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Abstract: How does causation in the physical world relate to implication in logic? This article presents 
implication as fundamentally a relation of inclusion between propositions. Given this, it is argued that an event 
cannot “causally imply” another, also given the laws of nature. Then, by applying the notion of inclusion to 
physical objects, a relation “possible with respect to” is developed, which generates a partial order on sets of 
such objects and is independent of time. Based on this, it is shown that changes of physical objects in time (at 
any rate, a great many of them) imply, and thus counterfactually depend on, what we call “causes”—an 
asymmetric dependence which is robust despite the perspectival nature of the concept of “cause”.  
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That there is an analogy between logical implication and the relation between cause and effect 
has been noticed since antiquity. Despite this, the precise relationship between the two has 
never, I think, been fully understood. It is clear that material implication does not adequately 
capture the cause-effect relation, since it holds also between causally unrelated propositions. 
The same is true for strict implication, understood as the combination of material implication 
with the necessity operator, which holds, for example, between the propositions “2+2 = 5” 
and “it is raining” (whether or not it really is raining). A widespread and influential idea, 
however, is that it is natural law which guarantees that effects are implied by their causes. 
This idea—which in the following will be called “natural law implication”—has been spelt 
out, in various ways, by McTaggart (1915), Lewis (1973, esp. 563-4 and 559), Weizsäcker 
(2002, 86-88), and in the deductive-nomological model of Hempel and Oppenheim (1948), to 
name but a few. It seems to me to be one of the odd quirks in the history of philosophy that 
natural law implication has often been used to explicate the logically converse notion of 
counterfactual dependence of an effect on its cause (e.g. Lewis 1973, 560-1), a confusion 
present already in Hume’s thought (cf. the remark in Menzies and Beebee 2019, section 1).  

In what follows, I will argue that a theoretically and empirically adequate account of the 
relationship between causation and implication can be given by viewing implication as a 
relation of inclusion. That is, the simple notion of being “in” will serve as the needed bridge 
between logic and causation (on this notion, cf. Strumia 2012). To that end, I will first 
introduce this view of implication. This will then be used to investigate whether an event can 
“causally imply” another, and in particular, whether natural law implication is tenable. 
Finally, it will be asked whether, and in what sense, events can be said to depend 
counterfactually on causes. 

Some notes on terminology before we move on:  



I will use collections, denoted by square brackets [...] , rather than sets. Collections work like 
sets, with two important differences: 1. Only a collection of two or more entities is an entity in 
its own right, whereas a singleton collection is identical to its constituent, i.e. [x] = x, for any 
x. 2. There is a relation “included in” which, unlike the set-theoretical “element of”, is 
transitive. Thus, given, say, the collection M :=  [x, [y, z]] , both x and [y, z] are included in M, 
as also are y and z, whereas [x, y] is not. In addition, given a collection C, a “sub-collection” 
will be a collection C’ of objects which are included in C. For example, [x, y] is a sub-
collection of M.  

The notions of collection and inclusion can be extended, in particular, to propositions: By 
point (1), any atomic proposition is included in itself. In addition, any conjunction Q := q1 ˄ 
... ˄  qn is a collection of propositions, which can therefore also be written as [q1, ..., qn]. 

Finally, let x be a concrete particular, such as a physical object, or an event. Then, “x” will 
denote “x exists”. This device will allow switching easily from the level of concrete 
particulars to that of propositions in order to use the tools of propositional logic. For example, 
“x implies y” is not a well-formed expression (concrete particulars cannot imply one another), 
but we can write “x implies y”. 

1. Implication as inclusion  
There is an obvious connection between inclusion and implication via the notion of sub-
collections (or alternatively, subsets): for any sub-collection G of a collection F, and for any 
x, if x is in G, then it is in F. I will go beyond this and assume that implication just is a 
relation of inclusion between propositions. This leads to the fundamental principle: 

FP: Any proposition implies all and only the propositions included in it.  

