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Abstract. Recent historical studies have investigated the first propo-
nents of methodological structuralism in late nineteenth-century mathe-
matics. In this paper, I shall attempt to answer the question of whether
Peano can be counted amongst the early structuralists. I shall focus on
Peano’s understanding of the primitive notions and axioms of geome-
try and arithmetic. First, I shall argue that the undefinability of the
primitive notions of geometry and arithmetic led Peano to the study
of the relational features of the systems of objects that compose these
theories. Second, I shall claim that, in the context of independence
arguments, Peano developed a schematic understanding of the axioms
which, despite diverging in some respects from Dedekind’s construction
of arithmetic, should be considered structuralist. From this stance I shall
argue that this schematic understanding of the axioms anticipates the
basic components of a formal language.

1. Introduction

The revival of structuralism in the philosophy of mathematics has recently
motivated an interest in the history of structuralism and, in particular, in the
first proponents of this approach in late nineteenth-century mathematics.1

Dedekind often plays a prominent role as one of the early advocates of
structuralism. Despite the similarities between Peano’s construction of arith-
metic and Dedekind’s, the possibility that Peano can be counted among the
early structuralist mathematicians has been seldom considered in historical
studies.2

Leaving aside the fact that most of Peano’s writings have not been trans-
lated into English, Peano’s style of writing might have played a role in this
regard. Philosophical discussion is sparse in Peano’s works. Accordingly, it
is particularly difficult to offer a rational evaluation of Peano’s philosophical
views. His philosophy – and, specifically, his philosophy of mathematics –
has to be extracted, not from explicit discussions but from his presentation

1Regarding the attention that the prehistory of structuralism has received in recent
years, see for instance [Reck; Schiemer, 2020a].

2To the best of my knowledge, only Cantù [2021] has taken this possibility into consid-
eration. Cantù characterises Peano’s approach as structuralist algebraism and focusses on
Peano’s notions of interpretation and meaning, his use of abstraction, and the metamathe-
matical use of definitions. Since I only consider these topics in passing (see Footnote 6),
this paper can be seen as complementary to Cantù’s. See also [Rizza, 2009, pp. 365–367].
Rizza [2009] focusses on the apparent tension between Peano’s empiricism and his abstract
approach to geometry; only in a final section does Rizza briefly consider the philosophical
significance (partly in connection to structuralism) of Peano’s construction of geometry, but
he neither articulates any specific form of structuralism that could fit Peano’s methodology
nor studies Peano’s work under that light.
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of mathematical theories, methodology, and remarks regarding his results.
In this regard, the question of whether Peano was a structuralist can only
be answered from the methodological or mathematical point of view.3 Peano
never articulated a metaphysical form of structuralism; in other words, he
never addressed philosophically the question of the nature of the abstract
structures and relations that mathematical theories are (purportedly) about.
In this paper, by studying Peano’s axiomatisation of geometry and arith-
metic, I shall attempt to answer the question: was Peano a methodological
structuralist?

I shall assume that methodological structuralism involves at least two
elements.4 First, methodological structuralism requires the study of the
relational features of the systems of objects that compose mathematical
theories, that is, an emphasis on structural elements rather than on the
nature of the objects themselves. Second, it assumes that there are multiple
systems that exhibit these relational features. That said, as Reck and
Schiemer suggest, a characterisation of methodological structuralism can
be a matter of “family resemblance” [2020b, p. 10]. Other features can
be associated with this form of structuralism. Specifically, to the second
condition it could be added that methodological structuralism involves the
study and systematic comparison of the systems that share a particular
collection of relational features; this study is typically done in terms of
morphisms, and can lead to the identification of isomorphic systems (see
[Reck; Schiemer, 2020b, pp. 9–10]).

Dedekind’s construction of the system of natural numbers in Was sind
und was sollen die Zahlen? [1888] is perhaps the best known example of
methodological structuralism. On the one hand, in the definition of a simply
infinite system – which encapsulates the properties of the system of natural
numbers – Dedekind states that only the relations established in the four
conditions included in the definition are considered, and the special character
of the natural numbers is neglected [1888, Sects. 71–73, pp. 359–360]/[Ewald,
1996, pp. 808–809].5 On the other hand, Dedekind explicitly acknowledges
multiple systems that satisfy the definition of a simply infinite system. In fact,

3The term ‘methodological structuralism’ was coined as a means to differentiate those
structuralist views that do not fit in the philosophically involved approach of metaphysical
structuralism. See [Awodey, 1996] and [Reck, 2003, pp. 370–374]. For the purposes of
this paper, it is enough to state that metaphysical or philosophical structuralism aims at
clarifying the nature of mathematical structures, while methodological or mathematical
structuralism corresponds to a methodology, according to which the object of mathematical
theories are mainly structures instead of the objects that compose them. Methodological
structuralism does not involve the kind of metaphysical and epistemological discourse
typical for metaphysical structuralism. See below for a more precise characterisation of a
minimal methodological structuralism. On a taxonomy of mathematical structuralism and,
specifically, on the distinction between methodological and metaphysical structuralism, see
[Reck; Price, 2000].

4In this twofold understanding of a minimal methodological structuralism I follow
[Schlimm, 2020, pp. 89–91]. I find his arguments against the triviality of such a characteri-
sation of methodological structuralism convincing. See also [Reck, 2003, pp. 371–372] and
[Reck; Schiemer, 2020b, pp. 4–11].

5Unless a reference to an English translation is included after a slash, all quotations of
the sources are translated by the author. Page numbers refer to the most recent edition of
the source or translation listed in the Bibliography.
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he studies the class of simply infinite systems and demonstrates theorems
which establish the isomorphism between the elements of that class [1888,
Sects. 132–134, pp. 376–378]/[Ewald, 1996, pp. 821–823].

In this paper, I shall focus on Peano’s interpretation of the primitive notions
of geometry and arithmetic, and of the axioms of these two theories.6 In this
particular context, I shall argue that, although Peano did not fully exploit
the implications of the second requirement of methodological structuralism,
he anticipated key aspects of a structural understanding of mathematical
theories.

This paper is in four parts. After this introduction, in the second section,
I shall characterise Peano’s particular use of the logical formalism he devised.
With methodological as well as pedagogical motivations in mind, Peano
offered presentations of mathematical theories – often in an axiomatic way –
by means of a combination of logical and mathematical symbolism, which
I shall refer to as ‘symbolisation’.7 In the third section, I shall explain
how Peano conceived the basic notions of arithmetic and geometry and
how these notions were involved in the axiomatisation of these theories.
Specifically, I shall claim that, despite Peano’s empiricist position and his
requirement for non-abstract foundations, the indefinability of the primitive
notions led him to formulate the axioms of geometry and arithmetic in such
a way that they express the relational features of the systems of objects that
compose these theories. In the fourth section, as a means to contextualise
Peano’s structuralist methodology, I shall compare Peano and Dedekind’s
constructions of arithmetic. I shall attempt to clarify the similarities and
differences of these two approaches and argue that, although they can both
be considered structuralist, Dedekind’s definition of a simply infinite system
and Peano’s axiomatisation of arithmetic should be distinguished. Finally,
in the fifth section, I shall consider one particular context in which Peano
developed an alternative understanding of the axioms of geometry. I shall
demonstrate how Peano used his symbolisation of geometry and adopted –
in some respects – a model-theoretic point of view to show that the axioms
of these theories are mutually independent. By so doing, as I shall claim, he
effectively deployed most of the tools required to build a formal language.

2. The symbolisation of mathematical theories

Peano’s first contribution to logic is a chapter in Calcolo geometrico secondo
l’Ausdehnungslehre di H. Grassmann [1888], which contains a presentation
of Boolean logic. In Arithmetices principia nova methodo exposita [1889a]
(hereinafter, Arithmetices principia) he remodels his mathematical logic
with – among other things – a new symbolism and an adequate way of
representing quantification. Peano’s purpose in 1889 is not, however, the
development of a complete logical system, but the creation of a tool adequate
for the rigorous, precise and clear presentation of arithmetic. In fact, in

6This leaves out of consideration relevant issues that, for reasons of space, I shall not
deal with in this paper, such as Peano’s definitions by abstraction and his notion of implicit
definition. Recent publications have already discussed these topics; see [Mancosu, 2018]
and [Cantù, 2021]. See also [Borga et al , 1985].

7On the importance of pedagogical matters in the Peano school, see [Marchisotto; Millán
Gasca, 2021].
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Arithmetices principia, Peano does not even axiomatise either his calculus
of classes or his sentential calculus; he just offers a list of the logical laws
that the derivations of arithmetical theorems require. Using the logical
apparatus he has introduced, Peano states that “every proposition assumes
the form and precision equations enjoy in algebra, and from propositions so
written others may be deduced, by a process which resembles the solution of
algebraic equations” [1889a, p. 21]/[1973, p. 102]. Also in 1889, in Principii di
Geometria logicamente esposti (hereinafter, Principii di Geometria) [1889b],
Peano uses logic as a tool for the rigorous construction of projective geometry.
In Notations de logique mathématique, he describes this combination of logic
and mathematical theories:

Any theory can be reduced to symbols, for every spoken language,
and every piece of writing [écriture], is a symbolism, or a series
of signs that represent ideas. In order to apply the signs we have
explained, we can take the propositions of the theory in question,
written in ordinary language, and replace the word is with the signs
ϵ, =,

C

, whatever the case may be, and [put] instead of and, or,
. . . the signs ��, ��, . . . ; and that cum granu salis, because we saw
for instance that, depending on the position, the conjunction and
is represented by means of ��or ��.

After this first transformation, the propositions are expressed

in a few words, linked by the logical signs ��, ��, =,

C

, etc.; and

if it has been well done, the words that remain are devoid of any

grammatical form; for all the relations of grammar are expressed

by means of logical signs. These words represent the proper ideas

of the theory being studied. Then the ideas represented by these

words are analysed, the composed ideas are decomposed into the

simple parts, and only then, after a long series of reductions and

transformations, does one obtain a small group of words, which

can be considered the “minimum”, by means of which, combined

with the signs of logic, all the ideas and propositions of the science

under study can be expressed. [Peano, 1894b, p. 164]

Peano’s approach can be presented in a more precise way. I shall charac-
terise the reduction Peano alludes to as a symbolisation.8 Let T be a theory,
that is, a collection of statements expressed in a language L∗ and closed
under logical consequence.9 Paradigmatically, T is a mathematical theory.
The language L∗ contains a set C of non-logical constants (i.e., individual
constants, function symbols, and predicate and relation symbols) that are

8I do not claim to use this term in a standard way. I have chosen it to refer to a
particular application of logic Peano devised, although he did not use ‘symbolisation’ with
this specific meaning in mind. The term ‘formalisation’ could be used to refer to what
I call ‘symbolisation’; nevertheless, the former term shall be employed from Section 5.2
onwards with a specific sense.

9Although Peano – to a certain extent – developed the tools required to construct a
deductive calculus with his mathematical logic, he never offered a precise characterisation
of the notion of logical consequence. For the purposes of this paper, it shall be enough to
emphasise Peano’s methodological principle that a theory should be axiomatised and to
retain the intuitive idea held by Peano that the theorems of a theory are obtained from the
axioms by logical means. See Section 5.1. On the development of Peano’s logical calculus,
see [Bertran-San Millán, 2021].
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used to refer to the entities that compose the meaning of the statements
of T . Let L be a logical language and let L′ be an extension of L with C,
that is, let L′ = L ∪ C. By symbolisation of T I understand, firstly, the
reformulation of the statements of T in the language L′ in such a way that
(i) the specific meaning of the statements of T is essentially maintained (by
means of the use of the symbols in C and the symbolic representation of the
logical form of the statements of T ); and (ii) all logical relations expressed in
the statements of T are formulated using the logical constants and variables
of L′.

