him the means to prove his most general results on the 

efficiency heat engines. 

 That Sadi could conceive this notion of a thermodynamically reversible process seems in 

retrospect astonishing. For such processes, if understood literally, must meet contradictory 

demands and that makes them inadmissible in any cogent analysis. We are to suppose processes 

that are always at equilibrium, or at infinitesimal remove, yet at the same time undergoing 

change. Nonetheless, they become the central conception of a new style of analysis, 

thermodynamic reasoning. 

 If, however, we see Sadi as proceeding by analogy with the work of Lazare, it is less 

astonishing. While we may suspect that imbalanced thermal forces are dissipative, it is hardly 

obvious that eliminating these imbalances is the necessary and sufficient condition for minimal 

dissipation in a heat engine. In ordinary machines, however, it takes no special insight to realize 

that a percussive impact in mechanics is dissipative. For part of the motion in a percussive 

impact is lost and that loss is manifested in the noise of the impact. The loss is all too evident to 

anyone who witnesses it. It is not so great a step from that observation to the general 

demonstration that the elimination of all percussion gives us the most efficient machines. 

 Lazare’s general demonstration for ordinary machines provides a template for the 

theoretical identification of the least dissipative systems. If Sadi suspects by analogy that that 

imbalanced thermal forces are the source of dissipation in heat engines, can he close the gap and 

find a general demonstration that it is so? Should he even suspect that it is so? Lazare’s general 

demonstration in the case of ordinary machines provides the encouragement and the means to 

close the gap quickly. All Sadi needs to do is to reconstitute Lazare’s reversible “geometrical 

movements” as the analogous reversible processes in thermodynamics and he has all the means 

needed to show that these reversible thermal processes are the least dissipative. 

1.5 The Sections of this paper 

 Section 2 below provides a summary of Lazare’s work in his 1783 Essai sur les machines 

en général that pays special attention to aspects that are analogous to those of Sadi’s Réflexions. 

Lazare’s Essai appears clearly written on a superficial scan. However closer reading finds it 

poorly organized and obscure on point after point. My hope is that, in so far as my own 

understanding is able, the summary of this section will make the Essai sufficiently accessible to 

readers interested in comparing it with Sadi’s later work, without the need to consult the 
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lengthier and more detailed analysis of Gillispie and Pisano (2014). Some readers will find it 

convenient to skip ahead to Section 3, which contains a short synopsis of the major points that 

enter into analogies with Sadi’s later work. 

 Sections 4, 5 and 6 recount those aspects of Sadi’s work that have been widely 

recognized already as conditioned by the historical context of his work. Section 5 reviews the 

most important of Sadi’s general results, which are derived by what I call his “core reversibility 

argument.” That he worked with the conserved fluid caloric theory of heat (as recalled in Section 

4) enabled Sadi to arrive at these results without positing a new second law of thermodynamics 

or even a strict law of energy conservation. He merely needed the prohibition of perpetual 

motion. Section 6 reports the analogy Sadi drew between waterwheels and his abstract 

characterization of heat engines. It also connects Sadi’s work with earlier work on ordinary 

machines such as his father’s. 

 Section 7 recounts the first major analogy in Sadi’s Réflexions to Lazare’s Essai. It is that 

Sadi like Lazare is seeking a very general theory. That now seems less remarkable since we now 

have the thermodynamics that grew from Sadi’s analysis. However, a comparison with other 

work on steam engines in Sadi’s time shows just how far this other work was from conceiving 

anything like the general theory Sadi offered. Section 8 raises the possibility that Sadi might 

have even conceived his analysis not merely as proceeding in analogy with that of Lazare’s, but 

as an application of Lazare’s general results to heat engines. 

 Section 9 reviews the analogy between the most efficient processes of Lazare’s analysis 

of ordinary machines and the corresponding reversible processes in Sadi’s analysis of heat 

engines. The analogy could provide Sadi an easy path to his conception, for it is otherwise not 

obvious that the most efficient processes in heat engines would be those that minimize 

temperature differences and can be reversed. The analogy may also have encouraged Sadi to 

proceed with the notion of thermodynamically reversible processes, even though, read literally, 

they must meet contradictory demands. For Lazare’s conception could be implemented without 

such contradictions. 

 Section 10 examines the analogy as an argument form, from the perspective of the 

material theory of induction. The analogy proves to be quite robust and is left intact even if we 

alter either Lazare’s or Sadi’s analyses. That indicates that the analogy depends not on some 

accidental similarity but is grounded quite deeply in the fact that both analyses are treating 



 8 

essentially dissipative processes. Section 11 offers a brief summary conclusion. Two appendices 

provide technical details that supplement the account of Lazare’s Essai in Section 2. 

2. Lazare Carnot’s Essai 

 Lazare Carnot presented his analysis of the efficiency of machines his 1783, Essai sur les 

machines en général. Its importance was eventually recognized by the British scientific 

community. An English translation was published in Philosophical Magazine as “Essay upon 

Machines in General,” Carnot (1808, 1809). Lazare himself presented a version of the analysis in 

his later Principes fondamentaux de l’équilibre et du movement6 (Carnot, 1803). Here I will 

consider the Essai, since I find it most accessible. For an extended account of the research and 

publications leading up to and after the Essai, see Gillispie and Pisano (2014, Ch. 2, 3); and for a 

shorter account Koetsier (2007). 

2.1 The Generality of “Machines in General” 

 The term “machine” now has a general and diffuse meaning. In Lazare’s time, however, 

the term still retained much of its original meaning. The Diderot Encyclopédie was the 

authoritative source in Lazare’s time. The entry for “Machine” (Diderot, 1765, pp. 795-96) 

recalled the general conception as concerning devices that augmented and regulated moving 

forces. It listed the six classic “simple machines”: the lever, the winch, the pulley, the inclined 

plane, the wedge and the screw. “Composite machines” were just combinations of these simple 

machines. The entry quickly went beyond this classical conception and recounted many more 

devices called machines, including hydraulic machines that use pumps to move water. Lazare’s  

conception followed this more expansive approach. His definition was (1808, p. 157): 

When one body acts upon another, it is always immediately, or by the agency of 

some intermediate body: This intermediate body is generally what is called a 

machine… 

Lazare’s applications later in his Essai include hydraulic and pneumatic machines. In all these 

forms, the central conception is of the passage of motive power. 

 
6 Koetsier (2007, p. 31) “The book does not contain anything new compared to the early 

version…” 
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 The goal of Lazare’s analysis was to determine the conditions under which a machine 

passes motive power most efficiently. The qualification “in general” in the Essai’s title is no idle 

decoration, but conveys the core goal (1808, p. 12): 

In my opinion, however, too little attention has been bestowed in the development 

of those properties which are common to machinery in general, and which for this 

reason no more belong to the cords of a machine than to the lever, the vice, or any 

other machine, whether simple or compound. 

Lazare sought results of the greatest generality, applicable to all machines as he conceived them. 

2.2 Hard Body Collisions are Fundamental 

 Having set himself the task of finding general results applicable to all machines, Lazare 

needed a theoretical setting in which such results could be developed. To this end, Lazare took as 

his starting point the collision of “hard” bodies; or—as we would now call them—inelastic 

bodies. Lazare mentions bodies of “different degrees of elasticity.” They are to be 

accommodated as a special case of a system of hard bodies (1808, p. 209): 

… we regard the elastic bodies as composed of an infinity of hard corpuscles 

separated by small compressible rods, to which we attribute all the elastic virtue of 

these bodies; so that, properly speaking, we do not consider in nature any other than 

bodies endowed with different moving forces. We shall follow this method as the 

simplest; we shall therefore reduce the question to the investigation of the laws 

observed by hard bodies, and shall afterwards make some applications of them to 

cases in which bodies are endowed with different of degrees of elasticity. 

 This decision at the outset to base his account on the collision of hard bodies proved 

decisive for the utility of Lazare’s account to Sadi’s later reflections on heat engines. Such 

collisions are essentially dissipative. As we shall see, they inevitably destroy vis viva, the earlier 

version of what we now identify as kinetic energy. The processes of Sadi’s heat engines are 

fundamentally dissipative. Thus, he could find in Lazare’s analysis of ordinary machines a model 

for how one can analyze the efficiency of the operation of processes in dissipative systems. 

 Had Lazare chosen the collision of elastic bodies as fundamental, his account would have 

not provided this fertile model for Sadi. While Lazare’s choice was fortuitous for Sadi, it all but 

guaranteed that Lazare’s research program would be a dead end. For the statistical mechanics of 

the following century took conservative physical systems as fundamental. The kinetic theory of 
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gases of Clausius, Maxwell and Boltzmann accounted for gases as collections of rapidly moving 

molecules undergoing elastic collisions. Had they followed Lazare’s lead and treated the 

collisions amongst molecules as inelastic, successive collisions would deplete the gas molecules 

of their vis viva. It would be impossible to account for the stability and persistence of isolated of 

gases. Such a kinetic gases would lose their gaseous character when their molecules’ vis viva was 

lost. 

 These considerations do suggest, however, why Lazare’s choice of hard collisions was all 

but unavoidable in his time. Had he taken bodies undergoing fully elastic collisions as his 

starting point, he would have found it very difficult to recover any distinction between 

dissipative and non-dissipative interactions. For both momentum and kinetic energy, to use the 

modern terms, are conserved in such systems. We too easily forget how difficult it was for the 

modern treatments to recover a precise account of dissipation for such systems. The key device is 

that dissipation derives from the energy of one component system being distributed over very 

many degrees of freedom of the larger system. The kinetic energy of two large bodies 

undergoing an inelastic collision is not destroyed but is dissipated as the chaotic motions of the 

very many air molecules in the surrounding medium. This dissipative process is too complicated 

to be treated exactly by such methods as Lazare used. Instead, Maxwell’s later innovation was to 

treat the processes statistically. 

 Lazare was certainly aware that it would be difficult to separate dissipative and non-

dissipative interactions in an ontology of perfectly elastic collision where all interactions are 

conservative. He remarked in passing (1808, p. 156) on “…the preservation of living powers 

under the shock of perfectly elastic bodies.” By basing his analysis on hard body collisions, he 

had chosen a fundamental process that is, in general, dissipative. He could then investigate the 

conditions under which the dissipation would be minimized.  