This extremely simple interpretation of implication is consonant with its etymological sense 
of “enfolding”. I will use the symbol “→” for implication thus understood. The advantage of 
this interpretation is that no unrelated statements are connected by →, a motif shared by 
relevance logic (see e.g. Andersen and Belnap 1975, ch. 1, §3; Ferguson 2017, ch. 1), and 
connexive logic (see e.g. McCall 1966). But doesn’t FP limit implication to abstract relations 
of inclusion between propositions, thereby making it too strong to account for causal 
connections? Before addressing this point (in sections 2 and 3), I will first spell out what this 
interpretation means, without however attempting a complete characterization of it: 

First, any atomic proposition implies only itself. Any conjunction Q := q1 ˄ ... ˄  qm (where 
the qi’s are atomic propositions) will be taken to be a proposition only if it is non-
contradictory, i.e. for all i and j, qi ≠ ¬qj, since I assume (for broadly Aristotelian reasons) that 
otherwise it is not only analytically false, but also meaningless. Any composite proposition of 
the form P = p1 ˄ ... ˄  pn implies only and all of the 2n combinations of pi’s. Thus, “I know it 
is raining” → “it is raining”, because the former is a composite proposition including the 
latter, plus certain epistemic conditions. Similarly, for a composite object S = [s1 , ... , sn] , 
where the si’s are constituents, S → si , for any i.  

It is straightforwardly seen that “→” has the following properties: A truth never leads to a 
falsehood; a false composite proposition can, but need not, imply a true proposition; what is 



known as Aristotle’s thesis ¬(¬p → p) is satisfied; so also is Boethius‘ thesis, i.e. given (p → 
q), it is impossible that (p → ¬q).1 We can, in addition, add to our inventory a “blocking-off” 
operator |...| defined by the property that, for any p, |p| means “only p is true”, that is, p is then 
taken to represent the “totality of facts” (Wittgenstein 1995, 1.1) which obtain. Then, 
analytically (and trivially), |p| → ¬q for any q distinct from p, where “distinct from” means 
“neither identical with, nor included in”. 

Second, despite what has been said so far, we are very often justified in making claims of the 
form “p → q” also for q distinct from p. The reason is simply that we can assume background 
knowledge which need not be stated explicitly and which together with p implies q. For 
example, in the claim “you can’t live on Mars, there’s no oxygen there”, it is assumed that 
some living beings need oxygen, and that “you” is such a being. Thus, FP is not violated by 
claims of this type. 

Third, “→” admits addition: for any P and any q distinct from P, if p is a proposition included 
in P, P → p ∨ q. This would at first sight seem to fly in the face of what has been said so far, 
and it has been objected that such explosion of the content of a proposition leads to any two 
propositions sharing some content (see e.g. Gemes 1994; Ferguson 2017, 4-8; cf. Stepanov 
2004, 1). To this, I answer that addition must be admitted, simply because p ∨ q is of course 
¬(¬ p˄¬q), which is satisfied given P. Nor does this lead to an undesirable explosion: only p 
∨ q, but not q, is implied by P, so that we cannot deduce from the truth of P whether q is true 
or false. Thus, while the closure of P under “∨”  explodes, the truth-values deducible from P 
are well-behaved. The symbols “∨ q” therefore do not add content to p any more than the 
addition of “+ 0” changes an algebraic expression (all that “∨ q” does is to produce in the 
hearer a mental representation of q’s subject matter, but it asserts nothing whatsoever about 
that subject matter). But if there is no extra content, it is legitimate to view p ∨ q as included 
in P.  

Fourth, let F be a variable denoting a real intrinsic property, I a collection containing indices 
for these properties written as i, and J a sub-collection of I whose members are written as j. 
Then, if S:= [x:∩i Fix] and S’:= [y:∩j Fjy], for all z, the proposition ∩i Fiz, by which z is in S, 
includes the proposition ∩j Fjz, by which z is in S’. Thus, for example, “Fred is a thrush” 
includes “Fred is a bird”, since “thrush” includes “bird” in its definition. In this way, a 
relation of inclusion between property collections translates into a relation of inclusion, and 
hence of implication, between propositions. 

