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Approaching a hundred years since the publication of Born’s
epochal 1926 papers, the status of the Born rule is still the sub-
ject of lively discussion in the physics and philosophy literatures.
Here I examine some approaches to justifying the Born rule within
the mathematical framework that construes quantum probability
theory as the study of probability measures on the projection
lattices of von Neumann algebras. Of particular concern is the
role of Gleason’s theorem and its generalizations. A common
line is to credit the Gleason theorems with providing a deriva-
tion of the Born rule, but then to complain that the theorems
offer little physical insight into the emergence of quantum prob-
abilities and the Born rule and/or that they commit the sin of
“non-contextuality.” It is argued that both the credit and the
complaints are off the mark.

1 Introduction

What is the Born rule? What is its status in quantum theory? Is it an
independent axiom or can it be justified by appeal to more basic principles?
These questions will receive different answers if posed in different contexts.
One important context is historical: the struggle of the new quantum

theory to be born. The story of the birth pangs takes a crucial turn with
the advent of Schrödinger’s wave mechanics and Schrödinger’s electromag-
netic interpretation of the ψ-function (Schrödinger 1926a-d). Schrödinger
proposed that |ψ|2 determines the charge distribution ρ := e|ψ|2 of the elec-
tron, an interpretation he took to to be confirmed by the fact that his time-
dependent wave equation implies that ρ obeys the continuity equation
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∂ρ

∂t
+ divS = 0

where S is the current density

S :=
e}

2πim
(ψ∗∇ψ − ψ∇ψ∗)

and m is the mass of the electron.
Born rejected Schrödinger’s proposal because the spreading of the wave

function seemed incompatible with the corpuscular nature of the electron,
of which Born was convinced by the results of scattering experiments. Born
proposed instead a statistical interpretation of ψ-function (Born 1926a-c), a
proposal whose success was crowned by the award of the Nobel Prize in 1954.
In his acceptance speech Born credited Einstein for inspiration:

He [Einstein] had tried to make the duality of particles - light
quanta or photons - and waves comprehensible by interpreting the
square of the optical wave amplitudes as probability density for
the occurrence of photons. This concept could at once be carried
over to the ψ-function: |ψ|2 ought to represent the probability
density for electrons (or other particles) (1964, p. 262).

It was in fact Wolfgang Pauli (1927) who first proposed interpreting |ψ|2 as
the particle probability density.1

Despite– or perhaps, because of– the success of Born’s proposal, others
were not content to treat it as a bare postulate but were led to ask whether
it can be derived from other postulates of the theory or, if not, whether it
can be justified by appeal to other physically motivated principles. This
discontent was expressed already in 1927 by von Neumann:

The method hitherto used in statistical quantum mechanics was
essentially deductive: the square of the norm of certain expan-
sion coeffi cients of the wave function or of the wave function itself
was fairly dogmatically set equal to a probability, and agreement
with experience was verified afterwards. A systematic deriva-
tion of quantum mechanics from empirical facts or fundamental

1For discussions of how Born’s statistical interpretation evolved see Wessels (1981),
Pais (1982), and Jammer (1989, Ch. 5).
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probability-theoretic assumptions, i.e., an inductive justification,
was not given. Moreover, the relation to the ordinary probabil-
ity calculus was not suffi ciently clarified: the validity of its basic
rules (addition and multiplication law of the probability calculus)
was not suffi ciently stressed. (von Neumann, 1927, p, 246)2

The quest to establish a foundation for the Born rule continues today, over
nine decades after Born made his inspired proposal.3

I am interested here in posing and answering the opening questions in the
ahistorical setting of the now standard mathematical framework of quantum
theory, both in its concrete Hilbert space incarnation and in the more ab-
stract algebraic formulation; and more particularly, I am concerned with the
implications of Gleason’s theorem for the Born rule. The implications are
often misconstrued and mischaracterized: the theorem is seen as providing a
derivation of the Born rule, but the derivation is faulted for committing the
sin of assuming “non-contextuality”and/or for not offering physical insight
into the basis of the Born rule. I will argue that both parts of this received
wisdom are flawed, and I aim to provide a more accurate picture of the rel-
evance of Gleason’s theorem and its generalizations for the Born rule and,
more generally, the role of these theorems in the quantum theory construed
as a theory of probability.
No violation of the Born rule has been detected in laboratory experi-

ments. Nevertheless, reasons have been advanced for thinking that the rule
is inadequate in the cosmological setting (see Page 2009). This fascinating
matter will not be addressed here, and I proceed on the assumption that the
Born rule is empirically adequate.

2Translation from Duncan and Janssen (2013, p. 246). This reference contains a
comprehensive discussion of von Neumann (1927). von Neumann’s own justification for
the Born rule will be taken up below in Section 8.1.

3For a sampling of recent attempts to derive the Born rule see Auffèves and Grangier
(2015), Barnett et al. (2014), Brezhnev (2019, 2020), Carroll and Sebens (2015), Drezet
(2020), Frachinger and Renner (2017), Han and Choi (2016), Hosenfelder (2020, 2021),
Illyin (2016), Lesovik (2014), Logiurato and Smerzi (2012), Masenes et al. (2019), Modelesi
(2020), Saunders (2003), Schlosshauer and Fine (2005), Shrapnel et al. (2018), Vaidman
(2020), Zurek (2003, 2005, 2018). Vaidman (2020) can be recommended for an overview
of the topic.
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2 The framework of quantum theory

2.1 Quantum theory in the algebraic setting: algebras
and states

Here I will work with an algebraic framework that is broad enough to encom-
pass not only ordinary non-relativistic QM but relativistic QFT and quantum
statistical mechanics as well. A quantum system is characterized by two ele-
ments. First, there is a von Neumann algebra N acting on a Hilbert space H,
which may be separable or non-separable. To characterize a quantum system
by a von Neumann algebra N is to posit that the self-adjoint elements of N
correspond to the observables of the system. A way to generate N is to start
with the subset O of self-adjoint operators (bounded or unbounded) that act
on H and that are regarded as corresponding to observables of the system,
and then define N as the double commutant O′′ := (O′)′ of O.4 Every von
Neumann algebra is generated in this manner by its self-adjoint elements.
Second, there is the set of algebra states S(N) which consist of the normed

positive linear functionals ω : N → C. S(N) is closed under convex linear
combinations, λω1+(1−λ)ω2 for ω1, ω2 ∈ S(N) and λ ∈ [0, 1]. (If you prefer
a more abstract approach that does not use Hilbert spaces ab initio you can
formulate much of the discussion to follow in terms ofW ∗-algebras which are
C∗-algebras that are ∗-isomorphic to a concrete von Neumann algebra.) In
physical applications a subset SA(N) ⊂ S(N) of the set of admissible states
may be singled out. The most familiar states are vector states: where ω is
a vector state just in case there is a |ω〉 ∈ H such that ω(A) = 〈ω|A|ω〉
for all A ∈ N. The state ω is said to be pure if it cannot be written as
a non-trivial convex combination of two distinct states, otherwise ω is said
to be mixed. Ordinary QM (sans superselection rules) concerns the special
case of N = B(H), the von Neumann algebra of all bounded operators
acting on H, typically assumed to be separable. But separable or not, for
B(H) the pure states coincide with the vector states. In the simple case of
a spinless particle moving in three-space H is usually chosen to be L2C(R3),
the elements of which are Schrödinger wave functions. Outside of ordinary
QM– or even inside ordinary quantum mechanics with superselection rules–
the von Neuman algebra can be more exotic thanB(H), and the vector states

4O′ consists of all bounded operators A acting on H such that [O,A] = 0 for all O ∈ O.
If O is unbounded [O,A] = 0 means that A commutes will all of the spectral projections
of O.
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may not coincide with the pure states.

2.2 Hilbert space states vs. algebra states

Most philosophers as well as physicists who do not work in the algebraic
framework tend to use the notion of quantum state in a somewhat different
sense. For a von Neumann algebraN acting on a Hilbert spaceH “states”are
often identified with unit vectors ofH (more properly with equivalence classes
of unit vectors where |ω〉 ∼ |ω′〉 iff |ω〉 = eiφ|ω′〉) or more generally with the
density operatorsD(H) (positive self-adjoint operators of trace one) acting on
H. Hilbert space states are associated with algebra states through the trace
prescription i.e. the algebra state ω% associated with the density operator
% is ω%(A) = Tr(%A), A ∈ N. The association is not onto since a non-
completely additive algebra state does not correspond to any Hilbert space
state. There is the potential here for confusion of terminology since in the
Hilbert space state vernacular the pure vs. mixed state distinction is thought
to correspond to the vector vs. non-vector state distinction (or in terms of
density operators to %2 = % vs. %2 6= %). But whenN is notB(H) the algebra
state associated with a vector state can be mixed. In the algebraic language,
the identification of quantum states with Hilbert space states amounts to the
implicit stipulation that the physically admissible algebra states SA(N) are
the normal states.
Normal algebra states have a number of equivalent characterizations,

among which the following three are the most useful for present purposes
(see Kadison and Ringrose 1997, Vol 2, Theorem 7.1.12):

(i) ω ∈ S(N) is completely additive on any family of mutually
orthogonal projections in N

(ii) ω is represented by a density operator %ω, i.e. ω(A) =
Tr(%ωA) for all A ∈ N

(iii) ω is weak-operator (or strong-operator) continuous on
the unit ball of N.

Some reasons to identify the physically admissible algebra states with the
normal states are discussed in Ruetsche (2011).
When discussing the Born rule the use of algebra states has the undesir-

able feature of appearing to beg the question because as expectation value
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functionals algebra states have a natural probabilistic interpretation. Nev-
ertheless, the presentation of Gleason’s theorem and its generalizations and
other aspects of quantum theory is best framed in terms of algebra states.
But the discussion below of the justification of the Born will be framed in
terms of Hilbert space states.

2.3 Probability states

In the present approach quantum probabilities are assigned to projections
E ∈ N, self-adjoint operators such that E2 = E. The collection of projections
is a lattice P(N) when equipped with the natural partial order ≤ where,
for E,F ∈ P(N), E ≤ F iff range(E) ⊆ range(F ). Meet ‘∧’ and join
‘∨’ are defined respectively as the least upper bound and greatest lower
bound. Lattice complementation Ec is taken to be orthocomplementation,
i.e. Ec := E⊥ = I − E. The elements of P(N) are variously called events,
propositions, or Yes-No questions, and they serve as the bearers of quantum
probabilities.
Quantum probability theory can be construed as the study of quantum

probability measures on the projection lattice P(N) (see Hamhalter 1993a).
A quantum probability measure is a map P : P(N)→ [0, 1] such that

A1. P (I) = 1 (I the identity operator)

A2. P (E1 ∨E2) = P (E1 +E2) = P (E1) + P (E2) for all E1, E2 ∈
P(N) such that E1⊥E2.

