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Introduction

Von Neumann’s (in)famous proof of the non-existence of hidden variables in quantum

mechanics is commonly discussed in the context of work that came much later, namely

that of Bohm and Bell. In this context, the goal of specifying a set of axioms is to

identify only what is essential for any quantum theory. Call this axiomatic reconsider-

ation. Thus, given that Bell (rightly) criticized one of von Neumann’s assumptions, the

story goes that von Neumann made a grave error; even worse, von Neumann thereby

erroneously claimed to have ruled out hidden variables.

This story is wrong—or, so I argue. However, in the main, I do not disagree either

on the historical, physical, or mathematical facts. Indeed, excellent exegetical work

has already been done on von Neumann’s work in physics [Duncan and Janssen, 2013]

[Lacki, 2000] [Rédei, 1996] [Rédei, 2006] [Rédei and Stöltzner, 2006] [Stöltzner, 2001]

[Bueno, 2016], including on his no hidden variables proof [Bub, 2011] [Bub, 2010] [Dieks,

2017] [Mermin and Schack, 2018] [Stöltzner, 1999] [Acuña, 2021a] [Acuña, 2021b]. In-

stead, my disagreement concerns primarily the framing, which lumps von Neumann in

with Bohm and Bell (especially the latter). Here I argue that von Neumann was per-

forming an axiomatic completion of quantum mechanics, where ‘quantum mechanics’

refers to a specific theory of quantum phenomena rather than, vaguely, to any the-

ory of quantum phenomena.1 This axiomatic completion relied on Hilbert’s axiomatic

1In what follows I will use ‘quantum theory’ to refer to what we today call ‘quantum mechanics’
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method. With this understanding at hand, I re-interpret the history of von Neumann’s

no hidden variables proof.

The argument proceeds as follows. In §1, I give an overview of the axiomatic

endeavors foreshadowed in [Hilbert et al., 1928]. Here I emphasize two features of the

Hilbertian axiomatic method: (1) it requires the separation of the facts of an area of

knowledge from the formalism and is thereby provisional and (2) it is a preeminently

practical method aimed at ordering and orienting areas of knowledge. In §2, I describe

the history of quantum theory that immediately preceded Hilbert et al. [1928]. Here I

focus especially on the influence and status of the transformation theory as developed

by Dirac and Jordan. In §3, I re-interpret von Neumann’s work in 1927 as the prelude

to his axiomatic completion of quantum mechanics, where the latter is understood as

the work coming out of the Göttingen—Cambridge tradition. Here my central claim

is that his 1927 work aimed to lay the foundation for answering the extant question of

whether the transformation theory could be extended. I therefore also briefly discuss

two little-known debates, one between von Neumann and Schrödinger and another

between Jordan and Heisenberg (and von Neumann), on the status of hidden variables.

In §4.1, I show that von Neumann’s 1932 book made his use of the axiomatic method—

including its character as provisional and relative—explicit; in this sense, nothing was

deeply hidden concerning his motivations. In §4.2, I briefly revisit the infamous proof

of IV.1 and IV.2 to show how it is to be read as an axiomatic completion. Finally, I

conclude by discussing the legacy of von Neumann’s axiomatic completion of quantum

mechanics insofar as it oriented later inquiry.

1 Axiomatic Completions: Provisional and Practi-

cal Meta-Mathematics

A common misconception of Hilbertian axiomatics holds that it promoted formaliza-

tion of scientific and mathematical theories in the service of radical epistemological or

metaphysical goals. Wilson [2017, 151], for instance, has repeatedly suggested that the

program intended to reveal the basic metaphysics of theories, analogous to later in-

tentions for rational reconstruction. Similarly, Lacki [2000, 315] characterizes Hilbert’s

interest in axiomatization as residing “in his care for logical clarification and rational

and reserve ‘quantum mechanics’ for its historical referent, i.e., the cluster of work that grew up in
Göttingen and Cambridge.
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reconstruction.” This comparison is meant to damn Hilbert insofar as rational recon-

struction is widely considered a failure. Yet this comparison trades on half-truths about

Hilbert’s axiomatic method. Indeed, closer inspection reveals that Hilbert’s axiomatic

method was both provisional and practical in such a way that it contributed essentially

to scientific progress, as I will show here for quantum theory.

The core feature of the axiomatic method comes in Hilbert’s maxim to “always

keep separated the mathematical apparatus from the physical content of the theory”

[Lacki, 2000, 313].2 Concerning quantum theory in particular, we find an expression of

this early in [Hilbert et al., 1928], which contrasts the ideal (non-obtaining) way to a

quantum theory3 with the actual way the quantum theory had been delivered. Ideally,

2Lacki seemingly understands this to be synonymous with the imperative to delimit “as close as
possible[...]what are the minimal assumptions on which to secure its [quantum theory’s] foundations,
assumptions which should be sufficiently beyond any doubt so that one could consider them safely as
not subject to further revision” [Lacki, 2000, 313]. Note that were the axiomatic method to demand
“assumptions sufficiently beyond any doubt,” then Hilbert’s axiomatization of geometry would have
been an abject failure. Here, it will become clear that we need not assume von Neumann was any
different from Hilbert on this.

3I quote at length here in the footnote as the passage is otherwise unavailable in English; all
translations are mine, unless specified [von Neumann, 1963, 105]:

The way to this theory is as follows: Certain physical demands on these probabilities are
suggested by our past experiences and trends, and their satisfaction necessitates certain
relations between the probabilities. Secondly, one seeks a simple analytic apparatus in
which quantities occur that satisfy precisely the same relations. This analytic apparatus,
and with it the operands occurring in it, now undergoes a physical interpretation on the
basis of the physical demands. The aim in doing so is to so fully formulate the physical
demands that the analytic apparatus is uniquely defined. This way is thus that of an
axiomatization, as has been carried out, for example, with geometry. Through the axioms
the relations between the elements of geometry, point, line, plane, are characterized and
then it is shown that these relations are exactly satisfied by an analytic apparatus,
namely the arithmetic equations.

In the new quantum mechanics, one formally assigns a mathematical element, which is in
the first instance a mere operand, as representatives according to a certain specification
of each of the mechanical quantities, but from which one can receive statements about
the representatives of other quantities and thus, through back-translating, statements
about real physical things.

Such representatives are respectively the matrices in the Heisenberg, the q-numbers in
the Dirac, and the operators in the Schrödinger theories and their present developments.

It is therefore important to note that we examine two wholly different classes of things,
namely on one hand the measurable numerical values of physical quantities and on the
other their assigned operators, which are calculated with strictly according to the rules
of quantum mechanics.

The above suggested procedure of axiomatization is not typically followed in physics
now, but rather is the way to the erection of a new theory, as here, according to the
following principles.
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a quantum theory would be arrived at by first characterizing the physical demands on

probabilities and the necessary relations among them, and only then identifying the

analytic apparatus uniquely defined by these relations. In short, the theory would be

an axiomatization of the sort Hilbert carried out for geometry. However, the quantum

theory was actually arrived at by first supposing an analytic apparatus and then in-

terpreting that formalism. This was a significant barrier to understanding the theory

because “one cannot sharply distinguish between[...] the formalism and its physical

interpretation” [von Neumann, 1963, 105].

The axiomatic method’s aim to distinguish a formalism from the physical facts

motivating it served the larger goal of understanding how a mathematical theory is

applied to the world.4 Though perhaps sounding too philosophical to be of interest

to scientists themselves, this larger goal was not exclusive to Hilbert. Einstein, for

instance, also wanted to answer the “riddle” of the relationship between mathematical

theories and reality; indeed, he even shared Hilbert’s belief that the axiomatic method

had solved this riddle [Einstein, 1921, 3–4]:

So far as the propositions of mathematics correspond to reality, they are

not certain, and so far as they are certain, they do not correspond to real-

ity. Complete clarity on the situation seems to me to have come into the

community’s possession only through the method of mathematics known

by the name of “Axiomatics.” The progress achieved by the axiomatic

method consists in the fact that it cleanly separates the logical-formal from

the factual or intuitive content; only the logical-formal is the subject of

More often than not, one supposes an analytic apparatus before one has yet specified a
complete system of axioms, and then arrives at the establishment of the basic physical
relations only by interpretation of the formalism. It is difficult to comprehend such a
theory when one cannot sharply distinguish between these two things, the formalism
and its physical interpretation. This divorce should here be made as clearly as possible,
when we also, in accordance with the present state of the theory, don’t yet wish to
found a complete axiomatics. In any case, what is certainly well-situated is the analytic
apparatus, which—as purely mathematical—is also capable of no modification. What
can, and probably will, be modified about it is the physical interpretation, with which
exists a certain freedom and arbitrariness.