2. Is sufficient causation possible? 
According to sufficient causation, there are distinct concrete particulars c and e—conceived of 
as “cause” and “effect”, respectively—such that c ⇒ e, where ⇒ denotes some type of 
implication. c and e may be two events, or states of affairs, or objects. The obvious problem 
with this picture is that prevention of e can never be ruled out, in which case we get c ˄ ¬e, 
thereby ruining the implication, whatever its type. Simple as this point is, it is in my view still 
often not enough appreciated how far-reaching it is (cf. Anscombe 1971, 147). For example, 

                                                 
1 By contrast, neither thesis holds if contradictory antecedents are allowed, as is easily seen. Cf. on this point 
Priest (2008, 178-9). 



even death as the consequence of beheading—seemingly an unproblematic case of the type “c 
⇒ e” (cf. McTaggart 1915, passim; Hume 2000, VIII, 1, 19)—can in principle be prevented 
(cf. Shewmon 2007).  

Behind the problem of prevention in the empirical world is, I submit, a logical gap: c and e 
are supposed to be distinct particulars. But if implication is inclusion, it cannot be the case 
that c implies e, because it does not include e (cf. Wittgenstein 1995, 5.135–5.1361). This is 
true also if c is, à la Mackie (1974), an entire causal condition, rather than just a little local 
particular. Similar reasoning also shows why natural law implication is, strictly speaking, 

impossible: Let L be a true conjunction including laws of nature, either currently known ones 

(such as Maxwell’s equations, or the rules of quantum chromodynamics), or even “ultimate” 

laws of nature, if such there be. Natural law implication would then give c ˄ L ⇒ e. But L 

does not include e any more than c does, and so the left-hand side cannot imply the right-hand 
side. Natural law therefore cannot fill the gap between distinct concrete particulars.     

3. Counterfactual dependence 
Events are changes of entities as their substrate. They are not isolated happenings, but rather 
happen “to something”. This, at any rate, applies either to all events, or at least to a great 
many of them (cf. Esfeld 2011, 35). Insofar as it does, events counterfactually depend on 
something in some sense “other” than their substrate, a dependence which will now be 
derived on the basis of implication as inclusion. I will limit myself to doing this for relatively 
macroscopic physical objects with classical, not quantum-mechanical, identity conditions (cf. 
Lowe 2003, 78)—say, bacteria, rocks, or galaxies—in order to arrive at a simple model. 

Consider, first, an entity a whose identity criteria are given by the collection [c1, ... ,cn ] : any 
entity x is a if and only if it satisfies each ci. The ci’s can refer, for example, to material 
constituents, sortal criteria (e.g. “is a mammal”), or qualitative properties. Of course, it is 
notoriously difficult to specify which criteria apply for a given entity. But for what follows, it 
matters only that some apply—an assumption which must be made in both everyday life and 
scientific practice, since otherwise it would not be possible to describe the evolution of self-
identical objects in spacetime. We can now add to a specifications d1, ... ,dm, obtaining [c1, ... 
,cn , d1, ... ,dm] , where the dj’s again refer to intrinsic properties of some sort (e.g. “is green”) 
or to constituents (e.g. “contains iron”). Entity [c1, ... ,cn , d1, ... ,dm]  satisfies the identity 
criteria for a. Thus, a comes with a basic modality, that is, a potential to be in different states, 
where a “state” of a is any x satisfying [c1, ... ,cn ] , with or without some specification. This 
basic modality is simply a consequence of a’s definition. Given this, it is easy to see that the 
Leibniz principle holds—indiscernibles are identical—but not its converse.   

