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Abstract

There are two theoretical approaches in statistical mechanics, one associated
with Boltzmann and the other with Gibbs. The theoretical apparatus of the
two approaches offer distinct descriptions of the same physical system with
no obvious way to translate the concepts of one formalism into those of the
other. This raises the question of the status of one approach vis-à-vis the
other. We answer this question by arguing that the Boltzmannian approach
is a fundamental theory while GSM is an effective theory, and we describe
some circumstances under which Gibbsian calculations coincide with the the
Boltzmannian results. We then point out that regarding GSM as an effective
theory has important repercussions for a number of projects, in particular
attempts to turn GSM into a non-equilibrium theory.
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1 Introduction

Statistical mechanics (SM) is one of the pillars of modern physics. It predicts equi-
librium properties of a wide range of materials; it explains phase transitions; and it
successfully reproduces thermodynamic results. Yet things get involved as soon as
we ask what SM is. The issue is that there are two different theoretical approaches
in SM, one associated with Boltzmann and the other with Gibbs. We refer to them
as Boltzmannian SM (BSM) and Gibbsian SM (GSM) respectively. The copresence
of two different approaches would itself not be a cause for concern if it were the case
that the two formalisms were equivalent, or at least somehow inter-translatable (as,
for instance, the Schrödinger and the Heisenberg picture in quantum mechanics).
Unfortunately they are not. The theoretical apparatus of the two approaches are
fundamentally different. They offer distinct descriptions of the same physical system
and there is no obvious way to translate the concepts of one formalism into those of
the other.

GSM is the workhorse of the practitioner. It provides the tools and methods to carry
out a wide range of equilibrium calculations, which is why physicists often regard it as
‘the’ formalism of statistical mechanics.1 However, as Lavis (2005, 246) notes, when
confronted with the question of ‘what is actually going on’ in a physical system, physi-
cists are often quick to desert GSM and offer an account of ‘why SM works’ in terms
of BSM because GSM has number of features that jar with foundational accounts.
And discrepancies are not restricted to foundational issues. In non-equilibrium situ-
ations BSM is usually the theory of choice because despite many attempts to extend
GSM to non-equilibrium, no workable Gibbsian non-equilibrium theory has emerged
(see Sklar (1993), Uffink (2007) and Frigg (2008) for reviews). But how can one use
one formalism to explain the non-equilibrium behaviour of physical systems and to
give a foundational account of SM, while keep using the other formalism for everyday
equilibrium calculations?

There have been attempts to downplay the tension between BSM and GSM by ar-
guing that the two formalisms end up producing the same predictions, at least as far
as equilibrium calculations are concerned, and that discrepancies concerning founda-
tional issues is something that we can live with.2 While is is true that Boltzmannian
and Gibbsian calculations agree in some cases, this agreement is not universal. There

1Two examples illustrate this attitude. Isihara (1971) introduces the Gibbs formalism in a
chapter called ‘principles of statistical mechanics’ and the first chapter of Landau and Lifshitz’s
(1980) canonical introduction, entitled ‘the fundamental principles of statistical physics’, is dedicated
entirely to a discussion of the Gibbs formalism.

2See, for instance, Davey (2009, 566-567) and Wallace (2015, 289). Arguments for special cases
are given in Lavis (2005).
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are cases in which GSM and BSM either make conflicting predictions about a sys-
tem’s equilibrium properties or GSM remains silent (which is the case depends on
how GSM is interpreted, as we will see). The two formalisms not only differ in their
theoretical characterisation of physical situations; they are also not empirically equiv-
alent. This forecloses the escape route of non-committal pluralism, and any attempt
to understand how SM works has to offer an account of the relation between BSM
and GSM.

Somewhat surprisingly the problem of the status of one theory vis-à-vis the other has
attracted rather little attention. Where it is discussed, either it is argued that GSM
and BSM have to be reconciled (Lavis 2005) or it is suggested that GSM is the pre-
ferred formulation of SM (Wallace 2015). We are taking a different route and claim
that BSM is a fundamental theory while GSM is an effective theory. This means that
BSM provides a true description of the systems within the scope of SM; GSM offers
an algorithm to calculate values defined by the fundamental theory. The algorithm
is often easier to handle than the fundamental theory and provides result where the
fundamental theory is intractable. As every effective theory, GSM works only within
a certain domain of application. We provide a characterisation of the limits of GSM
and show that BSM provides the correct results in cases in which the two theories
disagree. This answers the question of how BSM and GSM relate to one another.

The paper is structured as follows. In Section 2 we introduce BSM and GSM and note
that they are not empirically equivalent. In Section 3 we draw a contrast between
fundamental and effective theories and argue that GSM is an effective theory while
BSM is a fundamental theory. Effective theories are not universally applicable, and
the most useful effective theories are ones for which we know the domain of applica-
bility. In Section 4 we offer sufficient conditions for GSM to provide correct results.
In Section 5 we point out that regarding GSM as an effective theory has important
repercussions for a number of projects, in particular attempts to turn GSM into a
non-equilibrium theory. In Section 6 we conclude our discussion.

