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Abstract

Many philosophical accounts of scientific theory comparison take as a starting point com-
petition between mutually exclusive alternative hypotheses. However, in scientific inquiry, it
often appears that hypotheses which are in competition with one another are not mutually
exclusive. For example, a hypothesis which postulates just one cause of a particular event
may compete with a hypothesis which postulates a conjunction of causes. It appears that the
conjunctive hypothesis does not exclude the single-cause hypothesis, but rather entails it, since
the single-cause hypothesis may be seen as a special case of the conjunctive hypothesis. The
apparent existence of logical relations between competing hypotheses then presents a problem
for models of scientific inference which assume that competing theories are mutually exclusive.
I call this the ‘problem of logical constraints’. The problem has been raised in slightly different
guises for both for Inference to the Best Explanation and Bayesianism. In this paper, I show
how taking a hierarchical view of theory comparison allows us to resolve this problem. Sci-
entific theory evaluation takes place at multiple levels, with more general theories competing
against each other at higher levels and more specific hypotheses competing at lower levels.
Higher-level theories can be seen as mutually exclusive alternatives, even while logical relations
are respected at lower levels.

This is the penultimate version to appear in Conjunctive Explanations: New Essays on the Nature,
Epistemology, and Psychology of Explanatory Multiplicity, ed. Jonah Schupbach and David Glass,
Routledge.

1 Introduction
Many philosophical accounts of scientific theory comparison take as a starting point competition
between mutually exclusive alternative hypotheses. However, in scientific inquiry, it often appears
that hypotheses which are in competition with one another are not mutually exclusive. For example,
a hypothesis which postulates just one cause of a particular event may compete with a hypothe-
sis which postulates a conjunction of causes. It appears that the conjunctive hypothesis does not
exclude the single-cause hypothesis, but rather entails it, since the single-cause hypothesis may be
seen as a special case of the conjunctive hypothesis. The apparent existence of logical relations be-
tween competing hypotheses then presents a problem for models of scientific inference which assume
that competing theories are mutually exclusive. I call this the ‘problem of logical constraints’. The
problem has been raised in slightly different guises for both for Inference to the Best Explanation
(Schupbach and Glass, 2017) and for Bayesianism (Popper, 1959; Forster and Sober, 1994; Elliott
Sober, 2015). Broadly speaking, to resolve the tension, there are two approaches we can take:
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1. We can accept that competing theories can be logically compatible with each other, and
either abandon existing models of scientific inference or extend or reframe them to account for
competition between non-mutually exclusive hypotheses.

2. We can argue that, despite appearances, the competing theories in scientific practice really
can be seen as mutually exclusive. In this case, existing models of scientific inference are adequate
as they stand.

In this paper, I will argue for the latter approach. I will not argue directly against the first
approach, but if my argument that the competing theories really are mutually exclusive succeeds,
then the first approach becomes unnecessary. My approach will be based on the recognition that
scientific theory evaluation takes place at multiple levels, with more general theories competing
against each other at higher levels and more specific hypotheses competing at lower levels. I argue
that according to a reasonable conception of higher level theories, they can be seen as mutually
exclusive alternatives, even while logical relations are respected at the lower level.

The plan for the paper is the following. I will first explain the problem of logical constraints as it
has been raised for both IBE and for Bayesianism (section 2). In section 3, I briefly outline solutions
which take the first approach of accepting that competing theories can be logically compatible. In
4, I outline the solution that I favour, based on the second approach above. I explain how this
approach makes use of the hierarchical picture of theory comparison. In sections 5 and 6, I show
how this approach solves the problem of logical constraints for IBE and for Bayesianism respectively.

2 The problem of logical constraints
In scientific inquiry, we often see cases in which a hypothesis postulating one cause of a particular
event competes with a hypothesis which postulates a conjunction of causes. Schupbach and Glass
give a helpful example from paleontology (Schupbach and Glass, 2017). Scientists have considered
different hypotheses about the cause of the mass extinction at the Cretaceous-Paleogene boundary
about 65 million years ago that wiped out the dinosaurs. One influential hypothesis is that the
extinction was caused by a bolide impact. Evidence for this ‘impact hypothesis’ includes an unusual
layer of clay at that boundary with an anomalously high level of iridium, an element which is not
usually so common on Earth, but which is abundant in meteorites and other bolides (Alvarez,
1983). Other scientists have proposed conjunctive explanations invoking multiple causes. For
example it has been suggested that the extinction event was caused by climate changes resulting
from massive volcanic activity, in combination with and perhaps exacerbated by the bolide impact
(Keller, 2014). Thus, part of the scientific inquiry has involved considering one-cause explanations
as rivals to hypotheses involving conjunctions of causes.

There may also be cases where one hypothesis competes against a disjunction of hypotheses.
For example, according to Aristotelian theories, living organisms could arise either as the result of
generation from parent organism(s), or by spontaneous generation from inanimate matter such as
earth and water (Lehoux, 2017; Zwier, 2018). Aristotle thought that some organisms, in particular
some small fish, eels and barnacles, do not arise from living parent organisms, but are instead
spontaneously generated from inanimate materials. A series of experiments in the 17th through
19th centuries eventually convinced scientists that spontaneous generation does not occur. Although
living creatures like maggots or worms could be observed to appear, apparently spontaneously, on
meat, or in a broth, when an effort was made to isolate the medium from all possible sources
of contamination by living organisms, the production of living creatures was no longer observed.
Thus, the general Aristotelian hypothesis that living organisms could be produced either from other
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living organisms, or by spontaneous generation, was replaced by a single-cause explanation: living
organisms could only be produced from other living organisms.

