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What became known as the Bargmann mass superselection rule
for non-relativistic quantum mechanics arose from a exercise, set
by Arthur Wightman in 1959, to demonstrate that “superposi-
tion of two states with different mass gives a state whose existence
in Nature would contradict Galilean invariance (Bargmann’s Su-
perselection Rule).” A solution to the exercise in the form of
a heuristic argument first appeared in journal articles and was
then repeated in textbooks. Subsequently, however, attacks on
the rule were launched from various directions, and perusing the
literature, old and new, leaves one with the impression that the
rule enjoys an uncertain status. The goal here is to explain the
sense in which there most certainly is a mass superselection rule
for ordinary quantum mechanics, as well as a sense in which there
isn’t a superselection rule for mass. Reaching this goal requires a
careful look at the nature of superselection rules and the meaning
of Galilean invariance in ordinary quantum mechanics.

1 Introduction

The idea of superselection in quantum theory was introduced by Eugene
Wigner at a conference talk in 1951 and elaborated the following year in
the drei manniche paper of Wick, Wightman, and Wigner (1952) where it
was argued that there is a superselection rule for whole-integer/half-integer
spin and conjectured that there is also a superselection rule for charge.1 But

1The conference on nuclear physics and the physics of fundamental particles was held
at the University of Chicago; for a summary of the Wigner’s talk and questions from the
audience see Orear et al. (1951). If the summary is accurate, most of the audience failed
to grasp Wigner’s thesis. The original argument offered for whole-integer/half-integer spin
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there is no mention in WWW of a superselection rule for mass in ordinary
non-relativistic quantum mechanics (NRQM).
In the same year Inöu and Wigner (1952) had noted an annoying feature

of the projective unitary representations of the Galilean group, the presumed
symmetry group of NRQM: the unitaries representing a spatial translation
by a and a pure velocity boost by v do not commute and

their products taken in a different order differs by a factor exp(
i

}
mv · a).

Furthermore, V. Bargmann had shown that these representations
are essentially the only ‘up to a factor’representations. (p. 706)

(The m is the mass of the particle. I have added back the } which was
suppressed in the original.) The reference to Bargmann, Wigner’s Princeton
colleague, was a “private communication.” Bargmann’s seminal paper on
projective (aka ray) representations of continuous groups was published in
1954 (Bargmann 1954), and the obvious inference is that Bargmann had
shown Wigner a draft of this paper or at least had told Wigner of the results
for projective representations of the Galilean group.
It is common practice in the physics literature to cite Bargmann (1954)

when referring to the Bargmann superselection rule. But there is no mention
of superselection rules in Bargmann’s paper, much less an argument for mass
superselection in NRQM. So who was responsible for proposing this rule? A
strong clue is to be found in Inöu and Wigner (1952). The awkward fea-
ture of the projective representations of the Galilean group mentioned there
led them to investigate “true” (aka proper or vector) representations. But
disappointingly, the ones they investigated have even more disturbing fea-
tures: they are incapable of describing states localized in space or having a
definite velocity, and the attempt to identify the infinitesimal spatial trans-
lation operator with the momentum operator leads to “absurd results.”At
this juncture the next logical step would have been for Inöu and Wigner to
return to the projective representations of the Galilean group and work out
the consequences of the odd feature they had noted at the beginning of their
article. Had they done so an argument for the mass superselection would

superselection supposed that time reversal is a symmetry in quantum theory. When this
supposition came into question a new argument was given based on rotational invariance;
see Hegerfeldt et al.(1968). For charge superselection see Wick et al. (1970) and Strocchi
and Wightman (1974).
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have quickly suggested itself, for what became the standard argument in the
literature starts exactly from this odd feature (see Section 5 below). But
they did not take this step, and their article ends with a recitation of the
features that rendered physically unacceptable the true representations they
investigated.
The first footnote in WWW (1952) mentions that their article is based in

part “on a review article which the last two authors [Wightman and Wigner]
are preparing with V. Bargmann.”2 Bargmann, Wightman and Wigner were
all Princeton colleagues, and the odd feature that Inöu and Wigner had
noted about the projective representations of the Galilean group found by
Bargmann would have come up in their discussions of superselection rules.
Given the ways their minds worked, it is diffi cult not to believe that this
feature served as the spark for them to formulate an argument for mass su-
perselection. Such an argument, or rather an exercise inviting the reader to
supply an argument, is found in Wightman (1959). The exercise is to prove
that the fact that the multipliers (or factors) for the projective representa-
tions of the Galilean group responsible for the odd result noted by Inöu and
Wigner (1952)

cannot be removed by permissible phase changes ... provides us
with a superselection rule on the mass for the Galilean group: su-
perposition of two states with different mass gives a state whose
existence in Nature would contradict Galilean invariance (Bargmann’s
Superselection Rule). (p. 86)3

The point of the exercise was not only to call attention to a feature of NRQM
but also to emphasize the importance of the fact that the Poincaré group ad-
mits proper unitary representations and, thus, presumably furnishes no basis
for mass superselection (see p. 85). As far as I am aware, Wightman’s ex-
ercise contains the first mention of “Bargmann’s Superselection Rule”in the
published literature.4 It remains undetermined whether Wightman’s cho-

2As far as I am aware this review article never appeared in print.
3It is hard to know whether Wightman himself fully approved of the quoted formulation

of the exercise since Wightman (1959) consists of “Notes by A. Barut on Lectures by A.
S. Wightman.”

4Curiously, this paper of Wightman’s is rarely cited when authors want to give a
reference for the Bargmann rule. Sometimes citations are given to Wightman (1960)
where there is no mention of the Bargmann rule (see, for example, Lévy-Leblond 1963 and
Bernstein 1967)

3



sen appellation was due to the fact that his colleague Bargmann supplied a
solution to the exercise or whether Wightman decided that the appellation
was appropriate because Bargmann’s work on representations of the Galilean
group supplied the basis of the rule.
What became the standard solution to Wightman’s exercise began ap-

pearing in the journal literature in the early 1960s (see Lévy-Leblond 1963),
and it has been repeated in various forms in textbooks (see Kaempffer 1965,
Appendix 7; Jordan 1969, p. 120; Galindo and Pascual 1990, pp. 292-293;
Blank et al. 1994, p. 371; de Azcárraga and Izquierdo 1995, p. 157; and
Gottfried and Yan 2003, p. 295-296). The origin of this solution remains un-
certain, but since the structure of the proof is similar to the proof offered in
WWW (1952) for superselection of whole-integer/half-integer spin it is plau-
sible that the standard solution was sketched by Wigner or Wightman in
lectures or conversations with colleagues. But whatever its origins the stan-
dard argument for Bargmann’s mass superselection seems to have convinced
the physics community.
Starting in the mid-1990s the history takes a curious turn: the once

seemingly well-established mass superselection rule was attacked from var-
ious directions. Some of the skepticism was motivated by a combination
of a suspicion that formal arguments for superselection based on symmetry
principles are hiding physical assumptions and by a desire for a dynamical
explanation of superselection, e.g. environmental factors may block some
coherent superpositions. More direct attacks claimed that the standard ar-
gument for mass superselection is incoherent. And perhaps unkindest of
all, Steven Weinberg (1995) charged that the issue of mass superselection in
NRQM is a tempest in a tea pot because the Galilean symmetry group of
NRQM can be expanded to a central extension which has the same phys-
ical consequences as the Galilean group but which admits proper unitary
representations and, therefore, obviates the need for a mass superselection
rule.5

The standard argument for Bargmann’s mass superselection rule has a
heuristic character, and as such it can be faulted for lack of rigor and, per-
haps, also as begging the question. I will offer a proposal for what would
count as a mathematically rigorous and non-question-begging solution to
Wightman’s exercise, and will offer a proof of this version of the solution.

5For a sampling of the critical literature see Guilini (1996), Greenberger (2001a, 2000b),
Hernandez-Coronado (2012), Weinberg (1995), and Zych and Greenberger (2019).

4



But whether one uses the standard heuristic argument or the more formal
one, there is no reason to doubt that there is a solution to Wightman’s exer-
cise that provides a valid basis for a sense of mass superselection in NRQM.
I will claim, however, that this sense of mass superselection does not satisfy
Wigner’s and Wightman’s own criteria for what counts as a superselection
rule. To explain this seeming conundrum requires a slog through mathemat-
ical physics that may test the reader’s patience; but patience is rewarded by
a deeper understanding of the role of symmetries in quantum physics and
the nature of superselection.
The present guide to this tangled subject is structured as follows. Section

2 provides a preliminary look at the nature of superselection rules. Section 3
introduces the Galilean group and gives a brief overview of projective repre-
sentations of groups. Section 4 explains the origin of the projective represen-
tation of the Galilean group presupposed in Wightman’s exercise. Section
5 reviews the standard solution to Wightman’s exercise, and the shortcom-
ings of this argument are laid out in Section 6. Section 7 sketches a way to
repair these shortcomings, providing a more rigorous basis for the sense of
mass superselection in NRQM demanded by Wightman’s exercise. Section
8 reveals how this sense of superselection extends to other, often unnoticed,
cases. Also discussed in this section is how the standard argument for mass
superselection is extended to the total mass of a composite system. Central
extensions of the Galilean group and their representations are reviewed in
Section 9. The implications (and non-implications) for mass superselection
of the fact that central extensions of the Galilean group admit proper unitary
representations are discussed in Section 10. The Poincaré group, the symme-
try group that replaces the Galilean group in relativistic quantum mechanics
(RQM), does not lead to mass superselection. The emergence of mass su-
perselection in the Newtonian limit when the Poincaré group contracts to
the Galilean group is discussed in Section 11. Section 12 presents the case
that the sense of mass superselection used in the solution to Wightman’s
exercise does not meet the standards for mass superselection that Wightman
himself set for other cases. Conclusions are presented in Section 13. An
Appendix discusses the nomenclature of superselection rules when there is
an infinity– even an uncountable infinity– of selection sectors.
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2 Superselection rules: a first look