We discuss SM in the setting of classical mechanics. We assume that the world is
governed by Newton’s equation of motion and that force functions are such that the
equation has unique solutions, which ensures that the resulting dynamics is deter-
ministic. This is a choice of convenience that we make to keep the technical aspect of
the paper manageable. All definitions and results that we appeal to in what follows
generalise to stochastic classical systems, and so the conclusions we reach carry over
to such systems mutatis mutandis.3 We believe that our conclusions will eventually
also bear out in the quantum context, although we note that given the current state

3Statements of these relevant definitions and results can be found in our (2017) and (2019a).
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of play in quantum SM this claim is largely speculative because no generally accepted
quantum formulation of BSM is available.4

2 Two Theories

SM describes physical systems like a gas in a container, a magnet on a laboratory
table, and a liquid in jar. From a mathematical point of view these system have the
structure of a measure-preserving dynamical system, i.e. a quadruple (X,ΣX , φt, µ).5

X is the system’s state space, which contains all states that the system’s micro-
constituents could in principle assume. For this reason the states in X are referred
to as micro-states. In the case of a gas with n molecules, X has 6n dimensions: three
dimensions for the position of each particle and three dimensions for the correspond-
ing momenta. ΣX is a σ-algebra of subsets of X, and µ is a measure on ΣX . The
evolution function φt determines how the system’s micro-state changes over time. If
at a certain time t0 the system is in micro-state x0, then it will be in state φt(x0) at a
later time t. If the system is such that the movement of its constituents is governed
by an equation of motion such as Newton’s equation, then φt is the solution of this
equation. The path that φt(x0) traces through X as time evolves is the trajectory
through x0, and x0 is the initial condition. The system is measure-preserving because
it is assumed that φt and µ are such that the measures of a subsets of X remain
invariant under φt.

At the macro-level the system is characterised by a set of macro-variables. Volume,
internal energy, and magnetisation are examples of macro-variables. From a mathe-
matical point of view macro-variables are functions hat associate a real number with
each point in X; i.e. f : X → R. If, for instance, f is the magnetisation of the system
and the system is in micro-state x, then f(x) is the magnetisation of the system when
it is in micro-state x.

BSM and GSM share this characterisation of a system; they disagree on how statis-
tical assumptions are introduced into SM and on what the observables of the theory
are. We now introduce each theory and make explicit where and how they differ.

In BSM a system is in a particular macro-state at any given time. The macro-state
is given by values of the relevant macro-variables. If, for instance, a system is char-
acterised by three macro-variables f1, f2, and f3, then the system’s macro-state is

4See Dizadji-Bahmani (2011) for a discussion.
5Throughout this introduction we aim to keep the technical apparatus to a necessary minimum.

Rigorous statements of the relevant definitions and results, as well as further references, can be
found in Werndl and Frigg (2015) and (2019b).
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defined by a particular set of values for these variables.6 Macro-states thus defined
supervene on micro-states, meaning that one cannot change the system’s macro-state
without also changing its micro-state. This determination relation is usually many-to-
one, meaning that many different micro-states are realisers of the same macro-state.
For this reason every macro-state M is associated with a macro-region XM consisting
of all micro-states for which the system is in M . For a complete set of macro-states
the corresponding macro-regions form a partition of X (meaning that the different
XM do not overlap and jointly cover X).

One of these macro-states is the system’s equilibrium macro-state. Intuitively a sys-
tem is in equilibrium when its properties do not change. As an example take a gas
in a container that is equipped with measurement devices that record its pressure,
volume and temperature. We say that the gas has reached equilibrium if the values
of these macro-variables do not change. This intuition is enshrined in thermodynam-
ics, where a system is said to be in equilibrium when all change has come to a halt
and the system’s thermodynamic properties remain constant over time (Fermi 2000,
4). Unfortunately this definition of equilibrium cannot be implemented unmitigated
in SM. The reason is that measure-preserving dynamical systems exhibit Poincaré
recurrence and time reversal invariance. This has the consequence that a system,
when its time evolution unfolds without any outside influence, will eventually return
arbitrarily close to the micro-state where it started. This means that a system that
started out of equilibrium (for instance, when the gas was confined to one half of the
container) will eventually return to that state. This may take a very long time, but
it is a given that it will happen eventually. So in the context of SM no system will
remain in any state ad infinitum.

This precludes a definition of equilibrium as the state which the system never leaves
once it has reached it. Different formulations of BSM offer different prescriptions of
how this state is singled out. We adopt the long-run residence time definition of equi-
librium which aims to come as close to the thermodynamic definition of equilibrium
as the mathematical constraints imposed by measure-preserving dynamical systems
permit (Werndl and Frigg 2015).7 The intuitive idea underlying this approach is to
define the equilibrium mocro-state of a system as the macro-state in which the sys-
tem spends most of the time for most of the initial conditions. One way to make this
intuition precise is to say that an equilibrium state is such that the system spends

6Defining macro-states thought exact values is an idealisation and in reality macro-states will be
defined through certain ranges of values. Nothing in what follows depends on this.