These kinds of examples have been used to argue that scientific inference can involve competition
between logically compatible hypotheses. In our first example, it is possible for both bolide impact
and volcanic activity to have had a causal effect on the extinction, so these hypotheses appear
not to be mutually exclusive. In fact, the conjunctive hypothesis might be taken to entail the
single-cause hypothesis. In the second example, the disjunctive hypothesis may be taken to be
entailed by the single-cause hypothesis. If such entailments hold, then the competing hypotheses
are logically consistent with one another. This has been raised as a puzzle for IBE, since IBE,
like other theories of scientific inference, is often cast as involving a competition between mutually
exclusive alternatives (Schupbach, 2019). If scientific inference really does involve competition
between logically compatible hypotheses, the question is how this can be handled by IBE.

The possibility of apparent logical relations between competing hypotheses also raises a related
problem for Bayesianism. In this context, the problem arises from the observation that logical
relations should constrain probabilistic relations. Let h1 and h2 be two specific hypotheses where
h1 entails h2. According to the probability calculus p(h1) ≤ p(h2). The same inequality holds also
for conditional probabilities, thus we have the following constraint also on the posterior probabilities

p(h1|D) ≤ p(h2|D)

Such a constraint means that one should never give a higher probability to h1 than to h2. That
is, a logically stronger hypothesis should not get a higher probability. Yet in scientific practice, it
seems to be quite common for such a preference to be manifested. Furthermore, in the practice of
Bayesian model comparison, such preferences are apparently permitted. For example, the problem
has been raised for the case of curve-fitting. Suppose we measure the relationship between two
variables X and Y. Here X might be the period, and Y might be the length of a pendulum of fixed
mass. Suppose our data consists of pairs of observations, where the first is an observation of period
and the second a measurement of length. We would like to discover which kind of ‘model’ best
accounts for the data. Should it be a linear model comprising all curves of the form y = α0 + α1x
(we denote this as LIN), or a parabolic model comprising all curves of the form y = β0+β1x+β2x
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(we denote this as PAR)? LIN can be regarded as a conjunction of PAR and β2 = 0. For each
specific curve in PAR, if we set the adjustable parameter for the quadratic term β2 to zero, we
get a linear curve. LIN is clearly a subset of PAR – or, in other words, LIN entails PAR. Since
LIN entails PAR, it follows that p(LIN)≤ p(PAR). Thus it appears that probabilistic comparisons
cannot ever favour LIN. Yet LIN is a simpler and more falsifiable hypothesis than PAR, and in
practice a scientist would often choose the linear curve if it fits the data adequately.1

1It is also worth noting that people have a tendency to violate logical constraints in the probabilities that they
assign to particular hypotheses. This is the well-known ‘conjunction fallacy’ (Kahneman et al., 1982). In a famous
experiment, people were found to have a tendency to attribute a higher probability, given certain information about
Linda, to the proposition that h1 that ‘Linda is a feminist bank-teller’ than to the proposition h2 that ‘Linda is
a bank-teller’, even though h1 entails h2. However, people also recognise that they have made an error once it is
pointed out, and when the problem is formulated differently – in terms of frequencies, rather than judgments of
likelihood – the tendency to commit the fallacy disappears (Gigerenzer, 1991).
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3 Approach 1: accept non-mutually exclusive competitors
Some of the solutions to the problem of logical constraints both for IBE and for Bayesianism are
based on the acceptance that examples like those described do genuinely show that competing theo-
ries can be logically compatible. Various proposals have then been made regarding the implications
of this for theories of scientific inference like IBE and Bayesianism. As we shall see, these solu-
tions include abandoning the theories of scientific inference altogether, drastically reducing their
scope, or finding ways to show that they can indeed be applied to non-mutually exclusive competing
hypotheses. I will now give a brief outline of some of these suggestions.

3.1 Proposed solutions for IBE
3.1.1 Restrict application of IBE to mutually exclusive hypotheses

In the case of IBE, one proposal has been to restrict application of the inference only to mutually
exclusive hypotheses. This is suggested by Lipton who says

[IBE] is meant to tell us something about how we choose between competing expla-
nations: we are to choose the best of these. But among compatible explanations we
need not choose. (Lipton (2001), p. 104)

However, Lipton’s proposal has been criticised by Schupbach on the grounds that it seems to rule
out too much. Schupbach argues that ‘Many (indeed plausibly most) canonical instances of IBE
compare potential explanations that are compatible with one another’ (Schupbach (2019), p. 147).
If this is so, then Lipton’s manoeuvre would amount to a very significant restriction on the scope
of IBE.

3.1.2 Dissolving the difficulty

Instead of restricting IBE, Schupbach argues for a different solution. He accepts that logically
compatible hypotheses are compared in scientific inference2 but argues that IBE can be framed
in a way that allows it to deal with compatible hypotheses. Schupbach allows that the set of
potential hypotheses may contain various logically compatible hypotheses, including conjunctions
and disjunctions of individual hypotheses also under consideration. However, he suggests that IBE
be regarded as choosing which hypothesis is ‘explanatorily best’, and this can be done among a set
or ‘lot’ of hypotheses where some are compatible with each other:

the present proposal amounts to thinking of the lot of potential explanations as
the set containing the[se] considered hypotheses along with their Boolean combina-
tions. What matters is which combination of considered hypotheses best explains the
explanandum, not what logical form the various options take (Schupbach (2019), p.
160).

Thus, according to this proposal, we can apply IBE to logically compatible hypotheses, because the
logical relations between hypotheses can be ignored when determining the best explanation.

2In another paper, he devises a probabilistic account of how non-mutually exclusive hypothese may compete
(Schupbach and Glass, 2017).
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3.2 Proposed solutions for Bayesianism
3.2.1 Restrict application of Bayesian comparison to disjoint sets

Just as for IBE, in the case of Bayesianism, one proposal has been to restrict application of the
inference. It has been suggested to apply Bayesian model selection only to mutually exclusive
hypotheses. In a case like curve-fitting then, this would mean adjusting the hypotheses. Rather
than LIN and PAR, the two hypotheses to compare would be LIN and PAR*, where PAR* is the
set of all specific curves with a genuinely non-trivial quadratic term: y = β0 + β1x + β2x

2, where
β2 ̸= 0 (Howson, 1988).