The axiom A2 of finite additivity is to be viewed as a minimal requirement
on quantum probabilities. The strongest additivity axiom, called complete
additivity, takes the form

A2′. P (
∑
a∈I

Ea) =
∑
a∈I

P (Ea) for any family {Ea} ⊂ P(N) such

that Ec⊥Ed when c 6= d

where the summation on the lhs of the equality is understood in the sense
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of the strong operator topology.5 Finite (respectively, countable) additivity
concerns the case where the index set I is finite (respectively, countable).
When the Hilbert space H on which N acts is separable complete additivity
reduces to countable additivity, and when dim(H) <∞ complete and count-
able reduce to finite additivity.6 In the special case of N = B(H) countable
additivity implies complete additivity unless dim(H) is as great as the least
measurable cardinal (see Drish 1979 and Eilers and Horst 1975); the impli-
cation does not hold for more general von Neumann algebras (see Earman
2020c).
The set of probability measures on P(N) is denoted by P(P(N)). Each

measure P ∈ P(P(N)) constitutes a probability state of the system. Just as
one might want to narrow the mathematically possible algebra states S(N)
to a proper subset of admissible states, so there may be motivation to narrow
the mathematically possible probability statesP(P(N)) to a proper subset of
admissible probability states PA(P(N)), e.g. the completely additive states
and/or the continuous states.

2.4 Probability states and algebra/Hilbert space states

Any algebra state ω ∈ S(N) determines a probability state Pω ∈ P(P(N));
namely, Pω(E) := ω(E) for all E ∈ P(N) since, as the reader can easily
verify, Pω(•) satisfies the basic axioms A1 and A2 for a quantum probability.
When ω is normal and, thus, admits a density operator representation %ω,
Pω(E) := ω(E) = Tr(%ωE) for E ∈ P(N). When the Hilbert space H on
which N acts is finite dimensional all algebra states are normal, and by the
characteristic (iii) of normal states any probability measure on P(N) induced
by an algebra state is continuous. Thus withN acting on a finite dimensional
H, if P(N) admits discontinuous measures (in particular, dispersion free or
0−1 measures) they do not extend to an algebra state. The relevance is this
remark will become apparent shortly.

5When the index set I is uncountable the sum
∑
a∈I

P (Ea) is understood as limF∑
a∈F P (Ea) where the F are finite subsets of I, and limF

∑
a∈F P (Ea) = L means

that for any ε > 0 there is a finite F0 ⊂ I such that for any finite F with I ⊃ F ⊃ F0,
|
∑
a∈F P (Ea)− L| < ε.
6Complete additivity implies that a fair infinite quantum lottery is impossible, e.g. a

lottery with an infinite number of mutually exclusive and exhaustive outcomes, each of
which has the same probability, namely, zero.
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Do algebra-state induced probability measures exhaust the possible quan-
tum probability measures, i.e. is it the case that {Pω(•) : ω ∈ S(N)} =
P(P(N))}? And, if so, under what conditions do the admissible probability
states PA(P(N)) coincide with the probability states {Pω(•) : ω ∈ SA(N)}
induced by admissible algebra states? These questions arise in another form
in evaluating the possibility of an alternative way of characterizing a quan-
tum system, the success of which could be used to support the slogan that
quantum theory is the theory of quantum probabilities (see Pitowsky 2006).
Since a von Neumann algebra N is determined by its projections in the sense
that N is the weak closure of P(N) or, by von Neumann’s double commutant
theoremN = P(N)′′, there is the possibility of inverting the above way of pre-
senting a quantum system. Instead of starting with a von Neumann algebra
and a set of algebra states one might start with a lattice of projections P on
a Hilbert space H and the set of probability states P(P) on P, and from this
basis construct the von Neumann algebra NP =: P ′′ and the algebra states
S(NP). Is it the case that for any such P, P(P) = {Pω(•) : ω ∈ S(NP)}?
Gleason’s theorem helps to answer such questions. But before turning

to these matters let’s add some physical content to the bare mathematical
skeleton sketched above.

2.5 Minimalist interpretation rules

The commitment behind using a von Neumann algebra to characterize a
quantum system and using the projection lattice of the algebra as the bearer
of probabilities is contained in an observability rule which repeats and ex-
pands on what was said above:

(O). To characterize a quantum system by a von Neumann al-
gebra N is to posit that the self-adjoint elements Nsa of N cor-
respond to the observables of the system. In particular, the ele-
ments of the projection lattice P(N) are observables in the sense
that for any E ∈ P(N) there is in principle a measurement pro-
cedure that will give a Yes (1)-No (0) answer to the the question
“Is E true?”

Can a Yes answer be interpreted to mean that the measurement revealed the
pre-existing fact that E true, or is the measurement implicated in making E
true? Section 4 will provide an answer.
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Additional empirical content can be added to the theory by providing
a rule for updating algebra/Hilbert space states on measurement outcomes
and an account of state preparation. The generally accepted updating rule
is known as Lüders rule:

(LR) If a Yes-No measurement of F ∈ P(N) yields a Yes an-
swer and the pre-measurement state ω ∈ S(N) (pure or mixed)
is normal and ω(F ) > 0 then the post-measurement state is

ωF (A) :=
ω(FAF )

ω(F )
, A ∈ N.7

This rule enables an account of state preparation for a class of algebra/Hilbert
space states.

2.6 Algebra/Hilbert space state preparation

Recall that the support projection Sω for a normal ω ∈ S(N) is the smallest
projection in P(N) such that ω(Sω) = 1. If ω is a vector state then Sω is the
projection onto the ray spanned by a vector representative of ω. A projection

Fω ∈ P(N) is said to be filter for ω ∈ S(N) iff
ω(FωAFω)

ω(Fω)
= ω(A) for all

A ∈ N and any normal state ω ∈ S(N) such that ω(Fω) 6= 0 . Two basic
facts about filters (see Earman and Ruetsche 2020):

Fact 1. The support projection Sω for a normal pure ω ∈ S(N)
is a filter for ω.

Fact 2. Mixed states do not have filters.

Now suppose that a Yes-No measurement of the support projection Sω
for a normal pure state ω ∈ S(N) gives a Yes answer. Then by (LR) no
matter what the pre-measurement state ω ∈ S(N) is, as long as ω is normal

and ω(Sω) 6= 0, the post-measurement state is ωSω(A) :=
ω(SωASω)

ω(Sω)
for all

A ∈ N. Since Sω is a filter for ω we have ωSω = ω, and the state ω may be

7Exercise: Show that if ω is normal state then so is ωF .
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deemed to have been prepared. Fact 2 explains why this procedure doesn’t
work for mixed states.
Several comments are in order. First, if the Born rule is added as an

additional interpretational rule then to prepare the system in an algebra
state/Hilbert space state ω is ipso facto to prepare the system in the proba-
bility state Pω(E) := ω(E), E ∈ P(N). (This and other forms of the Born
rule will be discussed below in Section 7). But since the Born rule is what is
at issue here it would be desirable to have an independent account of prob-
ability state preparation, a matter that will be taken up below in Sections
8.2-8.3.
Second, the above account is purely formal.8 The actual physics of algebra

state/Hilbert space state preparation can be highly non-trivial, as seen from
examples discussed in Lamb (1969).
Third, the Lüders rule (LR) embodies a generalized form of “collapse

of the wave function” which leads directly to the measurement problem,
the mother of all foundations problems in quantum theory. There are no-
collapse interpretations of quantum theory, but they all give rise to their own
problems. And what is important for present purposes is that any adequate
interpretation of the theory must explain why actual experimental results
make it seem that (LR) is true. With the help of (LR) the apparatus of
the theory can be used to give a formal account of state preparation, which
is essential to testing the operational content of the theory. Pending the
demonstration of a viable alternative account of state preparation, I make
no apology here for the use of (LR) in discussing the status of the Born rule.
Fourth, apologies are due for the limited scope and faux generality of

the proffered account of state preparation: it applies only to normal pure
states, and only Type I algebras admit such states. For the Type III alge-
bras encountered in relativistic quantum field theory there is a work-around
using the physical postulate that the Type III local von Neumann algebras
N(R) associated with open bounded regions R of Minkowski spacetime sat-
isfy the split property. For then a normal state onN(R)– which is necessarily
mixed– has a filter in the algebra a N(R̃) associated with a slightly larger
local region R̃ ⊃ R and, thus, states on N(R) can be prepared by operations
performed in R̃ (see Earman and Ruetsche 2020). Further wiggle room de-

8And it involves the conceit that we can choose not only what is measured but when
the measurement of performed, a conceit that is highly questionable for reasons discussed
in Pashby (2017).
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rives from the observation that a mixed state ω on a system with algebra N
may result from the restriction to N of a normal pure state ω̃ on the algebra
Ñ ⊃ N for a larger system of which the said system is a subsystem. But this
wiggle room provides no real comfort if the larger system is so large, e.g. the
entire cosmos, that we finite beings have no hope of preparing a pure state
on such a system. Limited though it is, the account of algebra state/Hilbert
space state preparation gives us some grip on the operational content of the
Born rule; this content will be further explored below.

3 Gleason’s theorem and its generalizations

3.1 The theorems

Adapted to the present setting the original version of Gleason’s theorem
concerns the special case of N = B(H) with H separable, the case typically
assumed in ordinary non-relativistic QM.

Theorem 1 (Gleason 1957). Let P be a countably additive quan-
tum probability measure onP(B(H)) withH separable and dim(H) >
2. Then P extends uniquely to a normal state ωP on B(H).