7For a discussion of alternative definitions see Werndl and Frigg’s (2015). Those who are familiar
with a definition of equilibrium in terms of Boltzmann’s combinatorial argument – as introduced,
for instance, in Albert’s (2000) – can rest assured that the two definitions single out the same
equilibrium state in cases where combinatorial considerations apply.
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more than half of its time in it. If mathematics was kind on us this would be the
case for all initial conditions. However, it is well known that in general there will be
initial conditions that fall out of line. So the best one can achieve is to require that
most initial conditions lie on trajectories that the spend more then half of the time
in the relevant macro-state. Formalising this idea yields the following definition of
equilibrium. Let α be a real number in the interval (1

2
, 1], and let LFM(x) be the

long run fraction of time that a system that starts in initial condition x spends in
XM . Then consider the following condition: for a given macro-state M there ex-
ists a subset Y of X so that µ(Y ) ≥ 1 − ε for a very small positive real number ε
and so that LFM(x) ≥ α for all initial states x in Y . If there exists a macro-state
that satisfies this condition, then it is the system’s equilibrium macro-state. The
corresponding macro-region XM is its equilibrium macro-region. The Boltzmannian
equilibrium value F of the macro-variable f is the value that f assumes in the equi-
librium macro-state: F = f(x), where x lies in the system’s equilibrium macro region
XM . If such an equilibrium exists, then one can prove that µ(XM) ≥ α(1− ε), which
means that the equilibrium macro-region is the largest macro-region.8

It is a consequence of this definition of equilibrium that a system is not always in
equilibrium and that it can – and in fact does – fluctuate away from equilibrium.
This marks a radical departure from thermodynamics, and so it is worth pointing
out that this is not merely a concession to the demands of measure-preserving dynam-
ical systems. Having no fluctuations at all is not only mathematically unattainable;
it is also physically undesirable. Experimental results show that equilibrium is not
the immutable state that classical TD presents us with because systems exhibit fluc-
tuations away from equilibrium (MacDonald 1962; Wang et al. 2002). Thus strict
equilibrium is actually unphysical and adopting a notion of equilibrium that allows
for fluctuations increases the empirical adequacy of the theory.

One may wonder what is ‘statistical’ about BSM. It turns out the probabilities can
be introduced in different ways into BSM. Boltzmann (1877) original idea was to
attach probabilities to macro-states themselves and postulate that the probability of
finding a system in macro-state M at time t is proportional to the measure of the
macro-region of that state: pt(M) = c µ(XM), where c is a constant. Contemporary
authors, most notably Albert (2000), attach probabilities to micro-states within a
macro-region and then use these to calculate transition probabilities from one macro-

8An alternative reading takes ‘most of the time’ to refer to the fact that the model spends
more time in the equilibrium state than in any other state, which leads to a different definition of
equilibrium. Boltzmannian equilibrium macro-states need not be unique in that a system can have
two (or even more) equilibrium macro-states if it spends equal amounts of time in each of them and
if these residence times are longer than the residence time for all other macrostates. For details see
Werndl and Frigg’s (2015)
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state to another. Either of these positions has its pros and its cons (see Frigg (2010)
for a discussion). In what follows it does not matter which of these approaches is
adopted.

The core object of study in GSM is a probability density (or distribution) ρ(x, t) over
X.9 The density ρ(x, t) reflects the probability of finding the state of a system in a
region R ⊆ Z at time t:

pt(R) =

∫
R

ρ(x, t)dx. (1)

On physical grounds the probability density must be conserved, meaning that for
every region R(t) of X that is moving forward under the time evolution φt the proba-
bility must be constant. If the time evolution is generated by Hamiltonian equations
of motion this is the case if, and only if, the Liouville’s equation holds (Tolman 1938).

Gibbs introduces what he calls the condition of statistical equilibrium (1902, 8). A
probability density is in statistical equilibrium iff it is stationary, meaning that it
does not change under the dynamics of the system: ρ(x, t) = ρ(x) for all t. Usually
there are a large number of stationary density functions for a given φt and so the
question arises which of these should be chosen to characterise a given physical situa-
tion. Gibbs showed that the so-called microcanonical distribution describes a physical
system in equilibrium when the system is completely isolated from its environment
and that the so-called canonical distribution should be used when the system is in
contact with a heat bath.10

At this point the question arises how Gibbsian ensembles connect to observations on
physical system. According to GSM, what does an experimentalist observes when
measuring, say, the magnetisation of a sample of iron? To answer this question we
first introduce the phase average 〈f〉 of a macro-variable f :

〈f〉 =

∫
X

f(x)ρ(x, t)dx. (2)

9In Gibbs’ (1902) original presentation ρ(x) is glossed as representing an ensemble, an infinite
collection of independent systems that are all governed by the same laws of motion but are in
different states. Alternative presentations endeavour to avoid reference to ensembles and regard
GSM simply as probabilistic algorithm. What follows does not depend on how interpretational
issues are settled and so we set this question aside. Different interpretations of GSM are discussed
in Frigg and Werndl (2019).