4I refer to ‘physical facts’ rather than ‘physical interpretation’ throughout to avoid conflation
with our modern notion of philosophical interpretation, which relies on a pseudo-model-theoretic
understanding of theory–world relations that was likely unavailable at the time Eder and Schiemer
[2018] and, at any rate, is not compatible with Hilbert’s above description of his axiomatization of
geometry. Besides, ‘physical facts’ better conforms to Hilbert’s account (especially “Axiomatische
Denken” [Hilbert, 1917]) as well as the broader physics community’s account (e.g., “Geometrie und
Erfahrung” [Einstein, 1921]) of axiomatization.
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mathematics according to the axiomatic method, but not the intuitive or

other content connected to the logical-formal.

Yet, to answer to this larger goal of understanding how mathematics relates to the

world, the axiomatic method cannot proceed in the usual mathematical way.

The usual method of mathematics—of determining the consequences of given propositions—

is insufficient for addressing its relationship to reality. Instead, addressing the latter

is the domain of meta-mathematics. The distinction can be spelled out using the

example of Hilbert’s axiomatization of geometry.5 By the end of the 19th Century,

Euclidean geometry had come to be identified as the combination of a few key propo-

sitions (e.g., Pascal’s and Desargue’s theorems). However, it was unclear which of the

many “physically intuitive” basic assumptions on offer were strictly necessary to derive

these propositions. In particular, it was asked whether Archimedes’ Axiom—i.e., for

any previously given line segment CD, every line segment AB can be repeated such that

the length of that segment exceeds CD—was necessary for Desargue’s theorem:6 while

it was believed that Archimedes’ Axiom was “physically intuitive,” owing especially to

the acceptance of of its apparent consequences which seemed to conform to reality, it

was unclear whether it was strictly necessary for Euclidean geometry. Enter Hilbert,

the meta-mathematician. Taking Euclidean geometry (Pascal’s and Desargue’s theo-

rems) as the target, Hilbert demonstrated which axioms were necessary for its recovery.

He did this by removing the merely-empirical content of Euclidean geometry, which in-

volved translating geometric statements into a formalism whose necessary assumptions

had already been elucidated (the arithmetic equations); with the formalism’s structure

5The account of Hilbert’s axiomatic method that follows is my own. However, it is similar in
important respects to especially [Baldwin, 2018, chap. 9], [Detlefsen, 2014], [Peckhaus, 2003], and
[Corry, 2004], as well as [Hallett, 1990][Hallett, 1994][Hallett, 2008], [Sieg, 2014], and [Wilson, 2022].
For entry into interpreting Hilbert’s Grundlagen der Geometrie, see [Giovannini, 2016] and [Eder and
Schiemer, 2018]. For an account that emphasizes more of the foundationalist aspect of the axiomatic
method as used in science, based on Hilbert’s work related to general relativity, see [Brading and
Ryckman, 2008][Brading and Ryckman, 2018], as well as [Brading, 2014] and the editors’ remarks in
[Sauer and Majer, 2009].

6I discuss Archimedes’ Axiom here to avoid some of the messiness of the history of the parallel
postulate. However, I take it that the same point applies to the parallel postulate—e.g., [Eder and
Schiemer, 2018, 66–7] (italics mine): “...lacking the precision of an exact axiomatization and a method-
ologically clean understanding of what is at stake when we ask ourselves about the independence of
the axiom of parallels, these results [i.e., non-Euclidean geometries] were still hotly debated among
philosophers. This is certainly due in part to the empirical content people associated with geometry
and the fact that matters of logical consequence were mixed up with matters of empirical truth.”
Analogous to the body text, then, my point is that axiomatizing the full set of empirical truths (as
then understood) allowed for the eventual trimming of the axiom of parallels precisely because the
axiomatization laid bare its logical consequences in the context of the other axioms.
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already clear, the axiom candidates for Euclidean geometry could be translated into the

formalism’s language and their relationship precisely characterized. This done, Hilbert

was able to show that Archimedes’ Axiom is necessary for Desargue’s theorem—hence

Euclidean geometry—since it is independent of the other axioms. Thus, crudely put,

where the mathematician asks what propositions a given set of axioms suffice to prove

(perhaps adding the occasional axiom), the meta-mathematician turns this around (us-

ing the axiomatic method) to ask which axioms are necessary to prove a given set of

propositions.

Thus, the meta-mathematician can address the relationship of mathematics to re-

ality in a way that the mathematician alone cannot: if one identifies theorems central

to an area of knowledge, the axiomatic method allows the meta-mathematician to

(eventually) identify the necessary physical assumptions. As we see from Hilbert’s

axiomatization of geometry, one must execute three major steps. First, identify the

central theorems (Pascal’s and Desargue’s theorems) and concepts (connection, order,

parallels, congruence, continuity) of the area of knowledge (Euclidean geometry); this

constitutes the theory of the area of knowledge. Second, identify a formalism whose

axiomatic structure is clear (or can be made clear) and into which the theory of the

area of knowledge can be translated (the formalism of arithmetic equations). Third,

determine the necessity of candidate axioms (Archimedes’ axiom) for the identified

theorem(s) (Desargue’s theorem) by leveraging knowledge of the axiomatic structure

of the formalism (arithmetic equations). Call the consideration of a candidate axiom’s

relation to the other axioms within the formalism its uniqueness question: are the

other axioms sufficient for deciding the structure of the formalism w.r.t. the candidate

axiom? In other words, is the candidate axiom a consequence of the others in the

formalism? If it is a consequence of the others, then the formalism is unique for the

theory; if it is not, we say that the formalism is not unique for the theory.7 Answering

all extant uniqueness questions constitutes an axiomatic completion of the theory of the

area of knowledge in the sense that theory’s axiomatic structure has been completely

determined.

Two features of axiomatic completions are relevant for what follows. These are

especially clear in Hilbert’s “Axiomatische Denken” Hilbert [1917]. First, axiomatic

7The uniqueness question for Archimedes’ axiom told us that the formalism of the arithmetic
equations was not unique insofar as it was independent of them. Within the formalism, this amounted
to the assumption of an additional property attributable to the real numbers over and above the real-
number-like properties had by the arithmetic equations.
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completions generate provisional representations of reality insofar as axiomatic comple-

tions rely on several fallible steps. On the one hand, the theory of a field of knowledge

consists in the identification of central theorems and an ordering of the field’s facts

“with the help of a certain truss [Fachwerk] of concepts”8 [Hilbert, 1917, 405]. As

happened with Euclidean geometry, the theorems believed true or concepts thought

appropriate could change; thus, any theory built upon them must be provisional. On

the other hand, which uniqueness questions arise and—should the formalism not prove

unique—how to respond to them is not straightforward. Were a new uniqueness ques-

tion arise, or new insight into an axiom candidate gained, then the theory of the area

of knowledge may require adjustment to maintain its faithfulness as a representation

of the area of knowledge.

Second, axiomatic completions are practical: they are a tool meant to generate

helpful representations of a field of knowledge. Indeed, the axiomatic method demands

that uniqueness questions be answered precisely because this serves the practical goal

of orienting and ordering a field of knowledge [Hilbert, 1917, 407](bold added):

Should the theory of a field of knowledge—i.e., the truss of concepts whose

goal is to represent it—serve its express purpose of orienting and order-

ing, then it surely must meet two standards especially: firstly it should

provide a survey of the dependence resp. independence of the propositions

of the theory and secondly a guarantee of the lack of contradictions among

the propositions of the theory. In particular the axioms for each theory are

to be examined from these two perspectives.

So practical is the goal that even mutually inconsistent axiomatizations are an acceptable—

indeed, laudable—outcome of axiomatic completions. Consider, as does Hilbert, the

field of Lagrangian mechanics. Hilbert presents the combination of Boltzmann’s ax-

iomatization and Hertz’s axiomatization of Lagrangian mechanics as “a deeper layer

8While typically translated as “framework,” I think its meaning is better captured by “truss.” In
English-language philosophy these days, “framework” and “system” are often taken to be synonymous,
hence we typically assume that frameworks are fairly fleshed-out or robust affairs. But I think this
is a mistaken assumption in German, and particularly here: if we instead understand “Fachwerk” as
more like “truss”—as a first-pass support, upon which a more robust framework is built—then we
may fairly assume that a “Fachwerkes der Begriffe” is more of a stepping-stone on the way to a system
of axioms, meaning that concepts (in their informal state) go through a vetting process before being
precisified in an axiomatic system. My intention in drawing this distinction is to highlight that the
concepts are not necessarily the invention of the (mathematical) theoretician, but rather are often
provided by the scientists or other experts of the area in question, and they are merely codified more
rigorously by the mathematician. (Obviously, rigor in the spirit of Hilbertian axiomatics.)
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in the advancing axiomatization of mechanics” [Hilbert, 1917, 408], despite Hertz’s

complete eschewal and Boltzmann’s complete reliance on a notion of (Lagrangian)

force as a truss-concept.9 Insofar as they are both legitimate representations of the

field according to Hilbert (for contributing to the formation of a deeper layer), these

representations must be earning their legitimacy through their orienting-and-ordering

service to the field. Put simply: axiomatic completions are successful just so far as

they order and orient a field of knowledge and its mathematical investigation.