 We may also ask why Lazare chose hard body collisions as the fundamental dissipative 

process. Friction would seem to be the obvious obstacle to machines efficiently passing on 

motive power. The extra effort needed to overcome friction is evident to anyone who has even 

slight experience with simple machines like the pulley, wedge or screw. Urging as a general 

matter than all friction is to be minimized would seem to be a quite serviceable general guide to 

the minimization of dissipation. Yet friction is all but never addressed directly in Lazare’s 
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analysis. The most sustained mention is an admonition to avoid friction, delivered as something 

of a practical aside beneath the generality of Lazare’s theorems (1808, p. 301): 

It is not less evident, that in order to give the machines the greatest effect possible, 

we should avoid or diminish, at least as much as possible, the powers, such as 

friction, rubbing of cords, the resistance of the air, which are always, in whatever 

direction the machine moves, among the number of the forces I have called 

resisting… 

This neglect does not derive from any lack of interest or attention to friction. We learn from the 

narrative of Gillispie and Pisano (2014, Ch. 3) that Lazare had written two memoirs in 1778 and 

1780. In them, he developed ideas that would appear in the 1783 Essai. They include discussion 

of Lazare’s experimental work on friction. The two memoires were written in response to a prize 

competition announced by the Académie des sciences in 1777 on the subject of:7 

The theory of simple machines with regard to friction and the stiffness of cordage, 

but it [the Academy] requires that the laws of friction and the examination of the 

effects resulting from stiffness in cordage be determined by new experiments 

conducted on a large scale. 

Why not treat friction as fundamental? Perhaps, adhering to a corpuscular ontology, the 

treatment of bodies as collections of hard bodies appeared more fundamental. Friction, we might 

imagine, would be recovered as a secondary process, arising from the interactions of these 

corpuscles. Further, the physics of the collisions of bodies was, conveniently, already well 

developed, whereas theories of friction were still developing. The work that eventually won the 

Academy prize, Coulomb’s (1782) memoire, became a pivotal work on the physics of friction. 

2.3 Resolving Hard Body Collisions 

 The dynamics of machines in Lazare’s analysis derive from the inelastic collisions of 

hard bodies. To enable an analysis of these collisions, Lazare announced two laws. The second 

characterized a hard body collision (1808, p. 203): 

SECOND LAW. —When two hard bodies act upon each other, by shock or 

pressure, i.e. in virtue of their impenetrability, their relative velocity, immediately 

after the reciprocal action, is always null. 

 
7 As quoted in Gillispie and Pisano (2014, p. 47). 
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The simplest case is the collision two hard bodies whose motions are aligned, as shown in Figure 

1. Since their relative speed after the collision is zero (and they must remain in their common 

line of motion), they stick together. 

 

 
Figure 1. Hard body collision for aligned motions 

 

This law by itself is insufficient to resolve this simple case of aligned motions and, more 

important, the more general case of collisions of hard bodies whose motions are not aligned, 

such as is shown in Figure 2. For this purpose, Lazare needed another law (p. 207): 

FIRST LAW.—Action and Reaction are always equal and contrary. 

This is a version of Newton’s own third law. In the ensuing explication, it becomes clear that 

Lazare’s presentation of the law matched that of Newton in a key aspect. The actions—forces—

are treated as impulsive, acting momentarily, and producing a momentary alteration in the 

motion of the affected bodies. That is, their effect is a discrete change of motion, not a rate of 

change of motion, as is the modern reading. This gives Lazare a rule to be applied directly to a 

hard body in a collision (p. 208): 

… the velocity it assumes the instant afterwards is the force resulting from that 

which this other body impresses upon it, and from that which it would have without 

this last force. 

The action is measured as the “quantity of motion,” which is the product of the mass and the 

velocity change. In the collision, according to this first law, the quantity of motion gained by one 
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body is exactly offset by the change in the quantity of motion of the second body. A final 

stipulation gives Lazare sufficient basis for resolving collisions (p.209): 

That the force or quantity of movement which they exercise upon each other, by the 

shock, is always directed perpendicularly to their common surface at the point of 

contact.  

Two hard bodies of mass m and m’ approach with initial speeds W and W’, collide and recede 

with final speeds V and V’, as shown in Figure 2. The speed U shown is described by Lazare (p. 

211) as “The velocity which it [the mass] loses in such a manner that W is the result of V and this 

velocity.”8 

 

 
Figure 2. Hard body collision. 

 

In Figure 2, the common surface at the point of contact is oriented horizontally. Since the force 

of the collision is directed perpendicularly with respect to this surface, the two speeds U and U’ 

are oriented vertically. By Lazare’s second law, their combined effect is that the two bodies have 

the same vertical speed immediately after the collision. Since no further forces act on the bodies 

after the collision, this condition persists. Both bodies will have lost all their relative vertical 

motions. As they recede from the collision, their relative horizontal positions will change, in 

 
8 His intent is now much more easily expressed using vectorial concepts. We would now say that 

the vector velocity W is the vector sum of the vector velocity V and the vector velocity U. 
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general, but not their relative vertical positions. This is shown in Figure 2 by the dashed lines 

that connect the relative vertical positions of the two bodies at two time intervals after the 

collision. 

 The analysis just given applies to two free, spherical bodies colliding. Apparently, we are 

to suppose that this analysis applies also to two hard bodies that may be connected by an 

inextendible wire or an incompressible rod through which the force of the hard impact is 

communicated. This tacit supposition is one of very many unstated presumptions required to 

make sense of the analysis. This supposition is admissible as long as the analysis is to apply only 

for the briefest moments before and after the collision. 

 

2.4 Dynamics of Machines Based on Hard Bodies 

 Lazare now turned to apply his methods to a simple model of a machine based on the 

notion of hard body. That is, he supposed a system (p. 210): 

… composed of an infinity of hard corpuscles, separated from each other either by 

small incompressible rods, or by small inextensible wires… 

The task of Section XV, pp. 210-12, was to arrive at the result that forms the basis of his 

subsequent analysis. The analysis was carried out in two stages. First, he analyzed the hard body 

collision of two corpuscles, following the set up above. Then he used its result to treat the 

dynamics of his model machine that consisted of hard corpuscles connected by rods and wires.  

 Lazare considered some set of interactions of the corpuscles, such that each corpuscle of 

mass m ens up with speed V having lost speed U (as defined above), where Z is the angle 

between the directions of the speeds V and U. Using the symbol s to indicate a summation over 

all the bodies in the system, he arrived at his “first fundamental equation” (p. 212):9 

s[um] m V U  cosine Z = 0                       [Lazare’s equation label] (E) 

Lazare’s derivation reads superficially as a full and clear demonstration. A closer reading finds 

its steps to be incompletely specified to the extent that following its logic is all but impossible, 

 
9 The ordinary s appears in the English translation of (1808). Lazare’s original text (1783) 

employs an elongated s, ò, more reminiscent of our modern symbol for integration. 
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unless the reader can discern substantial missing details.10 We are to suppose that the equation 

applies to the situation in which all bodies in the system interact instantly or in such a brief 

period that each body only undergoes a single hard collision. This supposition is essential if the 

results Lazare finds are to apply, for they cease to apply once we concatenate hard collisions 

over the same bodies. Another important imprecision lies in the expression of results that use 

summations. The summations extend over different sets of bodies, but the reader is left to guess 

just which they are in each case. A reconstruction of Lazare’s demonstration, embellished by my 

best guess over the missing suppositions, is provided in the Appendix: Lazare’s Demonstration 

of his “First Fundamental Equation.” 

2.5 Least Dissipation from the Elimination of Percussion 

 The importance of Lazare’s “first fundamental equation” is not apparent, at least to 

modern readers; and the sections immediately following Lazare’s section XV are slow to 

demonstrate its importance. Worse, the obscurity of Lazare’s exposition through omitted 

suppositions persists, so that I have little hope of reliably reconstructing his derivations. 

Fortunately, that is unimportant for present purposes, since all that matters is what Lazare claims 

to have established and that Sadi knows of these claims. Among them is one that has close 

affinity to a central idea in Sadi’s analysis and can be reliably reconstructed. The result appears 

as a corollary in Section XXIV (pp. 316-17): 

In the shock of hard bodies, whether some of them are fixed, or all moveable, or 

(what comes to the same thing), whether the shock be immediate, or given by 

means of any machine without springs, the sum of the active forces before the 

shock, is always equal to the sum of the active forces after the shock plus the sum 

of the active forces which would take place if the velocity which remains to each 

moveable body were equal to that which it has lost in the shock. 

Lazare then derives a symbolic expression for this equality from his “first fundamental equation” 

(E). Recalling the notation used there, W is the speed before the collision of a mass m, V the 

speed after the collision and U the speed lost in the collision. The speeds are all directed, so they 

correspond to a displacement in space in some unit of time. It follows that they are related by the 

 
10 This difficulty remains even after assistance from the secondary literature of Koetsier (2007) 

and Gillispie and Pisano (2014, Ch. 2). 
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geometric rules for directed displacements in space. The rule applicable and used by Lazare is 

the cosine rule from trigonometry. He writes: 

W2 = V2 + U2 + 2VU cosine z 

where z is the angle between the directions of V and U. Lazare multiplies this equality by m and 

sums over all the masses in the system to arrive at 

s[um] mW2 = s[um] mV2 + s[um] mU2 + 2 s[um] mVU cosine z 

The last cosine term vanishes according to (E), so that we have the final result: 

s[um] mW2 = s[um] mV2 + s[um] mU2                                                  (1) 

These last manipulations are readily reproduced using a later vector notation, as shown in the 

Appendix: Lazare’s Demonstration of the Conservation of Vis Viva 

 The goal of securing the most efficient conveyance of motion is for the speeds after the 

collision, V, to have captured as much as possible of the speeds prior to the collision, W. Since 

the three terms in equation (1) are the sums of squares, each is positive. Hence, the measure of 

the conveyed motion, s[um] mV2, approaches the measure of the motion available, s[um] mW2, if 

we minimize the measure of the motion lost in the collisions, s[um] mU2. 

 In his specification of the system of Section XV, Lazare had allowed two kinds of 

motions (pp. 209-10): “…the movement may either change suddenly, or vary by insensible 

degrees…” We can infer from equation (1) that the lost motion U may be minimized by 

eliminating the first sudden sort of change of motion, the shock or percussion, and employing 

only the second type, which varies by insensible degrees. To see this, we replace a single 

collision by many smaller collisions. For simplicity, imagine that is it possible to replace the 

single collisions represented in (1) by very many—N—collisions in sequence, each with the 

same smaller speed change U* = U / N. Equation (1) for the collected effect of these N collisions 

in sequence is 

s[um] mW2 = s[um] mV2 + N s[um] mU*2 

The final term that measures the motion lost in the collision is 

N s[um] mU*2 = N s[um] m(U/N)2 = (1/N) s[um] mU2 

This final term can be brought as close to zero as we like by choosing N sufficiently large. As N 

grows arbitrarily large, we approach arbitrarily closely to the case of the full transfer of motion: 

s[um] mW2 = s[um] mV2 
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In Lazare’s time,11 these quantities are the sums of the “living force” or vis viva of the 

components. In the English translation above from Philosophical Magazine (1808), they are 

called “active forces.” “Living forces” would be a better translation of Lazare’s (1783, pp. 48-

49) French “forces vives.” The limit approached here is the conservation of vis viva that arises 

automatically in the case of elastic collisions. 