10The microcanonical distribution is a constant distribution on the system’s energy hypersurface
H(x) = E, and the canonical distribution is given by e−H(x)/kT /ζT , where H is the system’s
Hamiltonian, T is the temperature, k is the Boltzmann constant, and ζT is the so-called partition
function. For a review of different strategies of justifying the choice of these distributions see
Myrvold’s (2016), and Frigg and Werndl’s (2019).
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If the system is in statistical equilibrium, then 〈f〉 is time-independent. The standard
way to establish a connection between Gibbsian ensembles and observable results is
to appeal to the averaging principle (AP). This principle posits that when observing
the physical quantity associated with f on a system in equilibrium, then the observed
equilibrium value of f is the phase average 〈f〉. A recent review of textbooks of sta-
tistical mechanics showed that many textbooks on GSM explicitly state and endorse
this principle.11 Examples are Chandler, who calls AP ‘[t]he primary assumption
of statistical mechanics’ (1987, p. 58), and Pathria and Beale, who regard AP as
the ‘the most important result’ in SM (2011, p. 31). For this reason we base our
discussion in Sections 3 and 4 on a version of GSM that incorporates AP. There
is, however, an alternative interpretation of GSM that does not accept AP. We com-
ment on how this alternative version of GSM fits into our tale at the end of Section 3,
where we also point out that our main conclusions equally holds in this interpretation.

These brief accounts of BSM and GSM make it clear how different the two theories
are. Chief among the differences is their conceptualisation of equilibrium. BSM in-
troduces macro-states and defines the equilibrium macro-state as the macro-state in
which the system spends most of its time. It thereby explicitly allows for systems
to fluctuate away from the equilibrium state every now and then. GSM does not
recognise macro-states and instead introduces a probability density over the system’s
state space. Equilibrium is a property that pertains to the probability distribution,
and is defined as the distribution being stationary. Observable equilibrium properties
are equated with the phase averages of macro-variables, which are constant over time
if the distribution is in equilibrium.

So we seem to be in a somewhat schizophrenic situation. When we talk about ‘sta-
tistical mechanics’ it is unclear whether we mean BSM or GSM or both, and the
two are clearly not just notational variants of the same physical principles. This is
disconcerting. A first reaction might be to try to mitigate the severity of the problem
by arguing that despite their theoretical differences, the formalisms are empirically
equivalent, at least as far as equilibrium properties are concerned.

This raises the question of what it would mean for the to theories to be empirically
equivalent. The Boltzmannian notion of equilibrium is designed to mirror the ther-
modynamic notion of equilibrium, and the Gibbsian notion of statistical equilibrium
is connected to thermodynamic equilibrium through the averaging principle. This
suggests that Gibbsian phase averages, Bolzmannian equilibrium values, and ther-
modynamic equilibrium should all coincide. This provides a necessary condition for

11For an extensive discussion of this principle see Werndl and Frigg’s (2019a) and references
therein.
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the empirical equivalence of BSM and GSM. Consider a macro-variable f and let F
be the Botzmannian equilibrium value of the macro-variable f . It is then a necessary
for BSM and GSM to be empirically equivalent that

F ≈ 〈f〉 (3)

holds for all macro-variables f in all systems that fall within the scope of both theo-
ries (where ≈ means that the two values are approximately equal). We call this the
mechanical averaging principle and we refer to Equation 3 as the mechanical averag-
ing equation.12

Unfortunately it turns out that BSM and GSM are not empirically equivalent be-
cause F and 〈f〉 are not always equal, not even approximately. This means that the
mechanical averaging equation is not true in general and hence the mechanical aver-
aging principle fails. Boltzmannian equilibrium values and Gibbsian phase averages
agree for paradigmatic examples such as the dilute gas with macro-variables that
assign the same value to all states that are in the Maxwell-Boltzmann distribution
(or in a distribution that is very close to the Maxwell-Boltzmann distribution), but
Gibbsian and Boltzmannian calculations come apparat in the six vertex model and
the Ising model where Gibbsian phase averages fail to agree with Boltzmannian equi-
librium values for important maco-variables such as internal energy, polarisation, and
magnetisation (Werndl and Frigg 2019a). These are core examples of SM systems
and hence discrepancies between Boltzmannian and Gibbsian predictions cannot be
dismissed as formal contrivances at the fringes of the practice of the discipline.