I will treat superselection in terms of the algebraic formulation of QM in
which a quantum system is characterized by a von Neumman algebra N of
observables acting on a Hilbert space H. H is often assumed to be sep-
arable, but in order to treat superselection it may prove useful to employ
non-separable Hilbert spaces (see the Appendix). In NRQM sans superse-
lection the algebra of observables is N = B(H), the von Neumann algebra of
all bounded operators acting on H.6 An algebraic χ state on N is a normed
positive linear functional χ : N→ C. A vector state is is a state for which
there is ψ ∈ H such that χ(A) = 〈ψ,Aψ〉 for all A ∈ N. A pure state χ has
the property that there do not exist distinct states χ1 and χ2 and λ1, λ2 ∈ R
with λ1 + λ2 = 1 and 0 < λ1, λ2 < 1 such that χ = λ1χ1 + λ2χ2.
The loose and misleading way of introducing the idea of a superselec-

tion rule is to say that it places a limitation on the superposition principle.
Taken literally this is nonsense: a Hilbert space is a vector space and as such
the superposition of two vectors is again a vector in the space. The more
accurate statement is that a superselection rule is a limitation on coherent
superpositions. When N = B(H) every vector state is pure, but for other
algebras this implication is broken: the vector state corresponding to the
superposition of two pure vector states may not be coherent, i.e. it can be
an impure (aka mixed) state, signalling a superselection rule at work. Just
as importantly, a superselection rule imposes a restriction on what counts as
a genuine observable in QM. When von Neumann wrote Mathematical Foun-
dations of Quantum Mechanics (1932) he assumed that quantum observables
are represented by (essentially) self-adjoint operators; and he also presumed
the converse, i.e., any (essentially) self-adjoint operator represents an observ-
able or, in the language of the algebraic formulation, the spectral projections
of the unique self-adjoint extension of any essentially self—adjoint operator
are all in the von Neumann algebra that characterizes the system, which will
certainly be the case if that algebra isB(H). When superselection is at work
this presumption is undercut because the relevant algebra of observables is

6The von Neumann algebra of observables may be thought of as being generated by the
set O of (not necessarily bounded) self-adjoint operators on H that correspond to genuine
physical observables in the intended sense of quantities that can, in principle, be measured.
Then N(O) := O′′ := (O′)′, where O′ denotes the commutant of O′, i.e. the set of all
bounded operators B ∈ B(H) that commute with all A ∈ O. That B commutes with an
unbounded self-adjoint A means that B commutes with all the spectral projections of A.
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a proper subalgebra of B(H).
Superselection rules come in different strengths. According to Strocchi

and Wightman (1974), a superselection rule in the broadest sense “can be
defined as any restriction on what is observable in the theory”(p. 2198). In
the present nomenclature this means that N is a proper subalgebra of B(H)
or, equivalently, that the commutant N′ of N does not consist of multiples
of the identity. This may a bit too broad since usually one expects that the
superselection operators– operators that, among the other properties they
satisfy, must at least commute with everything in N– are themselves in N.
With this understanding the existence of superselection operators requires
that the center Z(N) := N′∩ N of N does not consist solely of multiplies
of the identity. A yet stronger requirement is the “commutativity of super-
selection operators,”which means that N′ is abelian. This is equivalent to
requiring that N′ ⊆ N and, thus, that Z(N) = N′. Further, the commu-
tativity of superselection operators is equivalent to the more familiar notion
of the existence of a complete set of commuting observables, which in the
present nomenclature means that N contains an abelian subalgebra maximal
in B(H).
When the commutativity of superselection operators holds and these op-

erators have a discrete spectrum the algebra of observables has the form of
a direct sum ⊕a∈INa acting on a direct sum of Hilbert spaces ⊕a∈IHa. In
NRQM the Na are typically B(Ha). The projections onto the subspaces Ha

are superselection operators, and the Ha are referred to as the superselec-
tion sectors. The meaning of the direct sum expressions when the index set
I is infinite will be discussed in Section 12. But for present purposes it is
suffi cient to concentrate on the case of two selection sectors.
The direct sum H1 ⊕H2 of the Hilbert spaces H1 and H2 is constructed

by forming a vector space consisting of pairs of vectors ϑ ∈ H1 and ζ ∈ H2
and imposing the rules for scalar multiplication and vector addition given
by α(ϑ ⊕ ζ) = αϑ ⊕ αζ, α ∈ C, and (ϑ1 ⊕ ζ1) + (ϑ2 ⊕ ζ2) = (ϑ1 + ϑ2) ⊕
(ζ1 + ζ2). This direct sum space is complete in the norm derived from the
inner product 〈⊕ϑ,⊕ζ〉 :=

∑
α∈{1,2}〈ϑα, ζα〉Hα and is, therefore, a Hilbert

space. The superselection algebra is B(H1) ⊕B(H2), a proper subalgebra
of B(H1 ⊕H2), illustrating the limitation on what counts as an observable.
Consider the vector states χϑ1 and χζ2 on B(H1)⊕B(H2) where the vectors
ϑ1, ζ2 ∈ H1⊕H2 have non-zero components only in H1 and H2 respectively.
Then the vector state χλ1ϑ1+λ2ζ2 corresponding to the superposition λ1ϑ1 +
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λ2ζ2, 0 < λ1, λ2 < 1, λ1 + λ2 = 1, is the mixed state |λ1|2χϑ1+ |λ2|2χζ2 ,
illustrating the limitation on coherent superpositions. Affi rming that the
relative phases in the superposition are unobservable, the projection onto a
ray spanned λ1ϑ1 + λ2ζ2 is not in the algebra B(H1)⊕B(H2). And for any
A ∈ B(H1)⊕B(H2), the transition probability 〈ϑ1, Aζ2〉H1⊕H2 = 0.

3 The Galilean group and projective repre-
sentations of groups

3.1 The Galilean group7

The Galilean group G is a ten-parameter group. An element of G is de-
noted by g = (b, a,v, R), and the group composition operation is given
by g′g = (b′ + b, a + R′a + vt,v′ + Rv, R′R). The inverse of g is g−1 =
(−b,−R−1(a − vb),−R−1v, R−1). A pure time translation, spatial trans-
lation, velocity boost, and rotation will be denoted respectively by gb =
(b, 0, 0, 1), ga = (0, a, 0, 1), gv = (0, 0,v, 1), and gR = (0, 0, 0, R); and the
identity element of the group is ge = (0, 0, 0, 1).
The action of G on spacetime is specified by choosing an inertial coordi-

nate system (x, t) and stipulating that g = (b, a,v, R) B (x, t) 7→ (x′, t′) =
(Rx+a+vt, t+b). These are symmetry maps of a classical spacetime (some-
times called neo-Newtonian spacetime) endowed with an inertial structure,
an absolute simultaneity, and a Euclidean spatial structure for the planes of
simultaneity. The addition of absolute space in the guise of a distinguished
inertial frame would diminish the spacetime symmetries to a subgroup of G
in which the velocity boosts are killed. Eschewing absolute space and re-
moving the inertial structure would produce a spacetime (sometimes called
Leibnizian spacetime) with an expanded symmetry group that includes ac-
celeration boosts. The question of what NRQM would look like if based on
these modified spacetimes is an intriguing one, but this matter will not be
pursued here.
G is a Lie group, and for future reference its Lie algebra is listed here.

Using H for the generator of time translations, Pj for the generator of space
translations along the j-axis, Kj for the generator of velocity boosts along
the j-axis, and Jj for the generator of rotation around the j-axis

7For a comprehensive treatment see Lévy-Leblond (1963, 1971).
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[Jj, Jk] = εjklJl (j, k, l = 1, 2, 3)

[Jj, Kk] = εjklJl

[Jj, Pk] = εjklPl

[Jj, H] = 0

[Kj, Kk] = 0 (GLie)
[Kj, Pk] = 0

[Kj, H] = 0

[Pj, Pk] = 0

[Pj, H] = 0

3.2 Projective representations of a group

A proper (aka true, linear, vector) unitary representation of a group G on
a Hilbert space H is an assignment to each g ∈ G of a unitary operator
U(g) : H → H such that U(g′)U(g) = U(g′g) for all g′, g ∈ G. A projective
unitary representation is a representation on the projective Hilbert space
PH = H/eiφI, i.e. PH consists of equivalence classes of vectors where ψ ∼
ψ′ iff ψ = eiφψ′. The multiplication law for the unitaries takes the more
complicated form

U(g′)U(g) = ω(g′, g)U(g′g) := exp(iξ(g′, g))U(g′g), g′, g ∈ G (3.1)

where the multipliers (aka factors) are functions ω : G x G→ C of modulus
one and the exponents are functions ξ : G x G → R. The normalization
condition U(e) = 1 is assumed and this implies a normalization condition
ω(ge, ge) = 1 on the multipliers.8

We can define a different form of the same projective representation by
choosing an h : G → C such that |h(g)| = 1 for all g ∈ G and setting
Û(g) := h(g)U(g). The multipliers for these versions are related by ω̂(g′, g) =
ω(g′, g)[h(g′)h(g)/h(g′g)].9 If there is such a redefinition in which the new

8And it also follows that ω(ge, g) = ω(g, ge) = 1 and ω(g−1, g) = ω(g, g−1) = 1.
9Mathematicians would call the ωcob(g

′, g) := [h(g′)h(g)/h(g′g)] term a two-
coboundary. Being related by a two-coboundary term is equivalent to being unitarily
equivalent as projection representations (see Section 7 below).
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multipliers ω̂(g′, g) = 1 for all g′, g ∈ G then projective representation is
converted into a proper representation.
In general two types of obstructions stand in the way of such a de-

projectivization: topological and algebraic. The former arises when the group
is not simply connected, but this obstruction can be bypassed by moving to
the universal covering group of G. The latter obstruction is more formidable.
The associativity of the products of the group elements places an algebraic
constraint on the multipliers (and the exponents):

ω(g′′, g′)ω(g′′g′, g) = ω(g′′, g′g)ω(g′, g) (C)

ξ(g′′, g′) + ξ(g′′g′, g) = ξ(g′′, g′g) + ξ(g′, g) mod 2π.