A symbolisation as Peano conceived it typically also involves, secondly,
the axiomatisation of the theory T in terms of L′; thirdly, the definition in
terms of L′ of derived notions involved in the statements of T ; and, lastly,
the use of a logical calculus formulated in L for conducting the proofs of the
reformulated theorems of T .

Accordingly, a symbolisation does not consist in a mere rewriting. It is the
result of an analysis of the notions involved in the statements of T , in the
sense that it includes a selection of primitive notions and the organisation
of their basic properties in an axiomatisation. Moreover, a symbolisation is
also a means to rigorously express the meaning conveyed by the laws of T .

It is often the case that the statements and proofs of a mathematical
theory are formulated in a combination of natural language and mathematical
symbols. Since, for Peano, natural language is prone to ambiguities and
inaccuracies, one of the purposes of symbolisation is to avoid the use of
natural language in the reformulation of the statements of a theory and also
in its proofs (see [Peano, 1889a, pp. 21–23]/[1973, pp. 101–103]).

Peano’s best known example of symbolisation is his presentation of arith-
metic. In Arithmetices principia, he specifies the components of the logical
language L and the set of non-logical constants C = {=,N, 1,+} [1889a,
p. 28]/[1973, pp. 103–104].10 This symbolisation includes, as is well known,
the first axiomatisation of arithmetic and the definition of all the derived
notions of arithmetic, e.g., the subtraction operation or the relation D of
being a divisor. Moreover, a substantial part of Peano’s [1889a] symbolisation
of arithmetic consists in the reformulation of theorems and the proof of some
of them by logical means. For instance, Peano formulates the theorem that
the sum of two multiples of a number is in turn a multiple of that number
as follows [1889a, p. 44]/[1973, p. 123]:

(27) a, b, c ϵ N . c D a . c D b : C. c D a+ b.

The effort at offering a formulation of arithmetic that fulfils Peano’s
standards of clarity, precision, and rigour culminated in the successive editions

10The elements of C are the primitive terms of arithmetic and are left undefined.
On Peano’s understanding of the primitive terms, see the following section. In Arith-
metices principia, by means of definitions the set C is enlarged with the collection
{>,<,−,×, /,N,R,Q,Np,M,

M

,T,D,

D

, π} and the set of numerals {2, 3, . . . }.
Peano includes the equality symbol in the list of arithmetical symbols. From 1891 on,

he takes it as a genuine logical symbol. See [Peano, 1891d, p. 84], where Peano does
not include the axioms that express the properties of the equality relation in the list of
arithmetical axioms.
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of the Formulaire de mathématiques, published between 1894 and 1908.11

In the first years of the 1890s, before he focussed on the Formulaire, Peano
published symbolisations of geometry [1889b; 1894a], analysis [1890b], number
theory [1891d; 1892b] and even Euclid’s Elements [1890a; 1891a; 1892a].

For Peano, even though he refers to a symbolisation as a reduction, the
symbolisation of mathematical theories has no logicist purpose. It aims at
precision and rigour in the formulation of the laws of a theory, its definitions
and proofs. An instrumental element in this regard is the elimination of
natural language in scientific and, specifically, in mathematical contexts.
Peano defends symbolisation as a means to precisely characterise the notions
of mathematical theories and, in particular, to rigorously express all logical
relations involved in a definition [1889b, pp. 56–58].

3. The primitive notions of arithmetic and geometry

Underlying the symbolisation of geometry and arithmetic Peano performs
in his early works on logic and later in successive editions of the Formu-
laire de mathématiques, there is the conviction that mathematical terms
have established and recognisable meanings, which are accessible to the
mathematician.12

3.1. Concrete and abstract foundations of geometry and arithmetic.
In ‘Sui fondamenti della Geometria’, Peano selects the concepts of point and
the relation “lie between” (established between three points) as the primitive
notions of geometry, and states that these are “very simple ideas, common
to all men” [1894a, p. 116]. In Principii di Geometria, Peano already devises
a symbolic representation of these notions: ‘1’ corresponds to the class of
points and ‘c ϵ ab’ to the circumstance that a point c lies between points
a and b (i.e., c lies in the segment determined by a and b).13 As primitive
notions, the basic concepts of geometry are undefined.

For Peano, these basic concepts require a secure ground. In ‘Sui fondamenti
della Geometria’, he states that they “must be obtained by experience
[esperienza]” [1894a, p. 119] and that their properties are acquired by “the
most elementary observations” [1894a, p. 119].

11On Peano’s collective project of a Formulaire de mathématiques – or, as he would
call it in later editions, Formulario mathematico – see [Borga et al , 1985, pp. 163–170] and
[Lolli, 2011].

12In other words, Peano assumes in his works – at least at an initial stage – that
mathematical terms and, specifically, the primitive terms of mathematical theories, are
substantive. Mathematical theories determine an ontology composed of the entities over
which the statements of the theory quantify. Mathematical terms are substantive when
they refer to the entities of this ontology, and thus their sense can be reconstructed (either
by definition or by any other means, if they are primitive). My use of the notion of
substantive term is based on [Klev, 2011].

13The term ‘c ϵ ab’ is, strictly speaking, complex. On the one hand, ‘ϵ’ is the membership
relation symbol and belongs to the language of the calculus of classes. On the other, the
term ‘ab’ refers to the segment determined by a and b (the class of points that lie between
a and b), i.e., to the result of applying the segment formation function to points a and
b. As we shall see in what follows and in Section 5.3, on some occasions Peano refers to
‘c ϵ ab’ as if it expresses that a, b and c stand in a ternary relation.
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Peano thus shares Pasch’s idea that the primitive notions of geometry
cannot be defined and must be acquired empirically [Pasch, 1882, p. iv,
p. 16].14 Peano’s view on the need for an empirical foundation of geometry
was not unusual among Italian mathematicians either. Some members of
the Italian school of algebraic geometry – such as Veronese or Enriques –
also argued for empiricism. For instance, Veronese – with whom Peano held
a bitter polemic – claimed that geometry is an experimental science and
that the establishment of its axioms requires external observation [1891,
pp. viii, ix].15 In contrast, other members of the Italian school defended an
abstract foundation of geometry, according to which the nature of the basic
geometrical concepts – e.g., that which makes a point recognisable as a point
– is irrelevant (see, for instance, [Segre, 1883, p. 39]). In Peano’s polemic with
Segre on the requirement of rigour in geometry, the former criticises a purely
abstract conception which begins in “hypotheses contrary to experience, or
[in] hypotheses which cannot be verified by experience” [Peano, 1891c, p. 67].

In his critique of Segre’s construction of hyperspace geometry, Peano
does not question an abstract development of the discipline, but its lack of
empirical foundation. In other words, he requires the primitive concepts of
geometry to be grounded on experience.

Concerning the primitive terms of arithmetic, in Arithmetices principia,
Peano says little more than that “[t]he sign N means number (positive in-
teger); 1 means unity ; a+ 1 means the successor of a, or a plus 1” [1889a,
p. 34]/[1973, p. 113]. It is assumed that these symbols refer to the fundamen-
tal notions of arithmetic and thus are the building blocks of the symbolisation
of arithmetic. That said, Peano avoids any elucidation, in the Fregean sense,
of the nature of these notions; that is, any clarification that makes the sense
of their corresponding terms accessible.16 In ‘Sul concetto di numero’ [1891d],
he poses the question of whether the primitive concepts of arithmetic can be
defined. His answer is twofold. From a practical or pedagogical point of view,
Peano states that “it is not convenient in teaching to give any definition of
number, this idea being very clear to the students, and each definition having
the effect of confusing it” [Peano, 1891d, p. 84]. From the theoretical point of
view, Peano claims that using only logical symbols, “the number cannot be
defined, since it is evident that however those words [corresponding to logical
constants] are combined, it will never be possible to have an expression
equivalent to a number” [Peano, 1891d, p. 85].

In sum, for Peano, the primitive notions of geometry and arithmetic must
be known and recognisable notions. In fact, the basic concepts of geometry

14In Vorlesungen über neuere Geometrie, Pasch distinguishes between basic and stem
concepts [1882, p. 74]. The former are undefined, acquired empirically, and correspond to
the philosophical foundation of the theory. In Pasch’s [1882] treatise, the stem concepts
of projective geometry are derived from basic propositions and concepts. On Pasch’s
empiricism, see [Schlimm, 2010]. On Pasch’s influence in Peano’s early presentations of
geometry, see [Borga et al , 1985, pp. 52–54]. On an alternative interpretation of the
relation between Peano’s requirement for the empiric foundation of the axioms of geometry
and Pasch’s empiricism, see [Gandon, 2006, pp. 272–280].

15See [Avellone et al , 2002] for an informed overview of empiricism in the Italian school.
On the polemic between Veronese and Peano, see [Borga et al , 1985, pp. 244-250].

16On Frege’s notion of elucidation (Erläuterung), see [Frege, 1906, p. 288]/[1984, pp. 300–
301].
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are founded in direct observation. Hence, the primitive terms ought to
be substantive in order to be chosen. This does not mean that it is fully
determined whether a specific group of concepts is the collection of primitive
notions. Peano acknowledges that the choice of primitives always bears some
arbitrariness – at least, as long as the combination of derived and primitive
notions is the same (see [Peano, 1889b, p. 78] and [Peano, 1891b, p. 104,
fn. 2]). Whatever the particular selection of primitive notions may be, these
basic concepts cannot be defined. In fact, as Peano states in ‘Sul concetto di
numero’, they cannot even be elucidated if his scientific standards are to be
met [1891d, p. 84]. If no definition or elucidation of the fundamental concepts
of geometry and arithmetic is possible, these mathematical theories have to
be constructed from axioms – which in the case of arithmetic Peano calls
‘primitive propositions’. This is exactly how most of Peano’s symbolisations
start: once the primitive notions are identified, the axioms are lain down
using the formal resources provided by mathematical logic.

3.2. Primitive notions and axioms. The axioms of geometry are formu-
lated on the basis of empirical facts that explain our access to the primitive
notion of point and the primitive relation “to lie between”. In ‘Sui fondamenti
della Geometria’, Peano states the following:

[I]t will be necessary to determine the properties of the undefined

entity p [point], and of the relation c ε ab [c lies between a and b], by

means of axioms or postulates. The most elementary observation

shows us a long series of properties of these entities; we just have

to collect these common cognitions, order them, and enunciate as

postulates only those that cannot be deduced from simpler ones.

[Peano, 1894a, p. 55]

The primitive notions cannot be defined, but their properties can be stated
in the axioms and, further, in the theorems that are derived from them.

Something similar can be said of the axioms of arithmetic. In ‘Sul concetto
di numero’, Peano presents the axioms of arithmetic as “[t]he propositions
which state the most simple properties of the [positive] integers” [1891d,
p. 85]. Thus, the axioms of arithmetic represent fundamental facts about
notions well known to the mathematician, who is presupposed to have
certain intuitions about the notions of natural number, the first element of
the numerical series, and the successor operation.