3 A Tale

The failure of empirical equivalence brings to a head the problem of the status of
BSM and GSM vis-à-vis each other. It also raises the question of which prediction
is correct if they disagree. The solution to this conundrum, we suggest, lies in the
realisation that BSM and GSM are not alternative theories that are on par with
each other: BSM is a fundamental theory while GSM is an effective theory, and
in situations where Boltzmannian and Gibbsian equilibrium values come apart, the
Boltzmannian values are the correct values.

What is an effective theory? Physicist James Wells offers the following following
characterisation:

12The qualification ‘mechanical’ indicates that the principle connects two mechanical quantities,
namely equilibrium values in BSM and GSM.
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“‘Effective Theories” are theories because they are able to organise phe-
nomena under an efficient set of principles, and they are effective because
it is not impossibly complex to compute outcomes. The only way a theory
can be effective is if it is manifestly incomplete. [...] Any good Effective
Theory systematises what is irrelevant for the purposes at hand. In short,
an Effective Theory enables a useful prediction with a finite number of
input parameters.’ (2012, 1)

As examples of effective theories Wells discusses Galileo’s law of falling bodies, the
harmonic oscillator, classical gravity, and effective theories of particle masses. Hart-
mann (2001) discusses low-energy approximations to quantum chromodynamics in
nuclear physics and the BCS theory of superconductivity as effective theories.

We suggest adding GSM as a further item to this list because GSM meets Wells’
criteria. First, by characterising equilibrium in a wide array of different materials
and across different phases as an ensemble with a stationary distribution it offers an
organisation of phenomena under the umbrella of small set of principles. Second,
the principles of GSM are an efficient tool for the computation of equilibrium values.
In fact, as note earlier, in many applications it is GSM that delivers the results be-
cause it offers actionable principles and tractable methods to calculate equilibrium
values of large array of materials. Third, GSM is incomplete in a number of ways.
As we have seen in Section 1, GSM is unconcerned with the dynamics of the model.
The role of the system’s dynamics in GSM is limited to ensuring that a stationary
distribution emerges from the dynamics, but no other features of the dynamics is
taken into account. GSM considers neither equations of motion nor dynamical laws;
it completely disregards trajectories; no time averages along trajectories are studied;
and the initial conditions are left unspecified.13 In fact the Gibbs formalism does not
even distinguish between models with deterministic and a stochastic time evolution!
The Gibbsian phase averages are the same for all time evolutions that are such that
ρ is invariant over time, no matter how different they may otherwise be. The sys-
tem’s dynamics is considered immaterial to understanding equilibrium as long as it
– somehow – produces the stationary distribution that enters into the calculations.14

13Notions of this kind are sometimes considered in attempts to justify the Gibbsian formalism,
but they are not part of the formalism itself. For a discussion of justificatory endeavours see, for
instance, Sklar (1993).

14The system’s Hamiltonian is used in formulating the most common Gibbsian distributions.
But a Hamiltonian by itself does not pin down the system’s dynamics; it specifies a system’s time
evolution only when combined with an equation of motion. The same Hamiltonian can give rise to
deterministic time evolution when plugged into Hamilton’s equations of motion, or to a stochastic
time evolution when used in the formulation of a stochastic process. If we allow for the substitution
of classical variables by self-adjoint operators, we can also plug the same Hamiltonian into the
Schrödinger equation and thereby generate a quantum time evolution. The differences between
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Finally, GSM is explicit about what it regards as immaterial and about what it omits.
In this sense GSM systematises what it regards as irrelevant.

BSM is quite unlike GSM in these respects. Dynamical considerations occupy cen-
tre stage in BSM. It introduces macro-states with corresponding macro-regions, and
then defines equilibrium in explicitly dynamical terms (namely as the macro-state
whose macro region is such that, in the long run, the system’s state spends most
of its time in that macro region). As noted in the introduction, we work under the
assumption that the world is governed by Newton’s equation of motion. In such
a world the dynamics considered in BSM is the true dynamics at the fundamen-
tal level: the unabridged and unidealised dynamics with all interactions between all
micro-constituents of the system. Equilibrium results from macro-states that are de-
fined in terms of macro-variables that supervene on the true micro-dynamics of the
system, and where a system fluctuates away from equilibrium it does so as a result
of the true underlying dynamics. In a classical world the theory gives a full account
of all this - nothing is left out and nothing is averaged over. BSM tells the complete
fundamental theory of SM systems.

True complete fundamental theories cannot be wrong, which implies that the BSM
results are the correct ones when BSM and GSM disagree. Experimental results
confirm this. Consider the example of magnet with the macro-variable of total ma-
gentization m. Such system can be represented by the Ising model. Calculations in
BSM show that below the critical temperature the Ising model has two Boltzmannian
equilibrium values m = M and m = −M , corresponding to the maximum magna-
tization pointing upward and downward (Baxter 1982). The system flips back and
forth between these states spending an equal amount of time in each state, and the
frequency of the flips gets lower as the size of the system increases. GSM by contrast
yields a phase average of 〈m〉 = 0. Experimental results show that magnets indeed
flip back and forth between m = M and m = −M and the magnetisation is hardly
ever zero.