If, as above Û(g) = h(g)U(g), then the multipliers ω̂(g′, g) satisfy (C) iff the
multipliers ω(g′, g) do. In some instances the constraint cannot be solved to
produce a proper representation.
The following section makes the case that the physically relevant represen-

tations of the Galilean group are projective, and for such representations de-
projectivization is not possible. This in turn leads to mass superselection– or
so Wightman’s exercise presupposes.

4 Physically relevant representations of the
Galilean group

It is easy to define proper unitary representations of the Galilean group G on
a Hilbert space. For instance, take the Hilbert space for a spinless particle
moving in R3 to be to be L2C(R4, d4x) (rather than the more conventional
L2C(R3, d3x)) and set

(U(g)ψ)(x, t) := ψ(g(x, t)), ψ ∈ H, g ∈ G. (4.1)

But we are only interested in representations that, in some appropriate sense,
make G the (or at least a) symmetry group of the Schrödinger equation; and,
arguably, these turn out to be projective representations.
To make G the symmetry group of the Schrödinger equation we adapt

the Wigner doctrine for RQM (see Section 10) to NRQM: solutions of the
Schrödinger equation correspond to unitary representations of the Galilean
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group. To implement this doctrine we need to know how the Galilean group,
which acts as the symmetry group of (neo-)Newtonian spacetime, is imple-
mented on Hilbert space. To find the Hilbert space implementation of G we
traverse a virtuous circle and require that the implementation G on Hilbert
space carries solutions to the Schrödinger equation onto solutions. There is
no a priori guarantee that the results of traversing the circle will be pleasing
either theoretically or experimentally. In fact, some commentators find the
message so displeasing that, in time honored fashion, they want to shoot the
messenger.
For sake of simplicity, consider a spinless free particle of mass m and

its associated Schrödinger Hamiltonian Hm =
−}2
2m
∇2. There is a bijection

between elements of the familiar one-particle Hilbert space L2C(R3, d3x) and
solutions ψm(x, t) to the Schrödinger equation for a free particle of mass m

−}2
2m
∇2ψm(x, t) = i}

∂ψm(x, t)

∂t
(4.2)

given by

L2C(R3, d3x) 3 ψ(x)↔ ψm(x, t) := exp(−
i

}
Hmt)ψ(x) (4.3)

Denote the Hilbert space under this correspondence by Hm. We seek a
unitary representation Um(G) of G acting on Hm, and in analogy with (4.1)
we might set

(Um(g)ψm)(x, t) = ψm(g(x, t)), g ∈ G (4.4)

Unfortunately, it is not the case that ψ′(x′, t′) := (Um(g)ψm)(x, t) also satis-
fies the Schrödinger equation in the Galilean transformed coordinates, i.e.

−}2
2m
∇′2ψ′m(x′, t′) = i}

∂ψ′m(x
′, t′)

∂t′
(4.2′)

But since pure states correspond to rays rather than vectors, we can modify
(4.4) by inserting a phase factor on the rhs without changing the physical
state:

(Um(g)ψm)(x, t) = exp(
i

}
fg(x, t))ψm(g(x, t)), g ∈ G (4.4′)
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where the subscript on the phase factor indicates that it may depend on
g. Now we can hope that fg can be be chosen so that this modified action
of Um(g) guarantees that ψ

′(x′, t′) satisfies (4.4′). Leaving aside rotation
which will play no role in what follows, i.e. for Galilean transformations
of the form g = (b,v, a,1), our hopes are fulfilled by the choice fg(x, t) =

m(v · a+1
2
v2b). This implies that Um(G) is a projective representation of the

form Um(g
′)Um(g) = exp(

i

}
ξm(g

′, g))U(g′g), g′, g ∈ G, where ξm(g
′, g) =

m(v′·a+1
2
v′2b) (see de Aczcárrage and Izquierdo 1995, Secs. 3.1 and 3.2).10

This projective unitary representation under which G can be viewed as a
symmetry group of the Schrödinger equation cannot be de-projectivized, as
shown by the results of Bargmann (1954). For an accessible demonstration
the reader is referred to Guilini (1996) and Annigioni and Moretti (2013).
For what follows, the important consequence of this implementation of the

action of the Galilean group on Hilbert space concerns the case involving a
pure velocity boost gv = (0,v,0,1), a pure spatial translation ga = (0, 0, a,1),
and their combination gvga = gagv = (0,v, a,1). We can recapture the
feature flagged by Inöu and Wigner (1952) by noting that Um(gv)Um(ga) =

exp(
i

}
mv · a)Um(gvga) while Um(ga)Um(gv) = Um(gagv) = Um(gvga) and,

thus,

Um(gv)Um(ga) = exp(
i

}
mv · a)Um(ga)Um(gv) (4.5)

5 The standard solution to Wightman’s ex-
ercise

Start from the feature noted by Inöu and Wigner (1952) and recapitulated
in the preceding section. Multiplying each side of (4.5) by Um(g−v)Um(g−a)
gives

10With the introduction of } a different symbol should be used for the exponent ξm.
But in the interest of simplicity I hope the reader will tolerate the notational solecism of
continuing to use the same symbol.
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Um(g−v)Um(g−a)Um(gv)Um(ga) = exp(
i

}
mv · a)Um(g−v)Um(g−a)Um(ga)Um(gv)

= exp(
i

}
mv · a)Im (5.1)

The lhs of (5.1) represents a succession of Galilean transformations whose
combination is the identity of G. So the result of acting on a state with the
lhs should give the same state, i.e. acting on a state vector with the lhs
should give the same state vector up to an overall phase. But (the argument
goes), this condition fails if states corresponding to different masses could be
coherently superposed. Consider the superposition ψm1

+ ψm2
for m1 6= m2.

The action on Hilbert space of the succession of Galilean transformations of
ga, followed by gv, followed by g−a, followed by g−v results in

ψm1
+ ψm2

7−→ exp(
i

}
m1v · a)ψm1

+ exp(
i

}
m2v · a)ψm2

(∗)

= exp(
i

}
m1v · a)[ψm1

+ exp(
i

}
(m2 −m1)v · a)ψm2

]

which, because of the change in the relative phase factor, is not of the form
exp(iφ)(ψm1

+ ψm2
) when the masses are different. The way out (the ar-

gument concludes) is to recognize that ψm1
+ ψm2

is not a coherent super-
position; that is, it is a mixed state so that relative phase factors do not
matter.
An analogy/disanalogy with the twin paradox of SRT suggests itself. In

this apparent paradox the traveling twin rejoins her identical twin only to
discover that she (the traveling twin) is chronologically younger than her
stay-at-home sibling. In the NRQM case the traveling twin who undergoes
a succession of Galilean spatial translations and velocity boosts discovers
that she and her stay-at-home sibling assign to the system different states
consisting of superpositions that differ in relative phase. In the SRT case
the apparent paradox is resolved by noting that there is a real asymmetry
between the twins due to their different worldlines through Minkowski space-
time and the fact that chronological aging is proportional to elapsed proper
time along the twins’worldlines. In the NRQM case the resolution of the ap-
parent paradox is (supposedly) that, due to the superselection rule for mass,
the result of the traveling twin’s journey through (neo-)Newtonian spacetime
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doesn’t produce any objective difference between the state she assigns and
the state her stay-at-home sibling assigns.

6 Critique of the standard solution

Even taken at face value the standard argument needs buttressing. It implic-
itly assumes that the projective representation of the Galilean group it uses
is the correct representation and that there is no other physically acceptable
representation– in particular, no other physically acceptable proper unitary
representation– that doesn’t lead to mass superselection. How one could es-
tablish this implicit assumption and, indeed, what counts as a “physically
acceptable” representation of the Galilean group, is far from obvious. But
this seems only a minor quibble compared with the charge that the standard
solution is incoherent.
Baldly stated, the complaint is that mass in NRQM is simply not a candi-

date for superselection. This is because (the objection goes) in NRQM mass
is not an observable, and the mass subscripts on the component vectors in
superposition in (∗) do not label different eigenvalues of a mass operator;
rather, mass is a parameter whose values labels different systems. Two ex-
amples of the complaint: “In a theory with mass being a parameter there
are no states for a single particle that are associated with different masses”
(Zych and Greenberger 2019, p. 1); “[I]n order “to make sense of a mass
superselection rule one should regard mass as a dynamical variable”(Guilini
1996, p. 229).11

The polemical situations for both the proponents and the critics of the
standard solution are murky. The proponents aim to show that in NRQM a
superselection rule “prevents the existence ... of states with a mass spectrum,
and therefore of unstable particles”(Lévy-Leblond 1963, p. 785). Towards
this goal they offer a reductio argument where the reductio assumption is
that a particle is in a coherent superposition of states of different mass. The
critics charge that the reductio assumption is incoherent since there are no
states for a single particle that are associated with different masses. But this
charge seems to grant the proponents what they seek to prove!