Just as in the case of IBE, many have seen this as an unwelcome restriction of Bayesianism’s
application. Although it solves the problem in some sense, it appears to be a rather artificial solu-
tion, since it does away by fiat with problems that scientists or statisticians are actually interested
in. Several authors argue that this solution effectively amounts to changing the subject. For in-
stance, Forster and Sober say ‘this ad hoc maneuver does not address the problem of comparing
(LIN) versus (PAR), but merely changes the subject.’ (Forster and Sober (1994), p. 23). Bengt
Autzen says that since people making use of the Bayesian model selection methodology ‘are gen-
uinely interested in comparing models with non-trivially overlapping parameter ranges, restricting
the Bayesian analysis to models with non-overlapping parameter ranges amounts to substantively
changing the inference problem.’ (Autzen (2019), p. 326).

Another approach is suggested in (Romeijn and Schoot, 2008). This is based on relabelling the
nested sets of hypotheses.

nothing prevents us from using two distinct sets of hypotheses ... which are different
from a set-theoretical point of view by virtue of being labeled differently, even while
they have the same likelihood functions over the data. (Romeijn and Schoot (2008), p.
353)

The relabelling strategy maintains the set-based view of statistical models, but the claim is that we
could relabel LIN and PAR, for example, such that they become disjoint sets.

Autzen has criticised this relabelling view on the grounds that the relabelled sets still have the
same likelihood functions as the original sets, thus

simple relabelling seems to amount to a case of mislabelling. Assigning different la-
bels to sets of pairwise identical probability distributions, gives a misleading picture re-
garding the possible hypotheses about the data generating mechanism. (Autzen (2019),
p. 329)

Autzen is suggesting that multiplying labels creates the impression that there are different data
generating mechanisms, whereas in fact there are not. The basic problem here is that although the
problem of logical constraints can be technically solved in this way, it remains unclear what the
independent reasons would be for doing the relabelling.

3.2.2 Abandon Bayesianism

Some have turned to even more drastic solutions and have seen the problem of logical constraints
as a reason to abandon a Bayesian approach to theory comparison. Karl Popper, for example,
emphasised the importance of falsifiability in theory choice, where falsifiability often tracks sim-
plicity or informative content. He saw the problem of logical constraints as a reason to think that
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‘the scientist does not and cannot aim at a high degree of probability’ (Popper (1959), p. 400).
Popper then resisted attempts to characterise scientific theory preferences in terms of probabilities.
Others have seen the problem as a reason to resist the Bayesian approach to model selection. For
example, Forster and Sober argue that Bayesians are, in cases like curve-fitting, unable to explain
why scientists sometimes prefer LIN over PAR. They favour instead a non-Bayesian approach to
model selection – particularly recommending the methods based on the Akaike Information Crite-
rion (Forster and Sober, 1994). This approach has tended to be attractive to those who already
have other reasons to be uncomfortable with Bayesian methodology – such as the general problem
of assigning priors.

There are some significant problems with this approach. Giving up on Bayesian methods means
giving up on a methodology which has in practice been very successful in a number of domains.
Moreover, there are close connections between the Bayesian approach to model selection and non-
Bayesian methods (Claeskens and Hjort, 2008; Grünwald and Roos, 2019), which gives support to
the idea that Bayesian methodology is not fundamentally flawed. Furthermore, as we will see in
section 6, non-Bayesian methods do not evade the problem entirely. Non-Bayesians have their own
problems with justifying the scientific preferences we see in cases like curve-fitting.

4 Approach 2: maintain mutual exclusivity
I will not attempt to respond in detail to the above suggestions, but will rather present an alternative
approach. My response to the problem of logical constraints will be based on the idea that it is
possible to maintain, despite the appearances of the above examples, that competing theories in
scientific inference are mutually exclusive. If true, this would solve the problem of logical constraints
both for IBE and for Bayesianism. If the competing theories are mutually exclusive, then they
can be compared according to a standard understanding of IBE. Furthermore, there are no logical
relations which constrain probability assignments to the hypotheses, so the problem for Bayesianism
also disappears. My approach here elaborates and generalises a solution already sketched for a
particular example in Henderson et al. (2010).

My argument will be developed in light of a hierarchical view of how scientific theories are
compared. The general idea is that scientific theories can be regarded as hierarchically structured
with more general or abstract ‘framework’ theories at higher level, and more specific or concrete
hypotheses at lower levels. Theory comparison then takes place at multiple levels, and at each level
the competing hypotheses are mutually exclusive. I will suggest that the kinds of examples that
gave rise to the problem of logical constraints are ones in which higher-level theories are competing.
If one identifies these higher-level theories with sets of lower level theories, they can appear to be
non-mutually exclusive. However, I will argue that this identification should not be made, and the
higher-level theories can be seen as genuinely mutually exclusive alternatives.

I will first provide a brief outline of the hierarchical view of scientific theory comparison. The
recognition of the point that scientific theories are hierarchically structured has been a common
theme in historically inspired accounts of theory change ((Kuhn, 1962; Laudan, 1977; Lakatos,
1978)). According to the hierarchical view, we may distinguish between general theories, which
we will denote using upper case T , and more specific hypotheses, which we will denote as lower
case h. The general theories amount to something like a schema or framework. For example, in
the comparison between geocentric and heliocentric models of the planetary system in the time of
Copernicus, we might consider a general heliocentric model which places the sun at the centre of
the planetary system as constituting a general schema THel. Another schema would be a geocentric
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model which places the Earth at the centre TGeo (Henderson, 2014). Each of these schemas contains
a number of details and parameters which are not yet filled in: for example, the number of planets,
the radii and periods of the orbits, etc. By filling in these details, we obtain a specific hypothesis h
which instantiates the general schema. Given certain assumptions, the theory schemas can be said
to ‘generate’ sets of specific hypotheses. For example, the Copernican schema generates a set of
possible specific Copernican models.