The heart of Gleason’s proof is to show that with H separable and dim(H) >
2 a countably additive probability measure on P(B(H)) is continuous in the
weak operator topology. From there it is a small step to the theorem’s
conclusion since the projections of B(H) are weakly dense in B(H). The
restriction to dim(H) > 2 is necessitated by the fact that when dim(H) = 2,
where countable additivity collapses to finite additivity and all algebra states
are normal, there are discontinuous probability measures (among which are
dispersion free measures) that perforce are not induced by any normal state
on B(H).
Using a different proof technique Theorem 1 was generalized to cover

merely finitely additive probability states on P(B(H)):

Theorem 2. Let P be a quantum probability measure onP(B(H))
with H separable and dim(H) > 2. Then P extends uniquely to
a state ωP on B(H). ωP is normal if P is countably additive and
non-normal if P is merely finitely additive.
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The restriction to separable H can also be removed by strengthening the
additivity requirement:

Theorem 3. Let P be a quantum probability measure onP(B(H))
whereH may be non-separable and dim(H) > 2. Then P extends
uniquely to a state ωP on B(H). ωP is normal if P is completely
additive and non-normal otherwise.

Separable Hilbert spaces suffi ce for most applications of quantum theory,
but non-separable spaces may have a role to play in some approaches to
quantum gravity, and they are needed to describe some idealized systems
such as infinite spin chains (see Earman 2020a for more details).
The Born rule is typically stated forN = B(H), the case for ordinary non-

relativistic quantum mechanics, but it has a straightforward generalization
to arbitrary von Neumann algebras (see Section 7); and the validity of the
generalized rule should extend to all the algebras encountered in applications
of quantum theory. Thus, if Gleason’s theorem is to be relevant to the
Born rule it too should have a generalization to arbitrary von Neumann
algebras. The extension required the labor of several mathematicians and
mathematical physicists over the span of two decades. The labor resulted in

Theorem 4. Let P be a quantum probability measure on P(N)
where N is a von Neumann algebra with no Type I2 summands.
Then P extends uniquely to a state ωP on N. ωP is normal if P
is completely additive and non-normal otherwise.9

3.2 Upshot

Anticipating the discussion of the Born rule below it will be helpful to state
an implication of the Gleason theorems for the relationship between Hilbert
space states and probability states. To save ink I will use “P is completely
additive/continuous” to mean that P is a completely additive measure on
P(N) and, when complete additivity does not imply continuity, as can hap-
pen when N contains Type I2 summands, P is also continuous.

9For proofs and discussion of the generalizations Gleason theorems see Christensen
(1982), Yeardon (1984), and Hamhalter (1993a).
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(U) For any von Neumann algebra N which acts on a Hilbert
spaceH there is a one-one correspondence between the completely
additive/continuous probability states on P(N) and Hilbert space
states D(H) on H, wherein the corresponding probability state
P ∈ P(P(N)) and Hilbert space state % ∈ D(H) satisfy P (E) =
Tr(%E) for all E ∈ P(N).

4 Can one do better than Gleason?

Why isn’t Gleason’s theorem completely general? For the case N = B(H)
Gleason’s theorem does not apply when dim(H) = 2. In this case there are
probability measures on P(B(H)) that are not weak-operator (or strong-
operator) continuous, among which are the dispersion free probability mea-
sures (see the following Section). Such discontinuous measures do not extend
to a state on B(H) since (to repeat) for dim(H) < ∞ all algebra states are
normal and normal states are weak-operator (and strong-operator) continu-
ous on the unit ball of B(H).
There is a way to do better than Gleason by changing the subject; namely,

by changing the space of events to which probabilities are assigned. Such is
the way of the approach to quantum theory championed by Busch and col-
laborators (see Busch et al. 1995) which challenges the view that observables
in quantum theory correspond to self-adjoint operators and that outcomes of
measurements correspond to projection operators. The proposed alternative
is to treat the outcomes of measurements in terms of “effects.”Define the
effect algebra A(N) associated with a von Neumann algebra N acting on H
by A(N) := {A ∈ Nsa : 0 � A � I} where A � B iff B − A is a positive
operator, i.e. 〈(B − A)ψ, ψ〉 ≥ 0 for all ψ ∈ H.10 A countably additive
“generalized probability measure”on A(N) is a map p : A(N)→ [0, 1] such
that

A1∗. p(I) = 1 (I the identity operator)

A2∗. p(
∑
a∈I

Aa) =
∑
a∈I

p(Aa) where I is a countable set and the

Aa ∈ A(N) are any effects such that
∑
a∈I

Aa is an effect (i.e.

10Note that A(N) is not a lattice under -.
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∑
a∈I

Aa � I).11

For the case of ordinary QM with N = B(H) and separable H Busch
(2003) shows that a countably additive generalized probability measure on
the effect algebraA(B(H)) has, regardless of dim(H), a unique extension to a
normal quantum state. I am unaware of a proof that this result extends to the
case of a non-separableH and to more general von Neumann algebras. There
is also the problem of crafting an attractive rule for updating probabilities of
effects. But this is not the place to debate the merits of the effects approach.
The other way to overcoming the exceptions to Gleason’s theorem is to

keep P(N) as the event space and to supply reasons for counting as inad-
missible the discontinuous probability measures on P(N) that arise when N
has a Type I2 summand. Prospects for success of this tack will be receive
attention in Sections 9.1-9.2.

5 The nature of quantum probabilities, dis-
persion free measures, hidden variables, and
all that

The ramifications of the Gleason theorems are felt throughout the structure
of quantum theory, so it would be surprising if these theorems did not have
important implications for the status of the Born rule. I begin with an expla-
nation of how the Gleason theorems imply that quantum probabilities have
to be understood as propensity probabilities and not as ignorance probabil-
ities; that is, why the probability P (E), E ∈ P(N), cannot be uniformly
interpreted as the probability that a Yes—No measurement of E will reveal
an unknown but preexisting Yes-No value.
As is well known, P(B(H)) admits dispersion free (0 − 1) probability

states when dim(H) = 2. Gleason’s theorem implies that there are no dis-
persion free and completely additive probability measures on P(B(H)) when
dim(H) ≥ 3. When the probability measure is completely additive Gleason’s
theorem tells us that the measure extends uniquely to a normal state ω,
which can be written in the form
11Note that when applied to projections the condition

∑
a∈I

Aa � I implies that the Aa

are mutually orthogonal.
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ω =
∞∑
n=1

cnω|ψn〉

where the ω|ψn〉 are vector states corresponding to the members of an ortho-
normal family of vectors |ψn〉 ∈ H. If ω were dispersion free (i.e. ω(F ) ∈
{0, 1} for all F ∈ P(B(H))) then since ω(E|ψn〉) = cn, where E|ψn〉 is the
projection onto the ray spanned by |ψn〉, it follows that ω = ω|ψn∗〉 for some
n∗. But this contradicts the fact that a vector state takes values other than
0 and 1 on P(B(H)) (Hamhalter 1993a, 89-91). This no-go result can be
extended to cover merely finitely additive probability measures on P(B(H))
with dim(H) ≥ 3 (see Hamhalter 2003a, Theorem 3.4.1). No-go results for
a finite family of projections on H with dim(H) ≥ 3 were first obtained
by Kochen and Specker (1967) and for even smaller families by subsequent
researchers (see Cabello 1996).
These no-go results for the special case of B(H) takes advantage of the

fact that every projection on H belongs to the projection lattice P(B(H)).
This luxury is unavailable for more general von Neumann algebras; for ex-
ample if N is Type III then P(N) contains no finite dimensional projections.
Nevertheless, go and no-go results are available for general von Neumann al-
gebras. An arbitrary von Neumann algebra N with Type I2 summands P(N)
admits a dispersion free measure (see Hamhalter 1993b, 185-186). On the
other hand, if N has no Type I2 summands the generalized Gleason theorems
can be used to prove

Theorem 5 (Hamhalter 1993b). LetN be a von Neumann algebra
without Type I2 summands, and let Z(N) := N ∩N′ denote the
center of Z. If P is a finitely additive dispersion free measure on
P(N) then there is an abelian projection E ∈ Z(N) such that
P (E) = 1.

So if N has no Type I2 summands the dispersion free measures on P(N) have
to be concentrated on an abelian (= classical) part EP(N) of the projection
algebra. Put the other way round, if N has no Type I1 or I2 summands then
there are no dispersion free measures on P(N) (see Döring 2004). The con-
dition that N has no Type I1 summands is necessary for rule out dispersion
free measures.12 Putting these pieces together, we arrive at

12Suppose that there is a non-zero central abelian projection E ∈ P(N). Since Z(N) is
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Upshot : P(N) admits no dispersion free states iff N is without
either Type I1 or Type I2 summands.

I am unaware of results showing that some finite substructure of P(N) admits
no dispersion free states iffN is without either Type I1 or Type I2 summands.
A no-go result on dispersion free probability measures implies in turn a

no-go result on truth valuations for the propositions P(N). A truth value
assignment is a map V : P(N) → {1, 0}, with 1 standing for true and 0
for false. Natural constraints on such an assignment follow the constraints
for classical propositional logic with orthogonality of projections taking the
place of logical inconsistency in classical logic. For present purposes all that
is needed are the following constraints on V :

(α) V (I) = 1

(β) For any mutually orthogonal E1, E2 ∈ P(N), if V (E1) = 1
then V (E2) = 0.

(γ) For any mutually orthogonal E1, E2 ∈ P(N), V (E1 ∨ E2) =
V (E1 + E2) = 1 if either V (E1) = 1 or V (E2) = 1, and V (E1 ∨
E2) = 0 if both V (E1) = 0 and V (E2) = 0.

If such an assignment existed then Pr : P(N) → {1, 0}, where Pr(E) = 1 if
V (E) = 1 and Pr(E) = 0 if V (E) = 0, would define a dispersion free prob-
ability measure. Thus, when the no-go results for dispersion free measures
apply to P(N) a probability measure on P(N) cannot be consistently inter-
preted as assigning probabilities that Yes-No experiments reveal pre-existing
truth values of the propositions in P(N) if those values satisfy the minimal
requirements (α)-(γ).
The connection to Kochen-Specker type no-go results for von Neumann

algebras is easily made. With Nsa denoting the self-adjoint elements of N, a
Kochen-Specker valuation function for a von Neumann algebra N is a map-
ping Vks : Nsa → R which satisfies

abelian there are dispersion free measures on P(Z(N))– any pure state on Z(N) induces

such a measure. Pick such a P with P (E) 6= 0. Define P (F ) :=
P (EF )

P (E)
for F ∈ P(N).