Consider now the simple case of a physical object a with the following identity criterion: any 
x is a if and only if it includes s1 , ... , sn, where the si’s are material constituents. Suppose now 
that two states of a exist: the collections [s1 , ... , sn]  and [s1 , ... , sn, t] , for some material 
constituent t. No time order of these two states is assumed, that is, the former may exist before 
the latter, or vice versa. The existence of two states of an entity, independently of their time 
order, will in what follows be called a “proto-change”, whereas a “change” has a definite time 
order. We now obtain the following simple syllogism, where again underlining symbolizes 
“exists”: 



1. [s1 , ... , sn] . 
2. [s1 , ... , sn, t] . 
3. t .                                                                                                      (from 2, using “→”)   
4. |[s1 , ... , sn] | → ¬t.                                                    (using the “blocking-off” operator) 
5. ¬ |[s1 , ... , sn] |.                                                                            (3 and 4, modus tollens) 

In step (4), if we augment the left-hand side by any entity u which does not include t, writing 
|[s1 , ... , sn], u|, we likewise get ¬t. Therefore, given (1) and (2), there must be a collection T 
including t, whether it does so properly or improperly. In the latter case, T = [t] = t . T cannot 
always be included in a, since otherwise, a’s state [s1 , ... , sn]  could not exist, and must 
therefore, at least in some of its states, be distinct from a. But given this, we can now extend 
the meaning of “→” itself, and write: [s1 , ... , sn] ˄ [s1 , ... , sn, t] → T: t is included in T ˄ T 
≠ a.  

I will call T an “aition” of t. το αἴτιον is the Greek word for “cause”, but in its etymological 
sense, an αἴτιον of x is simply something which has x as its part (αἴσα) (Gemoll and Vretska, 
2006, “αἴτιοϛ”). It is in this latter sense that I use “aition” here and in what follows. In the 
case considered above, the proto-change of an object depends counterfactually on a suitable 
aition. 

In which other cases is there similar counterfactual dependence? To explore this, I will first 
define: An entity y will be called “possible with respect to” an entity x if ¬(|x| → ¬y), and 
“impossible with respect to” x otherwise. The condition ¬(|x| → ¬y), in turn, will hold if and 
only if y can be obtained given that, and only that, which is included in x. Thus, in the above 
example, [s1 , ... , sn, t]  is impossible with respect to [s1 , ... , sn] , but not conversely. When 
two states of an object exist such that at least one is impossible with respect to the other, this 
depends counterfactually on an aition of that which per se differentiates the two states. Given 
this, some proto-changes depend counterfactually on something distinct from the object in 
question, and some do not. Consider the following examples: 

Proto-change of an object in its rest mass, total energy, and momentum depends 
counterfactually on a corresponding aition distinct from the object. This is because these three 
are real quantities, and on the Dedekind construction, any two real numbers x and y are sets 
such that, if x > y, then any element of y is also one of x, but not conversely (see e.g. Holmes 
2012, 94-96). Thus, on our terminology, everything in y is included in x, but not conversely. 
Then, given an object a having two states with rest masses m* and m~ such that m* > m~, 
|m~|→¬m*, but not conversely, so that m* is not possible with respect to m~, whereas m~ is 
possible with respect to m*. This proto-change therefore implies that there is a distinct aition 
of the mass difference. And analogously for a’s total energy in a given frame of reference. As 
for momentum, if a has two momentum states p* and p~ such that in one frame of reference 
p* > p~, there is always a coordinate transformation which reverses the inequality. Hence, 
each state can legitimately be viewed as “greater than” the other, so that now, neither 
momentum state is possible with respect to the other. The existence of the two states therefore 
implies an aition of the momentum difference.   