 In approaching this limit, the process always consists of discrete, hard body collisions, 

even if they are a concatenations of arbitrarily many, very small collisions. In approaching this 

limit, the system is mimicking ever more closely a conservative system whose components 

interact continuously, without any dissipative shocks. Presumably it is this approach to the 

conservative limit that Lazare alludes to in his ensuing comment (p. 317): 

The analogy of this same equation with the preservation of the active forces in a 

system of hard bodies the movement of which changes by insensible degrees, is still 

more evident, since it then regards a case peculiar from that we have examined; it is 

in fact visibly the particular case where U is infinitely small, and therefore U2 is 

infinitely small of the second order; this reduces the equation to s[um] mW2 = s[um] 

mV2. 

This notion that the velocity lost can be made infinitely small recalls the infinitesmals of the 

calculus, of which Lazare had expert knowledge.12 We shall see this allusion to the 

infinitesimals of calculus appearing again in Sadi’s analysis. 

 In this protocol for preserving vis viva, we see a basis for one of the major claims Lazare 

made in his introductory Preface (1808, pp. 11-12): 

There will also be found among these reflections one of the most interesting 

properties of machines, which I think has not yet been remarked; it is, that in order 

to make them produce the greatest possible effect, it must necessarily that there be 

 
11 Modern readers will, of course, recognize these terms as twice the kinetic energy and that the 

term s[um] mU2 is simply twice the kinetic energy lost in the collisions due to their inelasticity. 
12 If we take 1/N, for large N, to represent quantities of the first order of smallness, then the 

speed U* = U / N is first order small and the lost vis viva, in a single collision, s[um] mU*2  = 

(1/N2) s[um] mU2 is of the second order of smallness, that is, of the size of quantities of first 

order small squared. 
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no percussion, i.e. that the movement should always change by imperceptible 

degrees;… 

2.6 Geometrical Movements 

 Prior to these result concerning the conservation of vis viva and immediately after the 

derivation of his “first fundamental equation,” Lazare introduced a notion that is, I believe, the 

template that Sadi used for thermodynamically reversible processes in heat engines. This is the 

conception of “geometrical movements.” They are introduced in Sections XVI and XVII, pp. 

212-16). They are, by design, motions that eliminate shocks and thus realize the conservation of 

vis viva. His definition reads (pp. 212-13) 

…if a system of bodies sets out from a given position with an arbitrary movement, 

but yet of such a nature that it is possible to make it take another in every respect 

equal and directly opposite, each of these movements will be named a geometrical 

movement… 

Perhaps readers in Lazare’s time might have found this definition illuminating. It now seems 

quite opaque. Fortunately, Lazare appended to the definition a long footnote that explained his 

intent in greater detail, using many examples. 

 The simplest example in the footnote concerned two bodies at each end of an 

inextendible wire. As long as the movement of the bodies is such that the wire remains fully 

extended, then the motion is geometrical. I imagine Lazare intends a motion of rotation about 

some center. For any motion that satisfies this condition, there is a movement that exactly 

reverses the motions, which will then also satisfy the condition that the wire remains fully 

extended. Since this condition of reversibility is satisfied, the motion is geometrical. In contrast, 

Lazare considers the case in which the two bodies approach. Then the wire slackens and is no 

longer fully extended. The reversed motion—that the bodies recede—is not possible since the 

connecting wire is inextendible. This motion is not geometrical. 

 The essential idea seems to be that geometric motions are continuous motions that 

proceed without any percussions or shocks. As a result, Lazare will be able to show that they 

conserve vis viva. We can see in this example why the name “geometrical” is apt. For the 

trajectories of the bodies (but not their speeds) are determined simply by the geometry of the two 

bodies and the fully extended connecting wire. This conforms with Lazare’s remark in his 

Preface (p. 9) about “certain movements which I call geometrical, because they may be 
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determined by the principle of geometry alone, and are absolutely independent of the rules of 

dynamics.”13 

 A more interesting example is that of a winch with a large diameter wheel and small 

diameter cylinder, as shown in Figure 3. Its axis is oriented horizontally and weights are attached 

to each with cords that wind around the wheel and the cylinder. A lighter weight is attached to 

the wheel, while a heavier weight is attached to the cylinder. The machine enables us to raise the 

heavier weight by lowering the lighter weight, using the larger diameter of the wheel as leverage 

over the smaller diameter of the cylinder. A geometrical motion arises when we keep both cords 

taut. We lower the lighter weight through the distance of one wheel circumference. The heavier 

weight is then raised by the smaller distance of one circumference of the cylinder. This 

movement is reversible, as required of geometrical movements, since the reversed motion is 

possible. We could equally have raised the lighter weight attached to the wheel, while the 

heavier weight attached to the cylinder fell. 

 

 
Figure 3. Geometrical Movement of a Winch 

 
13 The absolute independence from the rules of dynamics, however, does not seem to be realized. 
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As an illustration of a non-geometrical motion that cannot be reversed, Lazare imagined the 

lighter weight falling through a distance of one wheel circumference, while the heavier weight is 

induced to rise up a distance greater than the cylinder circumference. Exactly how this could 

happen is unclear. Perhaps, as shown in Figure 4, Lazare intended that the lighter weight already 

had some large initial speed downwards. If the lighter weight’s fall is obstructed at the end of its 

motion, the heavier weight will continue to rise and the connecting cord will go slack. That is, at 

least my best interpretation of another less than clear passage. Lazare writes (p. 214)  

… but if while we cause the weight attached to the wheel to descend from a height 

equal to its circumference, we should cause the weight attached to the cylinder to 

ascend from a height greater than its circumference, the movement would not be 

geometrical, because the equal and contrary movement would be visibly 

impossible. 

I assume that Lazare intends14 “the cylinder to ascend to a height greater than its [cylinder’s] 

circumference.” 

 
14 The obscurity lies in Lazare’s original French, which reads (1783, p.29) “… mais si tandis 

qu'on fera descendre le poids attaché à la roue d'une hauteur égale à sa circonférence, on faisoit 

monter le poids attaché au cylindre d'une hauteur plus grande que sa circonférence…” 
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Figure 4. Non-geometrical Movement of a Winch 

 

 A further important feature of least dissipative motions manifests here. If the two weights 

are in exact balance of forces and there is no friction in the bearings or elsewhere, then there is a 

process that transfers the motive power of the raised lighter weight to the heavier weight. It is 

simply the uniform motion of the system at constant speed, even if small. (That this non-

dissipative process can be realized if we ignore friction stands in contrast with the corresponding 

limiting processes of Sadi. These thermal processes would require the simultaneous satisfaction 

of contradictory conditions.) 

2.7 Lazare’s Hydraulic Machines 

 Later in his Essai, Lazare applies his general principles to specific machines. He reprises 

his practical morals for maximizing efficiency. “… we should avoid every shock or sudden 

change whatever…” (p. 300). “… in order to make machines produce the greatest possible 

effect, they must of necessity never change their movement, except by insensible degrees” (pp. 

299-300) “we should avoid every sudden change which is not essential to the constitution of the 

machine.” (p. 300) 
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 These principles are applied to hydraulic machines. Here Lazare apparently is 

considering something like the water wheels that power mills. (p. 300) 

In order to make the most perfect hydraulic machine, i.e. capable of producing the 

greatest possible effect, the true difficulty lies, 1st, In managing so as that the fluid 

may lose absolutely all its movement by its action upon the machine, or at least that 

there should only remain precisely the quantity necessary for escaping after its 

action; 2d, Another difficulty occurs in so far as it loses all this movement by 

insensible degrees, and without there being any percussion, either on the part of the 

fluid, or on the part of the solid parts among themselves:… 

What now follows is a remark whose analog for heat engines becomes one of the most important 

of Sadi’s results: a few conditions only—the above two—must be met by a hydraulic machine if 

it is to be the most efficient. All other attributes of the machine are irrelevant to its efficiency. (p. 

301) 

… the form of the machine would be of little consequence; for a hydraulic machine 

which will fulfil these two conditions will always produce the greatest possible 

effect:… 

Next, Lazare observes a problem with this specific design of machine. It is contradictory to 

optimize for both conditions that lead to greatest efficiency. Some balance between efficiency 

and actual operation has to be found: (p. 301) 

… it is impossible to fulfil at once the two conditions most desirable, the more we 

wish to make the fluid lose of its movement in order to attain the first condition, the 

stronger will be the shock; the more, on the contrary, we wish to moderate the 

shock in order to approach the second, the less will the fluid lose of its movement. 

This may appear similar to the problem of implementing reversible processes in Sadi’s 

heat engines: they require an unrealizable limit of infinitely slow operation. However, 

that is not the complication Lazare has identified. In order to minimize shock, Lazare is 

not concerned that we end up slowing the machine to a halt. Rather Lazare is suggesting 

just that we minimize shocks by letting the water move through the wheel in some 

manner without its movement being redirected into that of the wheel. That is, we 

minimize shocks by diminishing the efficiency of the extraction of motion from the 

water.  
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 While Lazare’s geometrical motions are defined as reversible, there is no direct 

application of the notion of these reversible, geometric motions to hydraulic machines. 

Geometrical motions are illustrated in his examples as masses connected by rods and 

inextendible wires. This model does not seem applicable to a water wheel. The example 

of the water wheel is immediately followed by that of a hydraulic pump, used to raise 

water. (p. 301) While we might now think of it as just a water wheel run in reverse, 

Lazare does not characterize it as such. He does not make any connection to the 

reversibility of geometrical movements. 

3. What Sadi Can Find in Lazare’s Work 

 This last section is rather densely written in order to convey a sense of relevant aspects of 

Lazare’s project and work. It will be convenient here to collect in terse form those ideas that 

most closely parallel the innovations of Sadi’s later account of heat engines. 

 

(i) A simple, universally applicable account of the efficiency of ordinary machines. 

While we can find conditions for optimal performance of any particular machine by adjusting 

the details of that machine’s operation, Lazare tackled all machines that transmit motive 

power and formulated a simple account of when they are all most efficient in the 

transmission. The important idea is that such a general theory is possible and achievable. A 

suggestive application is the waterwheel: if all shocks are avoided, then nothing else matters 

in the design. Greatest efficiency is achieved by that one condition. 