When we ask for the best explanation of some phenomena, we are often effectively asking which
of two general schemas provides the best explanation, rather than which of two specific hypotheses
does so. We can ask, for instance, whether phenomena like retrograde motion of the planets is
better explained by a heliocentric model or by a geocentric model, without yet getting into the
details of delineating specific periods of orbits, etc. Of course, it is also possible to deploy IBE at
the level of specific hypotheses also, but this is often done within the general framework provided
by an accepted schema.

Bayesian comparison can also be applied not only to specific hypotheses but also to competing
general theories or schemas (Henderson et al., 2010). When Bayesian comparison is applied to
competing schemas {Ti}, these are assigned prior probabilities p(Ti), and then updated by Bayesian
conditionalisation, given the evidence D. This results in posterior probabilities given by Bayes’ rule
as

p(Ti |D) =
p(D|Ti)p(Ti)

p(D)
(1)

A general theory Ti may have adjustable parameters which we denote by a vector θ̃. Then, in the
equation 1, p(D|Ti) is a ‘marginal likelihood’, obtained by integrating over the likelihoods for all
the specific hypotheses allowed by the general theory

p(D|Ti) =

∫
p(D|θ̃)p(θ̃|Ti)dθ̃ (2)

Here p(θ̃|Ti) is the prior over the adjustable parameters, given a particular theory Ti. In this
methodology, the competing general theories are usually treated as mutually exclusive alternatives.

A Bayesian may also compare the specific hypotheses given by particular choices of parameter
values, given a particular theory schema. This is done by a Bayesian update on the prior for the
parameters p(θ̃|Ti) to the posterior given by

p(θ̃|Ti, D) =
p(D|θ̃, Ti)p(θ̃|Ti)

p(D|Ti)

Thus, we can have Bayesian evaluation at two levels – that of the general theory schema, and that
of the specific hypotheses within a certain schema (Henderson et al., 2010).

If the general theory specifies not a deterministic, but a probabilistic relationship between the
variables, it may constitute a ‘statistical model’. A statistical model is a mathematical model which
tells us about the process by which the data is generated. A simple example of a statistical model
is the binomial model. Suppose we have a simple system, like a coin, which may give one of two
possible outcomes in an experiment. A coin may land heads or it may land tails when it is tossed,
for instance. Then if we assume that there is a fixed chance q that the coin lands heads, the
probability of throwing n heads in a series of N tosses is given by the binomial distribution

p(n) =
N !

n!(N − n)!
qn(1− q)N−n (3)
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We say that the data is generated by a binomial model B(N, q), which has parameters N and q.
The data regarding the number of heads thrown is then distributed according to an equation of the
form 3.

We have distinguished above between the comparison of higher-level theory schemas, and the
comparison of particular hypotheses within a schema. Statisticians also distinguish between the
task of finding the right model, and finding the best specific hypotheses within a model. The task of
finding the right model is called ‘model selection’, and it contrasts with ‘parameter-learning’, which
involves fitting parameters to a particular model. There are a number of approaches to statistical
model selection – employing both non-Bayesian and Bayesian methodologies (J. Friedman, Hastie,
Tibshirani, et al., 2001; Grünwald, 2007; Claeskens and Hjort, 2008). The Bayesian approach
involves following the same procedure as we saw above for general theory schemas. We take a
hypothesis space of different candidate models {Mi} and compute the posterior probabilities

p(Mi|D) =
p(D|Mi)p(Mi)

p(D)
(4)

Marginal likelihoods for the models are again computed as in equation 2:

p(D|Mi) =

∫
p(D|θ̃)p(θ̃|Mi)dθ̃ (5)

Bayesian model selection is a method extensively used in the applied sciences (for examples, see
Jefferys and Berger (1992), Griffiths, Kemp, and Tenenbaum (2008), and Gelman et al. (2013)).

In previous work, I have argued that the hierarchical view of theory comparison allows us to
connect IBE and Bayesianism (Henderson, 2014; Henderson, 2017). When IBE involves comparison
of general theory schemas or models, rather than specific hypotheses, what is generally valued
as explanatory is the ability of a general schema to account for the data on the basis of its core
principles without relying too heavily on special choices of auxiliary hypotheses or parameters. This
is often expressed by saying that the explanation provided is ‘simpler’ or ‘more unified’. Bayesian
methods applied to theory schemas also effectively penalise schemas which are non-explanatory in
this sense, since such fine-tuning tends to reduce the marginal likelihood of a model (other things
being equal). This occurs via the marginal likelihood in equation 2. Given natural choices of priors
over the adjustable parameters, the marginal likelihood effectively penalises theory schemas or
models which only fit the data in a small range of parameter values (Henderson, 2014). This is the
well-known ‘Bayesian Occam’s razor’ effect (Jefferys and Berger, 1992; MacKay, 2003). Thus, the
key considerations which go into IBE are reflected in Bayesian calculations, and the two approaches
to theory comparison should be regarded as compatible with one another. In fact, according to
the view which I have called ‘emergent compatibilism’, IBE can be explicated in Bayesian terms
(Henderson, 2014; Henderson, 2017). This close relation between IBE and Bayesianism makes it
not unexpected that the solution to the problem of logical constraints is essentially the same in
both cases. The hierarchical picture of theory comparison sketched here is key to the solution of
the problem in both guises.

5 Solution for IBE
As we have seen, the problem of logical constraints has been raised for IBE as the concern that the
competing hypotheses may not be mutually exclusive. In this section, I will use the framework of
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Figure 1: (a) Graph 1: A has a causal influence on C, but B does not. (b) Graph 2: A and B both
have a causal influence on C.

causal graph theory to formalise the hypotheses which are under comparison in causal examples like
those described in section 2. When this is done, it becomes clear that the competing hypotheses
are mutually exclusive after all.