11I will not be discussing the project of finding a dynamical explanation of mass super-
selection and other superselection rules. But it is an interesting project that offers new
insights into the nature of superselection. For some progress in this project see Annigioni
and Moretti (2013).
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On the other hand the proponents of the standard solution appear to be
somewhat better off, for at least they offer an appealing heuristic argument
that fits the pattern of argumentation used by Wick, Wightman and Wigner
(1952) and Hegerfeldt, Kraus, and Wigner (1968) to prove the superselection
rule for whole-integer/half-integer angular momentum. In the present case,
however, the heuristic argument leaves something to be desired. The ψm1

and
the ψm2

on the lhs of (∗) belong to different unitary projective representations
Um1 ,Hm1 and Um2 ,Hm2 of G, so the meaning of the superposition of ψm1

and
ψm2

is unclear. Consequently, the action of G on the Hilbert space Hm1,m2

to which ψm1
and ψm2

supposedly both belong and which gives the meaning
to the superposition ψm1

+ ψm2
is unclear. If Hm1,m2 were Hm1 ⊕Hm2 and

if G acts by Um1(G)⊕ Um2(G) on this space then all would be well, for then
(∗) becomes

ψm1
⊕ ψm2

7−→ exp(
i

}
m1v · a)ψm1

⊕ exp( i
}
m2v · a)ψm2

(∗∗)

= exp(
i

}
m1v · a)(ψm1

⊕ exp( i
}
(m2 −m1)v · a))ψm2

)

So if the direct sum structure lies behind (∗) then the action of the sequence
of Galilean spatial translations and velocity boosts does produce the change
of relative phase of the components of the superposition corresponding to
different particle masses, as claimed in (∗). But assuming the ifs is assuming
part of what needs to be proved since the direct sum structure for the Hilbert
space is half way to proving that the rhs of (∗∗) represents a mixed state.
Before turning to the issue of what would constitute a rigorous and sat-

isfying solution to Wightman’s exercise, a final remark about the standard
argument for mass superselection. In some minds it encourages the idea that
mass superselection can be escaped by moving from the Galilean group to
a central extension of this group since such extensions admit proper unitary
representations, apparently short-circuiting the standard argument which re-
lies on special features of the projective representation of G. We will see in
Section 9 that this idea is mistaken.

7 Solving Wightman’s exercise

A fully satisfying solution to Wightman’s exercise should demonstrate that,
as a consequence of the features of the projective unitary representations of
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the Galilean group found by Bargmann, the Hilbert space hosting superpo-
sitions of states of different masses for a particle is a direct sum space. More
precisely, consider the projective representations Hmi , Umi(G), i = 1, 2 and
m1 6= m2. Let K be a Hilbert space K such that there are subspaces H′mi ⊂
K, i = 1, 2, and unitary maps Vi : Hmi → H′mi . Let U(G) be a represen-
tation of G on K such that the subrepresentations U(G)|H′mi are identified
with the Umi(G), i.e. U(g)|H′mi = ViUmi(g)V

−1
i for all g ∈ G. The Hilbert

space (H′m1
+ H′m2

)lin is the candidate space for forming superpositions of
mass states.12 The goal is to prove that (H′m1

+H′m2
)lin = H′m1

⊕H′m2
and

U(G) = U ′m1
(G)⊕ U ′m2

(G), i.e. U(g) = (V1Um1(g)V
−1
1 )⊕ (V2Um2(g)V

−1
2 ), for

all g ∈ G. The goal would be obtained by showing that H′m1
⊥ H′m2

, for then
the natural isomorphism from ∨iH′mi , i = 1, 2, to H′m1

⊕ H′m2
implements

the equivalence between U(G) and the direct sum U ′m1
(G) ⊕ U ′m2

(G) of its
subrepresentations U ′m1

(G) and U ′m2
(G).

The strategy for proof is first to show that Hm1 , Um1(G) and Hm2 , Um2(G)
(and, thus, H′m1

, U ′m1
(G) and H′m2

, U ′m2
(G)) are unitarily inequivalent as pro-

jective representations of G when m1 6= m2, and then to show that this
inequivalence entails the orthogonality of the representations. For projective
representations the definition of unitary equivalence is a little more compli-
cated than for proper representations.

Def. (a) Proper unitary representationsH, U andH, U of a group
G are unitarily equivalent iffthere a unitary map V : H →H such
that U(g) = V U(g)V −1 for all g ∈ G.

(b) (Lévy-Leblond 1963, fn. 7, p. 781) Projective unitary
representations H, U and H, U of a group G are unitarily equiva-
lent iff there is a function h : G→ C of modulus 1 and a unitary
V : H → H such that U(g) = h(g)V U(g)V −1 for all g ∈ G.

Now suppose for reductio that Hm1 , Um1(G) and Hm2 , Um2(G) are unitarily
equivalent as projective representations of the Galilean group G when m1 6=
m2. So there is a h : G → C and a unitary V : Hm1 → Hm2 such that
Um2(g) = h(g)V Um1(g)V

−1 for all g ∈ G. From the lead-up to the standard
argument we know that

12The linear hull (H′m1
+H′m2

)lin is the minimal closed subspace of K containing vectors
αψ′m1

+ βψ′m2
, with α, β ∈ C and ψ′m1

∈ H′m1
and ψ′m2

∈ H′m2
.
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Um1(g−v)Um1(g−a)Um1(gv)Um1(ga) = exp(
i

}
m1v · a)Im1 (7.1a)

Um2(g−v)Um2(g−a)Um2(gv)Um2(ga) = exp(
i

}
m2v · a)Im2 . (7.1b)

Multiplying the lhs of (7.1a) from the left by V and from the right by V −1

and setting h−1(g) := h(g) results in

V Um1(g−v)V
−1)(V Um1(g−a)V

−1)(V Um1(gv)V
−1)(V Um1(ga)V

−1)

= h(g−v)Um2(g−v)h(g−a)Um2(g−a)h(gv)Um2(gv)h(ga)Um2(ga)

= h(g−v)Um2(g−v)h(g−a)Um2(g−a)h(gv)Um2(gv)h(ga)Um2(ga) (7.2)

= h(g−v)h(g−a)h(gv)h(ga)[Um2(g−v)Um2(g−a)Um2(gv)Um2(ga)]

= h(g−v)h(g−a)h(gv)h(ga) exp(
i

}
m2v · a)Im2

where the last line follows by (7.1b). And multiplying the rhs of (7.1a) from
the left by V and from the right by V −1 results in

exp(
i

}
m1v · a)Im2 (7.3)

But h(g−v)h(g−a)h(gv)h(ga) = h(g−v)h(g−v)h(g−a)h(ga) and h(g−v)h(gv) =

1 = h(g−a)h(ga), so (7.2) reduces to exp(
i

}
m2v · a)Im2 , and the equality

of (7.2) and (7.3) now implies exp(
i

}
m1v · a) = exp(

i

}
m2v · a), which is a

contradiction if m1 6= m2.13

The goal is now to show that this inequivalence implies that H′m1
⊥ H′m2

.
Suppose to the contrary that that there is a non-null ψ0 ∈ H′m1

∩ H′m2
. For

any g ∈ G the U ′mi(g) are bounded operators and, thus, their respective
domains are of all of H′mi and, in particular, U

′
mi
(g)ψ0 ∈ H′mi . Further, the

subspace (U ′mi(G)ψ0)lin of H
′
mi
is invariant under U ′mi(G). Since the H

′
mi
, U ′mi

are irreducible representations the only non-null invariant subspace of H′mi is
13The assumption that there is unitary V and an h(p) such that Um2

(g) =
h(g)V Um1(g)V

−1 for all g ∈ G implies that ωm2(g
′, g) = ωm1(g

′, g)[h(g′)h(g)/h(g′g)].
But ωm2,m1(g, g

−1) = 1. So ωm2(gv, g−v) = 1 = ωm1(gv, g−v)[h(gv)h(g−v)/h(gvg−v)] =
h(gv)h(g−v). Similarly, h(ga)h(g−a) = 1.
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H′mi itself, and (U
′
mi
(G)ψ0)lin = H′mi . The map that sends U

′
m1
(g)ψ0 ∈ H′m1

to U ′m2
(g)ψ0 ∈ H′m2

is norm preserving and has an inverse, and extending
it by linearity produces a unitary map between H′m1

and H′m2
. Under this

identification we can set H′m1
= H′m2

and can conclude that U(G)|H′m1
=

U(G)|H′m2
, i.e. V1Um1(g)V

−1
1 = V2Um2(g)V

−1
2 for all g ∈ G. So for all g ∈ G,

and Um2(g) = (V
−1
2 ◦ V1)Um1(g)(V

−1
1 ◦ V2) and, thus, W : Hm1 → Hm2 , with

W := V −12 ◦ V1 makes Um1(G) and Um2(G) unitarily equivalent, which we
have seen is not the case. Hence, H′m1