2 Quantum Phenomena Get a Theory and a For-

malism (Sort of)

Von Neumann was introduced to quantum theory via Hilbert. The problems faced

then, and Hilbert’s way of understanding and approaching them, significantly shaped

von Neumann’s early work in the area (up to and including his book). Von Neumann’s

first serious contact with quantum theory was in Hilbert’s 1926–7 Winter term lectures,

which, through his own and Nordheim’s efforts, became [Hilbert et al., 1928]. Here I

summarize this work and the developments immediately preceding it, showing that

the field was in the midst of acquiring a truss of concepts (the statistical viewpoint

of quantum mechanics) and central theorem (Born rule), which would later combine

to form a theory of quantum phenomena, as well as a formalism (transformation the-

ory). Along the way, there developed a uniqueness question regarding the statistical

interpretation of the formalism.

As this work was being written—in early 1927—quantum theory faced several prob-

lems. In the previous two years, there had arisen not one, but two10 calculational tech-

niques for predicting quantum phenomena: matrix (quantum) and wave (undulatory)

mechanics.11 Each had met with some predictive success. However, the two calcu-

lational techniques appeared fundamentally different on their face. In fact, the two

theories were then known to differ in rather significant ways, both mathematically and

9See Eisenthal [2021] for a recent discussion of Hertz’s treatment of the notion of force.
10Really, four, but I will follow the usual convention of ignoring Born and Wiener’s operator

mechanics and Dirac’s q-numbers.
11The usual list of Göttingen matrix mechanics publications includes [Heisenberg, 1925] [Heisen-

berg, 1926] [Born and Jordan, 1925] [Born et al., 1926]; English translations for three of these can
be found in [van der Waerden, 1967]. The usual list for wave mechanics includes Schrödinger’s four
“Quantisierung als Eigenwertproblem” papers and [Schrödinger, 1926], which can all be found in
[Schrödinger, 1927b] (English translation: [Schrödinger, 1927a]).
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physically. To put it mildly, quantum theory was a mess. In arguing that the two were

not, in fact, equivalent, Muller [1997a, 38] [Muller, 1997b] [Muller, 1999] points out

that: wave mechanics could not describe the evolution of physical systems at all, and

matrix could do so only for periodic phenomena; matrix mechanics lacked a state space;

the Euclidean space and charge-matter densities of wave mechanics had no correlate

in matrix mechanics; and matrix mechanics quantized the electromagnetic field, while

Schrödinger deemed this unnecessary. None of these differences were hidden from view,

and their most significant difference—the apparent discreteness of matrix mechanics

versus the apparent continuity of wave mechanics—was often discussed.

Yet despite these differences, the two calculational techniques led to the same an-

swers in a number of elementary problems. This was considered a promising develop-

ment by many. Schrödinger himself, in addition to Sommerfeld, was quickly convinced

that wave mechanics was equivalent (or at least, made matrix mechanics superfluous)

[Mehra and Rechenberg, 1987, 638–9]. As he wrote in a 22 February, 1926, letter to

Wien (translation in Mehra and Rechenberg), he was “convinced, along with Geheim-

rat Sommerfeld, that an intimate relation exists,” and, despite not being able to find

the relation himself, expressed his firm hope “that the matrix method, after its valu-

able results have been absorbed by the eigenvalue theory, will disappear again.” (Note,

too, that Schrödinger here refers to his theory as an eigenvalue theory. This will be

important in §3.) Despite telling Wien that he had given up looking for the connec-

tion, we know he did not. Not long after—somewhere between one and four weeks

later—Schrödinger managed to prove that, in a limited sense, wave mechanics was the

same as matrix mechanics.12

In the wake of matrix and wave mechanics there arose the transformation theory,

developed by Jordan, Dirac, and London. The transformation theory brought with it

three things that are significant here. First, it resolved lingering questions concerning

the relationship of the various quantum calculi: they were all equivalent, as far as the

transformation theory was concerned. Mehra and Rechenberg, in fact, conclude their

discussion of the transformation theory by quoting what Oskar Klein later told Kuhn:

12See [Perovic, 2008] on the goal of Schrödinger’s proof. As there noted [Perovic, 2008, 459], von
Neumann seems to take Schrödinger to have demonstrated the mathematical equivalence of the two
theories, contrary to what Perovic claims Schrödinger was after. However, note that von Neumann
later clarifies (I.4, fn. 35) that Schrödinger had not established full equivalence of the two spaces of
functions. Also, see [Muller, 1997a, 54–5] for an argument that, in actuality, what Schrödinger had
done was expand wave mechanics to make it equivalent to matrix mechanics [Muller, 1997a, 54–5],
thereby setting himself on the path to quantum mechanical hegemony.
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the transformation theories of Jordan and Dirac “were regarded as the end of the fight

between matrix and wave mechanics, because they covered the whole thing and showed

that they were just different points of view” [Mehra and Rechenberg, 2001, 89]. Un-

surprisingly, the language physicists used changed, too, so that ‘quantum mechanics’

came to refer not just to matrix mechanics but also to those calculi captured in the

transformation theories, as well as the transformation theories themselves. This is seen

already in the early presentations of transformation theory by [Jordan, 1927, 810] and

[Dirac, 1927, 621], each of whom: uses ‘quantum mechanics’ to refer loosely to the vari-

ous calculi (but clearly not intending to capture any unconceived alternative “theories”

of quantum phenomena); refer to Heisenberg’s quantum mechanics instead as ‘matrix

mechanics’; and call wave mechanics, for instance, a “representation” (resp. for Jor-

dan, “Form”). Thus, the theory of quantum mechanics is the one arising specifically

through the transformation theory.

Second, the transformation theory replaced the morass of interpretation-adjacent

mathematical questions plaguing the various forms of quantum mechanics with essen-

tially one. Where before matrix and wave mechanics faced related but distinguishable

questions about the validity of their calculi’s methods, transformation theory faced

instead the single question of the domain of validity of Dirac’s delta function. This is

reflected in [Hilbert et al., 1928] [von Neumann, 1963, 105], wherein the “formulation

of Jordan’s and Dirac’s ideas,” they say, “[becomes] substantially simpler and there-

fore more transparent and more easily understandable.” One presumes that it is this

simplicity, transparency, and understandability that makes the analytic apparatus, as

they said at the outset, “well-situated” and “capable of no modification” in its capacity

as pure mathematics [von Neumann, 1963, 106]. That is, the apparatus they present is

rigorous enough that they accepted it as broadly correct. Yet it was not entirely with-

out problems. Throughout their paper, Hilbert et al. had used Dirac’s delta function

as a shortcut to get their operator calculus to display the correct (discrete) behavior

when necessary. Others, notably Dirac, had done this as well. They considered this

a problem “since one is never sure to what extent the operations appearing are really

to be permitted.” Indeed, it was not only a problem of mathematical rigor in their

mind because it impugned even their treatment of statistical weights13: if the rigorous

method departs significantly from that using the Dirac delta, this might also expand

the allowable states via an expansion of the solutions to the eigenvalue problem.

13Here they refer to von Neumann’s [von Neumann, 1927c] as addressing the question of mathe-
matical rigor.
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This brings us to the last change wrought by the transformation theory, namely,

bringing Born’s [Born, 1926a] [Born, 1926b] statistical interpretation of Schrödinger’s

wave function to new heights of importance through its generalization. Jordan [1927,

811], for instance, apparently drawing on ideas from Pauli [Duncan and Janssen, 2009,

20–1], made it quite explicit that his formalism was to be interpreted statistically

using a probability amplitude function applied to two Hermitian quantum-mechanical

quantities. The centrality of the statistical interpretation is clear in Hilbert et al.,

too.14 They begin the paper as follows [von Neumann, 1963, 105]:

The basic physical idea of the whole theory consists in bringing to light the

general probability relations in patches of rigorous functional relationships

in ordinary mechanics.

The nature of these relationships is best explained through a particularly

important example. If the value Wn of the energy of the system is known,

and namely equal to the n-th eigenvalue of the quantized system, then fol-

lowing Pauli the probability density that the system coordinate has a value

between x and x + dx is given by |ψn(x)|2, where ψn is the eigenfunction

associated with the eigenvalue Wn.

But while this understanding begins as an example, it ends as an instance of the general

theory [von Neumann, 1963, 131]. The mathematicians, however—especially Jordan

and von Neumann—wondered which states are allowable in this apparatus, i.e., whether

there are states that remove this merely-statistical character from the transformation

theory. More precisely, the question was whether these states were excluded by fiat as

an additional quantum-mechanical assumption (Jordan’s contention), or rather that

they were excluded already by the assumptions necessary for building up the trans-

formation theory (Heisenberg and, I suggest here, von Neumann’s contention)[Beller,

1985, 346–7]. Consequently, the transformation theory led to a uniqueness question

concerning merely-statistical predictions in the transformation theory, at least for some.

