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1 Introduction

The relation between the Boltzmannian and the Gibbsian formulations of sta-
tistical mechanics (SM) is one of the major conceptual issues in the foundations 
the discipline. In their celebrated review of SM Paul Ehrenfest and Tatjana 
Ehrenfest-Afanassjewa discuss this issue and offer an argument f or the conclu-
sion that Boltzmannian equilibrium values agree with Gibbsian phase averages.1 

In this paper we analyse their argument, which is still important today, and 
point out that its scope is limited to dilute gases.

1The original paper was published in German under the title ‘Begriffiche Grundlagen der 
Statistischen Auffassung i n d er M echanik’ i n 1 911. T hroughout t his p aper w e q uote the 
English translation that came out in 1959 under the title ‘The conceptual foundations of the 
statistical approach in mechanics’.
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2 Boltzmannian and Gibbsian Statistical Me-
chanics

In statistical mechanics (SM) there are two main theoretical frameworks, namely
Boltzmannian and Gibbsian SM.2. Consider a system S consisting of the fol-
lowing: X is the set of all possible states (the state space), µX is the probability
measure on X (that is assumed to be invariant under the dynamics), and Tt(x)
is the dynamics specifying the state of the system after t time steps given that
it started in x.3

At the beginning of Boltzmannian SM stands the introduction of macro-
states Mj , j = 1, ...,m, which are characterised by the values of a set of
macro-variables {f1, ..., fk} (where both m and k are in N). A macro-variable
fi : X → R is a function that associates a value with each x ∈ X. Capital letters
Fi denote the values of the fi. A macro-state Mi is defined by a particular set of
values {F1, ..., Fk}. Macro-states are assumed to supervene on micro-states, and
hence there corresponds a micro-region XMj ⊆ X to each Mj , which consists of
all x ∈ X for which the macroscopic variables assume the values characteristic
for Mj . The XMi

together form a partition of X, meaning that they do not
overlap and jointly cover X. One of the macro-states is then singled out as the
equilibrium state, and the equilibrium values of the fi are the values Fi that
the macro-variables assume in the equilibrium macro-state. The standard line
on how to single out the equilibrium state is that size is the determining factor:
the equilibrium state is the state for which µX(XMi) assumes the highest value.
As we will see in Section 5, this definition stands in need of qualification, but
since it is widely used we work with it for now and see how far it takes us.

The most important method to determine the largest macro-state is Boltz-
mann’s (1877) combinatorial argument, which Ehrenfest and Ehrenfest-Afanassjewa
discuss in detail (1959, 26-30). The argument runs as follows. The state of one
particle is given by a point in the 6-dimensional state space X1, and thus the
state of the system (of the N particles) is given by N points in X1. Because
the system is confined to a finite container and the energy is constant, only a
certain finite part of X1 is accessible. This accessible part of X1 is then divided
into cells of equal size δω whose dividing lines run parallel to the position and
momentum axes. The result is a finite partition Ω := {ω1, ..., ωl}, l ∈ N. The
cell in which a particle’s state lies is referred to as the particle’s coarse-grained
micro-state. The specification of the coarse-grained micro-state for all particles
is called an arrangement. Finally, a specification of the number of particles in

2We briefly review both frameworks in this section. More extensive presentations can be
found in Frigg’s (2008) and Uffink’s (2007) See Frigg and Werndl (2019) for discussion of the
Gibbs formalism in particular.

3In this paper we mostly follow Ehrenfest and Ehrenfest-Afanassjewa and consider deter-
ministic systems. In our (2017) we discuss stochastic systems and show that the main results
carry over to the stochastic context. We consider an explicitly stochastic system below in
Section 6.
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each cell is referred to as a distribution D = (N1, N2, . . . , Nl) (Ni is the number
of particles in cell ωi). Each distribution is compatible with several arrange-
ments, and the number of arrangements corresponding to a given distribution
D is G(D) = N ! /N1!N2! . . . , Nl!.

Ehrenfest and Ehrenfest-Afanassjewa now associate macro-states with distri-
butions (1959, 49-50): each distribution defines a macro-state. This assumption
is motivated by the fact that the macro properties of a system are a function
of the micro properties, and hence a given macro variable will assume different
values for different distributions (we come back to this assumption below in
Section 4). Clearly, every micro-state x of X corresponds to exactly one distri-
bution D(x). The macro-region XD is then simply defined as the set of all x
that are associated with the macro-state D.

The equilibrium macro-region is the region XD with the largest measure.
To determine this largest macro-region, Boltzmann (1877) provided a classical
argument, which Ehrenfest and Ehrenfest-Afanassjewa discuss in detail (1959,
27-31). Boltzmann assumed that the energy ei of particle i is only dependent
on the cell in which it is located (and not on the location of the other particles),

implying that the total energy of the system is E =
∑l

i=1 Niei. With the further
assumption that the number of cells in Ω is small compared to the number of
particles, Boltzmann showed that µX(XD) has a maximum when

Ni = γeλei , (1)

where γ and λ are parameters which depend on N and E. Equation (1) is now
known as the discrete Maxwell-Boltzmann distribution. The equilibrium macro-
state therefore corresponds to the Maxwell-Boltzmann distribution.

However, as Ehrenfest and Ehrenfest-Afanassjewa rightly emphasise (1959,
30) there is a last step missing. The XD as defined above are 6N dimensional,
and Equation (1) gives us is the distribution for the cell of largest size relative
to the Lebesgue measure µX (or more precisely, relative to the 6N -dimensional

subset XES of X defined by the condition that E =
∑l

i=1 Niei). However, by
assumption the system has constant energy, and so we know that the system’s
motion takes place on the 6N − 1 dimensional energy hypersurface XE . Hence
the relevant macro-regions are ones that lie in XE rather than in X. A quick
fix is the following: define the relevant 6N −1 dimensional macro-regions as the
intersection of the 6N -dimensional XD with XE , and use the restriction µE ,
the restriction of µX to XE , to measure their size.