Causal graph theory is a well-established formalism for representing hypotheses about causal
relationships between variables (Spirtes et al., 2000; Pearl, 2009). In this formalism, a causal graph
is used to represent the causal structure relating a set of variables. In such a ‘Directed Acyclic
Graph’ or ‘DAG’, the nodes represent variables, and arrows between the nodes represent causal
relations between the variables. The graph must be ‘acyclic’, meaning that it is not possible to
go in a cycle by following arrows. As an example of how DAGs can represent causal structure,
consider the two graphs shown in Figure 1. In both cases, there are three variables A, B and C. In
Graph 1, variable A has a causal influence on variable C, but there are no causal relations between
B and the other variables. In Graph 2, both A and B have a causal influence on C. When there is
a causal arrow from a variable A to a variable C, we say that A is a ‘parent’ of C. Any variables
which can be reached from A by a directed path of arrows are called ‘descendants’ of A.

Different causal structures can be expected to produce different data, where the data may consist
either of observations of correlations between variables, or results of interventions where one or more
variables is set to a particular value and the values of the other variables observed. The connection
between a particular causal graph and the expected probability distribution over the variables {Xi}
is made using the Causal Markov Condition. The Causal Markov Condition is the assumption
that each variable Xi is probabilistically independent of all its non-descendants, given its parents.
Thus the causal graph tells us about the causal relations and which variables are probabilistically
independent of which. Without further information, however, it does not tell us about the exact
relation between the causal relations. For example, graph B could be used to represent either a
conjunctive causal structure, where both causes A and B are needed to produce the effect C, or a
disjunctive causal structure where either A or B is needed to produce C. Each of those possibilities
would be associated with a different specific probability distribution over the variables. A given
causal graph is compatible with a number of different specific probability distributions which satisfy
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Figure 2: Parametrised graphs. (a) Graph 1 with parameters {a, b, w0, w1). (b) Graph 2 with
parameters {a, b, w00, w01, w10, w11}.

the independence relations given by the Causal Markov Condition.
However, a particular probability distribution is specified, once we are given what is known as

the ‘parameters of the graph’. Given the Causal Markov Condition, the probability distribution
over {Xi} factorises as

p(X1, X2, ..., Xn) =
∏
i

p(Xi|Parent(Xi))

where Parent(Xi) is the set of parents of Xi. In order to have the full probability distribution
p(X1, X2, ..., Xn) over all the variables then we need to know the conditional probability for each
variable conditional on its parents. Note that when a node has no parents, the conditional proba-
bility just becomes a prior probability on the node (such as in the case of variables A and B above).
These conditional probabilities are called the ‘parameters of the graph’.

For example, the probability distribution associated with Graph 1 is

p(A,B,C) = p(C|A)p(A)p(B)

and the probability distribution associated with Graph 2 is

p(A,B,C) = p(C|A,B)p(A)p(B)

Figure 2 shows Graphs 1 and 2, together with the parameters which need to be defined in each
case.

It is possible to restrict the parametrisation to a particular type of relationship. For example,
in Graph 2, if there is a conjunctive relationship between the two causes A and B, in the sense that
both contribute causally to C, then the table of conditional probabilities is shown in Table 1.
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Table 1: Parameters specifying a conjunctive relationship between the two causes in Graph 2.
A B p(C|A,B)

0 0 0
0 1 0
1 0 0
1 1 1

Table 2: Parameters specifying a disjunctive relationship between the two causes in Graph 2.
A B p(C|A,B)

0 0 0
0 1 1
1 0 1
1 1 1

On the other hand, a disjunctive relationship (where either cause A or cause B produces the
effect C) is shown in Table 2. Another simple functional form is a Noisy-OR, shown in Table 3.
This applies in the situation where both A and B increase the probability that C occurs, but each
cause acting alone does not give probability one that C occurs.

We can deploy this framework to formally represent the different hypotheses which are competing
in examples such as the explanation of the Cretaceous-Paleogene mass extinction. The hypothesis
that the extinction was caused simply by a bolide impact can be represented by a causal structure
such as in Figure 1(a). Here A would represent bolide impact and C would represent the extinction.
The hypothesis that multiple causes were involved can be represented instead by a causal structure
such as in Figure 1(b). In this case, the variable B represents an additional cause such as volcanic
activity. Of course, for both options, there are many details to be filled in to give a plausible
specific hypothesis. But when we ask whether the mass extinction is best explained by the impact
hypothesis as opposed to the multiple-cause hypothesis, this can be seen as the question of which
theory schema out of Figure 1(a) and Figure 1(b) best accounts for the evidence. The important
point is that the competing hypotheses are distinct causal structures, and it is legitimate to treat
these as mutually exclusive alternatives. Formally, the alternatives are different directed acyclic
graphs or (DAG) representing different hypotheses about the causal structure. These DAGs are
not identical to any particular set of probabilitiy densities over the variables in the graph. As we
have seen, the DAG can indeed generate the joint probability density over all the variables, but
only on the basis of certain assumptions such as the Causal Markov Condition.

Table 3: Parameters specifying a noisy-OR relationship between the two causes in Graph 2.
A B p(C|A,B)

0 0 0
0 1 wB

1 0 wA

1 1 wA + (1− wB)wA
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It is of course possible to adjust the causal parameters of the multi-cause schema to accommodate
data which fit well to a single-cause schema – for example, by setting the strength of the causal
arrow between B and C to zero. This means that the set of probability densities generated from
the single-cause schema is indeed a subset of the set that can be generated from the multiple-cause
schema. But this does not mean that the single-cause schema itself need be regarded as a special
case of the multiple-cause schema. If we do not identify the schemas with the set of probability
densities they generate, then the schemas themselves can still be regarded as mutually exclusive
alternatives.