Thus, the situation was this as von Neumann began his own work on quantum me-

chanics. First, ‘quantum mechanics’ meant the concepts built upon the transformation

theory. Second, there appeared to be a need for a theory of the Dirac delta and its

14Further, the transformation theory—and Dirac’s and Jordan’s thoughts thereupon—seemingly
had an influence on Heisenberg’s articulation of the uncertainty principle in his [Heisenberg, 1927]
[Beller, 1985]. However, also see fn. 252 of [Mehra and Rechenberg, 2001, 210].
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ilk.15 Third, Born’s statistical interpretation was assumed to interpret the transfor-

mation theory, and, for Jordan and von Neumann especially, there immediately came

the question of the uniqueness question concerning merely-statistical predictions in the

transformation theory. It was understood by them that a theory of the Dirac delta

might shed light on this question.

3 Von Neumann’s Prelude to the Axiomatic Com-

pletion of Quantum Mechanics

One of von Neumann’s aims primary goals in 1927 was to answer the uniqueness

question for quantum mechanics. However, preliminary work on both the mathematical

and physical front was required before an axiomatic completion could be executed.

On the mathematical front, the transformation theory was still plagued by the

“unrigorous” Dirac delta. More immediately, the occurrence of the Dirac delta in the

transformation theory meant that the latter was not yet fully formed mathematically.

This von Neumann meant to tackle in his “Mathematische Begründung der Quanten-

mechanik” [von Neumann, 1927c][von Neumann, 1963, 153]:

[In the transformation theory] [i]t is impossible to avoid including the im-

proper eigenfunctions (see §IX); such as, e.g., δ(x) first used by Dirac, which

is supposed to have the following (absurd) properties: δ (x) = 0,for x 6= 0,∫∞
−∞ δ (x) dx = 1.

. . . But a common deficiency of all these methods is that they introduce in-

principle unobservable and physically meaningless elements into the calcula-

tion[...]. Although the probabilities appearing as final results are invariant,

it is unsatisfactory and unclear why the detour through the non-observable

and non-invariant is necessary.

In the present paper we try to give a method to remedy these shortcomings,

and, as we believe, to summarize the statistical standpoint in quantum

mechanics in a uniform and rigorous way.

15Gimeno et al. [2020] argue that, in fact, it was reluctance to use (functions like) the Dirac delta
function that doomed Born and Wiener’s operator calculus because, without it, they could not solve
the problem of linear motion, which was its intended purpose. See [Peters, 2004] for more on the
status of (functions like) the Dirac delta at the time.
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Two things matter from this work. First, von Neumann placed the transformation

theory on a rigorous mathematical footing. In so doing, he entirely avoided the Dirac

delta function and, hence, showed that it was irrelevant to the predictive formula of

quantum mechanics (the Born rule, occurring as the trace rule in von Neumann). That

is, not only did quantum mechanics now have a uniform formalism, the Dirac delta

was demonstrably irrelevant to the uniqueness question. Second, the Hilbert space

formalism afforded a rigorous demonstration of the centrality in quantum mechanics

of solving eigenvalue problems. This latter was important insofar as it was on the

basis of a non-rigorous analogy between the eigenvalue problems in each of matrix and

wave mechanics, the two dominant pre-transformation theory formalisms, that the two

were believed to be equivalent. With these two accomplishments on the books, the

axiomatic method now had a proposition it could target for recovery: the trace rule.

Yet on the physical front, it was still not clear what the “truss of concepts” for

quantum mechanics was, i.e., which concepts and assumptions were considered essen-

tial in applications of quantum mechanics. This had two parts. First, the diversity

of mathematical approaches and sheer novelty of quantum mechanics made it unclear

which physical principles and methods of reasoning were being relied upon. In par-

ticular, did quantum mechanics assume, as an additional assumption, the exclusion of

hidden variables? Or, rather, was this a consequence of more basic quantum mechan-

ical assumptions? While this consideration does not show up in von Neumann’s 1927

works, there is reason to believe it was on his mind. We know that in the early weeks

of 1927, there was disagreement among the Göttingen and Cambridge theorists re-

garding the completeness of the quantum mechanical formalism, which played into the

debate regarding whether quantum mechanics could be deterministic. Jordan, for one,

apparently thought that the states of quantum mechanics could be further specified

so that the theory would be determinate [Beller, 1985, 346–7]. Von Neumann would

have been aware of this as he wrote his 1927 papers. Moreover, as Wigner recounts

later, von Neumann engaged in a similar debate with Schrödinger around the same

time, concluding opposite Jordan and Schrödinger [Wigner, 1970, 1009].16 Thus, there

16Several facts point to this argument having occurred sometime between von Neumann’s arrival
in Berlin and the writing of his book. First, von Neumann appears not to have communicated with
Schrödinger prior to Berlin, as he asked Weyl to describe his work to Schrödinger in an effort to win
the assistantship to Schrödinger (Letter of 27 June, 1927). Besides, von Neumann’s communications
with Weyl suggest that von Neumann was not sufficiently familiar with quantum theory prior his time
in Göttingen. Thus, the argument did not precede his move to Berlin in Summer 1927. Second, the
argument seems to have taken place in person: for one, Wigner seems to have intimate knowledge
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was doubt enough to justify investigating what was the truss of concepts for quantum

mechanics and, moreover, the status of hidden variables with respect to that truss.

In this way, the situation was analogous to the status of Archimedes’ Axiom prior to

Hilbert’s axiomatization of geometry.

Second, the relationship between the quantum mechanical truss of concepts—

whatever they were—and the transformation theory was unclear. Nevertheless, von

Neumann’s identification of the Born rule (in the form of the trace rule) as the cen-

tral proposition of the transformation theory—and, hence, any quantum mechanical

theory—served as a helpful constraint on what they were and how they could manifest

in basic assumptions. Thus, the question on the physical front of what the basic as-

sumptions of quantum mechanics were became: which assumptions sufficed for deriving

the trace rule?

It was this question which von Neumann began to tackle in his “Wahrscheinlichkeit-

stheoretischer Aufbau der Quantenmechanik” [von Neumann, 1927a][von Neumann,

1963, 209]:17

The method commonly used in statistical quantum mechanics was essen-

tially deductive: the absolute square of certain expansion coefficients of the

wave function, or of the wave function itself, was equated quite dogmat-

ically with probability, and agreement with experience was subsequently

verified. However, a systematic derivation of quantum mechanics from facts

of experience or basic assumptions of probability theory, i.e., an inductive

foundation, was not given. Also the relation to ordinary probability was

an insufficiently clarified one: the validity of its basic laws (addition and

multiplication law of probability) was not sufficiently discussed.

Thus, to effect an axiomatic completion, von Neumann yet needed to identify the basic

assumptions that give rise to quantum mechanics, i.e., the trace rule. That is, what

must the quantum mechanists agree on?

In the present work such an inductive structure is to be attempted. We

make the assumption of the unconditional validity of ordinary probability

of both sides; for another, there is no record of the discussion anywhere in von Neumann’s surviving
documents, whereas we would expect one had it taken place in writing after von Neumann’s move to
the U.S. Finally, the argument is conceptually of a piece with discussions and inquiries we know were
happening at the time [Bacciagaluppi and Crull, 2009] [Bacciagaluppi and Valentini, 2009].

17This paper of von Neumann’s was submitted to the Proceedings by Born about a month after
the 5th Solvay Conference.
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theory. It turns out that this is not only compatible with quantum me-

chanics, but also (in combination with less far-reaching factual and formal

assumptions—compare the summary in §IX, 1-3) sufficient for its unam-

biguous derivation. Indeed, we will be able to establish the entire ‘time-

independent’ quantum mechanics on this basis.

Here we begin to see what the basic assumptions for quantum mechanics are: ordinary

probability theory, along with some “less far-reaching factual and formal assumptions.”

Call the former (Probability). It is at the close of the paper that von Neumann finally

makes the latter assumptions clear. Summarizing the latter (non-probabilistic) as-

sumptions qualitatively, he says [von Neumann, 1963, 234]:

The goal of the preceding work was to show that quantum mechanics is not

only compatible with ordinary probability theory, but rather that under

its presupposition—and some plausible factual assumptions—even the only

possible solution. The underlying assumptions were the following:

1. Each measurement changes the measured object, and therefore two

measurements always interfere with each other—unless one can replace

both with one.

2. However, the change caused by one measurement is such that the mea-

surement remains valid, i.e., if you repeat it immediately afterwards,

you will find the same result.

3. The physical quantities are—in following a few simple formal rules—to

be written as functional operators.