 

(ii) A basic ontology for machines that is dissipative. 

We now default to a basic ontology for machines that is conservative. Dissipative processes 

like friction are treated as arising from processes that still conserve energy, but just distribute 

it over many degrees of freedom that make it inaccessible to us. Lazare’s most basic process 

was a hard or inelastic collision (“shock,” “percussion”) in which (in modern terms) energy 

is not conserved. 

 

(iii) A way to characterize the least dissipative processes in his ontology. 

Ordinary machines in Lazare’s dissipative ontology are most efficient in transmitting motive 
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power if all imbalances in driving forces, such as percussions and shocks, are eliminated. All 

changes must be by insensible degrees. “Geometrical movements,” conform with these 

conditions. They are defined as those that can be reversed. 

 

4. Heat as Conserved Caloric 

 Before turning to the analogies that will be the main subject of this paper, here and in the 

next section, I will review two aspects of Sadi Carnot’s work that have come to be widely 

known. To see the first and its importance, we start by considering how Sadi’s project would be 

approached today. Which are the most efficient heat engines? We now understand a heat engine 

to be a device that converts heat energy into useful mechanical work. The most efficient engines, 

we would say if we were to start afresh, are those that convert all their heat energy into work. We 

now know that such a conception is a poor starting point. A familiar version of the second law of 

thermodynamics directly asserts its impossibility. 

 Sadi’s general model of heat engines could not employ this approach. He was working 

before the general notion of energy and its conservation had been established. He adopted a then 

dominant view of heat as a conserved fluid, the caloric.15 This meant that a unit of caloric is 

indestructible. Whatever caloric is supplied to a heat engine remains unchanged. Each unit of 

caloric that enters a heat engine must remain inside it or leave it as a unit of caloric.  How then 

can a heat engine generate motive power? Sadi looked to the motion of caloric. Motive power 

derives from the way that the caloric passes from a higher temperature, such as the boiler of a 

steam engine, to lower temperature, such as in the condenser of a steam engine. 

 After Sadi’s account had been modified by Clausius and Thomson to accommodate the 

conversion of heat into work, Sadi’s use of the conserved fluid theory of heat was dismissed as 

an unfortunate aberration. Maxwell (1871, p. 139) wrote of it: 

Carnot himself was a believer in the material nature of heat, and was in 

consequence led to an erroneous statement of the quantities of heat which must 

enter and leave the engine. As our object is to understand the theory of heat, and not 

 
15 But see Section 8 below for the suggestion that Sadi’s adherence to the conservation of caloric 

was not univocal. 
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to give an historical account of the theory, we shall avail ourselves of the important 

step which Carnot made, while we avoid the error into which he fell. 

5. Sadi’s Core Reversibility Argument 

5.1 The Argument 

 Sadi’s use of the conserved caloric account of heat was however, a fortuitous error, for it 

led him directly to the model of heat engines that proved most fertile in the development of 

thermodynamics. One of its most extraordinary results follows quickly from Sadi’s approach: the 

greatest efficiency of a heat engine is determined solely by the temperatures of the source that 

supplies the heat and the sink to which the heat is discharged. Without the necessity to discharge 

heat, the crucial lower temperature sink would not have been an obviously essential element. 

Moreover, Sadi could then show, nothing else beyond these temperatures matters in determining 

this greatest efficiency. Whether the machine operates with steam or in any other mode, the 

greatest efficiency will be the same. 

 Sadi isolated this core result in italicized text ([1824]1897, p.55): 

… the maximum of motive power resulting from the employment of steam is also the 

maximum of motive power realizable by any means whatever. 

The method of proof of this result in the pages preceding this announcement is one of Sadi’s 

most significant contributions to thermodynamics. He considers thermal processes that can be 

reversed. He assumes a special heat engine that operates entirely by these reversible processes 

between two temperatures. Its motive power derives from moving caloric from a hotter heat 

source to a cooler heat sink. A second instance of this same engine, operated in reverse, is 

introduced. They are coupled such that the motive power produced by the first engine is 

consumed by second engine, which uses it to return caloric from the cooler heat sink to the hotter 

heat source. Since its operation is the exact reverse of the first engine, the quantities of motive 

power and caloric in both engines are the same; what is reversed is the direction in which they 

move. The first engine moves caloric from hot to cold; the reversed engine from cold to hot. The 

first engine produces motive power; the reversed engine consumes it. The net effect of the 

operation of the coupled engines is shown in Figure 5. All the motive power produced by the 

first engine—shown as horizontal arrows—is consumed, exactly, by the second; and each unit of 

caloric drawn from the heat sink is returned to it. 
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Figure 5. Two coupled reversible heat engines 

 

 Now comes the moment of startling ingenuity. Suppose for reductio that there is a 

different heat engine of any construction—reversible or not—that could produce more motive 

power for each unit of caloric moved from hot to cold. We could run the first engine in reverse 

and couple it to this new engine as before. The reversed engine would return each unit of caloric 

to the hotter heat source. It would do so consuming less motive power than supplied by the new 

engine. For the new engine by supposition creates more motive power for each unit of caloric 

moved than does the original reversible engine. The overall effect is shown in Figure 6. All 

quantities of caloric would be restored to the heat source, but there would be a surplus of motive 

power, shown as the black, filled arrows. We would have produced motive power without any 

source. 
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Figure 6. A Heat Engine of Greater Efficiency Yields Net Motive Power 

 

This, Sadi assured us in most definite terms, is an impossible outcome (p. 55). 

.. this would be not only perpetual motion, but an unlimited creation of motive 

power without consumption either of caloric or of any other agent whatever. Such a 

creation is entirely contrary to ideas now accepted, to the laws of mechanics and of 

sound physics. It is inadmissible.* 

The reductio argument is complete. The supposition of a heat engine of greater efficiency than 

the original reversible engine leads to a contradiction and is falsified. For fixed temperatures of 

heat source and sink, all reversible heat engines operate with the same efficiency and the are the 

most efficient of all heat engines. 

 This simplest demonstration of Sadi’s main result is repeated with greater precision later 

in his memoire. On pp. 63-67, he instantiates the reversible heat engine with an engine that 

performs the celebrated Carnot gas cycle. 

5.2 Perpetual Motion 

 Sadi’s use of the term “perpetual motion” is literal: it simply means a motion that 

continues indefinitely. It would include the unimpeded inertial motion of a free body. Sadi’s 
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footnote at “*” is an extended defense of the impossibility of perpetual motion. As he put it in 

the footnote, such motion is “a motion that will continue forever without alteration in the bodies 

set to work to accomplish it.” (p. 237) 

 We would now include under that term a machine that produces mechanical power 

without consuming any fuel or depleting any other agency. A version of that later conception is 

one that Sadi adds to the problem of perpetual motion in the text above as a distinct and equally 

impossible notion. In his footnote, but not the main text, Sadi suggests that we should merge the 

two conceptions. He wrote (p. 238) 

The general and philosophic acceptation of the words perpetual motion should 

include not only a motion susceptible of indefinitely continuing itself after a first 

impulse received, but the action of an apparatus, of any construction whatever, 

capable of creating motive power in unlimited quantity, capable of starting from 

rest all the bodies of nature if they should be found in that condition, of overcoming 

their inertia; capable, finally, of finding in itself the forces necessary to move the 

whole universe, to prolong, to accelerate incessantly, its motion. Such would be a 

veritable creation of motive power. 

 Here we might note that Lazare’s Essai (Section LXI, pp. 301-302) included an argument 

against the possibility of perpetual motion based on his analysis. However, it seems unlikely that 

this portion of Lazare’s text was important to Sadi. Lazare’s conclusion pertains only to 

perpetual motion in Sadi’s literal sense of a continuing motion. It does not extend to the stronger 

idea whose dismissal is essential to Sadi’s argument:  a device that produces motive power 

without depleting another agency. 

 While Sadi’s argument was framed in terms of caloric, his argument and its result 

survived the transition to the later thermodynamics in which heat is converted into work. It has 

been widely noted that Sadi’s analysis did not require the positing of the second law of 

thermodynamics. That came later, when Sadi’s analysis was adjusted to allow that heat is 

converted into work. Then Thomson found that a second, independent law was needed to the 

complete the adjusted analysis. In one version it asserts the necessity of Sadi’s model: heat 

cannot be converted fully into work; a heat engine must always discharge heat to the lower 

temperature reservoir. What is less commonly noted is that Sadi’s analysis did not even need the 

full content of what became the first law of thermodynamics, the conservation of energy. Sadi’s 
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analysis only needs a part of it, that motive power cannot be created without depletion of some 

source. His analysis does not require that motive power cannot be destroyed. Such destruction 

arises in Lazare’s hard body collisions, so presumably it would not be beyond Sadi’s conception. 

6. The Waterfall Analogy 

 Having completed his proof, Sadi used an analogy to a waterfall to illustrate his result. 

Sadi’s statement of it in full is ([1824]1897, pp. 60-61, his emphasis): 

According to established principles at the present time, we can compare with 

sufficient accuracy the motive power of heat to that of a waterfall. Each has a 

maximum that we cannot exceed, whatever may be, on the one hand, the machine 

which is acted upon by the water, and whatever, on the other hand, the substance 

acted upon by the heat. The motive power of a waterfall depends on its height and 

on the quantity of the liquid; the motive power of heat depends also on the quantity 

of caloric used, and on what may be termed, on what in fact we will call, the height 

of its fall,*[16] that is to say, the difference of temperature of the bodies between 

which the exchange of caloric is made. In the waterfall the motive power is exactly 

proportional to the difference of level between the higher and lower reservoirs. In 

the fall of caloric the motive power undoubtedly increases with the difference of 

temperature between the warm and the cold bodies; but we do not know whether it 

is proportional to this difference. We do not know, for example, whether the fall of 

caloric from 100 to 50 degrees furnishes more or less motive power than the fall of 

this same caloric from 50 to zero. It is a question which we propose to examine 

hereafter. 

The analogy depends on the factual similarity of water and caloric: both are conserved 

substances that can generate motive power in moving from a higher altitude or temperature to a 

lower altitude or temperature. The maximum motive power that can derived from the fall of 

some volume of water depends only on height through which the water falls and is independent 

 
16 Carnot’s footnote: “The matter here dealt with being entirely new, we are obliged to employ 

expressions not in use as yet, and which perhaps are less clear than is desirable.” 
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of the design of the machine that extracts it. So analogously, the maximum motive power derived 

from the motion of caloric from one temperature to another depends only these temperatures. 