Peano’s attempt to deal rigorously with the foundations of geometry and
arithmetic and, specifically, to present these theories axiomatically, has clear
and explicitly attested precedents. Pasch’s Vorlesungen über neuere Geome-
trie [1882] is a groundbreaking work on the foundations of geometry. Pasch
advocates for the methodological requirements of the explicit establishment
of primitive notions and axioms, and the sharp distinction between theorems
and axioms [1882, pp. 4–5].17 In Principii di Geometria, Peano acknowledges

17In Vorlesungen über neuere Geometrie, Pasch states the following:

Mathematics establishes relations between the mathematical concepts
which are supposed to correspond to the facts of experience. Neverthe-
less, the vast majority [of these concepts] is not directly borrowed from
experience but is “proven”. Apart from the definitions of the derived
concepts, the knowledge necessary for the demonstration is itself part of
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that most of his axioms of linear geometry correspond to Pasch’s axioms
[1889b, pp. 84–85] (see also [Peano, 1894a, pp. 119–120]).18 In arithmetic,
Peano’s immediate predecessor is Hermann Grassmann. Even though it is
intended as a textbook for teachers, in Lehrbuch der Arithmetik für höhere
Lehranstalten [1861], Grassmann attempts to lay down the foundations of
arithmetic in a rigorous way but falls short of a properly axiomatic presen-
tation.19 Grassmann’s recursive definitions of arithmetical operations were
very influential for Peano, who gives due recognition to Grassmann’s [1861]
treatise in the Preface of Arithmetices principia [1889a, p. 22]/[1973, p. 103].
In contrast to Pasch and Grassmann, for Peano a rigorous presentation of
geometry and arithmetic requires not only their axiomatisation, but also
their complete symbolisation. This ensures a clear, precise presentation,
which is also free of ambiguities. In Principii di Geometria, Peano analyses
the content of Pasch’s first axiom, namely, “One straight line, and one only,
can always be drawn between two points” [Pasch, 1882, p. 5], and provides
four possible symbolisations of it that dissolve the ambiguities of Pasch’s
formulation [Peano, 1889b, pp. 84–85].20

It has already been said that Peano presents in Arithmetices principia the
first axiomatisation of arithmetic. In the third part of the second volume of
Formulaire de mathématiques, Peano provides a refined symbolisation of the
axioms of arithmetic:21

Primitive propositions

the relations to be established. After the elimination of the propositions
based on proofs, the theorems [Lehrsätze], a group of propositions re-
mains, from which all the rest can be deduced, the basic propositions
[Grundsätze]; these are based directly on observations [...]. [Pasch, 1882,
p. 17]

See Footnote 14 and [Schlimm, 2010].
18On a comparison between Pasch [1882] and Peano’s [1889b] axioms, see [Borga et al ,

1985, pp. 206–211].
19On the significance of Grassmann’s work for the axiomatic method, see [Radu, 2011].

On Grassmann’s definitions by recursion and his influence on Peano, see [von Plato, 2017,
pp. 40–57]. See also [Cantù, 2020].

20Peano’s four possible symbolisations of Pasch’s aforementioned axiom are the following:

a, b ϵ 1 .

C

. ab ϵ K1,

a, b ϵ 1 . a �= b :

C

. ab ϵ K1,

a, b, c, d ϵ 1 . a = b . c = d :

C

. ac = bd,

a, b, c, d ϵ 1∴ a = b . c = d : ��: a = d . b = c ::

C

. ac = bd,

where ‘K1’ stands for the class of classes of points and thus ‘ab ϵ K1’ means that ab is a
class of points or a geometrical figure [1889b, p. 59].

After the suggestion of the possible symbolisations of Pasch’s axiom, Peano motivates
the use of a symbolisation thus:

We see from this brief discussion how difficult it is in such delicate
matters, even for an accurate writer [Pasch], to avoid any danger of
ambiguity, if one proceeds with natural language. In order to overcome
this difficulty, it is necessary to analyse each proposition, and to fix
completely the meaning [valore] of the terms we use. In doing so, one
necessarily arrives either at the logical notations, which I use here, or at
an equivalent system. [Peano, 1889b, p. 85]

21Note that a+ is the successor of a, for any individual a.
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·1 0 ε N0 Pp
·2 a ε N0 . ⊃ . a+ ε N0 Pp
·3 a, b ε N0 . a+ = b+ . ⊃ . a = b Pp
·4 a ε N0 . ⊃ . a+ �= 0 Pp
·5 s ε Cls . 0 ε s :x ε s . ⊃x .x+ ε s : ⊃ . N0 ⊃ s Pp

[Peano, 1899, p. 29]

This axiomatisation is essentially equivalent to that given in ‘Sul concetto
di numero’ [1891d, p. 84]. The primitive propositions are understood as
expressing, in a rigorous and precise way, the fundamental properties of the
primitive notions of arithmetic. However, these fundamental properties do
not correspond to the intrinsic features of the primitive notions, namely,
those properties that identify the basic concepts as a specific class (the class
of natural numbers), individual (the number 0), and operation (the successor
operation). In other words, Peano’s axioms of arithmetic establish general
conditions that determine the relations between a class, an object, and an
operation, but cannot be used to single out a specific system. In the axioms,
the number 0 is not characterised as an object with certain specific properties,
but as the first element of the numeric series; only its relational properties
(e.g., the fact that it is not the successor of any number, as the primitive
proposition ·4 expresses) are established. If we consider the class of odd
numbers, the number 1, and the operation +2, then by appealing only to the
axioms we would have no way to distinguish 1 and 0 as the initial elements
of the class of odd numbers and the class of natural numbers, respectively.
The axioms solely characterise a class of structured systems to which the
systems of the natural numbers and of the odd numbers belong.22 As we
shall see in the next section, there is no acknowledgement in Arithmetices
principia of the fact that the axioms do not characterise a unique system of
objects. From 1891 onwards, Peano explicitly advocates for a structuralist
understanding of the axioms.23

The axioms of geometry express relations between individuals and col-
lections of individuals that are shared by a class of systems, but do not
properly characterise a single system of entities of that class. As we shall see
in Section 5.3, Peano’s presentation of the axioms of linear geometry in Prin-
cipii di Geometria includes the consideration of systems which satisfy them
[1889b, pp. 83–89]. In this sense, the axioms are understood in an abstract
way.24 Peano confirms this idea in the notes that follow the symbolisation of
elementary geometry in Principii di Geometria. He expresses himself thus:

22This reading of Peano’s axioms essentially coincides with Russell’s. In Principles of
Mathematics, Russell states that Peano neither succeeds in indicating any constant meaning
of 0, number, and succession, nor in showing that any constant meaning is possible [1903,
§122, p. 126].

23This does not imply that Peano was not aware of such an understanding already in
1889a. Not only had Peano read Dedekind’s Was sind und was sollen die Zahlen? [1888]
by 1889; in Principii di Geometria Peano also considers several interpretations of the
axioms of linear geometry which satisfy some or all of them.

24Similar accounts can be found in recent historical studies. Rizza summarises Peano’s
axiomatic construction of geometry as follows:

[T]he need to systematically organize spatial intuition around certain
fundamental concepts can give rise to the concept of a formal structure
as a type of organization of a given intuitive content. The choice of
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[T]here is a category of entities, called points. These entities are not

defined. Moreover, given three points, a relationship between them

is considered, expressed by the expression [scrittura] c ϵ ab, which

likewise is not defined. The reader can understand [intendere] by

the sign 1 any category of entities, and by c ϵ ab any relationship

between three entities of that category; all the definitions that

follow (§2) will always have a value, and all the propositions of §3
will be founded [sussisteranno]. [Peano, 1889b, p. 77]

Peano states that there is no predetermined way to interpret the primitive
terms ‘1’ and ‘c ϵ ab’, and thus their meaning does not matter. This
can be understood as the adoption of an abstract perspective, according
to which the intrinsic nature of the primitive notions is not captured by
the axioms. In sum, for Peano, the empirical foundation of the primitive
notions of geometry is not incompatible with an axiomatisation that involves
an abstract understanding of the terms that correspond to the primitive
notions.25

The selection of the primitive notions of geometry has to be informed by
experience. Similarly, the establishment of the primitive notions of arithmetic
relies on intuitions regarding the nature of the number. The selection of the
basic concepts of geometry and arithmetic thus belongs to a pre-mathematical
phase in Peano’s construction of these theories (see [Peano, 1891c, p. 67]).
The axioms constitute a particular analysis of the properties of the primitive
notions, and their selection and symbolisation also belongs to this first phase.
However, there is a second phase, properly mathematical, where the axioms
are used to develop the theory in question. In fact, as we have seen, the
axioms do not determine a single system that satisfies them. Accordingly, in
the process of development of geometry and arithmetic, the primitive terms
are severed from their original meaning. To this second phase belong the
derivation of theorems and the study of the deductive relations between the
axioms. The derivation of theorems does not need to rely on any intuition
of space, of the numeric series, or direct observation. As we shall see in
sections 5.1 and 5.3, Peano’s strategy of ignoring the original meaning of the
primitive terms is essential in his conception of a mathematical proof and in
the investigation of metatheoretical questions such as the independence of
the axioms.

All in all, this study of Peano’s axiomatisation of arithmetic and geometry
yields the conclusion that these systems of axioms are not intended to charac-
terise the specific nature of the primitive notions – which remain undefined.
Peano’s resolute commitment to the axiomatic method in arithmetic and
geometry is not at odds with his view that the primitive notions are specific
entities and the use of the corresponding terms indicates that their meaning
is accessible to a mathematician; a characterisation of these notions by means

fundamental concepts and the articulation of geometry on their basis is
carried out through the axiomatic method. [Rizza, 2009, p. 366]

25On the compatibility between the abstract understanding of the primitive terms of
geometry and the requirement of an empirical foundation, see [Bertran-San Millán, 2022]
and [Rizza, 2009].
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of axioms cannot be identified with an explicit definition.26 Only the prop-
erties and relations specified in the axioms of arithmetic and geometry are
considered, and this shows that Peano’s symbolisation of these two theories
fulfils the first requirement of a minimal methodological structuralism (see
page 2).

4. Peano and Dedekind on the construction of arithmetic

In the investigation of Peano’s endorsement of methodological structural-
ism, Dedekind’s work is a relevant landmark.27 Not only is Dedekind one of
the most studied examples of early structuralist mathematicians; his works
were also well known by Peano, who quoted them several times. In this
section, I shall attempt to clarify the similarities and differences between
Peano and Dedekind’s structuralist accounts. For this purpose, I shall focus
on their construction of arithmetic.

4.1. Peano’s structuralist understanding of the axioms. Although
by 1889 Peano had already formulated an axiomatisation of arithmetic, an
explicit structural interpretation of the axioms can only be found in the
works on arithmetic he published after 1889. In the Preface to Arithmetices
principia [1889a, p. 22]/[1973, p. 103], he refers to Was sind und was sollen
die Zahlen [1888]. However, in that work, Peano does not provide any remark
on his understanding of the axioms.