He quickly follows these with: “Note, by the way, that the statistical, “acausal” nature

of quantum mechanics is due solely to the (principal!) inadequacy of measurement

(cf. the work of Heisenberg cited in notes 2 and 4).” Thus, von Neumann appears

already to disagree with Jordan, and agree with Heisenberg, that the existence of

experimentally incompatible physical quantities (Incompatibility) is responsible for the

acausal nature of quantum mechanics.18 In 3, he is assuming the quantum mechanical

18In the introduction to [von Neumann, 1927b], von Neumann introduced the same assumptions,
saying “1. Corresponds to the explanation given by Heisenberg for the a-causal behavior of quantum
physics; 2. expresses that the theory nonetheless gives the appearance of a kind of causality” [von
Neumann, 1963, 236]. Translation by Duncan and Janssen [Duncan and Janssen, 2013, 248].
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way of representing quantities (Quantities), which restricts one to just those that are

experimentally measurable.19

We should characterize (Quantities) and (Probability) further. These assumptions

show up in §II, “basic assumptions.” Let {S1,S2,S3, ...} be an ensemble of copies of

the system S. Given that the goal is to recover quantum mechanics, von Neumann

aimed for an expression of the expectation value Exp(R) in the ensemble of some

quantity R of the system. The assumption (Probability) amounted to:

A. Linearity. Exp(αR + βS+) = αExp(R) + βExp(S) + · · · , (α, β real).

B. Positive-definiteness. If the quantity R is always positive, then Exp(R) ≥ 0.

while (Quantities) amounted to:

C. Linearity of operator assignment to quantities. If the operators R, S, . . . represent

the quantities R,S, . . ., then αR, βS, . . . represents the quantity αR, βS, . . ..

D. If the operator R represents the quantity R, then f (R) represents the quantity

f(R).

Thus, (Quantities) captures the central focus in quantum mechanics on the functional

relationship among experimentally measurable quantities. As [Duncan and Janssen,

2013, 213] note, assumptions A. and B. do not show up in §IX. Rightly, I am suggesting,

they presume this is because they are “part of ordinary probability theory.” Indeed,

they also note that assumptions 1 and 2 (above quote) do not appear in A.–D.; this is

because these assumptions are captured through their correspondence with operators (1

through commutative properties of operators and 2 through idempotency of projection

operators corresponding to the measurement being made).

Thus, von Neumann had clearly accomplished his mathematical goal of demonstrat-

ing that ordinary probability theory (Probability) (in conjunction with (Quantities) and

(Incompatibility)) was “sufficient” for the “unambiguous derivation” of the trace rule.

Yet one point should be emphasized here, following Acuña: the immediate goal of his

“Aufbau” was to identify the basic probabilistic-theoretical assumptions sufficient for

19Strictly speaking, however, note that in this work (Quantities) appears to be a formal, not factual,
assumption. In his book, by contrast, the assumption appears less formal for the way it is introduced;
see §4.2. Since I take the axiomatic completion of the book to be the central thread in his early work,
I distinguish (Incompatibility) from (Quantities) throughout the following; see fn. 27.
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deriving the trace rule Acuña [2021a] Acuña [2021b].20 As such, A. (above) is legiti-

mate insofar as it was a common assumption for probability at the time, and it was

well-fitted to the transformation theory’s emphasis on the functional relations among

quantities (see [Acuña, 2021b, 12–13]). While it is not stated so explicitly in von Mises,

whose work von Neumann was familiar with and later cited, expectation values natu-

rally behave linearly in his Kollektiv approach. And as von Neumann hastens to add

in a footnote, this also held for non-commuting quantities.

Nevertheless, it is less clear that von Neumann achieved his meta-mathematical goal

of showing that quantum mechanics is “the only possible solution.” That is, von Neu-

mann did not explicitly show that Heisenberg’s quantum mechanical states—i.e., those

free of hidden variables that would return determinism—are the only states consistent

with the trace rule. Were this not to be the case, then Heisenberg’s countenancing of

only those states would be a necessary additional assumption for his version of quan-

tum mechanics. Von Neumann began work on this question by defining what it meant

for an ensemble to be homogeneous. However, he only demonstrated that the homoge-

neous states corresponded to the unit vectors in Hilbert space w.r.t. the trace rule—he

did not show explicitly, as he did in his book, that these states were necessarily dis-

persive. One could still hope that, in general, there were dispersion-free, homogeneous

states compatible with the trace rule.

4 Axiomatic Completion: Von Neumann’s 1932 Math-

ematical Textbook

4.1 Introduction and Chapters I–III

One of the primary aims of von Neumann’s book [von Neumann, 1932][von Neumann,

1955] was to determine whether the Hilbert space form of the transformation theory—

with the basic assumptions of (Probability), (Quantities), and (Incompatibility) serv-

ing as its basis—could countenance hidden variables. That is, he aimed to answer

the uniqueness question for merely-statistical predictions in the transformation theory,

providing thereby an axiomatic completion of quantum mechanics. We see hints of this

already at the very beginning of the preface [von Neumann, 1955, vii]:21

20I do not follow Acuña [2021b, 12] in taking this to mean that hidden variables “were not considered
at all in the original formulation of the theorem.”

21Page numbers will refer to the English translation’s original 1955 printing.

17



The object of this book is to present the new quantum mechanics in a uni-

form [einheitliche] representation which, so far as it is possible and useful,

is mathematically unobjectionable [einwandfreie].[...]Therefore the princi-

pal emphasis shall be placed on the general and fundamental questions

which have arisen in connection with this theory. In particular, the dif-

ficult problems of interpretation, many of which are even now not fully

resolved, will be investigated in detail. In this context the relation of quan-

tum mechanics to statistics and to the classical statistical mechanics is of

special importance.22

Fitting for an axiomatization, von Neumann wants a “uniform” representation that

is “mathematically unobjectionable”—that is, it is a unique and formal (=fact-free)

mathematical representation. Further, it is a representation and investigation of quan-

tum mechanics, as it then existed, and not the more nebulous idea of a “generic” theory

of quantum phenomena. It is also clearly provisional, at least in the sense that it does

not claim to resolve every problem of interpretation.

The rest of the preface then focuses predominately on the two issues we have al-

ready encountered, namely the Dirac delta and the uniqueness question. Firstly, von

Neumann observes that “the correct structure [of the transformation theory] need not

consist in a mathematical refinement and explanation of the Dirac method, but rather

that it requires a procedure differing from the very beginning, namely, the reliance on

the Hilbert theory of operators” [von Neumann, 1955, ix]. This is all the more justified

since the Hilbert theory of operators is sufficient for “the problem at hand” in quan-

tum mechanics “of calculating numerically the result of a clearly defined experiment”

(ibid.). This problem is soluble in the Hilbert theory of operators using the trace rule.

As noted above, this paved the way for determining uniqueness by solidifying the

trace rule as an essential proposition for quantum mechanics. Not surprisingly, then,

von Neumann secondly addresses the metamathematically-fundamental question of the

uniqueness of the mathematical representation of the quantum-mechanical view. This

begins by noting the inductive foundation of quantum mechanics [von Neumann, 1955,

ix–x]:

22I have provided the original German words in brackets where I depart from Beyer’s translation.
While I do not disagree with Beyer’s translation, I nevertheless think the terms I use better capture
the intended meaning in contemporary (philosophical) English. ‘Einheitliche’ translated as ‘uniform’
better emphasizes the singleness implied, while I translate ‘einwandfrei’ more colloquially as ‘unob-
jectionable’ to avoid unintended association with the superficial rigor of later sufferers of Theory T
syndrome; at any rate, Beyer translates the latter this way on page ix.
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In the analysis of the fundamental questions, it will be shown how the statis-

tical formulas of quantum mechanics can be derived from a few qualitative,

basic assumptions.

The connection is then made to the uniqueness question:

Furthermore, there will be a detailed discussion of the problem as to whether

it is possible to trace the statistical character of quantum mechanics to an

ambiguity (i.e., incompleteness) in our description of nature. Indeed, such

an interpretation would be a natural concomitant of the general princi-

ple that each probability statement arises from the incompleteness of our

knowledge. This explanation “by hidden parameters,” as well as another,

related to it, which ascribes the “hidden parameter” to the observer and

not to the observed system, has been proposed more than once. However,

it will appear that this can scarcely succeed in a satisfactory way, or more

precisely, such an explanation is incompatible with certain qualitative fun-

damental postulates of quantum mechanics.