Obviously, P (I) = 1. To show that P (F1 ∨ F2) = P (F1 + F2) = P (F1) + P (F2) for all
F1, F2 ∈ P(N) such that F1F2 = F2F1 = 0 use the fact that EF = FE = EFE for any
F ∈ P(N) and, thus if F1F2 = F2F1 = 0 then (EF1E)(EF2E) = (EF2E)(EF1E) = 0. So
P is a dispersion free measure on P(N).
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(i) (Spectrum rule) Vks(A) ∈ spec(A) for all A ∈ Nsa.

(ii) (FUNC rule) For all Borel functions f : R→ R, Vks(f(A)) =
f(Vks(A)) for A ∈ Nsa.

These conditions imply that Vks(E) ∈ {0, 1} for E ∈ P(N), Vks(I) = 1, and
Vks(E1 +E2) = Vks(E1) + Vks(E2) for orthogonal E1, E2 ∈ P(N). Hence, the
existence of a K-S valuation function entails the existence of a dispersion free
probability measure on P(N), and a no-go result on dispersion free measures
on the projection lattice of a von Neumann algebra entails a no-go K-S result
for N (see Döring 2004).
Note that these no-go results preclude the class of hidden variable theories

that seek to “complete”quantum theory by adjoining additional variables in
way that expands but does not distort the structure of P(N); in particular,
if the no-go results apply to P(N) then P(N) cannot be embedded in an
abelian algebra.

6 Quantum symmetries and quantum dynam-
ics

Not only do the generalized Gleason theorems help to codify the probabilistic
structure of quantum theory and preclude some types of hidden variable
interpretations, they also show that the structure of the event space P(N)
underwrites important aspects of the symmetries and dynamics of quantum
theory.
The concept of a Jordan ∗-automorphism13 captures the idea of a struc-

13A Jordan ∗-automorphism of Nsa is defined as a bijection θ : Nsa → Nsa such that
for all λ, µ ∈ R and A,B ∈ Nsa

θ(λA+ µB) = λθ(A) + µθ(B)

θ(A∗) = θ(A)∗

θ(A ◦B) = θ(A) ◦ θ(B)

where Jordan multiplication ◦ is defined by A ◦ B :=
1

2
(AB + BA). A Jordan ∗-

automorphism θ can be extended to a bijection Θ : N → N using the fact that any
A ∈ N can be uniquely decomposed as A = R + iS with R,S ∈ NSA, and by setting
Θ(A) := θ(R) + iθ(S). So a Jordan ∗-automorphism of N is defined as a bijection Θ of N
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ture preserving transformation of the self-adjoint elements of the von Neu-
mann algebra N of a quantum system. And this concept links together other
notions of quantum symmetry, such as preservation of the structure of the
state space S(N), preservation of transition probabilities, and preservation
of expectation values (see Earman 2020b). This link underscores the impor-
tance of a perhaps less familiar notion of quantum symmetry. An event space
symmetry (aka quantum logic symmetry) is a bijection Π : P(N) → P(N)
preserving the lattice structure; in particular, Π preserves orthogonality re-
lations between projections. Call Π an orthoautomorphism if it preserves
orthogonality in both directions.

Theorem 6 (Dye 1955). If N is a von Neumann algebra contain-
ing no Type I2 summands then any orthoautomorphism of P(N)
extends to a unique Jordan ∗-automorphism of N.

Dye’s theorem can be obtained as consequence of the generalized Gleason
theorems (see Bunce and Wright 1993).
When restricted to P(N) any Jordan ∗-automorphism of N induces a

symmetry of P(N) and, conversely, every Jordan ∗-automorphism of N is
obtained as a unique extension of a symmetry of P(N). Thus, thanks to the
Dye and Gleason theorems, all of the familiar symmetries of quantum theory
can be seen to derive from event space symmetries. This opens the road
to fulfilling von Neumann’s quest for a derivation of quantum theory from
“fundamental probability-theoretic assumptions”by building up the theory
from P(N), its symmetries, and probability measures on P(N).
The road to dynamics for factor algebras is relatively straight.14 For a

factor algebra N a Jordan ∗-automorphism is either a ∗-automorphism or

such that for all λ, µ ∈ R and A,B ∈ N

(i) Θ(λA+ µB) = λΘ(A) + µΘ(B)

(ii) Θ(A∗) = Θ(A)∗

(iii) Θ(AB +BA) = Θ(A)Θ(B) + Θ(B)Θ(A).

14That N is a factor means that N ∩N′ = ∅, where N′ is the commutant of N. The
story for non-factors is more complicated and will not be treated here.
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a ∗-anti-automorphism.15 Any von Neumann algebra is ∗-isomorphic to a
von Neumann algebra in standard form, and any ∗-automorphism Θ (respec-
tively, ∗-anti-automorphism) of an algebra N in standard form is unitarily
(respectively, anti-untarily implementable); that is there is a unitary map
U : H → H (respectively anti-unitary V : H → H) such that Θ(A) = U∗AU
(respectively, Θ(A) = V ∗A∗V ) for all A ∈ N. If the dynamics for observ-
ables is supplied by a one-parameter group ∆t, t ∈ R, of symmetries of N it
must be in the form of ∗-automorphisms of N since ∗—anti-automorphisms
do not form a group (the composition of two ∗—anti-automorphisms being
a ∗-automorphism). The group ∆t embodies the Heisenberg form of dy-
namics for observables N 3 A 7→ At, At := ∆t(A), with accompanying
probability dynamics P 7→ P t, P t(E) := P (∆t(E)) for E ∈ P(N). The
corresponding Schrödinger form of dynamics for algebra states is ω 7→ ωt

with ωt(A) := ω(∆t(A)) for A ∈ N. With the algebra in standard form the
group ∆t is implementable by a unitary group Ut, ∆t(A) = U∗t AUt, and if
Ut is strongly continuous it has a self-adjoint generator which serves as the
Hamiltonian of the system.

7 The Born rule and Gleason’s theorems

We are finally in a position to discuss the Born rule and its relationship with
the Gleason theorems.
15A ∗-automorphism of N is a bijection Θ : N→ N satisfying

(i) Θ(λA+ µB) = λΘ(A) + µΘ(B)

(ii) Θ(A∗) = Θ(A)∗

(iii′) Θ(AB) = Θ(A)Θ(B).

A ∗-anti-automorphism is a bijection of N satisfying

(i) Θ(λA+ µB) = λΘ(A) + µΘ(B)

(ii) Θ(A∗) = Θ(A)∗

(iii′′) Θ(AB) = Θ(B)Θ(A).
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7.1 Formulating the Born rule

Consider a quantum system characterized by a von Neumann algebra N
acting on a Hilbert space H. In the terminology used here, the Born rule is a
rule that links algebra states/Hilbert space states to probability states on the
projection lattice P(N). The use of algebra states permits a generalized and
elegant formulation of the Born rule that applies to arbitrary von Neumann
algebras:

(BRA) If a system characterized by a von Neumann algebra N
acting on a Hilbert space H is in the algebra state ω ∈ S(N) then
it is in the probability state Pω ∈ P(P(N)) where Pω(E) := ω(E)
for all E ∈ P(N).

But because algebra states have a natural interpretation as expectation value
functionals such a formulation might seem to beg questions about the nature
and status of the Born rule, the formulation to be considered here is couched
in terms of Hilbert space states. Additionally, this formulation is congruent
with the bulk of the physics and philosophy literature which tends to identify
the Born rule with the “trace rule”:

(BR) If a system characterized by a von Neumann algebra N
acting on a Hilbert space H is in the Hilbert space state % ∈
D(H) then it is in the probability state P% ∈ P(P(N)) where
P%(E) := Tr(%E) for all E ∈ P(N).

Under the mild Assumption (which seems to be implicit in the literature)
that at any given time a system is in one and only one Hilbert space state and
one and only one probability state, (BR) has some immediate consequences
for what counts as a physically realizable probability state. In particular, a
physically realizable probability state must be completely additive and also
continuous, regardless of whether N contains Type I2 summands.16 For by
the Assumption a system is always in some Hilbert space state % ∈ D(H)
and thus, by (BR), is in the probability state P% which is continuous and
completely additive; so by the Assumption the system can never be in a

16(BRA) does not imply that physically realizable probability states are completely
additive; but this is because it leaves hanging the issue of whether physically realizable
algebra states must be normal.
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non-continuous or non-completely additive probability state. Furthermore,
under the Assumption (BR) presupposes that every physically realizable
probability state consistent with (BR)– which as we have just seen must
be continuous and completely additive– extends to a Hilbert space state, a
condition guaranteed by the generalized Gleason theorems.
A little further work shows that under the Assumption (BR) entails the

converse Born rule

(CBR) If a system characterized by a von Neumann algebra N
acting on a Hilbert space H is in probability state P ∈ P(P(N))
then it is in the Hilbert space state % ∈ D(H) such that P = P%
where P%(E) = Tr(%E) for all E ∈ P(N).

Suppose that, contrary to (CBR), the system is in probability state P but
not in Hilbert space state % ∈ D(H) such that P = P%. By the Assumption
the system is in some other Hilbert space state % ∈ D(H) distinct from %. But
then by (BR) the system is in probability state P% where P%(E) = Tr(%E)
for all E ∈ P(N). Since % 6= %, probability states P% and P% are distinct,
producing a contradiction with the Assumption.17

And a little more work shows that (CBR) entails (BR) so that under the
Assumption the Born rule is equivalent to

(BR∗) At any time a system characterized by a von Neumann
algebra N acting on a Hilbert space H is in a Hilbert space state
% ∈ D(H) and a probability state P ∈ P(P(N)) where the co-
instantiated states satisfy P (E) = Tr(%E) for all E ∈ P(N).