 While Sadi’s text does not describe it, the analogy can be extended to the method of 

proof Sadi used to establish the results of his core reversibility argument. We imagine a water 

wheel of some construction that operates by reversible processes in extracting motive power 

from the falling water. We can run a second instance of this water wheel in reverse that 

consumes exactly the motive power supplied by the first. As shown in Figure 7, that second 

water wheel would return to the higher reservoir exactly the water drawn by the first. Were there 

any other design of machine that could extract greater motive power from each quantity of water, 

using it instead of the first water wheel would lead to a surplus of motive power and an 

impossible perpetual motion machine. 

 

 
Figure 7. Coupled Water Wheels 
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 The fortuitous role of Sadi’s use of caloric theory and the suggestive analogy to 

waterfalls has come to be widely recognized in recent literature. It appears in various version in 

almost all forms of the present literature, as my hasty and unsystematic survey shows. It is found 

in histories of thermodynamics, such Müller (2007, p. 53); in recent thermodynamics textbooks, 

such as Balmer (2011, p. 209); and in popular writings, such Lemons (2019, p. 38). 

  While this much of Sadi’s work is now recognized, two elements of special importance 

are overlooked. They are my concerns in this paper and are described in the following two 

sections. 

7. “A Sufficiently General Point of View” 

7.1 The Puzzle of Sadi’s Audacity 

 Sadi’s ambitions were very great. He did not seek specific remedies to improve the 

performance of this or that design of heat engine. Rather, he set a higher goal (pp. 43-44): 

The phenomenon of the production of motion by heat has not been considered from 

a sufficiently general point of view. … In order to consider in the most general way 

the principle of the production of motion by heat, it must be considered 

independently of any mechanism or any particular agent. It is necessary to establish 

principles applicable not only to steam engines*[17] but to all imaginable heat-

engines, what-ever method working substance by which it is operated. 

Sadi succeeded. His theory is both very simple and, at the same time, of extraordinary scope. He 

could with the simple short argument sketched above settle what might otherwise appear to be 

intractable problems requiring solutions of great complexity. In an engine that operates by 

expanding fluids thermally, which of all fluids can get the most motive power from a given 

amount of heat? His answer: they all can, as long as the engine operates reversibly. What of an 

engine that utilizes some other working mechanism? Might there be one that works better? His 

answer: the choice of mechanism does not matter if we seek the greatest efficiency. All that 

matters is that the operation is reversible. How could the capacity to extract motive power from 

 
17 Sadi’s footnote: “We distinguish here the steam-engine from the heat-engine in general. The 

latter may make use of any agent whatever, of the vapor of water or of any other, to develop the 

motive power of heat.” 
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heat of some particular design of heat engine be improved? His answer: bring the component 

processes of the engine closer to reversibility; and operate between the highest and lowest 

temperatures available.  These and many more similar questions were answered in a single stroke 

by Sadi’s analysis. 

 It is important to realize just how audacious it was of Sadi to seek such a simple general 

theory, let alone to find it. The steam engines of Sadi’s time were already devices of great 

complexity. They were then as now built of many disparate parts. There is a furnace burning a 

fuel; a boiler with water heated by the furnace to make steam; a piston in a cylinder that extracts 

motive power from the expanding steam; and mechanical couplings that conveyed that motive 

power to where it was to be used, whether to pump water out of mines or to power a locomotive 

or a steamboat. One would surely expect that the efficiency of a compounded system could not 

be assessed by a single theory. Rather one would need to investigate the operation of each 

component individually and to find the best design for a particular circumstance through a 

delicate balancing of competing factors. Perhaps the conditions for optimal performance of high 

pressure steam systems might differ from those for a low pressure system, for example. 

 We can see that this was likely the prevailing attitude when Sadi wrote, if we consult a 

synoptic work on steam engines written almost exactly when Sadi wrote. Thomas Tredgold’s 

(1827) The Steam Engine was published just three years after Sadi’s Réflexions and was long 

recognized as the “best standard work on the subject.”18 Its full title conveys its scope and 

ambitions: The Steam Engine, Comprising an Account of its Invention and Progressive 

Improvements; with an Investigation of its Principles and the Proportions of it Parts for 

Efficiency and Strength: detailing also its application to Navigation, Mining, Impelling 

Machines, &c. and the results collected in Numerous Tables for Practical Use. 

 Tredgold’s account took the various components of a steam engine one at a time and 

mixed general consideration with quite specific matters of design. His 62 page Section II 

included a lengthy recounting of the physical properties various liquids and the vapors they 

 
18 An anonymous review in The Mechanics Magazine, Vol. XLIV, July 1st – December 30, 

1848, on the occasion of the publication of a new, expanded edition of Tredgold’s work, 

published after his death in 1829, began: “Tredgold on the steam engine has long been our best 

standard work on the subject…” 
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produce. The account was rich in tabulations of experimental data, including the liquids’ heats of 

vaporization and the “elastic forces” derivable from their vaporizations. The fluids included 

water, alcohol, sulphuric ether (now called diethyl ether), sulphuret of carbon (now carbon 

disulphide), turpentine, naptha and more. The conclusion, offered only in the preface (p. vii) was 

“… that water is of all other known fluids that best adapted for introducing steam.” 

 The same Section II included practical guidance for sizing passages for conveying steam. 

Readers were warned of a tradeoff. A larger aperture allowed for less loss of the elastic force of 

the steam (presumably, less pressure drop in modern terms); but this larger aperture produced a 

slower steam velocity that resulted in more cooling of the steam. 

 The account proceeded with this mix of general considerations and narrowly targeted 

specific guidance. Section III covered the design of boilers and furnaces. The remaining sections 

gave elaborate accounts of the various devices that could be employed to extract motive power 

from the steam generated by the furnace and boiler. 

 Sadi had considerable knowledge of the design and operation of the steam engines of his 

time. This is evident from the closing pages (pp. 112-26) of his work in which he makes quite 

specific recommendations for the improvement of the efficiency of existing steam engines on the 

basis of his general theory. What made him so bold as to imagine that a tractable, general theory 

of heat engines, covering all possible designs, lay within his reach? Why did he seek it as 

opposed to a narrower investigation into the optimization of the specific designs of steam 

engines then in operation? 

7.2 The Puzzle Solved 

 At least a major part of the solution lies, of course, in his father, Lazare’s, Essai. For, as 

we saw in Section 2.1 above, there Lazare lamented the lack of a general account of ordinary 

machines. He set himself the task of finding such a theory and seemed satisfied with the results. 

Sadi could find in Lazare’s work item (i) of the summary of Section 3, A simple, universally 

applicable account of the efficiency of ordinary machines. 

 Sadi’s introduction in his Réflexions tells us directly of the work that provided the 

standard to which he aspired (p. 44): 

Machines which do not receive their motion from heat, those which have for a 

motor the force of men or of animals, a waterfall, an air-current, etc., can be studied 

even to their smallest details by the mechanical theory. All cases are foreseen, all 
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imaginable movements are referred to these general principles, firmly established, 

and applicable under all circumstances. This is the character of a complete theory.  

Sadi has here just described his father’s Essai, omitting only to name the author of the 

complete theory described. He continues to tell us that he plans to provide such a general 

theory for heat engines: 

A similar theory is evidently needed for heat-engines. We shall have it only when 

the laws of Physics shall be extended enough, generalized enough, to make known 

beforehand all the effects of heat acting in a determined manner on any body. 

We may well wonder if Sadi would have set himself so audacious a task as finding a general 

theory without the analogy to his father’s work. Such questions are, of course, unanswerable. We 

cannot recreate a different past without Lazare’s work to inspire Sadi. But we can say, even with 

the inspiration of Lazare’s work, that it is extraordinary that Sadi should seek a general theory of 

heat engines. Lazare’s ambitions seem less grand. For it seems not so far-fetched that there is a 

general account of levers, pulleys and waterwheels. They are each simple devices whose 

operation is readily understood in detail even by the simplest mechanic and which are plausibly 

governed by common principles. A complicated machine that combines many levers and pulleys 

is just a machine built of many parts all alike in fundamental constitutions. A principle that 

optimizes each component individually, will optimize the totality. 

 It must surely have seemed otherwise for heat engines. For, as was detailed above, they 

are complicated devices with many, disparate parts, each presumably governed by rather 

different principles. Yet Sadi persisted. Would he have had the courage to do so or even the 

interest in trying without the example of his father’s work? What if his major source had been 

only practically-minded works such as Tredgold’s Steam Engine? 

8. More than an Analogy? 

 That Lazare’s work provided the standard Sadi set for himself is a conclusion that is hard 

to avoid. Just what role did that standard play? Was it merely a suggestive analogy? Or were the 

analogical relations stronger? It is possible that we see a greater distance now between the 

machines of Lazare and the engines of Sadi than would have been apparent to Sadi? Might it 

even be for Sadi that the relationship to his father’s theories was not merely one of analogy, but 

that Sadi’s analysis was a direct application of Lazare’s theories? 
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 Sadi conceived the motion of caloric as the origin of a heat engine’s motive power. We 

now know that heat is not a conserved fluid. Fluid talk for us is at best a useful heuristic fiction. 

It was not so for Sadi. Caloric was for him a real fluid. Moreover, he had Lazare’s detailed 

analysis of other engines operated by moving fluids, most notably the waterwheels Sadi 

recounts. Fluids, such as water, were, for Lazare, really assemblages of very many corpuscles. 

He characterized them as (1808, p. 223): 

We may regard a fluid as an assemblage of an infinity of solid corpuscles detached 

from each other; we may therefore apply to hydraulic machines all that we have 

said of other machines … 

Might Sadi have conceived his caloric fluid and the hydraulic fluids of Lazare as something 

much closer physically? That one fluid is wet and the other imponderable may just be an 

irrelevant difference when the analysis is elevated to the level of the most general theory. Both 

fluids are mobile, corpuscular media whose component corpuscles collide according to the rules 

of ordinary mechanics. They would then both conform with Lazare’s characterization of fluids. 

The result would be that steam engines would be included within the scope of Lazare’s theories 

and, more importantly, within the reach of Lazare’s general principles. They would be treated at 

the general level exactly like hydraulic engines. From that perspective, Sadi might well have 

been able to conceive his theories not as inspired by an analogy to those of this father, but simply 

as a direct application of them. 

 This possibility must be left here as a mere possibility, for Sadi does not positively assert 

that this is his conception of the analysis of Réflexions. If that conception were foremost for Sadi, 

there would seem to be no reason to omit its mention. 