These two explanations more-or-less directly correspond to Jordan’s and Schrödinger’s

hopes, as captured in Wigner’s recollection of the debate with von Neumann: von

Neumann showed that “according to quantum mechanical theory, no such state [where

the spin component has, with a high probability, a definite sign in all directions] is

possible”; Schrödinger objected, claiming (essentially) that hidden variables could ex-

ist in the measuring apparatus; and von Neumann then showed that the measuring

apparatus is no different in kind from the measured system, in the sense that quantum

mechanics still applies, hence hidden variables fare no better if posited there. (Again,

note that (Probability), (Quantities), and (Incompatibility) are being assumed.) As

they occur in the book, these are the arguments of IV.1—2 and VI, respectively.23

Before addressing the hidden variables question, von Neumann first recapitulates his

earlier work. In chapter I, we receive a summary of the equivalence work that preceded

his own, as well as an explanation for its inadequacy for addressing the uniqueness

problem and, thereby, for characterizing the “really essential elements of quantum

mechanics” [von Neumann, 1955, 33]. This culminates in the following characterization

of the goals of chapter II [von Neumann, 1955, 33]:

23I only discuss the argument of IV.1—2 here because the argument of VI is also significantly
shaped by other contemporaries of von Neumann, particularly Szilard, Bohr, and Heisenberg.
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We wish then to describe the abstract Hilbert space, and then to prove

rigorously the following points:

1. That the abstract Hilbert space is characterized uniquely by the prop-

erties specified, i.e., that it admits of no essentially different realiza-

tions.

2. That its properties belong to FZ as well as FΩ. (In this case the prop-

erties discussed only qualitatively in I.4 will be analyzed rigorously.)

When this is accomplished, we shall employ the mathematical equip-

ment thus obtained to shape the structure of quantum mechanics.

Thus in the main, chapter II redescribes von Neumann’s work on the Hilbert space

formalism, which began with [von Neumann, 1927c]; here, von Neumann is especially

careful to note the necessary and sufficient conditions for central results. In chap-

ter III, von Neumann then describes and expands upon the “induction” of quantum

mechanics from [von Neumann, 1927a]. In each chapter, especially the latter, it is

emphasized throughout that the mathematical formalism is ultimately in service to

the quantum mechanical understanding and subject to revision according as the latter

itself changes (see, e.g., pp. 133, fn. 86; 211—12; 213—14 with 221—23; 237—38).

This is made especially clear in III.2 when von Neumann foreshadows the discussion

of hidden variables in IV.1—2 [von Neumann, 1955, 210]:

Whether or not an explanation of this type, by means of hidden parameters,

is possible for quantum mechanics, is a much discussed question. The

view that it will sometime be answered in the affirmative has at present

prominent representatives. If it were correct, it would brand the present

rendering [Form]24 of the theory as provisional, since then the description

would be essentially incomplete.

We shall show later (IV.2) that an introduction of hidden parameters is

certainly not possible without a basic change in the present theory. For the

present, let us re-emphasize only these two things: The φ has an entirely

different appearance and role from the q1, ..., qk, p1, ..., pk complex in classi-

cal mechanics and the time dependence of φ is causal and not statistical:

φt0 determines all φt uniquely, as we saw above.

24I depart from Beyer’s translation of ‘Form’ as ‘form’ to emphasize that it would be the mathe-
matical form of the theory (quantum mechanics), i.e., the Hilbert space formalism, that is provisional.
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Until a more precise analysis of the statements of quantum mechanics will

enable us to test [prüfen]25 objectively the possibility of the introduction

of hidden parameters (which is carried out in the place quoted above), we

shall abandon this possible explanation.

Here von Neumann has made it clear (1) that the question is whether quantum mechan-

ics—whose formalism, the transformation theory, is mathematically rendered in the

Hilbert space formalism—can accommodate hidden variables, and (2) that, contrary

to Schrödinger’s and others’ (e.g., Jordan) expectations, the wave function’s evolution

is fundamentally unlike that of classical position and momentum in the Hamiltonian

schema. In all of this, then, he has made it clear that his axiomatization is relative to

a set of propositions (quantum mechanics) and hence provisional insofar as quantum

mechanics itself is provisional.

4.2 Chapter IV, Sections 1 and 2

Let us now consider IV.1—2 in this light. By this point, the contents should not surprise

us: von Neumann will derive the trace rule from the “inductive” basis of quantum

mechanics, as in his [von Neumann, 1927a], and then determine the consistency of

dispersion-free states with the trace rule. Indeed, this is precisely what happens.

To begin, von Neumann makes plain his “basic, qualitative” assumptions. He first

characterizes the kinds of quantities and relations thereof being considered, i.e., (Quan-

tities) [von Neumann, 1955, 297]. Von Neumann supposes that systems are charac-

terized by the enumeration of “all the effectively measurable quantities in it and their

functional relations with one another.” He also clarifies what this means for simulta-

neously measurable quantities. Then, von Neumann elaborates on non-simultaneously

measurable quantities, saying that “their appearance in elementary processes was al-

ways to be suspected” and “their presence has now become a certainty” [von Neumann,

1955, 300–1]. Going farther still, he makes it clear that he is taking Heisenberg’s uncer-

tainty relations to be general and what are essentially responsible for the intractability

of a hidden variable theory (i.e., (Incompatibility)).26 Indeed, as before, von Neumann

25Beyer translated ‘zu prüfen’ as ‘to prove’, which in typical English implies von Neumann meant
to “objectively prove a possibility”; this is certainly not what von Neumann meant, and the more
common translation as ‘to test’ or ‘to examine’ is more appropriate, regardless.

26However, note that for the purposes of his proof von Neumann only assumes there exist incom-
patible quantities, not Heisenberg’s particular understanding of the uncertainty relations; he is careful
not to specialize the setup to quantum mechanics too early, as we gather upon his introduction of E.
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draws from this the obvious consequence that dispersing ensembles cannot effectively

be resolved into those without dispersion [von Neumann, 1955, 304–5]:

That is, we do not get ahead: Each step destroys the results of the preceding

one, and no further repetition of successive measurements can bring order

into this confusion. In the atom we are at the boundary of the physical

world, where each measurement is an interference of the same order of

magnitude as the object measured, and therefore affects it basically. Thus

the uncertainty relations are at the root of these difficulties.

The assumptions, then, are just what were present in von Neumann’s [von Neumann,

1927a], namely (Probability), (Incompatibility), and (Quantities).27 Nothing is new so

far, even if the discussion is longer.

Yet still, the question remains whether hidden variables are consistent with the

predictive formulas of quantum mechanics (i.e., the trace rule). This becomes the

focus of the rest of the section [von Neumann, 1955, 305]:

Therefore we have no method which would make it always possible to re-

solve further the dispersing ensembles (without a change of their elements)

or to penetrate to those homogeneous ensembles which no longer have dis-

persion. The last ones are the ensembles we are accustomed to consider

to be composed of individual particles, all identical, and all determined

causally. Nevertheless, we could attempt to maintain the fiction that each

dispersing ensemble can be divided into two (or more) parts, different from

each other and from it, without a change in its elements. That is, the

division would be such that the superposition of two resolved ensembles

would again produce the original ensemble. As we see, the attempt to in-

terpret causality as an equality definition led to a question of fact which

[von Neumann, 1955, 309].
27While (Incompatibility) may appear to be a consequence of (Quantities), given that the latter

is typically glossed as “quantities are represented by Hermitian operators,” this isn’t quite right.
Rather, (Quantities) concerns the behavior of physical quantities in general, with (Incompatibility)
a specific constraint placed on quantum quantities. Von Neumann introduces Hermitian operators
(at the beginning of IV.2) as the mathematical representatives of physical quantities precisely because
physical quantities thus represented respect (Incompatibility) and (Quantities). The typical gloss
therefore misunderstands the given mathematical definition of physical quantities (in IV.2) as prior
to the constraints on any satisfactory definition (in IV.1, i.e., (Incompatibility) and (Quantities)),
making (Incompatibility) appear redundant.
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can and must be answered, and which might conceivably be answered neg-

atively. This is the question: is it really possible to represent each ensemble

[S1, ..., SN ], in which there is a quantity R with dispersion, by the super-

position of two (or more) ensembles different from one another and from

it?

Von Neumann then formalizes the question using the tools of probability theory and his

earlier definitions of dispersion-free and homogeneous ensembles. In brief, the question

is whether there can exist dispersion-free expectation functions in quantum mechanics,

i.e., whether an ensemble can ever be characterized in a way that all of its variables

exhibit no dispersion in the expectation value for their subsequent measurement.

Finally, von Neumann formally characterizes the informal assumptions (Probabil-

ity), (Incompatibility), and (Quantities) above. Von Neumann’s formal characteriza-

tion of the informal assumptions are essentially the same as in [von Neumann, 1927a].

This includes the infamous B’. (A. in [von Neumann, 1927a]):

• if R,S, ... are arbitrary quantities, and a, b, . . . are real numbers, then Exp(aR+

bS + · · · ) = aExp(R) + bExp(S) + · · · .