⊥H′m2
and U(G) = U ′m1

(G) ⊕ U ′m2
(G)

acting on H′m1
⊕H′m2

.
Now that we have a solid motivation for (∗∗) we can return to the logic

of the standard argument and assert that the physical (= algebraic) states
corresponding to the vectors on the lhs and rhs of the 7→ in (∗∗) are the
same state and, thus, the state corresponding to the vector on the rhs is
a mixed state. This will be the case if and only if the relevant algebra of
observables is not B(H′m1

⊕ H′m2
) but rather B(H′m1

) ⊕ B(H′m2
) or some

subalgebra thereof. It would be preferable to have a more direct argument
for this limitation on the observables. Towards this end, recalling that a
von Neumann algebra is generated by its unitaries, one could argue that for
U(G) the relevant algebra of observables is the von Neumann algebra U(G)′′
generated by U(G), and this is ((U ′m1

(G)⊕U ′m2
(G))′′ = U ′m1

(G)′′⊕U ′m2
(G)′′ ⊆

B(H′m1
)⊕B(H′m2

). Since the only bounded operators on H′i that commute
with U ′mi(g) for all g ∈ G are multiples of the identity, U

′
mi
(G)′′ = B(H′mi)

and, thus, U(G)′′ = B(H′m1
) ⊕ B(H′m2

). Either way of fleshing out of the
standard argument provides a more solid basis for the solution Wightman
wanted for his exercise.
This formal solution to Wightman’s exercise may strike one as so pedantic

and tedious as not to be worth the candle, especially since the standard
argument for mass superselection gives the “right” answer. But while the
standard argument may be retained as a useful heuristic, it is reassuring to
be able to check that the heuristic can be backed up by a more rigorous
argument.
Having established that the correct way to think about superposition of

states of a given particle of masses m1 and m2 is by using a direct sum
structure with Hilbert space Hm1 ⊕ Hm2 , with G acting on this space as
Um1(G) ⊕ Um2(G) and the algebra of observables being B(Hm1) ⊕B(Hm2),
there is what might seem to seem to be an adequate response to the com-
plaint that the standard argument for mass superselection is incoherent be-
cause mass is not an observable but a parameter in NRQM. For in the di-
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rect sum structure mass plays both roles: there is a self-adjoint mass op-
erator M := m1Im1 ⊕ m2Im2 which belongs to the algebra of observables
B(Hm1)⊕B(Hm2). The selection sectors are the eigenspaces of the observ-
ableM , and the different valuesm1 andm2 of the mass parameter label these
sectors. However, Section 12 will advance serious reservations about this re-
sponse and, correspondingly, reservations about whether the sense of mass
superselection demonstrated by the solution to Wightman’s exercise should
count as superselection by the criteria advanced in the works of Wightman
and Wigner. But since it is the sense of superselection demonstrated by the
solution to Wightman’s exercise that is at issue in the vast majority of dis-
cussions of the Bargmann superselection rule, I will continue to operate with
it until further notice. And the standard argument for mass superselection
will be retained as a useful heuristic.

8 More superselection

8.1 Descriptions of different systems vs. descriptions
of different behaviors of the same system

Intuitions can vary about when different representations describe the behav-
iors of different systems vs. different behaviors of the same system. But
one commonality is the idea that representations using different values of a
universal constant describe different systems. But what is a universal con-
stant other than a dimensional number that does not vary among physically
possible descriptions of the same system? QM offers a way to break out of
this circle: a universal constant can be identified by the fact that coherent
superpositions of states belonging to representations using different values of
the constant are not physically realizable.
This idea is exemplified in representations of the canonical commutation

relations (CCR). A unitary representation of the Weyl form of the CCR for
one degree of freedom is given by unitaries U(a) and V (b), a, b ∈ R, acting
on a separable H with

U(a1)U(a2) = U(a1 + a2), V (b1)V (b2) = V (b1 + b2) (8.1)

U(a)V (b) = exp(i}ab)V (b)U(a).

Setting W (a, b) := U(a)V (b) we have
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W (a, b)W (c, d) = exp(−i}bc)W (a+ c, c+ d) (8.2)

which gives a unitary projective representation of the additive group R2.
This representation cannot be de-projectivized (see Hall 2013, Ex. 16.56, p.
362-363).
One way to satisfy the Weyl CCR is the Schrödinger representation:

(U(a)ψ)(x) = ψ(x− a), ψ ∈ L2C(R, dx) (8.3)

(V (b)ψ)(x) = exp(i}bx)ψ(x).

Von Neumann (1931) proved the essential uniqueness of the Schrödinger
representation: any irreducible and strongly continuous representation of
the Weyl CCR on a separable Hilbert space is unitarily equivalent to the
Schrödinger representation.14

Or rather, he proved the uniqueness for any fixed value of } 6= 0. Repre-
sentations for different values of } 6= 0 are unitarily inequivalent and, thus,
form different superselection sectors, confirming that } behaves as a uni-
versal constant as regards superselection rules. To see this note that the
identity element (0, 0) of the additive group R2 equals (−c,−d)(c, d). The
projective representation W}(a, b) of R2 acting on a Hilbert space H} maps
(−c,−d)(c, d) not to the identity operator I} but rather to I} times a phase
factor that depends on }:

W}(−c,−d)W}(c, d) = exp(i}cd)W}(0, 0) = exp(−i}cd)I}. (8.4)

The standard argument for mass superselection can be adapted here to give
a heuristic explanation for why } is a superselected quantity. Or one can
proceed more rigorously by first showing that W}1 and W}2 for different
}1, }2 6= 0 are unitarily inequivalent as projective representations of the ad-
ditive group R2, and then that this inequivalence entails a direct sum struc-
ture. Insofar as it is persuasive, the line of reasoning in this section provides
grounds to think of mass in NRQM as analogous to a universal constant.

14The result generalizes to any finite number of degrees of freedom but not to an infinite
number.
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8.2 Direct sums and tensor products

8.2.1 No interaction across superselection sectors

A Hamiltonian operator Hm1,m2 that acts on Hm1 ⊕ Hm2 , m1 6= m2, must
be essentially self-adjoint in order to generate Schrödinger evolution. But if
Hm1,m2 is an unbounded operator then it will not belong to B(Hm1 ⊕Hm2)
much less to the smaller superselection algebraB(Hm1)⊕B(Hm2). However,
an essentially self-adjoint Hamiltonian can be an observable in the broader
sense that the spectral projections of its unique self-adjoint extension all
belong to the algebra of observables B(Hm1)⊕B(Hm2) (in the jargon, such
a Hamiltonian is said to be affi liated with B(Hm1) ⊕ B(Hm2)). Such a
Hamiltonian Hm1,m2 takes the form Hm1 ⊕Hm2 . The Schrödinger evolution
operator is then

exp(− i
}
(Hm1 ⊕Hm2)t) = exp(−

i

}
Hm1t)⊕ exp(−

i

}
Hm2t). (9.5)

A state vector initially lying wholly in one of the selection sectors is evolved
so that it forever remains in that sector. And the Schrödinger evolutions
of the particles of different masses are independent of one another– as far
as NRQM is concerned the different mass states describe different possible
worlds with no physical connection between them. It is possible to escape
this consequence by rejecting the assumption that the Hamiltonian Hm1,m2 is
an observable and adding to Hm1⊕Hm2 an interaction term which, perforce,
is not in B(Hm1) ⊕ B(Hm2). But to posit an interaction which is not an
observable is to slide from physics to metaphysics.

8.2.2 Tensor products

The argument for mass superselection is supposed to convince us that states
from different projective representationsHmi , Umi(G), i = 1, 2, of the Galilean
group with m1 6= m2, cannot be regarded as states of the same particle. But
they can certainly be regarded as states of two different particles. How
then to describe a bi-partite system consisting of two particles of different
masses? The conventional answer is to use a tensor product structure: the
Hilbert space is Hm1 ⊗ Hm2 , the action of U(G) is Um1(G) ⊗ Um2(G), and
the algebra of observables is B(Hm1⊗Hm2).

15 A Hamiltonian affi liated with
15Various considerations can be mounted to justify the tensor product construction to

describe composite systems; see, for example Blank et al. (1994, Ch. 11) and Aerts and
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B(Hm1 ⊗ Hm2) can certainly describe interactions between the component
systems.
If we repeat the series of Galilean transformations ga, gv, g−a, g−v the

effect on a superposition ψm1
⊗ ψm2

+ ψ′m1
⊗ ψ′m2

of states of the bi-partite
system is

ψm1
⊗ ψm2

+ ψ′m1
⊗ ψ′m2

7→ exp(
i

}
m1v · a)ψm1

⊗ exp( i
}
m2v · a)ψm2

(∗ ∗ ∗)

+exp(
i

}
m1v · a)ψ′m1

⊗ exp( i
}
m2v · a)ψ′m2

= exp(
i

}
(m1 +m2)v · a)[ψm1

⊗ ψm2
+ ψ′m1

⊗ ψ′m2
].

The vectors on the lhs and rhs of 7→ correspond to the same physical state
since there is no change of relative phase, and there is apparently no reason to
see a need for mass superselection since the standard argument for mass su-
perselection gains no traction here.16 But don’t be too hasty; superselection
is lurking.