On the other hand, consider an object composed of several sub-objects, such as A := [U, V, 
W]. Here, let U be in a state u := [u1, ... , ul], V in a state v := [v1, ... , vm], and W in a state w 
:= [w 1, ... , wn] , where the indexed objects are material constituents and l, m, and n are natural 
numbers. Consider, now, any entity obtained by recombination of constituents included in A, 
such as u’ :=  [u1, ... , um, vk] , where 1 ≤ k ≤ m. We find that ¬(|A|→¬u’) , so that u’ is possible 
with respect to A. Of course, u’ is not possible with respect to u. Thus, the existence of u’ 
depends counterfactually on an object distinct from U, but not on an object distinct from A. 
But A-with-u and A-with-u’ are different states of A. Thus, for a composite object, not all 
proto-changes depend counterfactually on something distinct from it. This means, in 
particular, that an object can have two qualitatively different states which are possible with 
respect to each other. After all, the recombination of A’s constituents can result in a difference 
in qualities such as colour, opacity, or conductivity. Hence also, quantitative measures of such 
qualities may differ for two states which are possible with respect to each other. For example, 
A-with-u and A-with-u’ may have different electrical conductivities. The case of such 
quantitative measures is therefore different from those of mass, total energy, and momentum 
considered previously.   

Also, two entities may be impossible with respect to each other. For example, this is true of 
[s1 , ... , sn, t] and [s1 , ... , sn, u] (where t ≠ u), since each contains a consituent which is not in 
the other.  

In sum, for any two non-identical entities x and y, y may be possible with respect to x, or vice 
versa, or both, or neither. The relation “possible with respect to” therefore generates a partial 
order on any set of entities. To illustrate: a complex carbon chain is possible with respect to 
the early Solar System 5 billion years ago (the former can be obtained from what is in the 
latter, with no momenta or energy from outside the Solar System requried), but not vice versa. 
The Milky Way and Andromeda galaxies are not possible with respect to each other (given 
only one, you cannot obtain the other). A cat rearranging its limbs as it falls in mid-air has 
different states which are possible with respect to each other.  

We can now analyse the change of a physical object A in time: as with proto-change, A has 
two states, but in addition, there is now a distinction between an earlier and a later state. Also, 
let “cause of x” have its “naïve”, everyday meaning: something “from which” x originates as 
its “source” (cf. Suárez 1965, XII, 2, 4). Do changes require causes, just as proto-changes 
require suitable aitia? 

From the above considerations, given a change of A there is some a included properly or 
improperly in A having two states a* and a~ such that at least one is not possible with respect 
to the other. Let a~ be that state. We now get two cases: 1. a* is before a~, as is the case, for 
example, when a acquires a constituent c. The existence of the two states depends 
counterfactually on an aition of c. Given the assumed time order, this aition is one from which 
a acquires c, and which can therefore be viewed as a cause of a’s change. 2. a~ is before a*, as 
occurs when a loses c. Then, the aition of c acquires c from a, and cannot be identified with a 
cause of a’s change. However, in this case, there is now a sub-object of a itself which 
acquires momentum in its own rest frame. But this depends counterfactually on the existence 
of an aition of this momentum from which the sub-object acquires it, i.e. on a cause of it. 



These examples illustrate how the notion of “cause” is linked, via the “from-to” distinction, to 
our temporal perspective (cf. Price 1996; Price 2007): reverse the direction of time and, at 
least in many cases, also the cause-effect relation will be reversed. However, it was seen in 
cases 1 and 2 that the change of a does indeed depend counterfactually on what we would call 
a “cause” in everyday language. This counterfactual dependence is therefore not a 
perspectival effect. Thus, we are justified in concluding, at least for the cases considered, that 
the change of a physical object implies another object as its cause. Hence, events, qua such 
changes, imply causes.  

4. Conclusion 
Implication as inclusion can, given the above, be used to understand not only relations 
between propositions and collections in abstracto, but also causation in the physical world: 
one event cannot “causally imply” another, but since there is counterfactual dependence of 
proto-changes on suitable aitia independently of time, there is also, in time, one of changes on 
causes. Causal asymmetry is therefore, I submit, much simpler than is often thought: we do 
not need to take a detour via global laws or regularities (Humeanism), or even regularities 
over sets of possible worlds (Lewisian counterfactual theories) in order to account for it. We 
need only to look, locally, at what is included in concrete objects, and what is not. 
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