As many later commentators have remarked, this is to assume that any would-be hid-

den variables must behave as if they are quantum mechanical quantities (e.g., [Misra,

1967] [Bell, 1966] [Mermin and Schack, 2018]). One would only assume this if one

had already assumed quantum mechanics was true! Yet as I have said, this is ex-

actly right: quantum mechanics—namely, (Probability), (Quantities), and (Incompat-

ibility)—is being assumed. Moreover, as Acuña [2021b, 15–6] stresses, B’. is used

to derive the trace rule, which applies to any two physical quantities—including in-

compatible quantities. In fact, “without B’., the possibility of dispersion-free states

would lead us to the fact that the legitimate quantity f(R,S) = R + S cannot be

captured by the Hilbert space formalism” (ibid.). Thus, if the Hilbert space form of

the transformation theory is taken as adequate for representing all effectively measur-

able quantities—which it is being so taken—then B’. is well-motivated. Indeed, von

Neumann qualifies at the end of Section 1 that by “reason of A’., B’. and α′, β′ we are

now in position to make a decision on the question of causality, as soon as we know the

physical quantities in S as well as the functional relationships between them” (emphasis

added).

Von Neumann begins the second section by characterizing the relationship quanti-

ties will have to the Hilbert space formalism. Yet this, too, is straightforward as this
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was the entire point of Chapter II and, indeed, von Neumann had already assumed

these in the guise of F* and L* in III.5 for his discussion of properties.28 Thus, IV.2

begins unremarkably [von Neumann, 1955, 313–14]:

There corresponds to each physical quantity of a quantum mechanical sys-

tem, a unique hypermaximal Hermitian operator, as we know (cf., for ex-

ample, the discussion in III.5.), and it is convenient to assume that this

correspondence is one-to-one—that is, that actually each hypermaximal

operator corresponds to a physical quantity. (We also made occasional use

of this in III.3.) In such a case the following rules are valid29 (cf. F., L. in

III.5, as well as the discussion at the end of IV.1.):

I. If the quantity R has the operator R, then the quantity f(R) has the

operator f(R).

II. If the quantities R,S, . . . have the operators R, S, . . . , then the quan-

tity R + S + · · · has the operator R + S + · · · . (The simultaneous

measurability of R,S, . . . is not assumed, cf. the discussion on this

point above.)

Note that it is “convenient” for von Neumann to assume the correspondence between

quantities and operators is one-to-one because he takes it as obvious that the operator

calculus represents legitimate functional relationships among quantities; in particular,

if experimentally incompatible quantities R and S have the operators R and S and

R+S = Q, then Q should represent a quantity Q (and B’. says to do so in the obvious

way, i.e., Q = R + S).

Von Neumann then quickly derives the trace rule from I, II, A’. and B’. before

moving on to consider its consequences. These consequences concern the existence of

homogeneous and dispersion-free states consistent with the trace rule. Von Neumann

begins by showing that dispersion-free ensembles cannot be represented as states in

the Hilbert space formalism. The proof is a simple reductio: if we assume that such an

ensemble exists for a quantityR represented by the operator R, then U must be the zero

or identity operator, neither of which is possible 30 Then, von Neumann recapitulates

28These correspond to his C. and D. in [von Neumann, 1927a].
29Note also that von Neumann says these rules “are valid” in such a case, rather than simply

asserting that such rules “are true”: he is signaling that (Quantities) has already been assumed.
30Again, note that this proof does not use B’.—see [Acuña, 2021b, §4] and Acuña [2021a] on the

relation of von Neumann’s theorem to related theorems, e.g., Gleason’s theorem and the theorem of
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his proof that the homogeneous states are the unit vectors in the Hilbert space. Thus,

there is no chance of penetrating to those homogeneous ensembles without dispersion—

“within the limits defined by our conditions, the decision is made, and it is against

causality, because all ensembles—even homogeneous ensembles—have dispersion” [von

Neumann, 1955, 324].31

This answers the uniqueness question in the positive: quantum mechanics (i.e.,

(Probability), (Quantities), and (Incompatibility)) already rules out hidden variables

through the trace rule, meaning that the transformation theory is the unique repre-

sentation of quantum mechanics. This means Heisenberg’s assumption of quantum

mechanical states was not necessary, and it also means that Jordan was wrong to

believe there were dispersion-free states among the homogeneous states in the trans-

formation theory. Thus, the statistical interpretation of the transformation theory is

final: the maximal-information states (homogeneous states) are necessarily dispersive

(statistical).

Finally, conceiving of von Neumann’s axiomatization as a Hilbert-style axiomatiza-

tion sheds further light on an odd remark von Neumann makes concerning his theorem.

The Hilbert-style axiomatization conception fits naturally with von Neumann’s presen-

tations of his theorem as conditional. We can phrase this conception as: if one assumes

(Probability), (Quantities), and (Incompatibility) (which are satisfactory insofar as they

are sufficient for the trace rule), then the transformation theory is uniquely interpreted

as statistical. Call this conditional statement Uniqueness. Nevertheless, there is one

place von Neumann seems to suggest the theorem is not conditional. After several

rephrasings comporting with the conditional structure of Uniqueness, von Neumann

concludes that “the present system of quantum mechanics would have to be objectively

false, in order that another description of the elementary processes than the statistical

one be possible” [von Neumann, 1955, 324](italics mine).

Von Neumann’s claim that quantum mechanics would have to be objectively false

strongly is odd because it suggests he did not see his theorem as conditional. Indeed,

the suggestion has served as the primary evidence for anti-conditional interpretations

of his theorem. Further, the most prominent explanation of the phrase by conditional

Kochen–Specker and Bell.
31At this point, von Neumann seems to imply (fn. 172) that even the proof that there are no

dispersion-free ensembles is from his “Wahrscheinlichkeitstheoretischer.” Strictly speaking this is false,
as neither the proof nor the definition of dispersion-free ensembles is contained therein. However, von
Neumann does observe—as a property of the trace rule!—that “there are quantities in each state
whose distribution function is not sharp” [von Neumann, 1963, 222].
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interpreters—that he merely meant that I and II would have to be false [Bub, 2010]

and [Dieks, 2017]—is unsatisfactory, since emphasizing the objectiveness of I and II

would be an odd flight of rhetoric for von Neumann. After all, as we saw above,

these capture a correspondence assumed in part for mere convenience! Moreover, the

passage is clearly saying quantum mechanics would have to be false [Acuña, 2021b,

18], not I and II (whose role the prior sentence had already discussed). For this reason,

Acuña suggests a middle ground between the anti-conditional and Bub and Dieks

interpretations of the remark. According to Acuña, von Neumann did make a mistake,

albeit an understandable one: “he concluded that a theory in which [physical quantities

are not represented by Hermitian operators] would lead to empirical divergences with

respect to Hilbert space quantum theory, so that the predictive success of the latter

discards hidden variable theories from the outset—not for being impossible, but for

being objectively false” [Acuña, 2021b, 19]. In short, he suggests that von Neumann

believed the Born rule could not be recovered without representing physical quantities

as Hermitian operators; yet Bohm’s theory does just this, so von Neumann was wrong.

Acuña’s interpretation of von Neumann’s remark is plausible. Nevertheless, the

Hilbert-style axiomatization conception of von Neumann’s work suggests a precisifi-

cation of Bub’s and Diek’s interpretation worth considering. If Uniqueness is the

correct (conditional) interpretation of von Neumann’s theorem, then Bub and Dieks

are wrong to think of I and II as assumptions. Rather, these are valid given the

quantum-mechanical assumptions—just as von Neumann says—and in particular given

the assumption of Quantities. This latter assumption was introduced in his book at

the beginning of §1 through a characterization of experimental measurement; this sort

of characterization might reasonably be considered objective, particularly given the

detailed story von Neumann tells about measurement in Chapter III. In this character-

ization, von Neumann is clearly conceiving of the measurement of a physical quantity

as a measurement of a physical property of the observed system alone. Thus, the

suggestion is that when von Neumann said quantum mechanics would have to be ob-

jectively false, what he meant was that measurements would not be of the observed

system alone.32

32While I agree with Acuña that there is likely not enough textual evidence to settle this controversy
definitively, the suggestion given here has several advantages worth noting. First, it comports with
the axiomatic completion reading insofar as it highlights the elucidation of the axioms of quantum
mechanics and their interrelationship as central rather than the derivation of the trace rule, which is
merely a constraint on the axioms. Indeed, von Neumann almost immediately began searching for
generalizations of the trace rule derived from the Hilbert space formalism. Second, von Neumann
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Conclusion: Orienting for Our Future

Von Neumann’s final word on causality highlights well the components of the axiomatic

method I began this work with [von Neumann, 1955, 327–8]:

The question of causality could be put to a true test only in the atom, in the

elementary processes themselves, and here everything in the present state

of our knowledge militates against it. The only formal theory existing at

the present time which orders and summarizes our experiences in this area

in a half-way satisfactory manner, i.e., quantum mechanics, is in compelling

logical contradiction with causality. Of course it would be an exaggeration

to maintain that causality has thereby been done away with: quantum

mechanics has, in its present form, several serious lacunae, and it may

even be that it is false, although this latter possibility is highly unlikely, in

the face of its startling capacity in the qualitative explanation of general

problems, and in the quantitative calculation of special ones. In spite of

the fact that quantum mechanics agrees well with experiment, and that it

has opened up for us a qualitatively new side of the world, one can never

say of the theory that it has been proved by experience, but only that it is

the best known summarization of experience.