 Earlier speculations by Sadi suggest another way in which he might have seen heat 

engines as falling directly within the scope of Lazare’s analysis. They are private notes written, 

apparently, prior to Sadi’s Réflexions. The pertinent section of the notes begins with a collection 

of facts associated with the motion of bodies due temperature changes. The first fact is, 

apparently, a full endorsement of Lazare’s dissipative ontology (Carnot, 1897, p. 217): 

1. The Collision of Bodies. We know that in the collision of bodies there is always 

expenditure of motive power. Perfectly elastic bodies only form an exception, and 

none such are found in nature. 
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Sadi proceeds to ponder the origin of the temperature increase that results from percussion, such 

as when metals are pounded. He concludes (p. 218): 

It would seem, then, that heat set free should be attributed to the friction of the 

molecules of the metal, which change place relatively to each other, that is, the heat 

is set free just where the moving force is expended. 

It appears that Sadi was willing to contemplate the conversion of work to heat, contrary to the 

notion of heat as conserved caloric. As his notes unfold, it becomes quite clear that just this is 

speculated. For example, he asks (p. 223) 

Is heat the result of a vibratory motion of molecules? If this is so, quantity of heat is 

simply quantity of motive power. 

Whatever may have been his misgivings about the conserved character of caloric, they did not 

survive in the main text of Réflexions. A trace of these misgivings, however, persists in his 

footnote defense mentioned above of the impossibility of perpetual motion. It includes the 

following query that reveals Sadi’s deeper thoughts (p. 237): 

… but is it possible to conceive the phenomena of heat and electricity as due to 

anything else than some kind of motion of the body, and as such should they not be 

subjected to the general laws of mechanics? 

9. The Impossible Process 

 The second and, I believe, greater puzzle, is how Sadi came to the concept of a 

thermodynamically reversible process. It plays a central role in his analysis. To see why this is a 

greater puzzle, we need to pause and review the notion of a thermodynamically reversible 

process. The concept is not just strange. It is very strange; and its strangeness is not commonly 

recognized even today.  

9.1 Thermodynamically Reversible Processes 

 The rough and ready formulation is that a thermodynamically reversible process is one 

that, at all its stages, is minutely removed from equilibrium. That means that all the forces that 

drive the process and resist it are almost exactly in perfect balance. If temperature differences 

move heat among bodies, those temperature differences are as slight as possible. If pressure 

differences drive a fluid motion or activate a piston, those pressure differences are similarly 

negligible. And so it is for all thermodynamic forces. This same precarious balance is assumed 
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when an external magnetic field acts on the magnetic dipole moment of magnetized thermal 

medium. 

 This precarious balance is essential, for it is just what is needed if these processes are to 

be reversible. It takes only the slightest weakening of the driving force of a process for it to be 

overcome by the forces opposing the process and thus for the process to be reversed. Since the 

changes in forces needed for the reversal are so slight, the component system will pass through 

essentially the same states in the forward and the reversed process. 

 A widely recognized characteristic of these processes is that they proceed very slowly. 

For the net driving forces are just barely removed from equilibrium and thus just barely able to 

advance the process. Here we must guard against a common misreading. It is the near perfect 

balance of forces that characterizes a thermodynamically reversible process. The great slowness 

is a consequence of that near balance. Mere slowness is not enough for a process to be 

thermodynamically reversible. A compressed gas in a balloon can be made to deflate with very 

great slowness merely by using a pinhole made as small as we like. This very slow deflation is 

an irreversible expansion of the gas. The driving forces are unbalanced. The internal pressure of 

the gas greatly exceeds the resisting pressure of the surrounding air. No slight adjust to them will 

reverse the process and lead the balloon to re-inflate. 

 While Sadi’s analysis was limited to the efficiency of heat engines, this idea of 

thermodynamically reversible processes proved to have an application well beyond Sadi’s steam 

engines. If we are to single out just one idea in Sadi’s Réflexions that proved to be of central 

importance later, it is this one. The later development of thermodynamics came to be governed 

by Clausius’ notion of thermodynamic entropy. The theory proved to be of extraordinary scope 

and generality. All real thermal processes—be they simple transfers of heat or the most 

complicated chemical reactions within a living cell—proceed only if they are entropically 

favored; that is, if they increase the total entropy of the systems in which they are found. The 

governing notion of thermodynamic entropy depends on Sadi’s idea of a reversible process. It is 

essential to Clausius’ (1865, p. 387) definition of entropy, which is still the one used today. That 

is, the incremental change dS in the entropy S of a system is given by dS = dq/T, where dq is the 

increment of heat gained by the system at temperature T in a thermodynamically reversible 

process. Sadi’s most efficiently operating heat engines turn out to the those whose combined 

components operate at constant summed entropy. 
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9.2 They are Very Strange19 

 This rough and ready characterization of thermodynamically reversible processes suffices 

for practical work in thermodynamics. However, inserted all the way through it, we find clumsy 

qualifications: “almost exactly in perfect balance,” “as slight as possible,” “precarious balance” 

and so on. One might imagine that they are easily discharged with just a little more attention to 

the details. They are not. They are masking what is the essential strangeness of 

thermodynamically reversible processes. They must by design meet two conditions that 

contradict: 

• the systems in the process are always in equilibrium states, so that they may pass through 

the same set of states in the forward and reversed direction. 

• the systems must be away from equilibrium, for otherwise the systems stay as they are 

and the process does not advance in either forward or reversed directions. 

More tersely, we can have a system in equilibrium that does not change; or we can have a system 

that does change because it is not in equilibrium. But we cannot have both change and 

equilibrium. Heat does not pass between bodies when they are at the same temperature and they 

are in equilibrium. Heat passes between bodies when one is cooler than the other and they are not 

in equilibrium. Equilibrium and change contradict. Yet just this contradiction is constitutive of 

the very notion of a thermodynamic process. 

 It is a mistake to think that thermodynamically reversible processes are just another 

benign idealization of science.20 They are not. They are quite unlike the idealizations common in 

the science of Sadi’s time and even in our time. A perfect sphere is never realized in our 

laboratories, but its existence entails no contradiction with geometry. A perfectly frictionless 

plane can never be built, but its absence is not derivable from the principles of mechanics. A 

 
19 These difficulties have been explored at greater length in Norton (2016). A survey of 

treatments of thermodynamically reversible processes extending back to the time of Carnot finds 

that almost none of them treat this inherent contradiction with adequate precision. This finding, 

was for me, surprising and disappointing. 
20 For a moderating view, see Valente (2019); and Palacios and Valente (2021, §4). 
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thermodynamically reversible process, however, is internally contradictory. As a matter of logic, 

there can be no such thing.21 

9.3 Sadi’s Formulation of Thermodynamically Reversible Processes 

 Given the delicacy and even oddity of the notion of the thermodynamically reversible 

process, we should review Sadi’s account to find just what conception it contains. The review 

below will show that his account does contain the notion a reversible process just described in 

somewhat complete form at least for heat transfers. There is, however, no clear recognition that 

these processes were required to meet contradictory conditions. 

 Sadi’s core formulation of the processes of greatest efficiency is: (pp. 56-57, his 

emphasis) 

Now, very little reflection would show that all change of temperature which is not 

due to a change of volume of the bodies can be only a useless reestablishment of 

equilibrium in the caloric.*[22] The necessary condition of the maximum is, then, 

that in the bodies employed to realize the motive power of heat there should not 

occur any change of temperature which may not be due to a change of volume. 

Reciprocally, every time that this condition is fulfilled the maximum will be 

attained. 

Sadi immediately emphasized the centrality of this condition to his analysis: 

 
21 How are we to conceive thermodynamically reversible processes? Norton (2016) proposes 

that a consistent account is possible if we replace the concept of a single process whose states are 

per impossibile always at equilibrium by a set of processes whose states are not at equilibrium 

but which approach arbitrarily closely to it. The properties attributed in standard accounts to the 

single, fictional reversible process are actually the unrealized limits of the properties of the sets 

of non-equilibrium processes. 
22 Sadi’s footnote: “We assume here no chemical action between the bodies employed to realize 

the motive power of heat. The chemical action which takes place in the furnace is, in some sort, a 

preliminary action, —an operation destined not to produce immediately motive power, but to 

destroy the equilibrium of the caloric, to produce a difference of temperature which may finally 

give rise to motion.” 
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This principle should never be lost sight of in the construction of heat-engines; it is 

its fundamental basis. If it cannot be strictly observed, it should at least be departed 

from as little as possible. 

He then explored the failure of this condition (p. 57): 

Every change of temperature which is not due to a change of volume or to chemical 

action (an action that we provisionally suppose not to occur here) is necessarily due 

to the direct passage of the caloric from a more or less heated body to a colder 

body. This passage occurs mainly by the contact of bodies of different temperatures; 

hence such contact should be avoided as much as possible. It cannot probably be 

avoided entirely, but it should at least be so managed that the bodies brought in 

contact with each other differ as little as possible in temperature. 

Here is a later version of the same result (p. 68, Sadi’s emphasis): 

… Thus we are led to establish this general proposition: 

 The motive power of heat is independent of the agents employed to realize it; its 

quantity is fixed solely by the temperatures of the bodies between which is effected, 

finally, the transfer of the caloric. 

 We must understand here that each of the methods of developing motive power 

attains the perfection of which it is susceptible. This condition is found to be 

fulfilled if, as we remarked above, there is produced in the body no other change of 

temperature than that due to change of volume, or, what is the same thing in other 

words, if there is no contact between bodies of sensibly different temperatures. 

This condition of the minimal contact of bodies at different temperatures may seem excessively 

restrictive. For real steam engines operate with steam from boilers at much higher temperatures 

than the condensers to which the spent steam is eventually fed. Might Sadi have so restricted his 

account that it was remote from any real steam engine? Sadi readily answered the concern (p. 

60): 

The proposition found elsewhere demonstrated for the case in which the difference 

between the temperatures of the two bodies is indefinitely small, may be easily 

extended to the general case. In fact, if it operated to produce motive power by the 

passage of caloric from the body A to the body Z, the temperature of this latter body 

being very different from that of the former, we should imagine a series of bodies B, 
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C, D . . . of temperatures intermediate between those of the bodies A, Z, and 

selected so that the differences from A to B, from B to C, etc., may all be 

indefinitely small. The caloric coming from A would not arrive at Z till after it had 

passed through the bodies B, C, D, etc., and after having developed in each of these 

stages maximum motive power. The inverse operations would here be entirely 

possible, and the reasoning of page 52 would be strictly applicable. 

 In all these statements,23 Sadi’s condition is not quite the modern condition.  First, in the 

modern conception, a thermodynamically reversible transfer of heat is admissible just if the body 

supplying the heat is imperceptibly warmer than that receiving the heat. By maintaining that 

condition, one body can reversibly heat another. Sadi has the condition of avoiding contact of 

bodies with sensibly different temperatures. However, it is always coupled with an extra 

condition that any resulting transfer of heat must be accompanied by a volume change 

somewhere or, more generally, the creation of motive power. While the modern conception 

allows this added condition, it does not require it. 