Other cases of IBE applied to apparently non-mutually exclusive hypotheses can be treated
similarly. For example, the disjunctive schema representing the Aristotelian point of view allows
for the possibility of two different kinds of generating process for organisms: spontaneous generation
and generation from parent organisms. The Aristotelian theory can be represented by a schema
of the form in Figure 1(b), whereas the modern theory would be represented by a schema of the
form in Figure 1(a). In this example, A would represent parent organisms which have a causal
effect on B, the production of offspring. The variable C would represent an alternative cause for
B consisting of a certain configuration of non-organic conditions. It is reasonable to treat these
DAGs as mutually exclusive alternatives, because they represent different causal structures and
thus distinct possible ways that the world might be. Graph 2 represents a world where spontaneous
generation is an actual possibility, whereas graph A represents the world we think we live in, where
living organisms can only be produced by reproduction from other living creatures.

Overall, then, using causal graph theory to formalise instances of IBE which appear to involve
competition with conjunctive or disjunctive explanations shows that the higher-level schemas which
are competing to provide the best explanation can be seen as causal structures which are represented
by DAGs and which may plausibly be regarded as mutually exclusive alternatives.

6 Solution for Bayesianism
The problem of logical constraints for Bayesian model selection also arises only if we identify the
models to be compared with sets of specific probability densities generated by those models. This
‘set-based’ way of understanding what a statistical model is is fairly common in statistics. For
example, in his textbook All of Statistics, Larry Wasserman defines statistical models as follows:

A statistical model F is a set of distributions (or densities or regression functions). A
parametric model F is a set that can be parameterized by a finite number of parameters.
For example, if we assume that the data come from a Normal distribution, then the
model is

F =

{
f(x;µ, σ) =

1

σ
√
2π

exp

{
− 1

2σ2
(x− µ)2

}
, µ ∈ R, σ > 0

}
This is a two-parameter model. We have written the density as f(x;µ, σ) to show that
x is a value of the random variable whereas µ and σ are parameters. In general, a
parametric model takes the form

F = {f(x; θ) : θ ∈ Θ}

where θ is an unknown parameter (or vector of parameters) that can take values in the
parameter space Θ. (Wasserman (2013), pp. 87-88)
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According to this view, in the curve-fitting case, the linear model is regarded as a set of all the
possible probability densities of normal form parametrised by α0, α1 and σ1

MLIN :{N (α0 + α1x, σ1), α0 ∈ R, α1 ∈ R,σ1 > 0} (6)

and the quadratic model as a set of all the possible probability distributions allowed by the param-
eters:

MPAR :{N (β0 + β1x+ β2x
2, σ2), β0 ∈ R, β1 ∈ R, β2 ∈ R, σ2 > 0} (7)

Here N (µ, σ) denotes a normal distribution with mean µ and standard deviation σ.3 In this case,
MLIN is again a subset of MPAR :, and thus p(MLIN)≤ p(MPAR). Thus, again it would not seem
possible to assign a higher probability to the simpler, linear model.

An alternative to the set-based view of models was suggested in Henderson et al. (2010). Ac-
cording to this ‘generative’ view, the general theory schemas or models are mathematical objects
which can be used together with further assumptions to generate the set of specific hypotheses,
but which should not be identified with such sets (even if that set is supplemented with a different
label). Thus, we called the general theory schemas or models (that enter into equation 4) ‘gener-
ators’. The {Mi} which are fed into equation 4 are general hypotheses independent of particular
assumptions about the adjustable parameters.

I have already suggested this way of looking at causal models. There are several levels at which
we learn about the causal model, and each can be conducted according to Bayesian principles.
At the higher level, we compare different causal structures by assigning prior probabilities to the
different graphs {Gi} and then calculating their posterior probabilities according to

p(Gi|D) =
p(D|Gi)p(Gi)

p(D)

The marginal likelihood here is obtained by integrating over all the values the parameters of the
graph could assume, and we thus compare the different graphs without needing to assign any
particular choice of parameter values. Learning the causal structure constitutes a form of Bayesian
model selection (Heckerman, Geiger, and Chickering, 1995; Koller and N. Friedman, 2009), and
this is commonly distinguished in practice from the task of parameter estimation given a particular
causal graph structure.

Models representing single causes, as well as conjunctive and disjunctive causes, can thus be
compared in a Bayesian fashion. There are often computational challenges in calculating the rele-
vant marginal likelihoods, but there are algorithmic techniques which have been developed for this
purpose (MacKay, 2003). When we are interested in for example comparing whether the single-
cause Graph 1 is better supported by data than a two-cause model of noisy-OR form, we would use
the parametrisation of Graph 2 given in Table 3, and perform the integration over that family of
causal models (Steyvers et al., 2003; Griffiths and Tenenbaum, 2005). Thus, this methodology pro-
vides a systematic way to address examples such as the extinction case, or the case of spontaneous
generation. Depending on the data, a conjunctive model can be favoured over a single-cause model,
or vice versa, and similarly for comparisons of a disjunctive model to a single-cause model, or indeed
to a conjunctive model. For example, a single-cause model has fewer adjustable parameters than

3This would be described by a density function
f(x;µ, σ) = 1

σ
√
2π

exp
{
− 1

2σ2 (x− µ)2
}
, µ ∈ R, σ > 0.
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a multiple-cause model (see Figure 2). If it nonetheless can account for the data, then it will be
preferred by virtue of its greater simplicity. This occurs naturally in the calculation of the Bayesian
posterior, since the marginal likelihood of the multiple-cause model is lower than the single-cause
model on account of the need to integrate over a larger area of its parameter space where the fit is
not good. However, whether or not there is a preference for the simpler hypothesis depends on the
data. There are also situations where the multiple-cause model gets better support from the data
than the one-cause model.