That said, soon after 1889, Peano made it clear that he was aware that his
strategy, which avoids defining the primitive notions and offers instead an
axiomatisation of the theory, is different from Dedekind’s, whose construction
of arithmetic starts from the description of the primitive logical concepts
and the definition of the primitive notions of arithmetic. In ‘Sul concetto di
numero’, Peano concedes that the two strategies coincide in their results:

There is an apparent contradiction between the foregoing [Peano

[1891d] axiomatisation of arithmetic] and what Dedekind says,

26Peano’s conception of the construction of a mathematical theory and, specifically, his
dismissal of the elucidation of the primitive notions and his preference for axiomatisation,
is close to Hilbert’s early conception. In a letter to Frege dated December 29, 1899, Hilbert
expresses doubts about the definition of the notion of point, which are very similar to
Peano’s reasons for discarding a definition of the basic notions of arithmetic:

If one is looking for other definitions of a ‘point’, e.g., through paraphrase
in terms of extensionless, etc., then I must indeed oppose such attempts
in the most decisive way; one is looking for something one can never find
because there is nothing there; and everything gets lost and becomes
vague and tangled and degenerates into a game of hide-and-seek. If
you prefer to call my axioms characteristic marks of the concepts which
are given and hence contained in the ‘explanations’, I would have no
objection at all [...]. [Frege, 1976, p. 66]/[1980, p. 39]

In Sieg’s [2014] terms, it could be said that Peano’s understanding of the primitive terms
can be framed within existential structuralism. On Hilbert’s early conception of the
primitive terms of mathematical theories, see also [Klev, 2011, pp. 671–673]. On the
similarities between Peano’s and Hilbert’s accounts, see [Segre, 1994, pp. 307–313]. I am
grateful to an anonymous referee for pointing out [Sieg, 2014] regarding the comparison
between Peano’s axiomatisation and Hilbert’s early work on geometry.

27On Dedekind’s structuralism, see [Reck, 2003], [Yap, 2009], [Sieg; Schlimm, 2014],
[Sieg; Morris, 2018] and [Ferreirós; Reck, 2020].
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which should be noticed immediately. Here the number is not

defined, but its fundamental properties are stated. Dedekind defines

the number instead, and specifically calls number what satisfies

the aforementioned conditions. Evidently the two things coincide.

[Peano, 1891d, p. 88]

Although Peano’s requirements regarding the symbolisation of mathemat-
ical theories should not be underestimated – it shall be shown below to
have a great importance – soon after he had achieved an axiomatisation of
arithmetic, he assumed that the axioms played a similar role to the conditions
of a general definition such as Dedekind’s.28

In ‘Sul concetto di numero’ [1891d], a clear example of the similarity
between the role played by Peano’s axioms and Dedekind’s definition can
be found. Following Dedekind’s account in Was sind und was sollen die
Zahlen? [1888] – a work that he quotes several times in this article – Peano
offers a structuralist interpretation of the axioms:

These propositions express the necessary and sufficient conditions so
that the entities of a system can be put in univocal correspondence
with the series of N; and can be stated as follows:
(1) A specific entity of the system is given the name 1.
(2) Let an operation be defined such that to every entity a of the

system there is a corresponding one, a+, also of the system.
(3) And that two entities, whose corresponding [entities] are equal,

are equal.
(4) The entity named 1 is not the corresponding [entity] of any.
(5) And finally that it [N] is the class common to all the classes

s that contain the individual 1, and that, when they contain
an individual, they also contain its corresponding [entity].
[Peano, 1891d, p. 87]

In this informal rendering of the primitive propositions of arithmetic,
Peano characterises a system whose structural properties are those of the
ordering of natural numbers. In fact, he suggests that there might be systems,
other than the set of natural numbers which satisfy the axioms. However,
it should be observed that the system of natural numbers, N, is assumed
to be given. In other words, this system is not created by abstraction from
the systems that satisfy the structural properties expressed by the primitive
propositions.

In later works Peano displays a more explicit structuralist position. In the
second part of the second volume of the Formulaire de mathématiques, he
also defends the idea that the the axioms of arithmetic set the conditions
necessary for identifying a class of structured sets: any collection of objects
ordered in such a way that satisfies the axioms has the structural properties
of the set of natural numbers. Peano states the following:

These Pp [Primitive propositions], the necessity of which we have

seen, are sufficient to deduce all the properties of the numbers which

we will meet in the following. But there is an infinite number of

systems which satisfy all the Pp. For example, they are all verified

28On a comparison between Dedekind’s and Peano’s work on the foundations of arith-
metic, see [Borga et al , 1985, pp. 105–116].



14 J. BERTRAN-SAN-MILLÁN

if we replace N0 and 0 with N1 and 1 [...].29 All the systems which

satisfy the 5 Pp are in mutual correspondence with the numbers.

The number, N0, is what is obtained by abstraction from all these

systems; in other words, the number is the system which has all

and only the properties stated by the 5 primitive P [propositions].

[Peano, 1898, p. 2]

In this context, abstraction is not understood by Peano as a process
that creates or reifies some abstract entities – in this case, the natural
numbers. Peano sees abstraction as more than a creative process; rather, it
is a limitation of the properties of the elements of the systems considered.
Therefore, by appealing to abstraction, Peano implies that one of the systems
which satisfies the axioms stands out as one which only has the properties
stated in the primitive propositions. In this sense, N0 is a particularly
adequate representative of the class of systems that satisfy the axioms.30

Textual support can therefore be found for the claim that Peano fulfils
the second requirement of a minimal methodological structuralism (see page
2). Furthermore, Peano states that the systems that satisfy the axioms “can
be put in univocal correspondence with the series of N” and “are in mutual
correspondence with the numbers” [1891d, p. 87]. He also acknowledges
that the axioms “are sufficient to deduce all the properties of the numbers”
[1898, p. 2]. These claims could be seen as implicit acknowledgements of the
categoricity and semantic completeness, respectively, of the axiom system of
the natural numbers. Peano does not justify any of these remarks, but at
the very least they show awareness of metatheoretical considerations that
became relevant in foundational studies of late nineteenth-century and early
twentieth-century mathematics.

Moreover, the idea that there is an infinite number of structured systems
which satisfy the axioms of arithmetic, and that the system of natural
numbers is determined by abstraction from all these systems, strengthens
the claim that Peano also satisfies the first requirement of methodological
structuralism.

29Note that ‘N0’ refers to the set of natural numbers and ‘N1’ to the set of positive
integers.

30On Peano’s notion of abstraction, see [Borga et al , 1985, pp. 127–129], [Segre, 1994],
[Mancosu, 2018] and [Cantù, 2021].

Despite the similarities between Peano’s account of the systems that satisfy the axioms
of arithmetic and Dedekind’s remarks on the class of simply infinite systems, I do not
want to support or reject the claim that Dedekind influenced Peano’s notion of abstraction.
In this section, I provide textual evidence in support of the claim that Peano explicitly
considers a multitude of systems that exhibit the relational features stated in the axioms
of arithmetic. Peano appeals to the notion of abstraction as a means to characterise the
relationship between the system of natural numbers and any other system that satisfies the
axioms. However, this does not imply that his notion of abstraction and Dedekind’s are
analogous. In fact, there is no consensus in the secondary literature on Dedekind’s notion
of abstraction. While some studies defend an ontologically substantive sense of abstraction,
on account of which, e.g., the system of natural numbers is created (see [Reck, 2003], [Yap,
2009]), others argue for a less ontologically involved sense (see [Sieg; Schlimm, 2005], [Sieg;
Schlimm, 2014], [Sieg; Morris, 2018]). I am indebted to an anonymous referee for raising
the issue of the relationship between Peano’s and Dedekind’s notions of abstraction.
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4.2. Higher-level definition vs schematic axiomatisation. Peano’s
structural understanding of his axiomatisation of arithmetic can be con-
nected to Dedekind’s definition of a simply infinite system from two different
perspectives. On the one hand, Peano’s account of the role of the axioms of
arithmetic seems to put him in almost complete allegiance with Dedekind’s
position in Was sind und was sollen die Zahlen? [1888]. In the aforemen-
tioned passages, we can find explicit recognitions by Peano that there is a
multitude of structured systems which share the relational features expressed
by the axioms of arithmetic. On the other hand, Peano rejects the defini-
tion of the primitive notions of arithmetic, whilst Dedekind offers explicit
definitions for them.

As a means to clarify the disagreement concerning the explicit definition
of the primitive notions of arithmetic, and after having considered Peano’s
axiomatisation, it is convenient to pay attention to Dedekind’s definition of
a simply infinite system. The latter relies on the basic notions of his theory
of classes:

Definition. A system N is said to be simply infinite when there
exists a similar mapping ϕ of N into itself such that N appears
as the chain (44) of an element not contained in ϕ(N) [...]. [T]he
essence of a simply infinite system N consists in the existence of
a mapping ϕ of N and an element 1 which satisfy the following
conditions α, β, γ, δ:
α. N ′ ∋ N .
β. N = 10.
γ. The element 1 is not contained in N ′.
δ. The mapping ϕ is similar.

[Dedekind, 1888, Sect. 71, p. 359]/[Ewald, 1996, p. 808]

In this definition, the symbols ‘N ’, ‘ϕ’ and ‘1’ are variables which are
implicitly bound. Accordingly, they do not refer to a specific system, mapping,
or element respectively, but express generality over such entities. The
primitive notions of Dedekind’s theory of classes are exactly these entities,
which are not defined but elucidated in Was sind und was sollen die Zahlen?
[1888, pp. 344-348]/[Ewald, 1996, pp. 796–800]. The class-theoretical notions
are thus substantially linked to the variables ‘N ’, ‘ϕ’ and ‘1’ by means of
these elucidations. In this sense, Dedekind’s definition conveys a specific
content in terms of systems, mappings, and elements of these systems, and
therefore cannot be considered a formal or schematic definition.31

In contrast, the primitive terms in Peano’s axiomatisation of arithmetic
are not included in the axioms as bound variables (see Section 3.2); they
should rather be seen as non-logical constants associated with a standard
interpretation. As a result, the systems that satisfy the axioms are not ob-
tained by means of an instantiation from a general definition as in Dedekind’s
case, but as the result of considering alternative interpretations of the axioms.

31This interpretation of Dedekind’s definition of a simply infinite system agrees with
Klev’s account [2011, pp. 647–655, 665–671]. See also [Sieg; Schlimm, 2014, pp. 300–301,
311]. On the diverging interpretations of Dedekind’s definition in the secondary literature,
see Footnote 30.
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It could be said that Dedekind provides a definition of a higher-level notion,
while Peano offers a schematic axiomatisation.32

The claim that Peano offers a schematic axiomatisation of arithmetic
does not imply that the axioms should be understood as schemata, but
rather relies on the use of non-logical constants which are not subject to
universal quantification. This idea can be better understood in the context of
Peano’s independence arguments. In the third part of the second volume of
the Formulaire de mathématiques, immediately after presenting the axioms,
Peano proposes an evaluation of their independence:

In order to recognise the independence of a Pp [primitive proposi-
tion], it is enough to give an interpretation to the primitive symbols
0, N0, +, such that all Pp which are different from the one consid-
ered are verified.

The absolute independence of Pp 1–5 is proved by the following
5 examples:
(1) If, by attributing to 0 and + the usual meaning, N0 is given

the meaning ‘positive integer’, indicated in what follows by
N1, all conditions ·2–·5 but ·1 are verified.

(2) If by preserving the usual meaning of 0 and +, N0 is given
the meaning ‘digit’ or the set of numbers 0, 1, 2, . . . , 9, all
conditions except ·2 are satisfied.