7.2 Born and Gleason

Sprinkled throughout the literature are comments that begin by pay-
ing lip service to Gleason’s theorem, granting that it provides a derivation
of the Born rule, but then go on to complain that the theorem offers little

17If % 6= % then it is not the case that Tr(%E) = Tr(%E) for all E ∈ P(N). Since N is

the weak closure of P(N) the equality Tr(%E) = Tr(%E) for all E ∈ P(N) would imply
Tr(%A) = Tr(%A) for all A ∈ N and, hence, % = %.
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physical insight into the basis of the Born rule18 and/or to fault the jus-
tification for assuming “non-contextuality”of probability assignments. The
non-contextuality complaint will be taken up below in Appendix 2, and Sec-
tions 8 and 9 will address the first part of the complaint. But here I want
to indicate why the complaint does not go far enough: without the help
of additional assumptions about the relation between probability states and
Hilbert space states the Gleason theorems do not provide a straightforward
derivation or justification of the Born rule.
As noted above, the Born rule in the guise (BR) presupposes that for a

system with von Neumann algebra N acting onH every continuous and com-
pletely additive probability state on P(N) extends to a Hilbert space state on
H, a presumption that is guaranteed by the generalized Gleason theorems. So
far so good. But the Born rule in the guise (BR) also presupposes that phys-
ically realizable probability states are continuous and completely additive, a
presumption untouched by the Gleason theorems. More importantly, while
there is a striking resemblance between the Born rule in guise (BR∗) and the
upshot (U) of the Gleason theorems (recall Section 3.2) in that both con-
cern the same one-one correspondence between probability states and Hilbert
space states, as mathematical theorems the Gleason theorems do not, with-
out the help of further assumptions, guarantee the co-instantiation of the
corresponding states (i.e. that a system is in Hilbert space state % ∈ D(H) if
and only if it is in the Born rule probability state P%) which is what (BR∗)
requires. In particular, while the Gleason theorems guarantee that any com-
pletely additive/continuous probability measure on P(N) can be calculated
from the trace rule for some % ∈ D(H), the theorems do not guarantee that
when a system is in the Hilbert space state % ∈ D(H) the trace rule prob-
abilities calculated from that %, rather than some other % ∈ D(H), are the
probabilities that govern outcomes of Yes-No measurements of elements of
P(N).
What it means for a system to be “in” a probability state depends, of

course, on the interpretation of probability. It seems appropriate to be-
gin with the statistical interpretation of probability intended by Born, von
Neumann, Einstein and other founders of the new quantum theory. Their in-

18For example: “In spite of its mathematical elegance, Gleason’s theorem is usually con-
sidered as giving rather little physical insight into the emergence of quantum probabilities
and the Born rule” (Schlosshauer and Fine 2004, 198). These authors are not endorsing
the view, but they are accurately reporting a prevalent attitude.
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terpretation is often referred to as an ensemble interpretation19, a label that
carries with it an anti-Copenhagen tinge wherein the Hilbert space state is
not taken to characterize an individual quantum system but rather an en-
semble of systems in the same Hilbert space state and, correspondingly, the
Born rule probabilities calculated from the Hilbert space state are not taken
to refer to single-case outcomes of measurements but rather to the statistics
of outcomes of measurements on systems in the ensemble. This raises a tan-
gle of issues in the foundations of physics and the foundations of probability
theory that need not sidetrack us. Advocates of a single-case interpretation
of probability as well as advocates of a statistical interpretation agree that to
claim a probability measure governs the outcomes of measurements implies
that the probabilities should be reflected in the statistics of outcomes of mea-
surements on a large ensemble of identically prepared systems. Some early
advocates of the statistical interpretation thought that probabilities could be
identified with limiting relative frequencies of outcomes, but it is now well
understood that this is not a live option for countably additive probability
measures (see van Fraassen 1977). On both the statistical interpretation and
the single-case interpretation a link between probabilities and limiting rela-
tive frequencies is forged by the law of large numbers for identically prepared
systems; but since no actual experiment involves an infinite number of trials
the practical link is one of confirmation/disconfirmation between probability
assertions and frequencies observed in a finite number of trials. The details

19Duncan and Janssen (2013) suggest that von Neumann’s ensemble interpretation may
have derived from an acquaintance with the work of Richard von Mises. Einstein’s alle-
giance to the ensemble interpretation is found in several places, including his essay “Physics
and Reality”:

It seems to be clear, therefore, that Born’s statistical interpretation of quan-
tum theory is the only possible one. The ψ function does not in any way
describe a state which could be that of a single system; it relates rather to
many systems, to “an ensemble of systems” in the sense of statistical me-
chanics. If, except for certain special cases, the ψ function furnishes only
statistical data concerning measurable magnitudes, the reason lies not only
in the fact that the operation of measuring introduces unknown elements,
which can be grasped only statistically, but because of the very fact that the
ψ function does not in any sense, describe the state of one single system.
(Einstein 1936, p. 375)

Born’s own version of the statistical interpretation is diffi cult to characterize, and it is left
to the historians of science to provide it.
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of these matters are discussed in Appendix 1 and need not detain us here.
The next Section discusses routes to a justification of the Born rule un-

der the assumption that quantum probabilities, whether given a statistical
or single-case interpretation, correspond to objective, observer-independent
features of quantum systems.

8 Some strategies for justifying the Born rule

In this section I will examine some strategies for justifying the Born rule that
operate under two presumptions. The first (Objective) is that both Hilbert
space states and probability states record objective, observer-independent
features of quantum systems. The second presumption (None) is really a
non-presumption; namely, no a priori assumption is made about dependency
relationships between probability states and Hilbert space states– in partic-
ular, no assumption to the effect that either type of state is ontologically
prior to the other, or that one grounds the other, or that one supervenes
on the other, or whatever form of symmetric or asymmetric dependence one
cares to use. Dependency relations there may be but, if so, None presumes
that they must derive from the laws of the theory rather than from meta-
physical doctrines about the nature of states. In Section 9 I will discuss how
relaxing one or both of these presumptions changes how the status and the
justification of the Born rule are regarded.

8.1 A non-effective strategy

One commonly followed strategy for justifying the Born rule consists of draw-
ing up a list of conditions that are deemed desirable in a rule for using Hilbert
space states to assign probabilities to outcomes of measurements, and then
proving that the list is uniquely satisfied by the Born rule. The earliest
example comes from von Neumann (1927) who gave a justification for the
more general trace prescription 〈0〉 = Tr(%0) for calculating the expectation
value 〈0〉 of a self-adjoint operator 0 from a state % ∈ D(H). Von Neumann
relied on the controversial condition that 〈01〉 + 〈02〉 = 〈01 + 02〉 for all self-
adjoint 01 and 02, including those that do not commute. Later writers have
appealed to a variety of desiderata including envariance (Zurek 2005, 2018),
bit symmetry (Galley and Masanes 2017), and constraints on compositional
structure such as the principles of purification and tomography (Galley and
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Masenes 2018). Some of uniqueness results are impressive, especially those
that operate within a framework much broader than the standard version
of quantum theory considered here. But most of the results in this line of
research tend to focus on special cases such as N = B(H) and dim(H) <∞.
Even assuming that these results can be generalized to cover non-Type I
algebras and infinite dimensional and Hilbert spaces, they would still fall
short of what is needed. If, as Born and other founders of quantum me-
chanics intended, quantum probabilities are given a statistical interpretation
then there is a gap between showing that the Born rule is picked out as the
unique rule satisfying a list of preferred constraints vs. showing that the
Born rule probabilities calculated from a Hilbert space state via the trace
prescription should govern the statistics of measurement outcomes. It is, of
course, a physical postulate that the statistics of outcomes of measurements
performed on actual physical systems reflect Born rule probabilities, and the
justification of this postulate ultimately rests on experimental evidence. But
a satisfying justification of the Born rule should explain why, prior to testing,
one should expect that if the quantum theory as characterized here (sans
the Born rule) is true then the statistics of outcomes of measurements will
reflect Born rule probabilities.
The strategy I will explore resists the temptation to read the standard

formulation of the Born rule in the guise (BR) as implying that a quantum
system acquires its probability state from its Hilbert space state. The fact
that (BR) is equivalent to its converse (CBR) and, thus, to the biconditional
form (BR∗) should serve as a check to this temptation, and it suggests that
the task of justifying the Born rule should be construed not as explaining
why Hilbert space states induce Born rule probabilities but as solving the
concordance problem: Why (if the theory of true) are the co-instantiated
probability states and Hilbert space states in accord with (BR∗)? I will
not offer a solution to the concordance problem in general but only to an
operational version that focuses on state preparation.

8.2 Probability state updating

Section 2.6 above offered an account of Hilbert space state preparation, al-
beit an account limited to pure Hilbert space states. The operational content
of the notion that Born rule probabilities govern measurement statistics is,
roughly, that when a system is prepared over and over again in the same
Hilbert space state, the long run frequencies of Yes and No answers to Yes-No
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measurements of elements of P(N) should conform to the Born rule proba-
bilities calculated via the trace prescription from the prepared Hilbert space
state. A more precise specification of this idea is given in the Appendix, but
the details need not concern us for the moment. What is needed is an account
of probability state preparation that can provide a solution to the concor-
dance problem, or at least to an operationalized version of the problem. We
can work our way there by fasioning a probability updating rule.
For a probability measure P on P(N) and F ∈ P(N) such that P (F ) 6= 0

we seek a conditional probability P (•//F ) with two properties:

(a) P (•//F ) is a probability measure on P(N)

(b) For any E ∈ P(N) such that EF = FE the conditional prob-
ability of E on F reduces to the classical conditional probability,
i.e.

P (E//F ) =
P (EF )

P (F )
=
P (E ∧ F )

P (F )
.

Note that if E ≤ F then EF = FE = E, and condition (b) reduces to

P (E//F ) =
P (E)

P (F )
.

To get the desired conditional probability measure we can appeal to a

result that relies on the generalized Gleason theorems. Stated in terms of
algebra states the result asserts:

Theorem 6. (Cassinelli and Zanghi 1983)20. Let N be a von
Neumann algebra without Type I2 summands and let P be a
completely additive measure on P(N). Then for F ∈ P(N) such
that P (F ) 6= 0 there is a unique probability measure P (•//F ) on

P(N) such that P (E//F ) =
P (E)

P (F )
when E ≤ F ; namely,

P (E//F ) :=
ω(FEF )

ω(F )
=

ω(FEF )

P (F )
.

where by the generalized Gleason theorems ω is the unique normal
state that extends P to N.

20The Cassinelli and Zanghi result is stated in terms of countably additive probability
measures and separable Hilbert spaces. But it can be generalized to the form stated here.

26



Note that Gleason’s theorem is essential in obtaining the sought-after condi-
tional probability since when E and F do not commute ω(FEF ) cannot be
written as P (FEF ) since FEF /∈ P(N).
Repurposed for the present context this result implies:

Theorem 6 ′. LetN be a von Neumann algebra acting onH and let
P be a completely additive/continuous measure on P(N). Then
for F ∈ P(N) such that P (F ) 6= 0 there is a unique probability

measure P (•//F ) on P(N) such that P (E//F ) =
P (E)

P (F )
when

E ≤ F ; namely,

P (E//F ) :=
Tr(%FEF )

Tr(%F )
=

Tr(%FEF )

P (F )
.

where by the generalized Gleason theorems % ∈ D(H) is the
unique Hilbert space state that extends P to N.