The generative view can also be applied to cases like curve-fitting. A curve-fitting problem may
involve comparing two theory schemas H1 and H2, each specifying different functional forms for
the relationship between variables X and Y :

H1: y = α0 + α1x
H2: y = β0 + β1x+ β2x

2

The schema H1 specifies a linear relationship between X and Y , whereas the schema H2 gives a
quadratic relationship. Each of these schemas concerns the general form of the relationship, rather
than any specific curve holding between X and Y . For each schema, a number of specific curves
can be generated. For instance, the curve y = 3+2x is one of the possible specific curves generated
by H1, obtained by setting α0 = 3 and α1 = 2. The curve y = 1 + 4x+ 0.3x2 is one of the specific
curves generated by H2, obtained by setting the adjustable parameters β0 = 1, β1 = 4 and β2 = 0.3.

According to the ‘set-based’ view of models, the model consists of the set of all specific hypotheses
which it describes. In this case, for example, the two relevant sets would be all the specific curves
that take the form y = α0 + α1x (that we previously denoted as LIN), and all specific curves that
take the form y = β0 + β1x + β2x

2 (denoted as PAR). As we saw earlier, since LIN entails PAR,
the probability of LIN cannot be greater than the probability for PAR.

However, if we regard H1 and H2 as generative schemas, and do not identify them with the
sets LIN and PAR, we do not have to see H1 as entailing H2. Rather, H1 and H2 represent
different theories about what the basic generating mechanism is that produces the data. They
might represent different physical processes. Suppose, for example, that the linear and quadratic
models are used to describe a situation where X represents the concentration of a particular reactant
and Y represents the rate at which a chemical reaction proceeds. Depending on how exactly the
molecules combine with one another, the rate of a chemical reaction may be linearly dependent on
the concentration of a particular reactant. However, if the rate is quadratically dependent on the
concentration of a reactant, that may signal the presence of a different kind of reaction – namely a
‘second-order’ reaction (Atkins, De Paula, and Keeler, 2006). The two schemas thus correspond to
quite different physical situations.

Bengt Autzen raises an objection to the generative view as follows (Autzen, 2019). If H1 is
taken to say that ’the curve specifying the relation between X and Y has a linear form’, and H2

is taken to say that ‘the curve specifying the relation between X and Y has a quadratic form’,
then indeed H1 would still entail H2, and the problem of logical constraints would not be evaded.
However, this is not how we should understand what these schemas amount to. Schemas like H1

and H2 provide a specification of the physical possibilities for a situation. H2 represents a physical
situation where a process described by a quadratic equation actually is possible, whereas H1 rules
that kind of process out. In the case of the chemical reactions, H2 allows that there can be a
second-order reaction going on in the system – even if it makes a negligible contribution to the rate,
and even in the case where its presence might be hard to detect. H1 on the other hand, claims that
no such reaction is possible. So understood, H1 and H2 do describe mutually exclusive ways that
the world might be.

14



The generative view preserves what is correct about the problem of logical constraints. For
genuinely nested sets of functions or distributions such as LIN and PAR, probabilities are indeed
constrained to obey the inequality p(LIN)≤ p(PAR). But such an inequality at the level of the spe-
cific hypotheses is compatible with the generators being mutually exclusive. A common assumption
in Bayesian model selection is to set the priors for the different models equal. So here for example,
we might set the prior probability of the generator H1 equal to that of the generator H2 (supposing
that these are the only alternatives, they both have prior probability 0.5). Now H1 only assigns
probability to specific hypotheses of the form y = α0 + α1x, whereas H2 assigns probability to
specific hypotheses of the form y = β0 + β1x+ β2x

2, of which some are linear (if β2 = 0) and some
are non-trivially quadratic (β2 ̸= 0). Now consider the probability of the set of specific hypotheses
LIN

p(LIN) =
∑
i

p(LIN|Hi)p(Hi)

If H1 is the generator, the specific curve produced will definitely be in LIN: p(LIN|H1) = 1,
whereas if H2 is the generator there is some (probably small) probability p to produce a curve in
LIN: p(LIN |H2) = p. Thus p(LIN) = 0.5.1 + p.0.5. On the other hand

p(PAR) =
∑
i

p(PAR|Hi)p(Hi)

and no matter which of H1 and H2 is the generator, the specific curve produced will definitely
be in PAR. Thus p(PAR)=1. Thus, for any p < 1, the inequality p(LIN) ≤ p(PAR) will be satisfied,
even though the generator H1 could in principle be assigned a higher prior probability than H2, or
as in this case, equal prior probability to H2.

I now compare the generative view with an alternative suggested in Autzen (2019). Autzen
agrees that the set-based view of models is responsible for the problem of logical constraints in
Bayesian model selection. However, he proposes a different view of models than the one presented
here. Autzen argues that besides the set-based view, there is another usage of the term ‘model’ to
be found in Bayesian statistics. This is what he calls a ‘Bayesian model’. A Bayesian model is not
simply {p(y|θ) : θ ∈ Θ} (or F = {f(x; θ) : θ ∈ Θ} for probability densities) but also includes the
prior over the adjustable parameters. Thus a Bayesian model is ({p(y|θ) : θ ∈ Θ}, p(θ)) with p(θ)
denoting the prior probability density of θ. Autzen says

By including the prior of the adjustable parameter into the model, it becomes clear
how models that contain pairwise identical probabilistic hypotheses about the data-
generating mechanism can have different empirical content. (Autzen (2019), p. 330)

Applying Autzen’s idea to the curve-fitting example, the models that are compared in equation 4
are not MLIN and MPAR, but M∗

LIN and M∗
PAR defined as

M∗
LIN : ({N(α0 + α1x, σ1), α0 ∈ R, α1 ∈ R,σ1 > 0},ν(α0, α1, σ1))

M∗
PAR :

(
{N(β0 + β1x+ β2x

2, σ2), β0 ∈ R, β1 ∈ R, β2 ∈ R, σ2 > 0},ν(β0, β1, β2, σ2)
)

where ν(α0, α1, σ1) and ν(β0, β1, β2, σ2) are priors over the adjustable parameters of MLIN and
MPAR respectively. The problem of logical constraints is avoided, because M∗

LIN is no longer a
subset of M∗

PAR, thanks to the inclusion of these priors in the definition of the model.