(3) All conditions, save ·3, will be satisfied by a periodic system,
preceded by an anti-period; such as the sequence 0, 1, 1, 1, . . .

(4) A periodic system, e.g. the astronomic hours of the day, where
the hour that follows 23 is 0, does not satisfy [condition] ·4.

(5) Let 0 and N0 have the usual meaning, and let a+ have the
value a+ 2. Conditions ·1–·4 are satisfied, but not ·5, because
if s is replaced with ‘even number, 2N0’, the Ths [thesis, i.e.,
consequent of ·5: N0 ⊃ s] is not true. [Peano, 1899, p. 30]

The primitive terms of arithmetic used in the symbolisation of the axioms,
namely, ‘0’, ‘N0’, and ‘+’, are to be understood as non-logical constants
in these examples. This is a natural move if these symbols – which are
associated with a standard interpretation – do not occur in the axioms as
bound variables. In the derivation of theorems and, crucially, in the context of
independence arguments, the original meaning of these symbols is irrelevant
(see sections 3.2 and 5.1). Despite Peano’s insistence about the expression in
the primitive propositions of the properties of the natural numbers, once the
axioms are selected and formulated, the proof of arithmetical theorems and
the evaluation of the deductive relations between the axioms do not require
the primitive terms to be interpreted according to their original meaning. In

32I take this terminology from [Klev, 2011, p. 651]. I agree with Klev [2011, pp. 650–
653] regarding the convenience of distinguishing Dedekind’s point of view, based on the
construction of arithmetic starting from definitions, and Peano’s (or Hilbert’s in Klev’s
discussion), which has axioms as the starting point. In contrast, Ferreirós claims that there
is no essential difference between Peano’s and Dedekind’s points of view as long as there is
a common logical background consisting in basic set theory [2009, p. 49]. See also [Ferreirós;
Lassalle-Casanave, 2022]. Sieg’s [2014] characterisation of Hilbert’s existential structuralism
is, in certain relevant respects, analogous to Peano’s schematic axiomatisation, and yet
Sieg – with Ferreirós – claims that “Hilbert’s [1899] axioms characterize fully continuous
systems in analogy to the way in which Dedekind’s conditions characterize simply infinite
ones in Dedekind (1888)” [2014, p. 136]. See also [Sieg; Schlimm, 2014].
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particular, in the context of independence arguments the primitive terms
can be reinterpreted.

The reinterpretation of mathematical terms was fairly common in nine-
teenth-century mathematics. It often consisted in a generalisation of the
original meaning of the reinterpreted terms, or in a restriction of their
generality. For example, in the Preface to the first edition of Was sind und
was sollen die Zahlen? [1888], Dedekind suggests a reinterpretation of the
notion of point according to which the ratios of the distances of any two
points are algebraic numbers [1888, pp. 339–340]/[Ewald, 1996, p. 793]. The
purpose of this reinterpretation is to show that the notion of space does not
require continuity in all contexts: the space determined by the points in
Dedekind’s reinterpretation is discontinuous and yet “all constructions that
occur in Euclid’s Elements can [. . . ] be just as accurately effected here as in
perfectly continuous space” [1888, pp. 339–340]/[Ewald, 1996, p. 793].

The development of projective geometry in the second half of the nineteenth
century relied, at least partly, on a reinterpretation of the terms ‘point’ and
‘straight line’ by means of duality principles. Projective geometry was
one of the main lines of development for the Italian school of algebraic
geometry and also for Peano and his circle.33 Another prominent example
of reinterpretation in nineteenth-century mathematics is the enlargement of
the number domain with new kinds of numbers. This enlargement required
the redefinition of arithmetical operations and the reinterpretation of their
symbols depending on the kind of numbers involved. Each numerical domain
demands a specific definition of the mathematical operations and relations
involved, and the symbols referring to these operations and relations are
reinterpreted according to their application. Peano was well aware of this
strategy and reinterpreted some of the symbols of his mathematical logic to
adapt them to the different contexts of their application. For instance, in the
first volume of the Formulaire de Mathématiques, Peano provides definitions
of identity between propositions [1895, §1, p. 1], between classes [1895, §4,
p. 5], and between functions [1895, §5, p. 6]. In all these cases, Peano relies
on the generality of the notion of identity to define specific cases.

As we shall see in Section 5.3, what distinguishes Peano’s interpretation of
the primitive terms in the context of independence arguments is the fact that
the alternative interpretations suggested are not necessarily generalisations
or particular cases of the standard. They are motivated by an abstract
understanding of the axioms, according to which the primitive terms are not
attached to any particular meaning and in this sense any reinterpretation
can involve a switch in the ontology established by the relevant mathematical
theory. Moreover, the fact that the axioms are fully symbolised allows Peano
to precisely characterise a reinterpretation of those axioms as the result of a
reinterpretation of the primitive terms, while the meaning of the logical and
class theoretical symbols remains intact. I shall explain in Section 5.3 that

33On Peano’s importance in the debate concerning the relationship between planar
and solid geometry, specially in a projective context, see [Arana; Mancosu, 2012]. On the
development of nineteenth-century geometry and its relation to independence proofs and
the pre-history of model theory, see [Blanchette, 2017, pp. 47–48], [Eder, 2019], [Eder;
Schiemer, 2018], Eder [2021], [Tappenden, 1997] and [Webb, 1995].



18 J. BERTRAN-SAN-MILLÁN

Peano takes full advantage of this strategy regarding the reinterpretation of
the primitive terms in his independence proofs of the axioms of geometry.

There is yet another element that sets Peano’s axiomatisation of arith-
metic apart from Dedekind’s definition of a simply infinite system. In his
axiomatisations of arithmetic of [1889a], [1891d] or in those of the successive
editions of the Formulaire de Mathématiques, Peano does not investigate the
nature of the class of structured sets that satisfy the axioms, and which are
considered as possible interpretations in the independence arguments. As has
been noted in the previous section, Peano shows awareness of categoricity and
the semantical completeness of his axioms system, but he does not pursue
a systematic investigation of these metatheoretical questions. In contrast,
the justification of the fact that all simply infinite systems are isomorphic
is Dedekind’s purpose in Sections 132–134 of Was sind und was sollen die
Zahlen? [1888, pp. 376–378]/[Ewald, 1996, pp. 821–823].34 Once the primi-
tive propositions are established, Peano seems to view them as formal axioms
from which theorems are obtained by means of logical inference. The specific
meaning of the axioms and, in particular, the structural properties they are
claimed to define, are left aside once Peano starts drawing inferences from
the axioms and the definitions of the derived notions of arithmetic. In this
context, Peano’s methodological structuralism is limited, on the one hand, to
the recognition that the axioms of arithmetic can be satisfied by (an infinite
number of) systems of objects and that these systems are, in some intuitive
sense, isomorphic; and, on the other hand, an implicit acknowledgement of
the semantic completeness of these axioms. The modest scope of Peano’s
structuralist position could be explained, both by the fact that, for him, the
primitive notions of arithmetic are specific entities and are accessible to any
mathematician; and also by his idea that the symbolisation of arithmetic is
a goal by itself, and not a means to further develop this theory.35

Peano’s attitude towards metatheoretical investigations contrasts not only
with Dedekind’s perspective, but also with Hilbert’s, for whom metatheory
was the main focus of interest. For Hilbert, the proof of the independence
and consistency of the axioms or the completeness of a mathematical theory

34In this regard, as one of the referees noted, the scope of Dedekind’s metatheoretical
investigations is also limited. Dedekind proves the categoricity of his definition of a simply
infinite system, but – similarly to Peano – he suggests the completeness of this definition
without justification [1888, pp. 377-378]/[Ewald, 1996, p. 823]. See [Awodey; Reck, 2002,
pp. 6–8] and [Sieg; Schlimm, 2005, pp. 152–154].

35The idea that Peano’s metatheoretical work is – besides passing remarks on what
could be understood as categoricity and completeness – limited to independence proofs
has also been considered in [Avellone et al , 2002]. The proof of the independence of the
axioms and the recognition of the existence of alternative systems that satisfy the axioms
could be seen by Peano as the final step of his symbolisation, and not as the starting point
of metatheoretical investigations. As Pieri – who studied both with Peano and with Segre
– states, the independence of the axioms is seen as a requirement of the logically perfect
presentation of a theory [1906, p. 201]. See also [Borga et al , 1985, pp. 64–65]. That said,
Peano reflects on the consistency of the axioms of arithmetic in [1906]. See [Lolli, 2011,
pp. 60–63].
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are the fundamental questions of mathematical research, and he put the
solution of these questions at the forefront of his work.36

5. The schematic understanding of the axioms and the birth of
formal languages

Peano’s work on the symbolisation of mathematical theories, with rigour
and precision in the expression of mathematical laws as its cornerstone,
obeys methodological principles such as the use of the minimal possible
set of primitive notions and axioms. Peano believes that logically perfect
presentations of mathematical theories also involve the irreducibility of the
primitive notions of these theories and the independence of the axioms.

As we have seen in the previous section, Peano’s understanding of the
axioms involves the recognition of a multitude of systems which satisfy them,
and some of these systems are explicitly considered in his independence
arguments. The justification of the independence of the axioms in a specific
symbolisation of a mathematical theory – namely, geometry and arithmetic –
requires Peano to first disregard the meaning of the primitive terms which
occur in the axioms and secondly, to develop a collection of technical tools
related to the assumption of a model-theoretic point of view.

In this section, the importance of the technical tools developed by Peano
in his proofs of independence shall be considered. First, Peano’s view on
the use of axioms in the derivation of theorems shall be put in historical
context. Second, a collection of notions – namely formalisation, formal
language, and the model-theoretic point of view – required for a systematic
evaluation of Peano’s independence arguments shall be characterised. Third,
the connection between Peano’s schematic understanding of the axioms and
the methodology he devised to demonstrate their independence shall be
evaluated. Finally, I shall discuss whether, in his independence proofs, Peano
lays down the basic components of a formal language.