If it is agreed that a Yes answer to a Yes-No measurement of F ∈ P(N)
means that the resulting post-measurement probability state PF (•) is the
P (•//F ) of Theorem 6′ then we have our rule for updating probabilities on
Yes-No measurement results:

(PUR) If a Yes-No measurement of F ∈ P(N) yields a Yes answer
and the pre-measurement probability state P is completely addi-
tive/continuous with P (F ) > 0 then the post-measurement prob-

ability state is PF (•) is P (•//F ) =
Tr(%FEF )

P (F )
, where % ∈ D(H)

is the unique Hilbert space state that extends P to N.

8.3 Concordance, probability state preparation, and
the Born rule

The proffered procedure for preparing a pure Hilbert space state % ∈ D(H)
is to measure its support projection S% until a Yes answer is obtained. If the
pre-measurement Hilbert space state is any % ∈ D(H) such that Tr(%S%) > 0
then the Lüders rule (LR) plus the filter property of S% imply that the post-
measurement state is %. At this juncture the Born rule could be invoked to
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conclude that, as a consequence of preparing the system in Hilbert space state
%, the system has thereby been prepared in the probability state P%(E) =
Tr(%E), E ∈ P(N). But since the status of the Born rule is what is at issue
this would be to beg the question.
The desired conclusion can be reached in a non-question-begging way

using the above account of probability state updating and by noting that the
preparation of a Hilbert space pure state can also be viewed as a probability
state preparation. According to (PUR), if the pre-measurement probability
state P is completely additive/continuous and P (S%) > 0 for the support
projection S% of a pure % ∈ D(H) then, when a Yes-No measurement of
S% returns a Yes answer, the post-measurement probability state P S%(E)

is P (E//S%) =
Tr(%S%ES%)

Tr(%S%)
, E ∈ P(N), where by the Gleason theorems

% ∈ D(H) is the unique extension of P . And by the filter property of S%,
P S%(E) = Tr(%E), in accordance with the Born rule.

8.4 Assessment

The justification on offer fits neatly with the ensemble interpretation of quan-
tum probabilities intended by Born, von Neumann, Einstein, and the other
founders of quantum theory, and it has the virtue of not making any a pri-
ori assumption about dependency relations between Hilbert space states and
probability states. But its scope is limited by the restriction to pure Hilbert
space states and to the context of state preparation. The first limitation is
serious but hardly fatal in light of the fact that most attempts to justify the
Born rule focus on pure states. The second limitation is justifiable if one
is concerned with the operational content of the theory as revealed by the
statistics of measurement outcomes when the system is repeatedly prepared
in the same pure Hilbert space state. But one should be clear that what has
been justified is not even a special case of (BR) but rather

(B̃R) If the system is prepared in a pure Hilbert space state
% ∈ D(H) then it is in the probability state P%(E) = Tr(%E),
E ∈ P(N).

Physicists want to employ the Born rule in contexts, such as early universe
cosmology, where state preparation is a viable operation only for the gods,
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and in such contexts the mere mortals need recourse to (BR) rather than
(B̃R).
It seems then that a wider-scope justification of the Born rule calls for

weakening, if not abandoning, one or both of the presuppositions– Objective
and None– of this section. The following section examines some of the pos-
sibilities opened by such a weakening.

9 Alternative strategies

To give an example of how abandoning None can lead to a justification (of
sorts) of (BR), note that (BR) implies that the probability state P “knows”
the Hilbert space state % ∈ D(H) in the sense that P (S%) = 1, where S%
is the support projection for %. For pure states this knowing is suffi cient
for (BR). Suppose that the system is in the completely additive/continuous
probability state P and in the Hilbert space state % ∈ D(H). By the knowl-
edge assumption P (S%) = 1, and since (thanks to the Gleason theorems) P

extends uniquely to a %̃ ∈ D(H), P (E) = Tr(%̃E) =
Tr(%̃S%ES%)

Tr(%̃S%)
for all

E ∈ P(N). When % is pure S% is a filter for %, and so P (E) = Tr(%E) as
required by (BR).
When a pure Hilbert space state is prepared the accounts of state prepa-

ration given in Sections 2.6 and 8.2-8.3 imply that the prepared probability
state “knows” the Hilbert space state. But postulating that the probabil-
ity state “knows” the Hilbert space state, mixed as well as pure, outside
the context of state preparation seems little better than simply postulating
(BR).
A non-question-begging motivation is needed for violating None. Two

will now be discussed; first, a radical one that jettisons both Objective and
None; and then a less radical one that maintains Objective but abandons
None.

9.1 qbism, QBism, and Born-again

Thus far I have been assuming that the Born rule is to be understood on
an objectivist interpretation of probability. But quantum probability the-
ory as the study of probability measures on the projection lattice of a von
Neumann algebra, the Gleason theorems, and much of the rest of the for-
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mal apparatus of quantum theory sketched above are neutral with respect
to the interpretation of probability. Bayesians who want to ply their wares
to the quantum realm will take advantage of this flexibility and feel free to
interpret a probability measures on P(N) as codifying the personal degrees
of belief that Bayesian agents assign to elements of P(N). And presumably
they will give a Bayesian twist to the probability updating rule discussed
in Section 6.1: if an agent with prior probability measure P learns that the
outcome of a Yes-No measurement of an F ∈ P(N) is Yes then she should
update her measure per (PUR) to PF (•) = P (•//F ). Building on this basis
these qbians hope to construct an account of the inductive reasoning used
by physicists to navigate among quantum events. This lower-case, epistemic
form of quantum Bayesianism is not, or at least need not be, in competition
with the more orthodox interpretation of quantum probabilities as objective,
observer-independent probabilities that govern the statistics of measurement
outcomes.
Upper-case quantum Bayesians (QBians) have larger ambitions: they not

only want to give an account of the inductive reasoning of quantum physicists
but also an account of probabilities delivered by the theory. They propose
to do this by jettisoning the orthodox statistical interpretation of quantum
probabilities which, they believe, is responsible for many of the paradoxes and
conundrums that have bedeviled quantum theory from its beginnings, and
they propose to make do with personal probabilities alone.21 Abandoning
the Objective presupposition does not logically imply also abandoning None,
but one can easily imagine that a Born-again who has converted to QBianism
would construe the Gleason theorems as showing that Hilbert space states can
be treated as bookkeeping devices used to track and calculate a QBian agent’s
degrees of belief, at least if the personal probabilities of QBian agents are
completely additive/continuous. For then the Gleason theorems show that
any agent’s degree of belief function is represented by a unique % ∈ D(H).
Such a stance seems to threaten the objectivity of quantum theory, for if

Hilbert space states are merely devices for representing personal probability
measures on P(N) then at any time there are as many different Hilbert space
states as there are QBian agents at that time with different probability mea-
sures on P(N). But does not Hilbert space state preparation described above
in Section 2.6 guarantee that there is an objective, observer-independent

21For a readable introduction to QBianism see von Baeyer (2016); for a skeptical exam-
ination see Earman (2019).
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quantum state? Born-again has a response. The notion of a filter as applied
above to Hilbert space states can be repurposed for probability states. De-
fine a filter for a probability state P ∈ P(P(N)) as a projection FP ∈ P(N)
such that for any completely additive/continuous P where P (FP ) > 0, the
updating of P on a Yes answer to a Yes-No measurement of FP results in
P FP (•) = P (•//FP ) = P (•). If S% is the projection onto a ray correspond-
ing to a pure state % ∈ D(H) then S% is the filter for the probability state
given by P (E) := Tr(%E), E ∈ P(N). Born-again reads this as showing
that all Bayesian agents whose prior probability states are completely addi-
tive/continuous and give S% a non-zero value will have the same posterior
probability state upon updating on a Yes outcome of a Yes-No measurement
of S%, and their common posterior probability state will be represented by the
same Hilbert space state %. This merger of the opinions of QBian agents is
the meaning that Born-again assigns to the objectivity of state preparation.
What is the status of the Born rule for Born-again, and what justification

can Born-again offer for the rule? The short answer is that for Born-again
these are non-issues. Born-again rejects the notion that Hilbert space states
and probability states are properties of quantum systems, so he does not
worry about whether the two are linked per (BR), nor does he fret about
whether the link is forged by a primitive physical postulate or other means.
For Born-again probability states are epistemic states of Bayesian agents
who assign degrees of belief to P(N). Hilbert space states do not induce
or explain these epistemic states but quite the opposite; the epistemic states
come first and the Hilbert space states serve as mathematical representations.
All there is to the Born-rule for Born-again is the fact that, thanks to the
Gleason theorems, the Hilbert space state representing an agent’s personal
probabilities for P(N) allows her probabilities to be calculated per the trace
rule.
Or more precisely, the Gleason theorems enable the trace rule calcula-

tion when the agent’s probability measure is completely additive/continuous.
Here there is a real issue for Born-again and the QBians. For the QBians
the admissible quantum probability measures are deemed to be those that
can codify rational degrees of belief of a Bayesian agents who assign degrees
of belief to P(N). De Finetti, the patron saint of the personalist interpre-
tation of probability, thought that the requirements of rationality end with
finite additivity. Latter day personalists have noted that de Finetti’s Dutch
book argument for finite additivity can be generalized to cover countable
additivity if it is required that a rational agent stands ready to accept any
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countable family of bets, each of which she regards as favorable. But to make
the argument work for complete additivity it must use the stronger and less
plausible requirement that the agent stands ready to accept any family of
bets, countable or uncountable, each of which she regards as fair but not
necessarily favorable (see Skyrms 1992). Other personalist justifications for
additivity, such as scoring rule arguments, do not reach beyond finite addi-
tivity. Moreover, Dutch book arguments and scoring rule arguments do not
serve to disqualify as non-rational those non-continuous probability measures
on a P(N) that do not extend to a Hilbert space state, as can arise in the case
of N with Type I2 summands (e.g. N = B(H) and dim(H) = 2). If rational-
ity of personal probability measures over P(N) requires a conditionalization
rule that reduces to classical Bayesian conditionalization for an abelian N
then the QBians have a motivation for continuity (and for complete addi-
tivity as well) since the Gleason theorems need to be invoked to secure the
conditionalization rule; but the antecedent needs argument.22