First, the theory axiomatized—quantum mechanics—was considered provisional in-

sofar as it was merely “the best known summarization.” Second, von Neumann’s

axiomatization ordered the facts of quantum mechanics. Finally, the axiomatization

oriented later research. Yet this orientation has not been sufficiently appreciated to

date; in closing, I briefly sketch how it oriented later research.

First, I should clarify what it means for an axiomatization to orient research. To ori-

ent ourselves, I begin again with Hilbert’s “Axiomatische Denken.” There we glimpse—

however flowery its expression may be—Hilbert’s true aim, of enriching mathematics

through the sciences and vice versa [Hilbert, 1917, 405]:

As in the life of the peoples the individual persons can only prosper when all

of the neighboring peoples do well, and as it commands the interest of the

seems to have foreseen the possibility of (Quantities) being denied (see Wigner [1970] on his debate
with Schrödinger)—but just thought such denials were obviously wrong-headed (as did the other
quantum mechanists). Third, this is precisely where Bohm put pressure on quantum mechanics and
von Neumann, not I and II per se.
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states that order prevails not only within each individual state, but also that

the relations among the states themselves must be well-ordered, so too is it

in the life of the sciences. The significant representatives of mathematical

thought, in proper recognition of this, have always demonstrated great

interest in the laws and the arrangement in the neighboring sciences and,

above all, cultivated the relations to the neighboring sciences, especially to

the great kingdoms of physics and epistemology, always to the benefit of

mathematics itself. I believe the nature of these relations and the basis of

their fruitfulness becomes most plain if I describe to you the one general

method of research that appears to be more and more effective in the new

mathematics: I mean the axiomatic method.

Not least because von Neumann often said as much himself [von Neumann, 1954], I

think this connection should be minded as we consider what it means to orient an area

of inquiry.

In the case of von Neumann’s axiomatic completion of quantum mechanics, I think

the relationship is this. On the one hand, his axiomatization used the tools of math-

ematics to tell something to the physicist, namely, that quantum mechanics cannot

be extended with hidden variables. This is useful for it changed the places folks (e.g.,

Bohm) looked for hidden variable interpretations and dampened any lingering con-

cern about the “fit” of the formalism to its theoretical underpinnings (e.g., Jordan).

However, at the same time it tells us where we might fruitfully focus attention: (Proba-

bility), (Quantities), and (Incompatibility). Indeed, this is what has since taken place,

and whenever such attention has borne fruit, von Neumann’s proof seems to be men-

tioned as the inspiration. To pick but one (unexceptional) example Misra [1967]:33

The only justification [of von Neumann’s A’., B’., α), β), I., II.] is the a

posteriori one that they lead to the usual formalism of quantum [theory].

Such a justification, which is sufficient from an empirical point of view,

has little compelling force in the context of the hidden-variable problem.

For one is now concerned with the possibility of generalizing the usual

formalism of quantum [theory] and the mere fact that a set of postulates

leads to the usual formalism cannot be a sufficient recommendation for

these postulates. . . . The alternative left to us is to proceed axiomatically

33I have “translated” Misra’s ‘quantum mechanics’ as ‘quantum theory’ for the sake of consistency
with the foregoing.
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in the spirit of von Neumann. Only, one must now start with less stringent

postulates than those assumed by VON NEUMANN. The aim of such an

axiomatic approach is to isolate the weakest possible assumptions which

must be violated for having hidden variables. Once such assumptions have

been isolated, one can then decide if and how they can be altered so as to

allow hidden variables.

This is the axiomatic reconsideration path taken by Bohm, de Broglie, Bell, and others,

and the essential feature is that physical or epistemological considerations related to

(Probability), (Quantities), and (Incompatibility) predominate. Thus, in a first sense,

von Neumann’s axiomatic completion of quantum mechanics has oriented by focusing

our attention on the physical and epistemological considerations that underwrite the

usual quantum formalism.34

However, the axiomatic method is also about enriching mathematics. Thus, on

the other hand, von Neumann’s axiomatization used physical facts to tell something

to the mathematician, namely, that attention should be focused on operator algebras,

non-commutative geometry, orthomodular lattices, quantum logics, and the like. This

has proven fruitful in mathematics, as von Neumann himself ensured. However, it

also quickly wrapped back around to physics, where the study of Hilbert spaces and

C* algebras gave way, in particular, to sharpenings of von Neumann’s “no hidden

variables” theorem (mentioned above). This is the path taken immediately by von

Neumann himself (as well as early co-authors in, e.g., Jordan and Wigner), but also

later by Haag, Wightman, and others.35. Indeed, von Neumann’s work was crucial

for later epochal work, like Schwartz’s on distributions [Schwartz, 1951] and Wigner’s

on irreducible representations of the Poincaré group [Wigner, 1939]. What is common

on this approach is that mathematical considerations related to A’., B’., α), β), I.,

II. predominate. Thus in a second sense, von Neumann’s axiomatization of quantum

mechanics has oriented by focusing our attention on the mathematical considerations

to which quantum theory gives rise.

In the end, then, von Neumann’s use of the axiomatic method—his axiomatic com-

pletion of quantum mechanics—oriented us toward two related futures. Just as Hilbert

would have wanted, von Neumann effectively summarized and clarified where we had

34And, I might add, he focused our attention on these considerations in a much more precise way
than, say, Bohr did.

35See Landsman [2019] for an introduction to the history of functional analysis and quantum theory
after 1932.
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been—in physics as well as in mathematics—in an effort to identify where we could go.

The relationship between physics and mathematics, not to mention the fields them-

selves, has been the better for it.

References

Pablo Acuña. Must hidden variables theories be contextual? kochen & specker meet

von neumann and gleason. European Journal for Philosophy of Science, 11(2):1–30,

2021a.

Pablo Acuña. von neumann’s theorem revisited. Foundations of Physics, 51(3):1–29,

2021b.

Guido Bacciagaluppi and Elise Crull. Heisenberg (and Schrödinger, and Pauli) on

hidden variables. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys., 40(4):

374–382, December 2009.

Guido Bacciagaluppi and Antony Valentini. Quantum theory at the crossroads: recon-

sidering the 1927 Solvay conference. Cambridge University Press, 2009.

John T Baldwin. Model theory and the philosophy of mathematical practice. Cambridge

University Press, Cambridge, England, 2018.

John S Bell. On the problem of hidden variables in quantum mechanics. Rev. Mod.

Phys., 38(3):447–452, July 1966.

Mara Beller. Pascual Jordan’s influence on the discovery of Heisenberg’s indeterminacy

principle. Arch. Hist. Exact Sci., 33(4):337–349, 1985.

Max Born. Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 38:803–827,

1926a.

Max Born. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 37:863–867,

1926b.

Max Born and Pascual Jordan. Zur Quantenmechanik. Zeitschrift für Physik, 34:858,

1925.

30



Max Born, Werner Heisenberg, and Pascual Jordan. Zur Quantenmechanik. II. Eur.

Phys. J. A, 35(8-9):557–615, August 1926.

Katherine Brading. David Hilbert: Philosophy, epistemology, and the foundations of

physics. Metascience, 23(1):97–100, March 2014.

Katherine Brading and Thomas Ryckman. Hilbert on General Covariance and Causal-

ity. In David E Rowe, Tilman Sauer, and Scott A Walter, editors, Beyond Einstein:

Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century,

pages 67–77. Springer New York, New York, NY, 2018.

Katherine A Brading and Thomas A Ryckman. Hilbert’s ‘Foundations of Physics’:

Gravitation and electromagnetism within the axiomatic method. Stud. Hist. Philos.

Sci. B Stud. Hist. Philos. Modern Phys., 39(1):102–153, 2008.

Jeffrey Bub. Von Neumann’s ‘no hidden variables’ proof: a re-appraisal. Found. Phys.,

40(9-10):1333–1340, 2010.

Jeffrey Bub. Is von Neumann’s ‘no hidden variables’ proof silly. Deep Beauty: Math-

ematical Innovation and the Search for Underlying Intelligibility in the Quantum

World, pages 393–408, 2011.

Otávio Bueno. Von Neumann, Empiricism and the Foundations of Quantum Me-

chanics. Probing the Meaning of Quantum Mechanics: Superpositions, Semantics,

Dynamics and Identity, pages 192–230, 2016.

Leo Corry. David Hilbert and the axiomatization of physics (1898–1918): From Grund-

lagen der Geometrie to Grundlagen der Physik, volume 10. Springer Science & Busi-

ness Media, 2004.

Michael Detlefsen. Completeness and the ends of axiomatization. In Juliette Kennedy,
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