5.1. Peano’s deductivism. The investigation of the deductive relations
between the axioms brings into focus an important aspect of Peano’s view
on the nature of symbolised mathematical theories. For him, the derivation
of the theorems of a mathematical theory, once the axioms and definitions
of derived notions are formulated, is a purely logical procedure with no

36See, for instance, Hilbert’s account of the motivation of his early work on geometry
in a letter to Frege, dated December 29, of 1899:

It was of necessity that I had to set up my axiomatic system: I wanted
to make it possible to understand those geometrical propositions that I
regard as the most important results of geometrical inquiries: that the
parallel axiom is not a consequence of the other axioms, and similarly
Archimedes’ axiom, etc. I wanted to answer the question whether it is
possible to prove the proposition that in two identical rectangles with
an identical base line the sides must also be identical, or whether as in
Euclid this proposition is a new postulate. I wanted to make it possible
to understand and answer such questions as why the sum of the angles
in a triangle is equal to two right angles and how this fact is connected
with the parallel axiom. [Frege, 1976, p. 65]/[1980, pp. 38–39]

See also [Hilbert, 1900]. On the metatheoretical orientation of Hilbert’s work, see [Hallett,
1994], [Sieg, 2014] and [Eder; Schiemer, 2018].
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reference to the specific meaning of the propositions involved. In ‘Formules
de logique mathématique’, he states that “a demonstration is reduced to a
series of transformations, according to the rules mentioned [logical rules of
reasoning] [...]. These transformations are analogous to algebraic rules for
solving a system of equations” [Peano, 1900, p. 322].37

Peano echoes an approach that was prominent in late nineteenth-century
mathematics: deductivism. It had a significant role in the development of
non-Euclidean geometry. Advocates of deductivism defend the elimination
of all traces of intuition in mathematical proofs by disregarding the meaning
of the symbols in deductions. Pasch expresses his deductivist position in
projective geometry in Vorlesungen über neuere Geometrie:

In fact, if geometry is to be genuinely deductive, the process of

deducing must everywhere be independent of the sense of geo-

metrical concepts, just as it must be independent of figures; only

the relationships between the geometrical concepts put down in

the sentences used – respectively, definitions – should come into

consideration. [Pasch, 1882, p. 98]

The relationships between concepts are taken to be logical and thus are
established by means of logical laws.38 Pasch does not make explicit the
logical laws involved in mathematical deductions but this is precisely one
of the main aspects involved in Peano’s symbolisation of mathematical
theories.39

5.2. Formalisation and the model-theoretic point of view. Before we
consider in detail the nature of Peano’s independence arguments, it shall
be useful to clarify some terminology that shall become instrumental in the
discussion that follows. The notions of formalisation, formal language, and
the model-theoretic point of view shall be characterised, and their mutual
relations clarified.

An integral part of a formalisation is the use of a formal language. A
formal language is composed of a set of logical symbols, a set of non-logical
symbols (including variables and non-logical constants) and (possibly) a set
of auxiliary symbols. What characterises a formal language is, first, a syntax
that allows the definition of notions such as well-formed formula or atomic
formula by means of formation rules; second, a set of semantic conventions
that establish how well-formed formulas denote and how to evaluate them.
These elements presuppose the distinction between object language (i.e., the
formal language) and metalanguage (the language in which semantic rules

37See similar claims concerning the derivation of arithmetical theorems [Peano, 1889a,
p. 21]/[1973, p. 102] and geometrical theorems [Peano, 1889b, p. 81].

38See also [Pasch, 1882, p. 17]. On Pasch’s deductivism, see [Gandon, 2005] and
[Schlimm, 2010, pp. 102–107]. As Schlimm [2010, p. 103] states, soon after the publication
of [Pasch, 1882], the deductivist position defended there was considered common by Klein.

39Although Peano provides presentations of his mathematical logic from 1888 to the
last editions of the Formulaire de mathématiques and tries to make explicit the logical
principles involved in mathematical proofs and definitions, he never characterises the notion
of deduction. That said, in his mature works on logic in the late 1890s, he progressively
advances towards a fully deductive approach. I considered this matter in more detail in
[Bertran-San Millán, 2021].
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are expressed).40 I take the language of first-order logic as the paradigmatic
example of a formal language. By ‘formalisation’ I mean the translation
of a set of sentences expressed in a language L into a corresponding set of
sentences expressed in a formal language L′. Sometimes, the language L is
just a natural language (possibly extended with the non-logical constants
of a scientific language), but it is often a language with some degree of
symbolisation such as a mathematical language. The translation from L
into L′ preserves the syntactic status of the terms of L, and reformulates
the sentences of L using the logical symbols and the non-logical constants of
L′.41

The emergence of formal languages and the formalisation of mathematical
theories is usually associated with a specific perspective, which can be called
the ‘model-theoretic point of view ’.42 There are three different elements that
characterise this point of view. First, it requires a formal language, and
specifically, a set of uninterpreted non-logical constants. Second, it assumes
the notion of interpretation, which involves a universe of discourse over which
the variables range, and the possibility of assigning different meanings to
the non-logical constants. Third, it involves the notion of the satisfaction
of a formula in a specific interpretation, which in turn is dependent on the
semantic conventions of the formal language.

5.3. Independence arguments and the schematic understanding
of the axioms. From Peano’s point of view, the symbolisation of mathe-
matical theories involves, as a complementary step to their axiomatisation,
the justification of the independence of the axioms. This step moves his
approach to a metamathematical level. Peano adopts a deductivist stance
and understands the axioms as abstract postulates which can be assigned
different interpretations; this is a move which in turn is instrumental to the
solution of metatheoretical questions such as the independence of the axioms.

The best witnesses to Peano’s strategy for proving the independence
of the axioms can be found in his works on geometry. In fact, Peano
first considers the independence of the axioms of a mathematical theory in
Principii di Geometria. As we saw in Section 3.2, in the discussion that follows
his axiomatic presentation, Peano introduces an abstract understanding
of the primitive terms [1889b, p. 77]. By introducing such an abstract
understanding, Peano is making it possible to consider interpretations of
the primitive terms that involve a change in the ontology established by
elementary geometry. As a means to acquire a meaning that is independent
of their original interpretation, the primitive terms are severed from their

40On the notion of formal language, see [Church, 1956, pp. 2–68]. According to the
properties described above, I assume here that a formal language is an inductively generated
set of expressions determined by a vocabulary. For an alternative view of the expressions
of a formal language, see [Sundholm, 2002].

41Again, I do not claim to characterise a formalisation or a formal language in a standard
way. My main purpose is to fix a specific sense for these terms that can be recognised by
the reader, and to establish a secure ground for the historical analysis that follows.

42I take the phrase ‘model-theoretic point of view’ from [Demopoulos, 1994]. I essentially
share Demopoulos’ framework, even if I articulate it in a different way. See, in particular,
[Demopoulos, 1994, p. 213]. [Eder, 2019, pp. 5549–5550] and [Badesa, 2004, pp. 59–60]
offer similar accounts.
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standard geometrical meaning and seen as abstract symbols, i.e., as symbols
with no specific meaning. After the passage quoted in Section 3.2, page 10,
the following can be found:

Depending on the meaning attributed to the undefined signs 1 and

c ϵ ab, the axioms may or may not be satisfied. If a certain group of

axioms is verified, all the propositions that are deduced [from them]

will also be true, since these propositions are but transformations

of those axioms and definitions. [Peano, 1889b, p. 77]

Peano states that the meaning attributed to the primitive terms determines
the semantic value of the axioms, which in turn determines – assuming what
in contemporary terms would be referred to as the soundness of the calculus
– the semantic value of the theorems.

In Principii di Geometria, Peano does not systematically evaluate the
independence of the axioms he has introduced, although he is certainly in
possession of all the tools required for that task. He provides instead some
semantic considerations that put the focus on the satisfaction of some or
all of the axioms of linear geometry by means of interpretations that set a
domain for the variables and a meaning of the primitive terms.43 One of
the remarkable elements in Peano’s account is the fact that he considers
interpretations of the axioms of planar geometry that do not belong to
geometry, but to analysis. See, for instance, Peano’s remarks about the
satisfaction of Axiom V:

(V) a, b ϵ 1 . C. ab = ba,

Axiom V says that the segment ab is a symmetric function of a

and b. Not every relation put in place of c ϵ ab is symmetric with

respect to a and b. If a, b, c are numbers, and f(a, b) is a symmetric

function of a and b, the relation (a− b)2c = f(a, b) satisfies all the

axioms stated so far. [Peano, 1889b, p. 84]

Peano interprets Axiom V as follows:44

a, b ϵ 1 . C. c ϵ ab =c c ϵ ba.

43Peano states that according to one of these interpretations, “all the axioms preceding
X stand[.]

(X) a, b ϵ 1 . c, d ϵ a′b :

C

: c = d . ��. d ϵ bc . ��. c ϵ bd.
[T]his one [axiom X], depending on the case, may be true, or not; so it is not a consequence
of the precedent” [Peano, 1889b, p. 88]. In connection with this, Mancosu [Mancosu
et al , 2009, p. 329] claims that the first application of the method for providing proofs of
independence can be found in Principii di Geometria.

In contrast, Church [1956, p. 328, fn. 539] singles out [Peano, 1891d] as one example
of the proof of the independence of a postulate by providing an interpretation that
satisfies the remaining postulates and does not satisfy a formalisation of the postulate in
question. Church also acknowledges that the origin of Peano’s method for the proof of
the independence of postulates can be traced to Bolyai and Lobachevsky’s work on the
independence of Euclid’s parallels postulate.

44Note that, according to this interpretation, ‘=’ should be read as a biconditional. This
is justified by the following logical law, which Peano includes in Arithmetices principia
[1889a, p. xi]/[1973, p. 108]:

(51) a, b ϵ K .

C∴ a = b : = :x ϵ a . =x .x ϵ b,

where ‘a ϵ K’ means that a is a class.



PEANO’S STRUCTURALISM AND THE BIRTH OF FORMAL LANGUAGES 23

Then, the reinterpretation of the primitive terms of (V) consists of establishing
a new domain for the letters and a new interpretation of the term ‘c ϵ ab’.
According to Peano’s example, to ‘c ϵ ab’ – which, in this context, refers to
a ternary relation that is applied to c, a, and b (as if the class membership
relation ϵ and the segment formation function formed a single relation) –
a class of interpretations is assigned, determined by (a − b)2c = f(a, b).
In other words, the circumstance that a point c belongs to the segment
determined by a and b is replaced with the equation (a − b)2c = f(a, b),
where f is any function such that f(a, b) = f(b, a), for any a, b, as the
interpretation of ‘c ϵ ab’. The domain of the letters ‘a, ‘b’, ‘c’ is the set of
real numbers, and any non-logical relation or function symbol is interpreted
as a relation or operation between numbers. This involves, in particular,
the reinterpretation of the membership relation symbol ‘ϵ’, which belongs to
the language of the calculus of classes; its original meaning is dissolved in
(a− b)2c = f(a, b). That is, even if we consider a particular function in the
place of f , no component of (a− b)2c = f(a, b) can be univocally seen as the
interpretation of ‘ϵ’ in ‘c ϵ ab’.45

The kind of interpretation suggested in this example involves a level of
sophistication uncommon in the consideration of the semantic value of the
axioms of geometry in late nineteenth-century mathematics. As suggested
in Section 4.2, a reinterpretation usually involves either a generalisation
of the original meaning of mathematical terms or a restriction on their
generality. The interpretation of points as arbitrary numbers is, prima facie,
neither.46 This example, in fact, involves a switch in the ontology determined
by elementary geometry, which takes place after the primitive terms are
severed from their original meaning. It could be said that the process of
reinterpretation suggested in Peano’s example amount to, as an intermediate
step, the fact that the primitive terms cease to be substantive. If the process
of selection of the primitive terms and the formulation of the geometrical
axioms, on the one hand, and the derivation of theorems and the justification
of the independence of the axioms, on the other, are kept separate, and if
we focus only on the latter, then the reinterpretation of the primitive terms
could be seen as the assignation of a interpretation – which can be completely
unrelated to the standard interpretation established in the former phase – of
uninterpreted non-logical constants.

Peano develops his approach to the proofs of independence of the axioms
of geometry in ‘Sui fondamenti della Geometria’ [1894a]. In this work, he
applies explicitly and systematically what can be called the ‘method of

45Note that the membership relation symbol also occurs in the antecedent of Axiom V
and yet that occurrence is not reinterpreted.

46Examples of interpretation, such as the aforequoted, set a precedent for Hilbert’s
Grundlagen der Geometrie [1899]. See [Kennedy, 1972]. It is worth noting that Peano
proposes interpretations in real analysis of symbolised axioms of geometry, while Hilbert’s
axiomatisation is expressed in natural language.