8.2.3 Superselection for total mass

Suppose that our bi-partite system consisting of two particles of masses m1

and m2 is treated as a single system of mass m = m1 + m2. Now the
standard heuristic argument for mass superselection leads to the conclusion
that there is a superselection rule for the total mass m of the bi-partite
system, forbidding the coherent superposition of states with different values
of m (see, for example, Blank et al. 1994, Remark 10.3.2). If we try to
imagine the effect of the series of Galilean transformations ga, gv, g−a, g−v
on a superposition of states of the bi-partite system with different values
m = m1 +m2 and m′ = m′1 +m′2 of the total mass, (∗ ∗ ∗) is replaced by

Daubechies (1978).
16In contrast to how scalar multiplication works for direct sums, for tensor products the

rule is α(ψ1 ⊗ ψ2) = αψ1 ⊗ ψ2 = ψ1 ⊗ αψ2, α ∈ C.
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ψm1
⊗ ψm2

+ ψ′m′1 ⊗ ψ
′
m′2
7→ exp(

i

}
m1v · a)ψm1

⊗ exp( i
}
m2v · a)ψm2

(∗ ∗ ∗∗)

+exp(
i

}
m′1v · a)ψ′m1

⊗ exp( i
}
m′2v · a)ψ′m2

= exp(
i

}
mv · a)[ψm1

⊗ ψm2
+ exp(

i

}
(m′ −m)v · a)ψ′m1

⊗ ψ′m2
]

which does record a change of relative phase when m′ 6= m, resulting in
physically different states on the lhs and rhs of 7→. The more formal argument
backs up the superselection for total mass.
The result was illustrated for a bi-partite system, but it holds for a system

consisting of any number N of particles described by an N -fold tensor prod-
uct. This result is the basis of a perceived empirical inadequacy in NRQM
(see Section 10.2). The consequences of mass superselection for Galilean
quantum field theories are examined in Lévy-Leblond (1967); for instance,
to accommodate particle production such theories must incorporate different
kinds of particles with masses chosen to be compatible with superselection
for total mass.

9 Central extensions of the Galilean group

9.1 Central extensions of groups

Projective representations of some groups– the Galilean group in particular–
cannot be de-projectivized. But in a large class of cases, including connected
Lie groups, de-projectivization can be achieved by passing to a central ex-
tension of the group. There are two one-dimensional central extensions of
the Galilean group, one using the additive group R and the other the group
U(1). Here I focus on the former. In the central extension G̃ of a group G
by R, R is an invariant subgroup in the center of G̃. Although G̃ may be
deemed an enlargement of G it is not the case that G is a subgroup of G̃;
rather, G = G̃/R.
Given a group G and ξ : G x G → R, define a new group G̃ with el-

ements g̃ = (θ, g), g ∈ G and θ ∈ R, by the group multiplication law
(θ′′, g′′) = (θ′, g′)(θ, g) = (θ′ + θ + ξ(g′, g), g′g). For all (θ, ge) and all
(θ′, g′) in G̃, (θ, ge)(θ

′, g′) = (θ′, g′)(θ, ge), confirming that R is a central
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subgroup of G̃. If U(G) is a unitary projective representation of G where
U(g′)U(g) = ω(g′, g)U(g′g) := exp(iξ(g′, g))U(g′g) then Ũ(g̃) := exp(iθ)U(g)
is a proper unitary representation of G̃:

Ũ(g̃′)Ũ(g̃) = exp(iθ′)U(g′) exp(iθ)U(g)

= exp(i(θ′ + θ))U(g′)U(g)

= exp(i(θ′ + θ)) exp(iξ(g′, g))U(g′g)

= exp(i(θ′ + θ + ξ(g′, g)))U(g′g)

= Ũ(g̃′g̃).

9.2 Central extensions of the Galilean group17

For the Galilean group G there are many R central extensions G̃m depend-
ing on the mass since the exponents for the projective representations for
a particle of mass m depend on m. (Leaving aside rotations, i.e. for g =
(b,v, a, 1) and g′ = (b′,v′, a′, 1), the exponents of G̃m are given by ξm(g′, g) =
m(v′·a+1

2
v′2b).) And we can write the proper unitary representations of G̃m

as Ũm(g̃m) := Ũm(θm, g) = exp(imr)Um(g), r ∈ R and g ∈ G. The G̃m,
m 6= 0, are all isomorphic as groups. Consider G̃m1 and G̃m2 , m1 6= 0 6= m2,
and define λ := m2/m1 so that ξm2

= λξm1
. Then ι(θm1 , g) = (λθm1 , g) is

a group isomorphism from G̃m1to G̃m2 since (θ
′
m1
+ θm1 + ξm1

(g′, g), g′g) 7→
(λθ′m1

+λθm1 +λξm1
(g′, g), g′g) = (θ′m2

+ θm2 + ξm2
(g′, g), g′g). Despite being

isomorphic, the different G̃ms are different group extensions with different
physical consequences (see below).
The Lie algebra (G̃mLie) of the extension G̃m is given by modifying the

Lie algebra (GLie) for G by replacing [Kj, Pk] = 0 by [Kj, Pk] = im1δjk where
1 is the unit of the Lie algebra. There is then an isomorphism (up to sign)
between (G̃mLie) and the Poisson bracket algebra for a free classical particle
of mass m, where {Kj, Pk}PB = −mδjk. This provides some motivation for
regarding G̃m as the quantum Galilean group for a particle of massm and, by
extension, for regarding the abstract central extension G̃ of G, of which the
G̃m are group isomorphic realizations, as the the “quantum Galilean group”
for NRQM (see de Azcárraga and Izquierdo 1995, pp. 190-191).

17What follows in this section is taken from Azcárraga and Izquierado (1995, p. 162).
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The algebra (G̃Lie) for the generic central extension G̃ is obtained by
adding a new basis elementM to (GLie), replacing [Kj, Pk] = 0 with [Kj, Pk] =
iMδjk, and requiring that M has vanishing Lie brackets with itself and all
the other basis elements. Since M is a central element of the algebra, in any
irreducible representation of G̃ the operator representing the basis element
M of the Lie algebra must, by Schur’s lemma, have the form mI, for some
fixed m ∈ R. Thus, any proper irreducible unitary representation of G̃ will
coincide with the representation of some G̃m.
The use of central extensions of the Galilean group allows escape from

the complications of projective unitary representations to the cleaner proper
representations, but it also comes with a cost. The ten-dimensional Galilean
group has a natural and faithful action on (neo-) Newtonian spacetime, which
justifies dubbing it the (neo-) Newtonian spacetime symmetry group (recall:
G 3g = (b, a,v, R)B(x, t) 7→ (x′, t′) = (Rx+a+vt, t+b)). The most obvious
stipulation for the action of the eleven-dimensional central extensions G̃m on
(neo-) Newtonian spacetime is: G̃m 3 (θm, g) = (θm, b, a,v, R) B (x, t) 7→
(x′, t′) = (Rx+ a+vt, t+ b) for any m, which is massively unfaithful. If one
is serious about giving the G̃m a genuine role to play in NRQM one would be
tempted to add a fifth dimension to (neo-) Newtonian spacetime and have
θm act on this fifth dimension in such a way that faithfulness of the action
of G̃m can be achieved (see Hernandez-Coronado 2012). Such a move would
necessitate new interpretational rules and perhaps new physics as well.
Such intriguing issues lie beyond the scope of the present paper. But

what needs to be addressed here is whether the use of central extensions of
the Galilean group changes any of the above conclusions about mass super-
selection in NRQM. Some eminent physicists seem to think it does.

10 (Non)-implications of central extensions
of G for mass superselection

Steven Weinberg appears to be claiming that the symmetry argument for
mass superselection in NRQM is fragile:

[T]there is nothing to prevent us from formally enlarging the
Galilean group, by adding one more generator to the Lie alge-
bra, which commutes with all the other generators, and whose

25



eigenvalues are the masses of the various states. In this case
the physical states provide an ordinary rather than a projective
representation of the expanded symmetry group. The difference
appears to be a mere matter of notation, except that with this
reinterpretation of the Galilean group there is no need for a mass
superselection rule. (Weinberg 1995, p. 62).

And later:

In short, the issue of superselection rules is a bit of a red herring;
it may or may not be possible to prepare physical systems in arbi-
trary superpositions of states, but one cannot settle the question
by reference to symmetry principles, because whatever one thinks
of the symmetry group of nature may be, there is always another
symmetry group whose consequences are identical except for the
absence of superselection rules. (Ibid., pp. 90-91; italics in the
original)

This is puzzling. The “expanded symmetry group” in the first quota-
tion seems to refer to the central extension G̃ of the Galilean group G, and
the claims seem to be that G̃ and G have the same physical consequences
and that G̃ does not imply mass superselection since it admits proper uni-
tary representations. But as we have seen, a superselection rule for mass
in NRQM certainly does have physical consequences. So G̃ cannot have the
same physical consequences as G if G̃ does not lead to mass superselection.
Prima facie, the standard heuristic argument for mass superselection,

which relies on features of the projective representations of G, appears not
to apply to G̃ because G̃ admits proper unitary representations. However, a
closer look reveals that not only is the resort to central extensions of G not a
means for suppressing mass superselection in NRQM but it is also a means
for revealing why the Galilean group leads to mass superselection whereas
the Poincaré group used in RQM does not. The Poincaré group does not
admit any non-trivial central extensions whereas the Galilean group does.
As noted above, in an irreducible unitary representation of G̃ the mass has
some fixed valuem and, hence, any such representation will be the irreducible
unitary representation Ũm(θm, g) = exp(imr)Um(g), g ∈ G and r ∈ R, of the
concrete realization G̃m of G̃; and all of these representations are proper as
well as irreducible. The heuristic reductio argument for mass superselection
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can proceed as before. Obviously the Hilbert space action of the Galilean
identity transformation ge as represented by Ũm(θm, ge) = exp(imr)IHm does
not change the physical state. But if ψm1

+ ψm2
, ψm1

∈ Hm1 , ψm2
∈ Hm2 ,

were a coherent superposition for m1 6= m2 the Hilbert space action of the
Galilean identity transformation would change the physical state since the
relative phase of the two branches of the superposition will be changed by
the difference between exp(im1r) and exp(im2r). The more formal argument
for mass superselection can proceed by noting that, despite the fact that
the G̃ms are all isomorphic groups, their proper unitary representations are
unitary inequivalent for different mass values (Def. (a) of Section 7). To
see this suppose to the contrary that for m1 6= 0 6= m2 there is a unitary
V : Hm1 → Hm2 such that Ũm2(θm2 , g) = V Ũm1(θm1 , g)V

−1 for all g ∈ G
and r ∈ R. For g = ge this implies exp(im2r)IHm2 = V exp(im1r)IHm1V

−1 =
exp(im1r)IHm2 and, thus, m1 = m2 contrary to assumption.18 The rest of
the formal counterpart of the standard argument for mass superselection
presented in Section 7 can now be applied to again reach the conclusion that
the Hilbert space hosting superpositions of states of different masses for a
particle is a direct sum space.
A more sympathetic reconstruction of Weinberg’s position must await a

more able reconstructor.