 Second, there is no explicit treatment of the balance of forces other than temperature 

differences. The modern conception requires, for example, that all pressure forces are in perfect 

balance or minutely removed from it. However, it takes only a slight charity to see that this 

further condition is implicit in Sadi’s analysis, for without it the processes of his analysis would 

not have the requisite reversibility. This is clear in his treatment of adiabatic reversible processes, 

 that is, those that involve no heat transfer. They appear explicitly later in the analysis when Sadi 

develops what we now know as the Carnot cycle (pp. 63-67). The cycle contains an adiabatic 

expansion of a gas and an adiabatic compression of the same gas. Sadi (p. 65-66) announces the 

complete reversibility of the processes.24 The perfect reversal of these processes would only be 

 
23 Another version of the condition is provided in the concluding parts of his memoire. Sadi’s 

(p.112) recommendation for the most efficient operation of a heat engine includes: 

… the passage of the elastic fluid [gas or vapor in the heat engine] from the highest 

to the lowest temperature should be due to increase of volume; that is, it should be 

so arranged that the cooling of the gas should occur spontaneously as the effect of 

rarefaction. 
24 “All the above-described operations may be executed in an inverse sense and order.” 
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possible if the pressures of the expanding or contracting gases were in the requisite equilibrium 

with the agencies receiving or supplying the motive power. 

 Finally, Sadi turned to the essential awkwardness of these processes. He conceded their 

impossibility, but dismissed the failure as one that could be arbitrarily minimized and thus 

ignored (p. 58): 

In reality the operation cannot proceed exactly as we have assumed. To determine 

the passage of caloric from one body to another, it is necessary that there should be 

an excess of temperature in the first, but this excess may be supposed as slight as we 

please. We can regard it as insensible in theory, without thereby destroying the 

exactness of the arguments. 

In a footnote, we find a clue as to how Sadi conceived the impossible demands of equilibrium 

and change (p.53): 

We may perhaps wonder here that the [cool] body B [used to condense steam] 

being at the same temperature as the steam is able to condense it. Doubtless this is 

not strictly possible, but the slightest difference of temperature will determine the 

condensation, which suffices to establish the justice of our reasoning. It is thus that, 

in the differential calculus, it is sufficient that we can conceive the neglected 

quantities indefinitely reducible in proportion to the quantities retained in the 

equations, to make certain of the exact result. 

Here Sadi suggests that some limit process, such as is familiar in the calculus, can meet both 

demands. In the differential calculus, we compute the instantaneous speed of a body from the 

ratio of the distance covered in some small increment of time. We consider the limit of this ratio 

as the time increment becomes arbitrarily small. For common cases, this limit is well-defined. 

Sadi’s case is unlike this case of the calculus. For as the temperature differences are made 

smaller, more time is needed to convey some fixed unit of heat. In the limit of zero temperature 

difference, we might be inclined to say that “infinite time” is needed to convey that unit of heat. 

This is just another way of saying that the conveyance never happens. If we have two bodies at 

exactly the same temperature, no heat passes between them, after any finite time, that is, no 

matter how long we wait. 
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 It is perhaps significant that nowhere in his work, as far as I have been able to discern, 

does Sadi acknowledge that his reversible processes would require infinite or even just an 

arbitrarily large time for their completion. 

9.4 The Puzzle (Solved): How Did Sadi Come to Posit Such a Strange Notion? 

 This last section shows that Sadi proposed what is essentially the modern notion of a 

thermodynamically reversible process. It is, as emphasized above in Section 8.2, a most strange 

notion. It contradicts one of the most fundamental of distinctions in thermal systems: that 

between equilibrium and non-equilibrium systems. The proposal requires processes whose states 

are, at the same time, both. How could Sadi come up with such an extraordinary notion? That is, 

for me, the greatest puzzle in this history. Sadi’s identification of this notion is of comparable 

importance, in my view, to Newton’s recognizing that terrestrial gravity and celestial planetary 

forces are the same; and to Einstein recognizing that all will be well with electrodynamics and 

the relativity principle if he gives up absolute simultaneity. 

 The answer to the puzzle is, of course, the inspiration provided by the work of his father, 

Lazare. It led Sadi to his conception in two ways indicated in summary in Section 3 above. 

 First, we now recognize that thermodynamic processes are inherently dissipative. That is, 

using later concepts developed from Sadi’s work, a thermodynamic process only advances if it 

increases thermodynamic entropy. We do not now think of processes in mechanics as providing 

a useful model for such inherently dissipative processes. For our most fundamental physical 

theories all operate with some version of the conservation of energy and momentum. The 

analogy is poor. 

 Lazare’s work in the efficiency of machines provided a different conception. He 

proceeded from what is labeled as (ii) in Section 3: A basic ontology for machines that is 

dissipative. As a result, Lazare focused on what is needed to maximize efficiency in such 

fundamentally dissipative systems. At the broadest of levels, this was the problem facing Sadi in 

his project on heat engines. At this level, the problems are analogous. 

 Second, Lazare’s work provided template solutions for the identification of which are the 

most efficient processes in such an ontology. That is point (iii) of Section 3: A way to 

characterize the least dissipative processes in his ontology. Lazare provided a repertoire of 

techniques for this. Repeatedly, Lazare insists on the elimination of all shocks or percussions. 

That is, all imbalances of ordinary forces are to be minimized or removed. All motions proceed 
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by imperceptible degrees. That condition can be translated directly to the context of heat engines: 

all sensible differences of temperature are to be minimized or eliminated. This is, of course, the 

repeated characterization of Sadi’s most efficient processes for heat engines. 

 Then, more importantly, Lazare’s geometrical motions were characterized by their 

reversibility. That characterization reappears in Sadi’s notion of the thermodynamically 

reversible process. Motive power transmitted by a geometrical motion can be recovered in its 

entirety by a reversal of the geometrical motion. Correspondingly, the reverses of Sadi’s 

reversible processes have the same restorative effect. They use a return of all the motive power 

to restore all caloric to its original sources; and all other components to their initial states. This 

restorative capacity of reversible processes then provides Sadi the means to prove his core 

reversibility result of Section 5 above. 

9.5 Two Anomalies in Sadi’s Account 

 That Sadi is working closely with the conceptions recovered from Lazare’s work might 

help us explain two anomalous aspects of Sadi’s conception of a reversible process described 

above. Unlike Sadi’s account, the modern concept of a thermodynamically reversible heat 

transfer does not require that the transfer be accompanied by generation of motive power. Sadi’s 

additional condition mimics Lazare’s own prescription for the greatest efficiency of ordinary 

machines. 

 In his synoptic summary, Lazare considered a machine supplied with “momentum of 

activity” (loosely our modern work energy) Q that transmits a portion q of it usefully. To get the 

best out of a machine, two conditions must be met (1808, p. 298-99): 

…1st, the quantity Q must itself be the greatest possible; 2ndly, All this momentum 

Q must be solely employed in producing the effect proposed. … This first condition 

being fulfilled, nothing remains to be done, to produce with any given machine the 

greatest effect possible, but to manage matters so as that the whole quantity Q is 

employed in producing this effect; for if this he done, we shall have q = Q; and this 

is all we can expect, since Q can never be less than q. 

Lazare’s standard of greatest efficiency is that “all this momentum Q must be solely employed in 

producing the effect proposed.” If Sadi applies that standard to the processes in a heat engine 

individually, then any motion of heat must be accompanied by the generation of motive power. 

We now know that a thermodynamically reversible transfer of heat need not be associated 
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directly with the generation of motive power. It can be a step in a larger process whose other 

steps produce motive without its presence reducing the overall efficiency of the process. Indeed, 

Carnot’s own result on the maximum efficiency of reversible engines shows this. 

 Second, while Sadi recognizes the artificiality of his reversible processes, he does not 

recognize explicitly in his text the inherent contradiction supposed by them. Here again the 

model of Lazare’s work might have misdirected him. In the ordinary machines Lazare 

considered, reversible geometrical motions do not contradict the basic laws of mechanics. We 

can have a system in which all forces balance perfectly, but a motion proceeds nonetheless. That 

motion is, in the simplest case, an inertially moving mass on which no net force acts. A more 

sophisticated example is Lazare’s winch of Figure 3. The condition for a geometrical motion is 

that the forces exerted by the two masses on each other balance perfectly. In that situation, the 

winch may not turn. Or, if its bearings are frictionless, the masses can move at uniform speed, as 

does the free inertial mass. The geometrical motion is realized, even though the forces are 

perfectly balanced. 

 This, then, is a significant disanalogy between Lazare’s machines and Sadi’s engines. 

Realization of the most efficient processes for Lazare’s machines does not contradict the laws of 

mechanics. Realization of the most efficient processes of Sadi’s engines, however, does 

contradict basic thermal laws. Might it be that taking the model of Lazare’s machines too 

seriously and trusting in the powers of infinitesimals in the calculus was sufficient to lead Sadi to 

overlook these contradictions? 

10. The Analogy 

 In sum, what was the analogy that guided Sadi’s analysis in his Réflexions? Elsewhere 

(Norton, 2021, Ch. 4), I have provided a general account of analogical inference. These 

inferences are not based on some general notion of similarity. They are not distinguished by their 

conformity with a universal schema of analogical inference, as is the standard practice in 

philosophical treatments of analogical inference. Rather they are authorized by the truth of 

specific “facts of analogy” that express some relevant commonality for two systems and 

authorize inferences that span the two systems. Identifying these facts of analogy identifies the 

warrant for the analogical inferences and allows us to discern whether the inferences are well 

founded. 
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 In the present case, the overarching fact of analogy is that Lazare’s machines and Sadi’s 

engines are both dissipative and in a sufficiently similar way that the conditions that lead to 

greatest efficiency in one will likely do the same in the other. At a general level, Lazare’s 

machines are most efficient when all shocks and percussions are minimized. Sadi’s engines are 

most efficient when all differences of temperature between contiguous bodies are minimized. 

This condition is realized in both systems by processes that are reversible. 

 Similarities such as these enable closely parallel inferences to be mounted for Lazare’s 

machines and for Sadi’s engines. The case of waterwheels and heat engines is easiest to see and 

most familiar. The lowering of water, a conserved fluid, from an elevated source to produce 

motive power by a waterwheel is similar to the transmission of caloric, another conserved fluid, 

from a high temperature source by a heat engine to produce motive power. The lowering of 

water and transmission of caloric do, of course, differ in many aspects. Water is wet, viscous and 

weighty; caloric is none of these. Where they agree, however, is in the properties needed to 

secure the core reversibility argument of Sadi’s analysis, as given in Section 5 above and then 

replicated for water wheels in Section 6. Differences of height and differences of temperature are 

the origins of the motive power each yields; and, most important, it is possible near enough for 

the processes employed by each to be reversed. 