There is often a tradeoff between fundamentality and practicality, and our case is no
exception. Not only does BSM not offer an effective algorithm of computation; it is
often intractable. If one wants to find out whether a Boltzmannian equilibrium ex-
ists, and if so, determine the equilibrium state, then one has to explicitly specify the
macro-state structure of the model and determine the macro-states’ macro-regions;
one has to know enough about the underlying dynamics to be able to calculate the
long-run fractions of time that a model spends in each macro-region; and one has to
be able to estimate the measure of the set of initial conditions that lie on trajectories

these different time evolutions is not reflected in the Gibbs formalism.
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that do not have well-behaved long-run fractions of time. In many cases this is asking
for too much because it requires more information than we have.15

Against this background we come to see GSM’s omissions as an advantage rather
than as a weakness – they are precisely what makes GSM effective! But relegating
a host of things to the realm of irrelevance comes at a cost. Wells point out that
whenever we recognise a theory as an effective theory we have to

‘confront a theory’s flaws, its incompletenesses, and its domain of ap-
plicability as an integral part of the theory enterprise. The most useful
Effective Theories are ones where we know well their domains of applica-
bility, and can parametrically assess the uncertainties induced by ignoring
the “irrelevant.”’ (ibid.)

So the flipside of recognising a theory as an effective theory is that we should be able
to delimit its range of application: we have to be able to say when a theory yields
trustworthy results and when its procedures fail to deliver. In concrete terms we are
now faced with the question: under what conditions does GSM yield correct results,
i.e. results that coincide with BSM?

4 Domains of Effectiveness

As noted in Section 2, for BSM and GSM to agree on a system’s equilibrium prop-
erties it must be the case that F ≈ 〈f〉, where F is the Boltzmannian equilibrium
value. This can be the case under different conditions. In this section we discuss
two conditions that are individually sufficient for this result to hold: the Khinchin
condition and the requirement that fluctuations be small. These conditions are, how-
ever, not necessary and there will be other conditions, such as the so-called average
equivalence theorem and the cancelling out theorem (Werndl and Frigg 2019a). In
fact, currently there is no complete list of conditions under which F ≈ 〈f〉, and we
have doubts that there will ever be such a list.

Phase averages and Boltzmannian equilibrium values are trivially identical if the
macro-variables under considerations take the same value everywhere: f(x) = c for
all x in X and a constant c. In this case we have F = 〈f〉 = c. Such macro-variables
are uninteresting, but the they raise a useful question: how far does one have to move
away from the case f(x) = c to obtain an interesting condition while still retaining
the basic idea? An answer to this question is provided by what is now known as

15If φt is ergodic, then BSM readily yields results. But ergodic systems are few and far between,
and it is often difficult to determine whether or not a given dynamical law is ergodic.
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the Khinchin condition.16 To formulate the condition we introduce the notion of a
fluctuation. Take a micro-state x and consider the difference between the value f(x)
(the true value if the model is in state x) and the phase average:

∆f(x) = f(x)− 〈f〉. (4)

∆f(x) is the fluctuation when the system is in micro-state x, and |∆f(x)| the mag-
nitude of the fluctuation. The Khinchin condition then states that there is a subset
X̄ of X with µ(X̄) = 1−δ for a very small δ ≥ 0 such that |∆f(x)| = 0 for all x in X̄.

If the condition is satisfied, then F = 〈f〉. Assume that a Boltzmannian equilibrium
exists and let F be the Boltzmannian equilibrium value of f . The Khinchin condition
then guarantees that there are only a few states (of at most measure δ) whose macro-
values differ from 〈f(x)〉. These ‘exceptional’ states cannot form the Boltzmannian
equilibrium macro-state because, as we have seen in Section 2, the macro-region
corresponding to the Boltzmannian macro-state is large. For this reason the set of
micro-states for which f(x) = F must be the macro-region of the Boltzmannian
macro-state, and for the states in that region we have F = 〈f(x)〉. Hence, if the
Khinchin condition is satisfied, then BSM and GSM equilibrium macro-values agree.
The paradigmatic examples of such a system is the dilute gas with macro-variables
that assign the same value to all states that are in the Maxwell-Boltzmann distribu-
tion, or in a distribution that is very close to the Maxwell-Boltzmann distribution
(Ehrenfest and Ehrenrest-Afanassjewa 1959).