11 The Poincaré group and the Newtonian
limit

11.1 Poincaré, Galileo, and group contraction

In RQM the Poincaré group P (= inhomogeneous Lorentz group), the sym-
metry group of Minkowski spacetime, replaces the Galilean group of NRQM.
According to the Wigner doctrine for RQM, solutions to relativistically in-
variant wave equations correspond to unitary representations of P. (But
as Wigner emphasized, the converse may fail because some unitary repre-

18There is a fancier way underscoring the difference in the G̃ms. For different values of
m the G̃ms correspond to different elements of the second cohomology group H2(G,R), the
group of group extensions of G by R. The multipliers for the different G̃ms are not related
by a two-coboundary term, which is the case iff the representations Um(G) for different
values of m are unitarily inequivalent. See de Aczcárrage and Izquierdo (1995, Sections
4.2 and 5.2(a)).
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sentations of P may not correspond to physically realizable solutions, e.g.
representations with spacelike momenta.) In contrast to the Galilean group,
the unitary representations of P can be de-projectivized so that P admits
proper representations, and in proper irreducible representations the mass
operator is non-trivial– it is not a multiple of the identity– and there is
no mass superselection rule in RQM. Revisiting the heuristic argument for
Bargmann mass superselection, when the series of Galilean transformations
ga, gv, g−a, g−v is replaced by Poincaré transformations the relativity of
simultaneity produces to first order in v/c a change in proper time by an
amount a · v/c2, and so that the resulting action on Hilbert space should not
leave unchanged the physical state of a superposition of different mass states
(see Greenberger 2001a, 2001b).
In the Newtonian limit c → ∞ the Poincaré group goes over to the

Galilean group (group contraction) and, correspondingly, the Poincaré Lie
algebra goes over to the Galilean Lie algebra (Lie algebra contraction). But
the Poincaré group does not cease to be the relevant symmetry group for
describing phenomena at velocities v << c. Thus, the mass superselection
rule in NRQM is, in a sense, an emergent property: ‘you can’t see it coming’
since it takes effect only when the limit c → ∞ is reached and group/Lie
algebra contraction is complete. This is not the place to engage in a discussion
of the meaning and metaphysics of emergence. Rather I want to emphasize
a consequence of the type of emergence (or whatever you choose to label it)
just noted.
There are various respects in which, judged from the perspective of RQM,

NRQM is approximately true in the v/c << 1 regime and in which NRQM
has proved to be experimentally accurate. But there is also a respect in which,
again judged from the perspective of RQM, NRQM is not approximately
true in the v/c << 1 regime and in which NRQM has proved experimentally
inadequate. In particular, because NRQM implies mass superselection it is
unable to account for the data observed in low velocity inelastic collisions of
elementary particles.

In nuclear physics (where the [Bargmann mass superselection]
rule has been largely ignored), the momenta of the reaction prod-
ucts would be wrong unless the change in rest mass energy is
accounted for in energy conservation even when the velocities of
the reaction products are small compared to c. This is illustrated
by the model ... of a nonrelativistic inelastic reaction involv-
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ing particles of different mass, which requires that mass changes
be permitted, and which uses superpositions of states of various
masses.19 (Gottfried and Yan 2003, p. 296)

The claim here must be that accounting for the momenta of the reaction
products requires a change in the total rest mass and not simply a change
in the individual masses that leaves the total mass the same (recall Section
8.2.3 above).

11.2 Terminology

Terminology is arbitrary, but ill-chosen terminology can lead to confusion.
It is not uncommon to hear the Newtonian or non-relativistic limit charac-
terized as the limit in which v/c << 1. For example:

Formally, in the nonrelativistic (NR) limit, the Lorentz transfor-
mation (LT) passes over into the Galilean transformation (GT)
... By NR physics, we mean that v lies within the low velocity
limit [v/c << 1] of relativistic physics.20 (Greenberger 2001a,
100405-1)

But then a puzzle ensues:

There is a superselection rule in GT that one cannot coherently
superpose particles of different masses ... But there is a very
puzzling feature to this result. Relativistically one can coherently
combine wave functions of different mass states. In the NR limit
the LT reduces to the GT, but a phase shift survives in this limit
that is independent of c. (Ibid., 100405-2)

No such puzzle ensues from the terminology used here: non-relativistic QM
in the sense used here– NRQM– is quantum theory with the Galilean group
as its symmetry group, and relativistic QM– RQM– is the quantum theory
having the Poincaré group as its symmetry group. The former is obtained

19The claim must be that accounting for the momenta of the reaction products requires
a change in the total rest mass and not simply a change in the individual masses that
leaves the total mass the same (recall Section 8.2.3 above).
20I have substituted v for the authors’u.
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as the Newtonian limit of the latter, not in the sense of v/c << 1 but in
the sense of c → ∞. This leaves space for residues of relativistic effects to
appear in the v/c << 1 limit that do not show up when the c→∞ limit is
reached. If there is any lingering mystery it is general one about emergent
properties that announce themselves only at the limit.

12 Castillos en el aire?

The foregoing sections have been concerned with one sense in which there
is indisputably mass superselection in NRQM. It is time to acknowledge a
sense in which there is no mass superselection in NRQM. Recall the Stroc-
chi and Wightman (1974) dictum that a superselection rule in the broadest
sense “can be defined as any restriction on what is observable in the the-
ory”(p. 2198). Superselection as restriction on what is observable is a basic
theme that runs through all of Wigner’s and Wightman’s work on superse-
lection. But whether or not one sees this theme played out depends on where
one starts. The treatment of mass superselection above concentrated on the
simplest case of spinless particles. To illustrate a case where the Wigner-
Wightman theme is played out consider now particles with spin. Superselec-
tion for whole-integer/half-integer spin splits the initially presumed Hilbert
space H of the system into the direct sum Hwhole ⊕Hhalf , where Hwhole and
Hhalf consist respectively of states of whole-integer and half-integer spin, and
the algebra of observables is diminished from the initially presumed B(H)
to the proper subalgebra B(Hwhole) ⊕ B(Hhalf ). Here there is a genuine
restriction on what is an observable, and here there are superselection oper-
ators that commute with each other and with all elements of the algebra– in
particular, the projections onto the subspaces Hwhole and Hhalf . Coherent
superpositions of states belonging to Hwhole and Hhalf are not possible, and
this goes hand in hand with the restriction on what counts as an observable.
The argument for superselection for whole-integer/half-integer angular

momentum offered in WWW (1952) and Hegerfeldt, Kraus, and Wigner
(1968) resembles the standard heuristic argument for mass superselection
in NRQM. A series of spatial or spatiotemporal transformations that com-
pose to the identity transformation should not change the physical state of
the system. But the Hilbert space action of these transformations results
in a change in the relative phase of the two branches of a superposition
of states from Hwhole and Hhalf so that if there is to be no change in the
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physical state then (the argument goes) the Hilbert space that describes the
physical states is Hwhole ⊕ Hhalf and the algebra of genuine observables is
B(Hwhole)⊕B(Hhalf ). The resemblance between this argument and the stan-
dard heuristic argument for mass superselection encourages the mistaken idea
that mass superselection has the same meaning as superselection for whole-
integer/half-integer spin.
Consider again the examples of a single spinless particle of mass m and

a bi-partite system whose subsystems consist of two particles of different
masses m1 and m2. The presumed Hilbert spaces and algebras of observ-
ables for the single particle system and the bi-partite system are respectively
Hm, B(Hm) (where Hm is the Hilbert space that carries the representation
Um(G)), and Hm1 ⊗ Hm2 , B(Hm1) ⊗B(Hm2) (where the Hmi , i = 1, 2, are
the Hilbert spaces that carry the representations Umi(G)). In neither case
does mass superselection discover lurking superselection operators that split
the presumed Hilbert space into selection sectors and reduce the presumed
algebra of observables to a proper subalgebra.
Mass superselection operators arise in an attempt to represent the su-

perposition of states of different masses, which perforce come from different
representations of the Galilean group. For the single particle system the
standard heuristic argument for mass superselection and its formal counter-
part imply that the representation of a superposition of states of different
masses m1 and m2 is given by the Hilbert space Hm1 ⊕ Hm2 and the alge-
bra of observables B(Hm1) ⊕ B(Hm2). In the case of a bi-partite system
consisting of two particles of different masses m1 and m2 the representa-
tion of a superposition of states of different total mass m = m1 + m2 and
m′ = m′1+m