Although Hilbert’s work on metatheoretical questions, such as the independence of the
axioms of geometry, could have benefitted from the work in this field done by Peano’s
school, he seemed to be unaware of the latter’s value. On Hilbert’s attitude towards
Peano’s school, specifically Padoa, see [Cassari, 2011, pp. 152–153].
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exemplification’.47 Once the axioms have been symbolised, a new interpreta-
tion of the primitive symbols of the theory is first provided, and then it is
tested whether such an interpretation satisfies all the axioms but one. Peano
characterises the method of exemplification in the following way:

One can prove the independence of some postulates from others by
means of examples. The examples intended to prove the indepen-
dence of the postulates are obtained by attributing any meaning
at all to the undefined signs, which here are the point, and the
relationship between three points expressed by c ε ab; and if it is
found that the fundamental signs, according to this new meaning,
satisfy a group of primitive propositions, and not all of them, it
will be deduced that the latter are not necessary consequences of
the former [...].

So to prove the independence of n postulates, we should provide

n examples of interpretation of undefined signs (in our case p, and

c ε ab), each of which satisfying n− 1 postulates, and not the rest.

[Peano, 1894a, p. 127]

To evaluate the independence of the first eleven postulates (the axioms of
linear geometry), Peano proposes seven interpretations [1894a, pp. 128–129].
Some of them do not belong to geometry; Peano considers interpretations
that involve rational numbers, real numbers, and integers among others.
Nevertheless, the list of examples does not suffice to prove the independence
of all eleven postulates; Peano acknowledges that the proof of independence
for some of them is lacking [1894a, pp. 129].

As suggested in Section 3.2, Peano’s procedure for the proof of the in-
dependence of the axioms of a mathematical theory consists in two phases.
First, he provides a symbolised presentation of the theory which, using the
primitive terms, includes its axiomatisation and the definition of derived
notions. In that symbolisation, Peano keeps the logical and mathematical
symbols separate. Second, the primitive terms are understood as abstract
symbols that can acquire multiple interpretations. Each interpretation deter-
mines a domain for the variables and a meaning of the primitive terms and,
as a result, the axioms – seen as postulates – can acquire a semantic value.
It is then established whether each axiom is satisfied by each interpretation.
If this second phase is isolated from the first, Peano’s remarks, that no
meaning is attached to the primitive symbols, can be understood as a tacit
assumption that the primitive terms are uninterpreted non-logical constants
that acquire several interpretations in the independence arguments. All in
all, Peano’s strategy involves the deployment of crucial techniques required
for the formalisation of mathematical theories and, to a great extent, the
acquisition of a model-theoretic point of view.

47It was not uncommon in the late nineteenth and early twentieth centuries to refer
– as Peano does – to the interpretations of the axioms that are used in independence
arguments as ‘examples’. In the first volume of Vorlesungen über die Algebra der Logik,
Schröder states that the impossibility to demonstrate a proposition from others – i.e.,
to prove its independence – can be shown by means of exemplification (Exemplifikation)
[1890, pp. 286–287]. Similarly, Hilbert and Huntington refer to the interpretations that
satisfy a group of axioms of geometry as ‘examples’. See [Hallett; Majer, 2004, p. 306] and
[Huntington, 1913, pp. 548–554], respectively. See also [Peano, 1899, p. 30].
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The method of exemplification adopted by Peano, or proofs of independence
of the axioms of geometry in general, are not really uncommon in late
nineteenth-century geometry. Peano’s novelty is the justification of the
independence of symbolised axioms, and the exploitation of this symbolisation
to establish a clear connection between the interpretation of the primitive
terms and the satisfaction of the axioms. In this sense, Peano’s development
of a logical language and a logical apparatus that can be effectively used
for the resolution of metatheoretical questions such as the independence
of the axioms of arithmetic and geometry is unprecedented in the late
1880s. Peano’s metatheoretical contributions would be impossible without
the symbolisation of geometry and arithmetic, the separation between logical
and non-logical symbols that these symbolisations involve, and the use of
non-logical constants. After Peano’s work, model theory proper lays just a
step ahead; a step which consists in the explicit formulation of a fully formal
language.

5.4. The birth of formal languages. In the previous section, I analysed
Peano’s use of some of the primitive symbols of the language of the calculus
of classes as non-logical constants. Peano had established a clear distinction
between logical and mathematical distinctions since his first expositions of
mathematical logic. The abstract understanding of a primitive term such as
‘c ϵ ab’ – which includes a class-theoretical symbol – can be seen as a further
step towards the formalisation of the calculus of classes and the creation of
a formal language. As a means to determine whether Peano was ready to
take that step, his account of the independence of the axioms of the calculus
of classes shall be studied. Peano’s methodology in these proofs can be
connected with the algebra of logic tradition; specifically, it can be linked
with Schröder’s axiomatisation of the calculus of classes and compared to
Löwenheim’s construction of a formal language in the second decade of the
twentieth century.

In a lecture given at the 53rd Meeting of the British Association for
the Advancement of Science [1884a], Schröder announced that one of the
distributive laws was independent of the calculus of classes, claiming that
this law could not be proved from the definitions of the sum, the product,
the modules 0 and 1, and the properties of the subsumption. Although by
1884 the calculus of classes had not yet been axiomatised, Schröder, in a
parallel lecture at the same congress, offered an overview of a “calculus with
algorithms or calculesses” [1884b]. In the first volume of Vorlesungen über
die Algebra der Logik [1890], he axiomatises the calculus of classes and shows
the independence of the aforementioned distributive law from the first seven
axioms of the calculus – in fact, showing the independence of two distributive
laws – by providing two interpretations that satisfy the axioms and do not
satisfy the laws [1890, Anhänge 4–6, pp. 617–699].48

Schröder’s proof is the first application of an independence proof to the
calculus of classes. The importance of this fact lies in the field in which the
method of independence proofs is applied: in the late nineteenth century the

48On Schröder’s calculus of classes and the independence of the distributive laws, see
[Huntington, 1904, p. 291, 297–305]. On Schröder’s proof of independence, see [Badesa,
2004, pp. 21–25], [Mancosu et al , 2009, p. 375], [Peckhaus, 1994] and [Thiel, 1994].
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calculus of classes was taken to be part of logic, as Peano witnessed in his
presentations on mathematical logic.49

Peano knew Schröder’s proof; he praised it in his review of the first volume
of Vorlesungen über die Algebra der Logik [Peano, 1891e, p. 116]. Actually,
in a footnote, Peano reconstructs Schröder’s argument of the independence
of the law (a ��b)c Cac ��bc from the other axioms of Schröder’s calculus of
classes. In this reconstruction, Peano uses the resources of his mathematical
logic. In a preliminary step, Peano introduces the primitive terms of the
calculus of classes as uninterpreted symbols:50

Consider a system of entities S; suppose that a relation between
entities a and b, which we will denote by a

C∗ b, is defined (the sign

C∗ refers to any relation; we keep the sign

C

to denote deduction).
Suppose that it is reflexive and transitive [...], i.e., that we have

a

C∗ a

a

C∗ b . b

C∗ c :

C

. a

C∗ c.

Then suppose that given two entities a and b of the system, an
entity a ��∗ b is determined such that, whatever c is, we have:

c

C∗ a ��∗ b . = : c

C∗ a . c

C∗ b

and another entity a ��∗ b such that

a ��∗ b C∗ c : = : a

C∗ c . b

C∗ c.

[Peano, 1891e, p. 117]

There is a clear effort by Peano towards the formalisation of the propo-
sitions which express the basic properties of class inclusion, union, and
intersection. Note that there is no indication of the domain involved; Peano
does not fix a specific ontology, and possible interpretations of the letters
and of the terms considered are left undetermined. In the context of the
proof of the independence of the distributive law, the class theoretical terms
‘ C’, ‘��’ and ‘��’ are replaced with the non-logical constants ‘ C∗’, ‘��∗’ and ‘��∗’,
respectively. The use of specific notation – or, better, the use of the asterisk
as a distinctive notational device – helps Peano distinguish interpreted and
uninterpreted symbols. In fact, directly after the passage quoted above,
Peano provides possible interpretations of ‘ C’, ‘��’ and ‘��’ which satisfy the
properties stated in the passage and the distributive law. As a result, the
formulas included in the last quote should be seen as a formalisation, or at
the very least, as a proto-formalisation.

49Peano never offered a characterisation of the notion of logic. That said, from his very
first presentation of a system of logic in Arithmetices principia to his mature publications
on the subject, he always divides mathematical logic into the calculus of classes and the
calculus of propositions. Moreover, when he lists the symbols of logic, he always includes
the symbols of the calculus of classes among them (and not only those symbols that are
common to both calculi, such as ‘

C

’). See [Peano, 1889a, p. 28]/[1973, p. 103] and [Peano,
1900, p. 311].

50Note that, in contemporary terms, Peano’s formulas could be seen as:

∀aRaa,∀ab((Rab ∧Rbc) → Rac)

∀abc(Rcfab ↔ (Rca ∧Rcb))

∀abc(Rgabc ↔ (Rac ∧Rbc)),

where ‘R’ is a binary relation symbol, and ‘f ’ and ‘g’ are binary function symbols.
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Despite the unprecedented character of Peano’s account, he does not seem
to make much of it. After all, the aforequoted passage belongs to a footnote
in a review, and Peano might have thought that he is only reformulating
Schröder’s proof. More importantly, Peano does not have a systematic goal
in mind; in this context, he shows no interest in the formalisation of the
whole calculus of classes or in any metatheoretical consideration besides the
independence of this specific distributive law.

In fact, Peano never fully exploited the formalisation of fundamental propo-
sitions in the calculus of classes. He restricted these kinds of considerations
to independence arguments. Almost ten years after his reformulation of
Schröder’s proof of the independence of the distributive law, in ‘Formules
de logique mathématique’, Peano considers again the independence of the
distributive law which, on this occasion, is also an axiom of his calculus of
classes [1900, p. 336]. In Peano’s words:51

(P3 · 01) a, b, c ε Cls . ⊃ . a(b ��c) ⊃ ab ��ac Pp

This P [proposition] is not a consequence of the previous P [Propo-

sitions]. To recognise its independence, it suffices to give the signs

Cls, ��, ��an interpretation that satisfies the previous P, but not

this one. Consider points; by Cls we indicate the convex classes of

points, namely the u such that Medu = u; the sign ��retains its
value; then, by Df [Definition] 1 · 0, a ��b indicates “the smallest

convex class that contains a and b”. It is easy to see that the

preceding propositions of §��remain, and also the duals, but not

the new ·01 [P3 · 01]. Therefore, following the organisation we

have chosen here, we must consider it as a “primitive proposition”.