9.2 Born-modern

Meet Born-modern. While he may accept qbianism as an account of in-
ductive reasoning of quantum physicists he stoutly rejects the QBian per-
sonalist reading of the probability statements delivered by the theory. But
Born-modern does sing from a similar hymnal as Born-again as regards the
relationship between probability states and Hilbert space states.
Born-modern, unlike the historical Born, initially knows nothing of Schrödinger

and his wave mechanics. Born-modern’s route to quantum theory is through
mathematics, specifically through a study of von Neumann algebras. He in-
vents a new branch of probability theory, the study of probability measures on
the projection lattices of von Neumann algebras. Being the brilliant mathe-
matician he is, Born-modern proves what we know as the generalized Gleason
theorems, Dye’s theorem, etc., With the mathematics in place, Born-modern
realizes that he has the makings of a new physical theory that he calls Q-
theory (or Queer-theory), for he proposes that the probability measures he
has been studying describe the queer statistics that experimental physicists

22The representation theorems of Deutsch (1999) and Wallace (2002, 2010), intended to
show that rational agents act as if the Born rule is satisfied, are supposed to apply to the
dim(H) = 2 case. Thus, the rationality requirements of their theorems must rule out the
measures not continuous on P(N). This requires further investigation which will not be
attempted here.
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have been reporting in their investigation of microscopic phenomena. Using
the Gleason theorems he is led to the updating rule (PUR) for probability
measures and, thence, to a procedure for preparing a class of probability
states that possess what he calls probability filters. And he proceeds to test
his proto Q-theory by preparing a Q-system over and over again in the same
probability state and comparing the statistics of measurement outcomes of
the identically prepared systems to the theoretical values. Encouraged by
the success of the tests, he studies the symmetries of the projection lattice
(here Born-modern elaborates on the considerations of Section 6) and is led
to a dynamics for Q-theory in the form of a one-parameter group of auto-
morphisms of the von Neumann algebra. He calls the unitary Hilbert space
implementation of the algebra automorphism group W-dynamics, in honor of
his physicist friend, Werner. Not wanting to neglect his other friend Erwin,
he calls S-dynamics the Hilbert space state version of W-dynamics.
If Born-modern should learn the real-world story of the development of

quantum mechanics he might feel some self-congratulation is in order be-
cause his Q-theory fulfills the second alternative in von Neumann’s desire
for a “derivation of quantum mechanics from empirical facts or fundamen-
tal probability-theoretic assumptions.”Moreover, Born-modern would think
that the concern about the status of the Born rule is part of a tempest in
a tea pot that results from accidents of history; in particular, the accident
that Schrödinger’s wave mechanics came first and Born’s probability inter-
pretation came second. That history seems to have generated a felt need
for a just-so story of how the leopards (quantum systems) get their (prob-
ability) spots. The just-so story behind the concern about the Born rule is
that quantum systems get their probability spots from Schrödinger’s wave
functions, and this story in turn generates a felt need to justify the use of
the wave function (and Hilbert space states in general) to assign probability
spots in accord with Born’s rule. Born-modern counters that if history had
been different and the course of discovery had developed along the lines of his
Q-theory, where probability states came first and Hilbert space states came
second, there would be no felt need for just-so origin stories; for it would have
been clear from the start that Q-systems always have probability spots, and
there is no need to explain where they come from. From Born-modern’s al-
ternative historical perspective it is natural to follow his very distant cousin
Born-again in construing Hilbert space states as mathematical representa-
tions of probability states, although for Born-modern the probability states
being represented by Hilbert space states are objective, observer-independent

33



states of Q-systems rather than the observer dependent epistemic states fa-
vored by Born-again. Alternatively, Born-modern (perhaps having read too
much analytical metaphysics literature) might construe Hilbert space states
as physical states of Q-systems that are grounded in or supervenient on the
probability states they represent. Either way for Born-modern the Born-rule
(BR) is true as a calculational device, and no further justification is called
for.
Born-modern has to face an analog of an issue that arose for Born-again.

The Gleason theorems justify Born-again and Born-modern in using the trace
rule calculation of probabilities for probability states that are completely ad-
ditive/continuous. For Born-again the issue was: Must the personal prob-
abilities rational agents assign to P(N) be completely additive/continuous?
For Born-modern the analog issue is: Must the physically realizable ob-
jective probability measures on P(N) be completely additive/continuous?
Born-modern doesn’t seem to have available any natural criteria for deciding
which probability states are physically realizable, apart from the question-
begging criterion that the realizable probability states are those induced by
Hilbert space states.

9.3 Assessment

Although the perspectives on quantum theory offered by Born-again and
Born-modern are quite different they have the common feature that the Born
rule is justified– if that is the right word– by reducing it to a calculational
device whose validity is vouchsafed by the Gleason theorems, at least suppos-
ing quantum probability measures must be completely additive/continuous.
Given their different takes on the nature of quantum probabilities Born-again
and Born-modern need to travel different roads to justify this supposition.
QBism certainly has some attractive features, especially if the QBians

can make good on the promises to dissolve the measurement problem and
soothe worries about quantum non-locality. But it also has some disturb-
ing features. To name one, if Hilbert space states are just representations
of the epistemic states of QBian agents then there is no Schrödinger evolu-
tion since these states do not continuously evolve but change sporadically
in reaction to the agents’receipt of new information. This is not the place
to evaluate the prospects and perils of QBianism. Suffi ce it to say that an
assessment of the status and justification of the Born rule based on a radical
and still programmatic interpretation of quantum theory must be regarded
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as tentative.
Because Born-modern hews to an objectivist interpretation of probabil-

ity, most physicists would probably find Born-modern’s story more congenial
than Born-again’s. But before buying into the Born-modern’s story they
would need to be convinced that the theory they use to describe quantum
phenomena really can be entirely built up starting with probability measures
on the projection lattices of von Neumann algebras. And even if they are
convinced of this, there remains the fact that, as a matter of practical pro-
cedure, physicists start with an ansatz about the initial Hilbert space state,
solve the Schrödinger equation for this initial condition, and then plug the
evolved state into the Born-rule (BR) to get a prediction about the probabil-
ities of outcomes of measurements. Born-modern can acknowledge as much
but respond that his view is about the foundations of the Born rule, not its
practical applications. This response leaves one nervous: when principle and
scientific practice do not line up, principle is suspect.

10 Conclusion

It may seem more than a little curious that, approaching a hundred years
since the publication of Born’s epochal 1926 papers, the status of the Born
rule is still the subject of lively discussion in the physics and philosophy liter-
atures. But on second thought the continued scrutiny is not so strange given
the central importance of Born rule to the functioning of the quantum theory.
There are undoubtedly a number of other components to the explanation,
two of which stand out.
The first is that many of the contributors to the literature on the Born rule

are vested in a particular interpretation of quantum theory– many worlds,
Bohmian mechanics, GRW collapse theory, etc.– and for them the task of
deriving or justifying the Born rule amounts to showing how their favored
interpretation accommodates the rule. Naturally, their accounts differ; and,
not surprisingly, these accounts rely on controversial assumptions and moves,
provoking critical notices and rebuttals.
The second part of the explanation derives from the misunderstandings of

the role of the Gleason theorems that have become ingrained in the literature.
To repeat, a common line is to credit the Gleason theorems with providing
(apart from the exceptional cases when N admits Type I2 summands) a
derivation of the Born rule, but then to complain (a) that the theorems offer
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little physical insight into the emergence of quantum probabilities and the
Born rule and/or (b) that they commit the sin of non-contextuality. The
credit is undue. The theorems do not (and do not pretend to) provide a rule
for assigning probabilities to quantum systems, i.e. they do not specify when
or under what circumstances a quantum system is in one probability state
rather than another. Nor do they explain (or pretend to explain) why quan-
tum probabilities must be completely additive and continuous, as required
by (BR). The complaints are also off the mark. As for the non-contexuality
complaint, any theory of probability, classical or quantum, must propose
an algebra of events to which probabilities are assigned, and in doing so it
opens itself to the complaint that its event algebra fails to take into account
the context that derives from various exogenous or endogenous variables.
There may, of course, be specific empirical or theoretical objections to using
the projection lattice P(N) as the quantum event algebra, but these would
need to be detailed and considered on their merits (see Appendix 2 for more
details on contextuality). The complaint that the Gleason theorems offer
little physical insight into the emergence of quantum probabilities betrays
a prejudice that derives from the notion that the actual history of the way
in which the new quantum theory developed tells us something important
about the foundations the theory. As illustrated by Born-modern’s alterna-
tive history, the theory might have developed from the get-go as a new theory
of probability– the study of probability measures on the project lattices of
von Neumann algebras– and there would then be no felt need to explain how
quantum probabilities emerge.
Granting all of this, the question remains: What do the Gleason the-

orems tell us about the Born rule? In the first instance they tell us that
any completely additive/continuous probability measure P on P(N) can be
represented by a Hilbert space state % ∈ D(H) via the trace prescription
P (E) = Tr(%E), E ∈ P(N), and so the Born rule can be used to calculate
such a P . To go further requires assumptions about the nature of quantum
probabilities and/or the relation between probability states and Hilbert space
states.
If Hilbert space states and probability states are viewed as objective

observer-independent states that are on equal ontological footing the task
of justifying the Born rule becomes the task of explaining why Hilbert space
states and probability states are coordinated in the way required by (BR)
and the apparently stronger but equivalent (BR∗). Only partial progress
towards this goal was offered here by showing how the coordination falls
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out of accounts of the preparation of Hilbert space states and probability
states when the former are pure states. The Gleason theorems play a role in
this story by underwriting the account of probability state preparation. The
founders of the new quantum theory would be pleased with the story because
it fits with their notion that quantum probabilities refer to the statistics of
measurement outcomes on an ensemble of identically prepared systems. But
the story leaves unexplained the non-operational content of the Born rule in
general and even the operational content for mixed Hilbert space states in
particular.
Turning to approaches that posit dependency relations between proba-

bility states and Hilbert space states, Born-modern hews to an objectivist
reading of quantum probabilities whereas Born-again defends a personalist
reading; but, for different reasons, both construe probability states as basic
and Hilbert space as devices for representing probability states. On both
accounts the role of the Gleason theorems is to ensure that every completely
additive/continuous probability state has a unique Hilbert space represen-
tation. For both Born-modern and Born-again the Born rule is not a sub-
stantive assertion, and for Born-again (BR) ill-stated since he rejects the
presupposition that Hilbert space states and probability states are states of
physical systems. But for both Born-modern and Born-again (BR) can be
said to be correct as a calculational device for completely additive/continuous
probability measures.
For those who are not ready to concede that the Born rule is merely a cal-

culational device and who are not satisfied with explaining why the rule works
for pure states in the context of state preparation it may seem time to try
again for a justification that is part of the more general project of answering
von Neumann’s call for a “systematic derivation of quantum mechanics from
empirical facts or fundamental probability-theoretic assumptions.”23 Failing
a satisfactory completion of such a project the remaining option is simply to
take the Born rule as an empirical postulate whose justification is its agree-
ment with experiment. Being forced to this option might be regarded as an
admission of failure, but one can take solace in the realization that the many
attempts to justify the Born rule have led to deeper appreciation of quantum
theory as a theory of probability.