′
2 is given by the Hilbert space (Hm1⊗Hm2)⊕ (Hm′1

⊗Hm′2
) and

the algebra B(Hm1⊗Hm2)⊕B(Hm′1
⊗Hm′2

). In the first case there is a mass
superselection operator M := m1Im1 ⊕m2Im2 which belongs to the algebra
B(Hm1) ⊕ B(Hm2) and whose eigenvalues m1 and m2 label the sectors of
the direct sum of Hilbert spaces; and in the second case there is the mass
superselection operator M : = mIm ⊕m′Im′ which belongs to the algebra
B(Hm1 ⊗Hm2)⊕B(Hm′1

⊗Hm′2
) and whose eigenvalues m andm′ label sec-

tors of the direct sum of Hilbert spaces. This seems to involve an expansion
rather than a restriction on what counts as an observable! But these mass
operators are observables only in the formal sense that they belong to their
respective algebras of observables in the direct sum structures. The direct
sum structures that support these algebras are castles built in the air; they
do not describe the states and observables of the intended target systems
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or, for that matter, of any particular systems. The projection operators onto
rays crossing the selection sectors are not observables, but this is a limitation
on castles-in-the-air observables that no one thought to be observables in the
first instance.
Where does this leave mass superselection in NRQM? When authors re-

fer to the Bargmann mass superselection rule what they often have in mind
is not superselection in the sense of a restriction on what counts as an ob-
servable in a target system but rather a rule that “prevents the existence ...
of states with a mass spectrum, and therefore of unstable particles”(Lévy-
Leblond 1963, p. 785). What is responsible for the latter and, in particular,
what role is played by the standard argument for mass superselection? Three
factors are involved. First, in any irreducible projective unitary representa-
tion of the Galilean group (or any irreducible proper representation of the
central extension of the Galilean group) the mass of a particle has a single
fixed value. Second, the superposition of states of different mass– that is,
states from different irreducible representations of the Galilean group– must
be interpreted as the sum of states from the direct sum of the irreducible
representations to which the states belong. Thus, such a superposition is not
coherent, and the relative phase of the components of such a superposition
is not an observable. This is the legitimate moral to be drawn from the
standard heuristic argument or, better, its more formal counterpart sketched
in Section 7. Third, assuming that the Hamiltonian for the dynamics on
the direct sum of irreducible representations is an observable, the states of
the different mass sectors evolve independently, and the evolution does al-
low states to cross from one sector to another. Putting these three factors
together leaves no room for states with a mass spectrum or unstable particles.

13 Conclusion

The history of the Bargmann mass superselection rule for NRQM is a curious
one. The rule arose from a exercise, set by Wightman (1959), to demonstrate
that “superposition of two states with different mass gives a state whose ex-
istence in Nature would contradict Galilean invariance (Bargmann’s Super-
selection Rule).”A solution, apparently intended by Wightman, was widely
adopted as a valid proof of mass superselection.21 Subsequently, however, at-

21I say apparently intended by Wightman because, on the one hand, he never objected
to the standard solution in print; but, on the other hand, the standard solution does not
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tacks on the rule were launched from various directions but, arguably, none
of them found their mark. Nevertheless, Wightman’s exercise and its stan-
dard solution can be faulted for producing a temptation to a misperception
of the nature of mass superselection in NRQM. The standard argument for
mass superselection has a form similar to the argument for superselection of
whole-integer/half-integer spin. The latter superselection rule is an exam-
ple par excellance of superselection in the sense intended by Wightman and
Wigner– namely, a restriction on what is observable in the theory. So it is
tempting to think, wrongly, that the argument for mass superselection also
demonstrates the same kind of restriction on what is observable in the the-
ory. Correcting this misimpression does not undermine mass superselection
in the sense of prohibition on unstable particles in NRQM.
Having disentangled the different senses in which there is and there isn’t

mass superselection in NRQM, perhaps the controversy over this rule can be
allowed to rest.

Acknowledgment: I am grateful to David Baker, Gordon Belot, and Laura
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this does not imply that they endorse any of the opinions expressed herein.

conform to his high standards of clarity and rigor.
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Appendix: Infinite superselection

The idea of superselection was illustrated in terms of two superselection
sectors. The direct sum construction can be generalized to handle infinities.
The direct sum ⊕a∈IHa of the Hilbert spaces Ha is defined for an index set I
that may be finite, denumerable infinite, or even non-denumerable. It consists
of vectors ⊕ϑ := ⊕a∈Iϑa defined by a family ϑ := {ϑa}, a ∈ I and ϑa ∈ Ha,
provided that

∑
a∈I ||ϑa||Ha < ∞. When the index set in non-denumerable

this sum is understood as limF

∑
α∈F ||ϑα||Hα where the F are finite subsets

of I, and limF

∑
α∈F ||ϑα||Hα = L means that for any ε > 0 there is a finite

F0 ⊂ I such that for any finite F with I ⊃ F ⊃ F0, |
∑

α∈F ||ϑα||Hα−L| < ε.
The rules for scalar multiplication and vector addition are given respectively
by α⊕ϑ = ⊕a∈Iαϑa, α ∈ C, and ⊕ϑ + ⊕ζ = ⊕a∈I(ϑa + ζa). This direct
sum vector space is complete in the norm derived from the inner product
〈⊕ϑ,⊕ζ〉 :=

∑
a∈I〈ϑa, ζa〉Hα and is, therefore, a Hilbert space.

If dim(Ha) = D for all a then dim(⊕a∈IHa) = D · |I|. In particular, if
the index set I is denumerable and the Ha are all separable then so is their
countable direct sum; but if I is non-denumerable then the direct sum over
I of separable spaces produces a non-separable Hilbert space. In much of
the physics community non-separable Hilbert spaces are thought to give off a
bad odor, but there are some cases where they come in handy. Cases where
there is superselection for a quantity with continuous spectrum is a case in
point.22

The relevant non Neumann superselection algebra to go along with⊕a∈IHa

is not B(⊕a∈JHa) but the smallest subalgebra ⊕a∈IB(Ha) generated by op-
erators of the form ⊕a∈IAa, where Aa ∈ B(Ha) and {||Aa||} is bounded, act-
ing on the direct sum space ⊕a∈IHa. For NRQM the superselection for mass
corresponds to the Hilbert space ⊕a∈R+Hm, where the Hm are the L2C spaces
constructed from solutions to the Schrödinger equation for mass m. The
mass operator M := ⊕a∈R+mIm acting on ⊕a∈R+Hm is M := ⊕a∈R+mIm,
where the Im is the identity operator on Hm. Vectors in ⊕a∈R+Hm lying
entirely in Hm are eigenvectors of M . Yes, self-adjoint operators with a con-
tinuous spectrum can have eigenvalues when operating on a non-separable
Hilbert space. Since M is not a bounded operator it is not observable in the
sense of being in ⊕a∈IB(Ha), but it is an observable in the extended sense

22Other cases include idealizations such as infinite spin chains; see Earman (2020).
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that its spectral projections, i.e. the projections Em onto the Hm are all in
⊕a∈IB(Ha).
In the literature most of the discussion of continuous superselection rules

is in terms of the direct integral construction, which may be viewed as a
generalization of the direct sum construction wherein the index set I of
the direct sum is replaced a measure space (X,µ). The component Hilbert
spaces Hx of the direct integral Hilbert space H⊕ =

∫ ⊕
X
Hxdµ(x) are indexed

by points x ∈ X. An element of H⊕ is a function f : X → ∪x∈XHx such
that f(x) ∈ Hx for all x ∈ X and x 7−→ 〈f(x), g(x)〉Hx is µ-integrable. The
inner product on H⊗ is given by 〈f, g〉H⊕ :=

∫
X
〈f(x), g(x)〉Hxdµ(x). Two

measures that are absolutely continuous with respect to one another give
rise to isomorphically isometric direct integral spaces.23 The main use for the
direct integral construction in mathematics is in proving results about von
Neumann algebras, e.g. every von Neumann algebra acting on a separable
Hilbert space is a direct integral of factor algebras.
Note that if the Hx are separable and (X,µ) is a standard Borel space

then H⊕ is separable (Dixmier 1984 II.1.6 Corollary).24 This is awkward
for treating mass superselection in NRQM. The Hxs feeding into the direct
integral construction are Hms which are supposed to be the eigenspaces of
the mass operator. But a self-adjoint operator acting on a separable Hilbert
space has no eigenvalues if it has a purely continuous spectrum. As another
manifestation of this problem, the projections onto the Hms should count
as observables, but these projections are not all in B(

∫ ⊕
R+Hmdµ(m)) if the

direct integral
∫ ⊕
R+Hmdµ(m) is taken in its usual meaning; for a von Neu-

mann algebra acting on a separable Hilbert space is sigma-finite, i.e. there
are at most a countable infinity of mutually orthogonal projections. It is
something of a mystery of why physicists use the direct sum construction to
treat superselection rules when the index set I is finite or countably infinite
but abandon the direct sum construction when I is non-countable.
23See Takesaki (2001) and Dixmier (1984) for more details.
24Standard Borel means that there is a metric on X that makes it a complete separable

metric space in such a way that the the µ-measurable sets are the Borel σ-algebra.
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