 It follows, using Carnot’s celebrated argument, that a reversibly operated waterwheel and 

a reversibly operated heat engine are each the most efficient; and that the efficiency is 

determined just by the difference in water heights or differences in temperature. The arguments 

used to derive the results in the two contexts are so close that each can be converted one to the 

other merely by systematically switching terms: caloric for water and height for temperature. 

 The analogy between Lazare’s and Sadi’s analyses is robust and persists even if we alter 

details. For both are essentially dissipative in their operation and the general properties and 

modes of analysis for such systems are similar. For example, we might replace Sadi’s analysis 

with the later Clausius-Thomson analysis, in which heat is a form of energy that is converted into 

work energy in a heat engine. The main elements of the analogy to Lazare’s analysis remains. 

We still find that the processes of greatest efficiency are those that minimize all imbalances of 

driving forces. They can be realized as reversible processes. 

 Similarly, we may replace Lazare’s fundamentally dissipative processes of hard collisions 

by friction-limited motions. In the simplest case, imagine that we have a motion impeded by a 



 47 

frictional force F proportional and opposite in direction to the speed v of the motion. That is, F = 

-kv, for some constant k>0. For the motion to pass distance L, it must dissipate energy -FL = kvL. 

Since k and L are fixed, this dissipation is minimized only by bringing v as close to zero as possible. 

It follows that the process requires an arbitrarily large time L/v for completion, while the frictional 

force F = -kv becomes arbitrarily small. If this force is so reduced as to be minutely away from 

zero, we have realized in analogy a process reversible in the sense of thermodynamics. It takes 

arbitrarily long to be completed and can be reversed by the slightest alteration in the balance of 

forces acting. 

11. Conclusion 

 Lazare Carnot’s analysis of the efficiency of machines was based on an essentially 

dissipative ontology. At the most fundamental level, machines are systems of corpuscles 

interacting through hard, inelastic collisions. It was an ontology ill-fated within the developing 

mechanics of the century following. In the mid and later nineteenth century, Clausius, Maxwell 

and Boltzmann accounted for gases as collections of molecules undergoing non-dissipative, 

elastic collisions. They no longer had any use for the details of Lazare’s analysis. Frictional 

dissipation could still arise in this non-dissipative ontology, but through a secondary process in 

which the energy of large body is distributed over the random motions of many smaller bodies as 

heat. 

 Prior to the development of thermodynamics, statistical mechanics and this account of 

frictional dissipation, Lazare’s choice of a dissipative ontology may well have seemed to him the 

only viable choice. For if the fundamental ontology is conservative, would not all machines be 

equally efficient? Whatever may have directed Lazare’s choice of this ill-fated dissipative 

ontology, it was most fortuitous for Sadi. For Lazare mapped out ways of understanding systems 

that are inherently dissipative. When Sadi turned to analyze just such a system, heat engines, he 

had available to him the model of Lazare’s work. He could copy its ways and methods and, using 

them, devise the basis of what becomes the modern theory of thermodynamics. 
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Appendix: Lazare’s Demonstration of his “First Fundamental 

Equation.” 

 The dynamics of the system of Lazare’s Section XV of his (1808,1809) resides in the 

interactions of each corpuscle with those of its neighbors with which is interacts. The first step in 

the analysis considers just the pairwise interaction of two of these neighbors. That interaction is 

taken to be a hard body collision. Lazare does not have a notation adequate to keep track of just 

which mass is interacting with each other mass. Without it, the analysis becomes opaque. Here I 

augment his notation by designating each mass mi with an index i = 1, 2, 3, … This same index 

is used to identify the speeds associated with each mass. 

 Assume mass mi collides with mass mk. Their speeds prior to the collision are Wi and Wk; 

their speeds after the collision are Vi and Vk; and the (negative) change in speeds are Ui and Uk. 

The force exerted on mass mi by mass mk is denoted by Fik; and the reaction force exerted on mk 

by mass mi is denoted by Fki. The angle between the after-collision speed Vi of mass mi and the 

force Fik is qik; and the angle between the after-collision speed Vk mass mk and the force Fki is 

qki. 

 The collision is resolved by the application of the two laws given in the main text. 

Immediately after the collision, the speeds of the two bodies in the direction of the interaction are 

Vi cos qik and Vk cos qki. Lazare’s second law requires that these speeds be equal. The equality is 

expressed as Vi cos qik = - Vk cos qki, where the minus sign allows for the fact that the two 

speeds are evaluated in opposite directions. That is, we have 

Vi cos qik + Vk cos qki = 0                        [Lazare’s equation label] (A) 

From Lazare’s first law we have that action equals reaction,25 that is Fik = Fki. Multiplying 

successive terms in (A) by each we have 

 
25 Here Lazare’s sign conventions are inconsistent. If the velocity components of equation (A) 

have opposite signs because they have opposite directions, then the same should be true of the 

forces of action and reaction. Instead of Fik = Fki, we should have Fik = -Fki. Using a consistent 
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Fik Vi cos qik + Fki Vk cos qki = 0                 [Lazare’s equation label] (B) 

Lazare now sums his equation over all pairs of interacting masses to arrive at 

Si,k Fik Vi cos qik + Si,k Fki Vk cos qki = 0                                (App 1) 

Where the summation over i, k is taken only over pairs of interacting masses. Lazare writes this 

equation somewhat inadequately as 

s F’ V’ cosine q’ + s F’’ V’’ cosine q’’ = 0 

where the symbol “s” indicates “sum.” 

 The equation in this form is not yet suitable for the next stage of the analysis. First, we 

need to note that there is a duplication of terms in equation (App1) that follows from the pairing 

of action and reaction. That is, for each term summed in Si,k Fik Vi cos qik, there will be an 

identical term in the second sum  Si,k Fki Vk cos qki; and conversely. For example, the term F12 

V1 cos q12 arises in the first sum when i=1 and k=2. However this same term arises in the second 

sum when k=1  and i=2. Hence equation (App1) is just twice the simpler and more usable 

expression 

Si,k Fik Vi cos qik = 0                                                      (App 2) 

where once again the summation over i, k is taken only over pairs of interacting masses. 

 Next, we need to eliminate the explicit presence of the summation over k. For some fixed 

value of i, the summation just over k of  

Sk Fik cos qik 

is the component in the direction of Vi of the net force exerted on mass mi by all the other masses 

with which it interacts. That is, we write this net force as Fi . It is the resultant of the 

combination of all the individual forces Fik due to all masses mk that exert a force on mass mi. If 

 
sign convention, we would have Vi cos qik - Vk cos qki = 0 for (A). When it is multiplied by Fik = 

-Fki, we would recover (B). 
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this resultant force acts at an angle qi to the after-collision velocity Vi, we have for its component 

in the direction Vi 

Fi cos qi = Sk Fik cos qik 

Using it, equation (App 2) adopts the simpler form 

Si Fi Vi cos qi = 0                                                    (App 3) 

where the summation over i is now taken over all masses. 

 This transformation, from equation (App 1) to (App 3), is absent from Lazare’s narrative. 

Without it, the ensuing stage of the calculation is unintelligible. It is possible that Lazare 

intended the transition to be conveyed by text for which I can discern no other purpose (p. 212): 

We shall therefore have for the whole system s F V cosine q = 0 or s V F cosine q = 

0 (C)… 

If so, then equation (App 3) would correspond with Lazare’s equation “(C).” However, if that is 

the intent behind the text, it is a striking expository failure. 

 The second stage of the calculation begins by considering what portion of the after-

collision speed Vi is due to the collision. If the angle between the before-collision speed Wi and 

the after-collision speed Vi is Xi, then the component of Wi already in the direction of Vi  is Wi 

cos Xi . Hence the portion of the speed Vi due to the collision is (Vi - Wi cos Xi). 

 Recall that Lazare’s version of Newton’s second law was an impulsive version: the force 

is set equal to the change of motion resulting from an impulse, not the later rate of change of 

motion. Hence the component of the net force Fi acting on mass mi in the direction of Vi is mi (Vi 

- Wi cos Xi). In the context of developing equation (App 3), we arrived at an equivalent 

expression for this force component, Fi cos qi. Setting the two expressions equal, we have: 

mi (Vi - Wi cos Xi) = Fi cos qi 

Multiplying both sides by Vi and summing over all masses, we recover 

Si mi Vi (Vi - Wi cos Xi) = Si Fi Vi cos qi = 0                     (App 4) 

where the zero value follows from equation (App 3). Define Ui as that speed that when combined 

with Vi results in Wi. (That is, in modern vector representation, we have Wi = Vi + Ui.) If Zi is 
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the angle between Vi and Ui, this summation is expressed in terms of component speeds in the 

direction of Vi as  

Wi cos Xi = Vi + Ui cos Zi 

Substituting this expression for Wi cos Xi into equation (App 4), we recover 

Si mi Vi Ui cos Zi = 0             [Lazare’s equation label] (E) 

It is Lazare’s “first fundamental equation.” 

Appendix: Lazare’s Demonstration of the Conservation of Vis Viva 

 Lazare represented motions by tracking their speeds and, separately, their directions. The 

later vector analysis combined the two into a single vector quantity. If we index the corpuscles 

by i = 1, 2, 3, …, we can represent their masses as mi, their velocities prior to collision Wi, their 

velocities after collision Vi and the loss of velocity in collision for each mass, Ui = Wi - Vi. The 

“first fundamental equation” (E), written in vector form is just26 

Si mi Vi  × Ui = 0                                                   (Ea) 

We form the scalar quantity 

Si mWi2 = Si m(Vi+Ui)×(Vi+Ui) = Si miVi2 + Si miUi2 + 2 Si miVi × Ui 

where Wi, Vi  and Ui  are the norms |Wi|, |Vi|  and |Ui|. Applying (Ea), this equation reduces to 

Si miWi2 =  Si miVi2 + Si miUi2                                      (1a) 

The inference to the conservation of vis viva now proceeds as in the main text. 

 
26 Unit vectors in the directions of Vi  and Ui are Vi / Vi  and Ui / Ui. The cosine of the angle 

between Vi  and Ui is the inner product of the two unit vectors. That is, 

cosine Zi = (Vi  × Ui) / (Vi  Ui). Substituting this expression for the cosine into (E) returns (Ea). 
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