Acknowledgement: I am grateful to David Baker, Gordon Belot, and
Laura Ruetsche for helpful discussions and suggestions.
23Saunders (2003) may be regarded as an exemplar of this approach.
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Appendix 1: statistical probability

The purpose of this appendix is to indicate what commitment is being
made in asserting that the statistics of outcomes of measurements performed
on elements of the projection latticeP(N) of a von Neumann algebraN acting
on a Hilbert space H are “governed”by a probability measure P on P(N).
The assertion is operationalized in terms of probability state preparation.
Prepare the system in probability state P (recall Sections 8.2-8.3) and make
a Yes-No measurement of some E ∈ P(N) and record the result. Repeat over
and over again ad infinitum. Since the trials are independent and identically
distributed the classical law of large numbers can be invoked to conclude
that in almost all outcome sequences the relative frequency of Yes outcomes
approaches P (E) as the number of trials goes to infinity.
This procedure, which might seem fishy because it is mixing the classical

and the quantum mechanical, can also be described in terms of a single
quantum mechanical measurement of the idealized observable ⊗∞i=1Ei made
on the idealized infinite tensor product system ⊗∞i=1Ni, where Ni = N and
Ei = E for all i, and where each component system is prepared in the same
probability state P on P(Ni). One then appeals to a theorem of Landsman
showing that the two procedures are equivalent: they both result in the
infinite Bernoulli process probability measure P∞(E) on the space of the
countably infinite outcome sequences (see Landsman 2017).
To be committed to the claim that P governs the statistics of outcomes

is to be committed to seeing confirmation (respectively, disconfirmation) of
the claim according as for any E ∈ P(N) there is suffi ciently good apparent
convergence (respectively, non-convergence) of the relative frequency of Yes
outcomes to P (E) as the number of trials becomes larger and larger. Apply
your chosen account of confirmation– be it Bayesianism, a version of signifi-
cance testing, or other– to decide whether or not “suffi ciently good”apparent
convergence is obtained. This is rather vague, but fortunately in typical ex-
periments there is such rapid apparent convergence to the values predicted
by the quantum theory that there is little room to quibble about confirma-
tion. Except from inductive skeptics. But if scientists listened to them then
not just quantum mechanics but all empirical science would stymied.
Needless to say, this account is limited to cases where there is in principle

an operational procedure for preparing the probability state. On the account
given above the in-principle operational procedure covered only probability
states P that admit a filter FP ∈ P(N), which turns out to be a projection
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onto a ray of H and, thus, coincides with the support projection of a normal
pure algebra/Hilbert space state, making the procedure simultaneously a
preparation of a probability state and an algebra/Hilbert space state.

Appendix 2: the non-contextuality complaint

An often heard complaint about the role the Gleason theorems play in jus-
tifying the Born rule is that the theorems assume “non-contextuality.”What
is the sin of non-contextuality and how do the Gleason theorems commit this
sin? One way to think about the contextual/non-contextual distinction is
the difference between rules for assigning probability measures to P(N): a
non-contextual rule, such as the Born rule, assigns probabilities purely on
the basis of the Hilbert space state % ∈ D(H); a contextual rule assigns
probability measures P%,C on the basis of the Hilbert space state and the
context C ∈ C chosen from the set C of what are regarded as the as the rel-
evant contextual factors C. On this way of reading the distinction it should
be clear that the Gleason theorems and whatever legitimate use is made of
them do not commit the sin of non-contextuality. For as explained above
ad nauseam, the theorems are not about rules for assigning probability mea-
sures to P(N) on the basis of Hilbert space states simply because they are
not about rules for assigning probability measures period; they are about
the extension of probability measures on P(N)– however they are thought
to arise– to algebra/Hilbert space states on N.
Nevertheless, the Gleason theorems do have implications for contextural-

ized probability assignment rules. In one class of applications the contextual
factors are supplied by the values of exogenous or “hidden”variables. The
goal is to show that the contextual assignment rule can be so designed and C
can be equipped with a measure such that averaging over C returns standard
quantum mechanical probabilities while the contextualized assignments P%,C
exhibit desired features, such as determinism and/or locality. We have noted
that the Gleason theorems frustrate the desire for determinism, at least if
this determinism requires that the P%,C be dispersion free since the theorems
preclude the existence of such measures except in special cases. The Gleason
theorems, plus the probability updating rule (Section 8.2) enabled by the
theorems, also place constraints on the dynamics of the hidden variables.
For example, a non-Born rule assignment rule might assign probability mea-
sures P%,C to P(N) such that P%,C(E) 6= Tr(%E) for all E ∈ P(N). Of
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course, by Gleason’s theorem, for any completely additive/continuous P%,C
there always is a unique %C ∈ D(H) such that P%,C(E) = P%C (E) = Tr(%CE)
for all E ∈ P(N), so it is as if the system in total state (%, C) obeys (BR)
with %C as the Hilbert space state of the system. The ‘as-if’can become ‘is’
when state preparation is taken into account. Choose a pure state % ∈ D(H)
such that P%,C(S%) = P%C (S

%
) > 0, where S

%
is the support projection for

%. According to the accounts of updating and state preparation developed
above, if a Yes-No measurement of S

%
returns a Yes answer then the post

measurement Hilbert space state and probability state are respectively % and

P%,C(E//S%) =
Tr(%CS%ES%)

Tr(%S%)
= Tr(%E). The non-Born assignment rule

says that when the system state is Hilbert space state % and the context is
C ′,which may have changed with the performance of the Yes-No measure-
ment, the probability state is P%,C′(•). Putting things together we have that
P%,C′(•) = Tr(%•) after the preparation of %, which is to say that as a result
of the updating the values of the hidden variables must have adjusted them-
selves so that the contextual assignment aligns with the Born rule, and the
adjustment must anticipate which pure state % the experimenter will choose
to prepare.
The sin of non-contextuality can be seen in the neglect of endogenous fac-

tors rather than exogenous or hidden variables. For example, Saunders (2003)
perceives the sin of non-contextuality in any probability assignment rule that
assumes that “probabilities can be defined for a projector independent of the
family of projectors of which it is a member.”There are various ways to im-
plement the perceived need for this second kind of contextuality, two of which
will be mentioned here. The first, less radical, idea is to continue to assign
probabilities to elements of P(N) but in a piecemeal fashion, making the
assignment to an element E ∈ P(N) conditional on a family {Fα} ∈ P(N) of
which E is a member. A motivation for this idea is the notion that it makes
no sense to speak of Yes-No measurements of elements of P(N) per se; rather
(the story goes) one must speak of a measurement of E ∈ P(N) in a ‘mea-
surement context’as specified by a family {Fα}. The accompanying notion
of contextual probability could then be modeled by a conditional probability
p(E o {Fα}) defined on pairs (E, {Fα}), E ∈ P(N) and {Fα} a measurement
context for E. Unless one is prepared to define a measure over measurement
contexts this conditional probability would have to be taken as a primitive
rather than derived concept. Context dependence is explicitly exhibited in
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cases where p(E o {Fα}) 6= p(E o {Gβ}) for {Fα} 6= {Gβ}. Scare quotes should
perhaps be placed around the use of probability here since more details would
have to be provided to make the case that something suffi ciently analogous
to classical or quantum probability is in the offi ng that it deserves to be
called probability. Before conferring this honorific on the numbers assigned
one would certainly want the satisfaction of an analog of the basic additivity
axiom (A2) (Section 2.3) for orthogonal E1, E2 ∈ P(N). Context dependence
gives every reason to believe that p(E1o{Fα})+p(E2o{Gβ}) = p(E1+E2o{Hγ})
will fail when the measurement contexts {Fα}, {Gβ}, and {Hγ} are different.
And p(E1 o {Fα}) + p(E2 o {Fα}) = p(E1 +E2 o {Fα}) will not be well-defined
when E1, E2 ∈ {Fα} but E1 + E2 /∈ {Fα}, as will always be the case when
{Fα} is a partition of the identity to which E1 and E2 belong.24 This is
unfortunate since a partition of the identity is an attractive candidate for a
measurement context.
A more radical implementation of Saunders contextuality would replace

P(N) as the event space and assign non-conditional probabilities to contex-
tualized events that result from fine-graining the events of P(N) by measure-
ment contexts, i.e. anE ∈ P(N) is fine-grained toE−qua{Fα}, E−qua{Gβ},
etc. It is far from clear how to even get started on building a probability
theory for such an event space in a way that maintains contact with standard
quantum probability. Do the E − qua{...} objects correspond to projection
operators on some larger Hilbert space? If so, the contextuality complaint
can be raised anew, calling for qua − quaing. If not, in what sense are the
numbers attached to these events quantum probabilities?
This and other ways to try to implement contextualized probabilities take

us far away from standard quantum theory. In this distant land the task of
justifying the Born rule would involve precisely the quashing of the present
notion of contextuality, taking us back closer to the land of standard quantum
theory; and Gleason’s theorem is no help in this task since it is inapplicable
in the face of the contextuality. A journey into the land of contextuality is
justified if there is some discernible payoff in prospect, either for empirical ad-
equacy or conceptual insight. The contextuality implemented by introducing
exogenous ‘hidden variables’offers promise of the latter. What discernible
payoff is offered by the second kind of contextuality?

24That {Fα} is a partition of the identity means that the Fα are mutually orthogonal
projections such that

∑
α
Fα = I.
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