[Peano, 1900, p. 336]

Peano takes primitive and derived symbols of the calculus of classes, such
as ‘��’ or ‘��’, and considers them as reinterpretable relation symbols. He also
suggests an alternative domain of interpretation of the variables. Note that
although the first occurrence of ‘⊃’ in (P3 · 01) corresponds to a conditional
and is thus a logical symbol, the second occurrence corresponds to the
subsumption relation and is specific to the calculus of classes. Peano does
not suggest a reinterpretation of ‘⊃’ which retains its meaning as a relation
between classes; in fact, had he given such an interpretation, he would have
realised the inconvenience in this context of using a single symbol both as
a logical symbol and as a relation symbol, i.e., to express both a logical
relation and a relation between classes, as he had done in his review of the
first volume of Schröder’s Vorlesungen über die Algebra der Logik [1891e]. As
a result, only some of the non-logical symbols of (P3 · 01) are reinterpreted
and thus the formalisation of this axiom is only partial. Accordingly, Peano
does not achieve a complete abstraction from the mathematical theory –
i.e., the calculus of classes – to which this primitive proposition belongs. In
the previous section, I explained that in Principii di Geometria, Peano uses

51The interpretation Peano puts forward to show the independence of (P3 · 01) is almost
the same to one of the two he had given in [Peano, 1891e, p. 118]. However, on this
occasion he does not perform the preliminary step of sharply separating the logical and
the class-theoretical uses of the symbols ‘��’ and ‘⊃’ in the axiom.
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the membership relation symbol ‘ϵ’ as a non-logical constant. However, in
contrast to his methodology in the review to the first volume of Schröder’s
Vorlesungen über die Algebra der Logik, neither in Principii di Geometria nor
in ‘Formules de logique mathématique’ does Peano provide specific symbols
for the logical connectives; he represents them using ‘��’, ‘��’ and ‘�’, which
are also used to express class-theoretic operations.

Peano developed a logical language by means of which quantification
can be adequately rendered. This logical language can be enlarged with
symbols – including some of those belonging to the language of the calculus
of classes – which are effectively used as non-logical constants. However,
the use of symbols such as ‘⊃’, ‘��’ or ‘��’ to express both logical relations
and also class-theoretical relations, blurs the distinction between logical and
non-logical symbols.52 This exposes Peano’s lack of a complete separation
of interpreted and formal language in ‘Formules de logique mathématique’
[1900]. This could be explained by Peano’s motivations. After all, his proofs
of the independence of specific axioms of geometry or the calculus of classes
do not require a complete separation between logical and class-theoretical
language. According to a contemporary perspective, the calculus of classes
is not a logical theory, but – as I have suggested in Footnote 49 – there is no
reason to think that Peano also held this idea.

The technical tools required for metatheoretical investigations increased
with the growing sophistication of the questions studied. The first example
of the use of a formal language proper can be found in 1915. In ‘Über
Möglichkeiten im Logikkalkül’ [1915] Löwenheim effectively formalises all
the axioms of the calculus of classes in a first-order language, and such
a formalisation is instrumental for the proof of the result known as the
Löwenheim-Skolem theorem.53 See, for instance, the first two axioms of the

52Peano does not confuse the two meanings attributed to the symbols of his mathematical
logic. See, for instance, how he introduces the symbol of the intersection between classes
in ‘Formules de logique mathématique’:

a, b ε Cls . ⊃ :x ε a ��b . = .x ε a . ��.x ε b.

The equality is a Df? (possible definition), because the sign ��occurs
in the first member between Cls [classes], and in the second between P
[propositions]. If its value between P is assumed to be known, the value
of the formula x ε ab will be deduced [. . . ].

Conversely, if the product ab of two Cls is considered a primitive
idea, the value of the logical product between the P x ε a and x ε b
will be deduced. However, the Hp [hypothesis] a, b ε Cls, by P2 · 0
[a ε Cls . ⊃ :x, y ε a . = .x ε a . y ε a] already is the logical product of
two P. [Peano, 1900, pp. 324–325]

Peano wants to take advantage of the analogy between the calculus of classes and the
sentential calculus, and encapsulate in a single symbol what is expressed informally as two
different relations. See also [Peano, 1896–1897, p. 573]/[1973, p. 197].

53On Löwenheim’s formalisation of the axioms of the calculus of classes, see [Badesa,
2004, pp. 60–71]. See also [Goldfarb, 1979, pp. 354–356]. Even though Löwenheim
successfully formalises this calculus in [1915], Goldfarb claims that he “lacks a general
notion – even of semantic kind – of a formalized mathematical theory” [1979, p. 355].
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calculus of classes:

a a,(I)

(a b)(b c) (a c),(II)

and Löwenheim’s formalisation [1915, p. 457]/[van Heijenoort, 1967, p. 240]:∏
a

saa = 1,(I) ∏
a,b,c

sabsbc sac,(II)

where ‘s’ is a binary relation symbol, ‘ ’ the conditional and ‘
∏

a’ is a
universal quantifier that bounds a.

By formalising the calculus of classes, Löwenheim shows that the theory of
relatives – developed by Schröder in the third volume of Vorlesungen über die
Algebra der Logik [1895] – includes a formal language. The relation symbol
‘s’ of this formal language, which takes the place of the relation symbol ‘ ’
(when it is used as a relation symbol that belongs to the language of the
calculus of classes), is clearly uninterpreted and can thus be considered a
true non-logical constant.54

6. Concluding remarks

The profound changes that shaped the evolution of late nineteenth-century
mathematics reflect the innovative work of mathematicians of that time.
Peano’s contributions put him at a turning point, in which a vindication of
rigour imposed axiomatic presentations that, in turn, eased the investigation
of metatheoretical issues. These innovations required in many cases the
acquisition of a structuralist mindset. Moreover, they were not the result of
the work of a single mathematician. Peano’s work was informed not only
by other Italian mathematicians, but also by German mathematicians such
as Pasch, Grassmann, and Dedekind. In this paper, by studying Peano’s
construction of geometry and arithmetic, I have provided textual evidence
that supports the claim that Peano was in several important respects a
methodological structuralist.

In the first part of the paper, I have argued that in his symbolisations of
arithmetic and geometry Peano focussed on the specification of the relational
features of the systems of objects of these theories. For Peano, the primitive
notions of geometry and arithmetic are specific entities, but cannot be defined
or even elucidated. Accordingly, arithmetic and geometry have to begin
in axioms, which express the structural properties of the system of objects
constituted by the primitive notions. In this sense, it can be said that Peano
fulfils the first requirement of a minimal methodological structuralism.

54According to what has been discussed – and particularly in the light of the comparison
between Peano and Löwenheim’s formalisations – I cannot agree with Cassari’s claim that
“Peano’s [proposal] [...] involves – and this is actually the first time it has happened – two
fundamental metalogical concepts: that of formal language and that of the model of a
formal system” [2011, p. 145]. Unfortunately, Cassari does not provide textual evidence in
support of his claim.
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In the second part of the paper, I have claimed that Peano’s construction
of arithmetic, despite substantial similarities, should be distinguished from
Dedekind’s. First, for Peano, the system of natural numbers is given and
not created by abstraction. More importantly, Peano’s construction of
arithmetic starts with axioms and not with explicit definitions and, in fact,
his axiomatisation should not be identified with a higher-level definition such
as Dedekind’s definition of a simply infinite system. The terms involved in
Peano’s axiomatisation of arithmetic are not presented as bound variables
but as non-logical constants. Therefore, his approach can be better framed
as a schematic axiomatisation.

Lastly, by studying Peano’s use of this schematic axiomatisation in the
independence proofs, I have justified that Peano considered a multitude of
systems that have the structural properties expressed by the axioms. He
adopted a deductivist approach according to which the axioms are seen as
formal postulates. Moreover, his proofs of independence involve considering
alternative interpretations of the primitive terms which, in turn, determine
systems that satisfy the axioms. Peano thus also satisfied, to a great extent,
the second requirement of a minimal methodological structuralism. The
symbolisations of arithmetic and geometry Peano provided are, in the contexts
of these independence proofs, instrumental for the development of a model-
theoretical point of view, and also show that Peano fell short of producing a
formal language.
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Berlin: Adolph Enslin.

Hallett, M. (1994). Hilbert’s Axiomatic Method and the Laws of Thought.
In George, A. (Ed.), Mathematics and Mind, Oxford: Oxford University
Press, pp. 158–200.

Hallett, M.; Majer, U. (Eds.) (2004). David Hilbert’s Lectures on the
Foundations of Geometry, 1891–1902. Heidelberg: Springer.

Hilbert, D. (1899). Grundlagen der Geometrie. Leipzig: G. Teubner.
Reedition in Hallett; Majer [2004], pp. 436–525. English translation by E.
J. Townsend in [Chicago: Open Court, 1902].

Hilbert, D. (1900). Mathematische Probleme. Nachrichten von der
königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-
physikalische Klasse, 3, pp. 253–296.

Huntington, E. V. (1904). Sets of independent postulates for the algebra of
logic. Transactions of the American Mathematical Society, 5, pp. 288–309.

Huntington, E. V. (1913). A set of postulates for abstract geometry,
expressed in terms of the simple relation of inclusion. Mathematische
Annalen, 73, pp. 522–559.

Kennedy, H. C. (1972). The Origins of Modern Axiomatics: Pasch to
Peano. The American Mathematical Monthly, 79 (2), pp. 133–136.

Klev, A. (2011). Dedekind and Hilbert on the Foundations of the Deductive
Sciences. The Review of Symbolic Logic, 4 (4), pp. 645–681.



PEANO’S STRUCTURALISM AND THE BIRTH OF FORMAL LANGUAGES 33

Lolli, G. (2011). Peano and the Foundations of Arithmetic. In Skof [2011],
pp. 47–66.

Löwenheim, L. (1915). Über Möglichkeiten im Relativkalkül.Mathematische
Annalen, 76, pp. 447–470. English translation by S. Bauer-Mengelberg in
van Heijenoort [1967], pp. 228–251.

Mancosu, P. (2018). Definitions by Abstraction in the Peano School. In
Giordani, A.; de Florio, C. (Eds.), From Arithmetic to Metaphysics:
A Path Through Philosophical Logic, Berlin: de Gruyter, pp. 261–288.

Mancosu, P.; Zach, R.; Badesa, C. (2009). The Development of Math-
ematical Logic from Russell to Tarski, 1900-1935. In Haaparanta, L.
(Ed.), The Development of Modern Logic, Oxford: Oxford University Press,
pp. 318–470.

Marchisotto, E. A. C.; Millán Gasca, A. (2021). Mario Pieri’s View
of the Symbiotic Relationship between the Foundations and the Teaching
of Elementary Geometry in the Context of the Early Twentieth Century
Proposals for Pedagogical Reform. Philosophia Scientiae, 25 (1), pp. 157–
183.

Pasch, M. (1882). Vorlesungen über neuere Geometrie. Leipzig: G. Teubner.
Peano, G. (1888). Calcolo geometrico secondo l’Ausdehnungslehre di H.
Grassmann, preceduto dalle operazioni della logica deduttiva. Turin: Fratelli
Bocca. Partial reedition in Peano [1958], pp. 3–19. Partial English transla-
tion by H. C. Kennedy in Peano [1973], pp. 75–100. English translation in
Peano [2000].

Peano, G. (1889a). Arithmetices principia nova methodo exposita. Turin:
Fratelli Bocca. Reedition in Peano [1958], pp. 20–55. English translation by
H. C. Kennedy in Peano [1973], pp. 101–134. Partial English translation
by J. van Heijenoort in van Heijenoort [1967], pp. 83–97.

Peano, G. (1889b). Principii di Geometria Logicamente Esposti. Turin:
Fratelli Bocca. Reedition in Peano [1958], pp. 56–91.

Peano, G. (1890a). Les propositions du cinquième livre d’Euclide, réduites
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