An alternative approach focusses on the statistics of fluctuations and shows that
GSM reproduces, under certain circumstances, the fluctuation pattern of BSM. To
see how this happens, let us first have look at fluctuations in GSM. The core idea of
the fluctuation approach in GSM is to use the probabilities given in Equation 1 to
calculate the probability that a fluctuation of a certain magnitude occurs. Consider
an interval δ := [δ1, δ2], where δ1 and δ2 are real numbers such that 0 ≤ δ1 ≤ δ2.
Equation (1) can then be used to calculate the probability for a fluctuation of a
magnitude between δ1 and δ2 to occur:

p(δ) =

∫
D

ρ(x)dx, (5)

where D = {x ∈ X | δ1 ≤ |∆(t)| ≤ δ2}.

16The name of the condition is owed to the fact that Khinchin (1949) instigated a systematic
study of functions that satisfy strong symmetry requirements and therefore have small fluctuations
for systems with a large number of constituents. The condition comes in two version. We here discuss
only the first version, which is appealed to in Wallace (2015, 289), Lavis (2005, 267-268); Malament
and Zabell (1980, 344-345), and Vranas (1998, 693). The second version originates in Ehrenfest and
Ehrenfest-Afanassjewa’s (1959, 46-52); for a discussion see Werndl and Frigg’s (2019c).
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It is important to be clear about the scope of this equation. The probabilities in
Equation 1 are sometimes interpreted as being universal in the sense that ρ is seen
as providing the correct probabilities for a system’s state to be in region R at time
t and for all R in X and for any time t. Under this assumption the fluctuation
probabilities in Equation 5 are then seen as beeing universal the sense that for any
magnitude and for any time t, p(δ) would be the correct probability for a fluctuation
of a certain magnitude to occur at t. Unfortunately universality of this kind fails. A
careful look at GSM reveals that at least one of two conditions have to be met for
this to be the case (Frigg and Werndl 2019). The masking condition requires either
that the system can access all parts of the phase space, or, if that is not the case,
that f must be such that the proportion of states for which f assumes a particular
value is the same in each invariant subset of X. The condition of f -independence
(roughy) states that the the system’s dynamics must be such that the probability
of finding a specific value of f in two consecutive yet sufficiently temporally distant
measurements must be independent of one another. The Gibbsian ρ can be used to
calculate correct fluctuation probabilities only if φt and the macro-variable f work
in tandem to guarantee that at least one of these conditions is satisfied. These con-
ditions limit the scope of GSM in determining fluctuations because both conditions
are strong and their satisfaction cannot be taken for granted.

Let us now look at BSM and first focus on the masking condition to explain, from
the perspective of BSM, why the fluctuation probabilities of equation (5) turn out
to be right. The starting point here is to consider the fluctuations that arise in the
same system when we observe its behaviour over time. This amounts to tracking a
system over an infinite period of time when the system starts in a particular initial
condition and its state evolves under the dynamics of the system. If the masking
condition holds, either the system can access all parts of X or the proportion of
states for which f assumes a particular value is the same in each invariant subset of
X. This immediately implies from a Boltzmannian perspective that the fluctuations
that arise in the same system over an infinite period of time are equal to the prob-
abilities assigned to the fluctuations by the measure ρ, i.e. equation (5) holds. In
particular, assume that a system spends, say, β of its time in a certain macro-state
for which the function f assumes the value F ′. For this macro-state the magnitude
of the fluctuation away from the phase average is |F ′−〈f〉|. Assume δ0 is the interval
that consists only of |F ′ − 〈f〉|. The probability p(δ0) must then be β.

Let us now focus on the second case of f -independence and explain from the perspec-
tive of BSM why the fluctuation probabilities of equation (5) turn out to be right.
Consider again a system and an observable f with a finite number of macro-states.
Then suppose that the dynamics of the system is such that for two points of time t1
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and t2 that are sufficiently far apart f -independence is satisfied, i.e. the probability
of finding a specific value of f in the two measurements are approximately indepen-
dent of each other. Then it immediately follows from the Boltzmannian perspective
that, given a specific macro-value at t1, the probability of finding the system in a
macro-value at t2 is given by the probability measure ρ, i.e. equation (5) holds. In
particular, assume that the measure assigns β to a certain macro-state for which the
function f assumes the value F ′. For this macro-state the magnitude of the fluc-
tuations away from the phase average is |F ′ − 〈f〉|. Assume δ0 is the interval that
consists only of |F ′− 〈f〉|. Then, given that the system was in a certain macro-state
at t1 the probability of obtaining the fluctuation δ0 at t2 is given by the probability
p(δ0) and is β.

In sum, we have seen that GSM can be used as an effective theory if the macro-
variable satisfies the Khinchin condition, or if the system satisfies either the masking
condition and the f -independence condition. As noted previously, these are sufficient
but not necessary, and so there can be other conditions under which GSM can be
used as an effective theory.