15



Figure 3: Smoking (S) has a negative causal effect on bellysize (B) and a positive causal effect
on activity (A),which in turn has a positive effect on B. In general for this causal structure, B
is probabilistically dependent on S, but with a violation of Faithfulness, the causal parameters
can be chosen such that B is independent of S. Then the path S → B exactly cancels the path
S → A → B.

Autzen’s Bayesian model approach also solves the problem of logical constraints in a technical
sense. However I think the generative view is preferable because it corresponds better to the way
the models {Mi} are actually regarded in practice. Models, I maintain, are treated as separate
mathematical entities – such as causal DAGs, which provide schemas for the construction of the-
ories. Furthermore the generative approach does not require that the prior over parameters be
incorporated into the definition of the models themselves. Doing so brings problems of its own, as
Autzen acknowledges, since there may well be cases where it is unclear how exactly to specify the
prior. Thus, on the Bayesian model approach, all the problems associated with the assignment of
Bayesian priors enter into the definition of the competing higher-level models.

Finally, we are now in a position to see why abandoning Bayesianism cannot be the right solution
to the problem of logical constraints. There are of course a number of non-Bayesian approaches
to model selection which do not assign probabilities to the competing models. Thus this might
appear to be a reason to opt for non-Bayesian approaches, rather than Bayesian ones. However, the
problem of logical constraints does not disappear in non-Bayesian methodology. Rather it appears
in a different guise. The non-Bayesian must also address the problem of why you would ever prefer
the simpler hypothesis, given that if the models are nested, you can always adjust the parameters
of the more complex model so that it coincides with the simpler model as a special case. You
can, for example, always adjust the quadratic model to put β2 = 0, and then the question is why
would you prefer the linear model to the adjusted quadratic model? In non-Bayesian approaches to
causal structure learning, this preference has been enforced by adopting a special principle known as
Faithfulness. Let G be a causal graph and P a probability distribution generated by G. In general,
G may contain other probabilistic independences than those that the Causal Markov Condition
implies. G and P satisfy the Faithfulness Condition if and only if every conditional independence
relation true in P is entailed by the Causal Markov Condition. For example, we could have a case
where smoking S has a negative effect on bellysize B, but it also happens that smoking makes a
person more active A, and this has a positive effect on bellysize (see Figure 3). According to the
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CMC, there are no conditional independencies between any of the variables in this graph. Thus
in general we expect to see dependence between smoking and bellysize. However, it is possible
for S and B, for example, to be independent of one another for particular choices of the causal
parameters. This could occur, for instance, if the parameters are such that the correlation induced
by the common cause S exactly cancels the direct causal path from A to B. In this case the
causal parameters would be ‘fine-tuned’ to produce the independence, rather than the structure
of the causal graph itself being responsible. The Faithfulness condition essentially rules out such
fine-tuning.

To justify invoking Faithfulness, Spirtes et al. argue that it is an instance of a more general
principle of scientific inference which they call ‘Spearman’s principle’ (Spirtes et al., 2000). If
we are comparing two models which both account for the data, on the basis of which we judge
certain ‘constraints’ to hold in the system in question (such as probabilistic independencies in the
population of interest), then Spearman’s principle says that we should prefer (other things being
equal) the model which generates these constraints no matter what values are assigned to that
model’s ‘free parameters’ over the model which yields the constraints only for particular values of
its free parameters. There has been discussion of the justification for special principles such as this
(Woodward, 1998; Weinberger, 2018). Marc Lange, for example, has argued that there appear to
be cases where Spearman’s Principle should not hold (Lange, 1995). I will not pursue this issue
further here. My main observation is that giving up on Bayesian methodology (as in the solution
suggested in section 3.2.2) does not entirely solve the problem generated by the comparison of
nested theories, since non-Bayesian methodology also has to deal with the problem of justifying the
special principles it invokes to explain and justify a preference for simpler theories.

7 Conclusion
In a number of scientific inferences the competing hypotheses appear to be logically consistent.
For example, there are cases in which single-cause hypotheses compete with hypotheses involving
either conjunctions or disjunctions of causes. Since theories of scientific inference such as IBE
and Bayesianism usually assume that competing hypotheses are mutually exclusive, this presents
a challenge which I have called the ‘problem of logical constraints’. For Bayesianism, the problem
manifests itself in the apparent need to constrain probability assignments by the logical relations
between the competing hypotheses. My solution to the problem of logical constraints is to see
that, despite appearances, the competing hypotheses actually are mutually exclusive alternatives.
This is motivated by a hierarchical view of theory comparison, which is also key to my ‘emergent
compatibilist’ view that IBE can be explicated in Bayesian terms (Henderson, 2014). From this
point of view, it is to be expected that there should be a common solution to the problem of logical
constraints for both IBE and Bayesianism.

For causal examples, I have argued that the causal models that are competing are actually
different causal structures, and should not be identified with sets of specific hypotheses generated by
those structures. Even though the causal structures may generate nested sets of specific hypotheses,
this does not mean that there are entailment relations between them. Rather, it is legitimate to
regard the competing causal structures as mutually exclusive alternatives. I suggest that this
solution can be generalised beyond causal examples, if we recognise the hierarchical way in which
scientific theory comparison generally takes place. Scientific theory comparison involves comparison
between models or theories at higher levels, and more fully specified hypotheses at lower levels.
Well-recognised statistical techniques like model selection also proceed in a similar way. In standard
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examples like curve-fitting, the models compared at the higher level can also be regarded as schemas
which represent distinct physical situations and which may thus be regarded as mutually exclusive
alternatives. This account makes sense of usual Bayesian model selection practices, in which priors
are assigned to the competing models without any concern for logical constraints. Nonetheless, we
have also shown that logical constraints at the level of the specific hypotheses are still respected by
the probabilities.
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