As noted in Section 2, there is an alternative interpretation of GSM that does not
include AP. On such an interpretation the theoretical core of GSM contains only ρ,
while Equation 3, the mechanical averaging equation, has the status of a pragmatic
rule that is adopted only when it provides correct results. When this equation fails,
GSM is simply silent about the correct equilibrium values. This move immunises
GSM against arriving at calculations that disagree with the calculations of BSM, but
it does so at the cost of further restricting the scope of GSM. This is not per se objec-
tionable, but it changes nothing fundamentally in our argument. On this alternative
interpretation GSM is an still an effective theory with a limited range of applicability
(and the limits are identical to the limits of the standard interpretation). The only
difference is that in cases where GSM would disagree with BSM, it is now seen not
as giving wrong results but as it providing no results at all.17

17Furthermore, as argued in Frigg and Werndl (2019), there is no single reasonable interpretation
of Gibbs that can make sense of all the successful applications of Gibbs. Reasonable interpretations of
Gibbs such as the fluctuation account can always only explain some of the applications of GSM. That
there is no single reasonable interpretation of Gibbs that can account for all successful applications
of GSM further strenghtens the view that GSM is an effective theory.
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5 Reverberations

Classifying GSM as an effective theory is not merely physical botany for the conso-
lation of those interested in labels. It has far-reaching consequences for foundational
debates. If we understand GSM as an effective theory, this implies that GSM does
not address foundational questions and that such questions should not be discussed
in that theory. The relevant question to ask about GSM is: under what conditions
does it provide accurate results? Asking whether GSM provides a correct funda-
mental description of the world, or, if the answer to this question is negative, trying
to revise GSM so that it does provide such a description, is a mistaken endeavour.
Effective theories do not offer fundamental descriptions; they are calculatory devices
of instrumental value; no more and no less.

This has profound implications for non-equilibrium SM. Consider the approach to
equilibrium. It is a well-known problem that Gibbs entropy is a constant of motion,
which undercuts attempts to describe the approach to equilibrium as a process of
increasing entropy.18 This sparked an entire research programme aiming to revise
GSM in such a way that the Gibbs entropy increases over time. Coarse-graining
combined with a mixing dynamics, interventionism, and attempts to redefine Gibb-
sian equilibrium in a way that avoids reference to stationary distributions are but
the most prominent proposals in that programme.19 For those who regard GSM
as effective theory such attempts get started on the wrong foot. If the Gibbs en-
tropy does not change over time, we should conclude that GSM does not offer an
effective description of non-equilibrium processes and limit its range of applicability
to equilibrium situtions rather than trying to turn GSM into a correct description
of non-equilibrium processes. Such a programme would be justified only if it turned
GSM into an effective theory of non-equilibrium processes. But at least so far this has
not happened. Non-equilibrium versions of GSM are not effective non-equilibrium
theories. Not only do they not offer manageable algorithms to compute outcomes
(thereby violating Wells’ first criterion); they often also are not empirically adequate
(spin echo experiments are a case in point). Unless there is clear instrumental upshot,
the effort to turn the Gibbs entropy into a non-conserved quantity is an ill-motivated
project.

Foundational questions concerning GSM remain valid when they concern the empir-
ical adequacy of the theory or its connection to the fundamental theory, BSM. An
example of such a question is the one we addressed in the previous section, namely
under what circumstances Gibbsian and Boltzmannian values coincide. Another is

18The Gibbs entropy is defined as
∫
X
ρ ln(ρ)dx.

19For a review and discussion of these proposals see Frigg (2008), Sklar (1993) and Uffink (2007).
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the problem of the justification of maximum entropy methods. In many applications
one does not first write down the fundamental dynamics and then derive the invari-
ant outcome measure from that dynamics. What happens is rather the opposite: one
first postulates the outcome measure and then narrows down a class of dynamical
laws to the ones that are such that the postulated measure turns out to be invari-
ant (for instance, to ergodic motions in the deterministic case or irreducible Markov
chains in the stochastic case). The choice of the outcome distribution is often guided
by maximum entropy considerations, and there is a legitimate question why these
considerations work. For want of space we cannot pursue this question here and refer
the reader to Uffink (1995, 1996) for a discussion.

6 Conclusion

We argued that the schism between the Boltzmannian and the Gibbsian approaches
in SM is resolved by recognising that they are not theories on equal footing. While
BSM is a fundamental theory, GSM is an effective theory. We presented an account
of effective theories and showed that GSM matches the relevant criteria. Effective
theories have a limited range of application, which raises the question under what
condition GSM yields correct results. We point out that this can happen under
different conditions and discuss two of them explicitly, namely the Khinchin condition
and the fluctuations account together with the condition that fluctuations satisfy
certain additional conditions. These conditions are individually sufficient but not
necessary, and other sufficient conditions exist. There currently is no complete list of
such conditions and so there are open questions, first, about what other conditions
there are to ensure the correctness of Gibbsian results and, second, whether there
is complete list of such conditions. Finally, we argued that recognising GSM as an
effective theory has clear implications for foundational debates. For instance, if GSM
is recognised as an effective theory, programmes that aim to extend GSM to cover
non-equilibrium cases seem unmotivated.
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