Ehrenfest and Ehrenfest-Afanassjewa are careful to point out that this is
not enough to give us what is needed, namely the macro-region of largest size
relative to the measure µXE

on the 6N − 1 dimensional set XE . Standard
presentations of the combinatorial argument simply assume that the possible
distributions and the proportion of the different distributions would not change
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if macro-states were instead defined on XE , which yields the desired result that
the equilibrium region is the largest region on XE . Ehrenfest and Ehrenfest-
Afanassjewa (1959, 30) are more careful. While they also adopt this assumption,
they stress that it is in need of further justification.

So the conclusion Ehrenfest and Ehrenfest-Afanassjewa arrive at is that
in the Boltzmannnian framework the observed value in equilibrium for the ob-
servable f is the value of f in the macro-region corresponding to the Maxwell-
Boltzmann distribution.

Gibbsian SM studies ensembles, infinite collections of independent systems
that are all governed by the same equations but start in different initial states.
Formally, an ensemble is a probability density ρ(x, t), x ∈ X, describing the
probability of finding the state of a system chosen at random from the ensemble
in a certain region of X at time t.

Given an ensemle ρ, the Gibbs entropy is

SG[ρ] = −kB

∫
X

ρ(x, t) log[ρ(x, t)]dx, (2)

where kB is the Boltzmann constant. An ensemble ρ(x, t) is called stationary if
and only if it does not depend on time, i.e. ρ(x, t) = ρ(x) for all t. In Gibbsian
SM equilibrium is a property of an ensemble. More specifically, the ensemble is
in equilibrium if and only if it is stationary, and sometimes it is also required
that it has maximum Gibbs entropy given the constraints imposed on the sys-
tem. The most common constraints give rise to the microcanonical, canonical
and grand-canonical distributions (1959, 46-47).

As in Boltzmannian SM, physical observables correspond to a set of real-
valued functions fi, and the phase average of such a function in equilibrium is
defined as

⟨fi⟩ =
∫
X

fi(x)ρ(x)dx. (3)

According to the canonical understanding of Gibbsian SM, what is observed in
experiments on systems in equilibrium are such phase averages (1959, 47 and
49). There is, however, a question about the scope of this claim: according to
Gibbsian statistical mechanics, does one always observe phase averages or are
phase averages only observed in certain situations? The answer to this question
is a matter of dispute which depends on how exactly Gibbsian SM is interpreted
(for a discussion see Frigg and Werndl, 2019). It is not entirely clear what read-
ing of Gibbsian SM Ehrenfest and Ehrenfest-Afanassjewa endorse (though it
seems to us that they rather endorse the claim and that, according to Gibbsian
SM, always phase averages are observed). Fortunately this issue does not mat-
ter in what follows.
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Now we are in a curious situation. Two different frameworks make predic-
tions for the same experimental values. The Boltzmannian account says that the
observed equilibrium value for the observable fi is the value that it assumes in
the macro-region corresponding to the Maxwell-Boltzmann distribution, while
the Gibbsian account says that that the equilibrium value is ⟨fi⟩. Do these
values coincide? If so why? If not, which of the values, if any, is correct?

3 Ehrenfest and Ehrenfest-Afanassjewa on Gibbs
Versus Boltzmann

Ehrenfest and Ehrenfest-Afanassjewa opt for the first solution and set out to
show that Boltzmannian equilibrium values and Gibbsian phase averages coin-
cide. Their argument is an important one, and similar points have been made
more recently by Davey (2009), Myrvold (2016) and Wallace (quoted in Werndl
and Frigg forthcoming). They begin by discussing the Gibbsian treatment of the
gas with the observable f .4 According to the Gibbsian framework, what is ob-
served in equilibrium is the phase average. Because energy is conserved, it would
be natural to consider the phase average relative to the micro-canonical ensem-
ble (because this is the stationary distribution of maximum Gibbsian entropy
under the constraint of constant energy). However, Ehrenfest and Ehrenfest-
Afanassjewa do not do this and instead consider the phase average with respect
to the canonical ensemble. The canonical ensemble is the stationary distribution
of maximum entropy when the energy is allowed to vary:

ρc(q, p) = e
Ψ−E

Θ , (4)

where E(q, p) is the total energy, Θ is an constant, and Ψ is determined by the
constraint that

∫
X
ρc(q, p) = 1.

The reason why they consider the phase average with respect to the canon-
ical ensemble is unclear. A possible motivation might be that they want to
show that it does not matter which distribution is chosen: Gibbsian SM leads
to the same result as Boltzmannian SM regardless of whether one works with
the microcanonical or the canonical ensemble.

As a first step they appeal to the well-known result, often referred to as the
equivalence between the microcanonical and canonical distributions, that holds
when the number of particles of a gas are extremely large:

In an ensemble which is canonically distributed with the modulus
Θ = Θ0, an overwhelming majority of individuals will have nearly
the same total energy E = E0 (Ehrenfest and Ehrenfest-Afanassjewa
1959, 48).

4For ease of notation, we suppress the subscript ‘i’ from now.
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(Here Θ0 is the fixed value of Θ in equation (Equation 4) of the canonical dis-
tribution above and E0 is the energy value that nearly all individuals will have
for the fixed value Θ0).

Based on this result Ehrenfest and Ehrenfest-Afanassjewa (1959, 48-49) ar-
gue that it is plausible that

∫
X
f(x)dρc, the phase average with respect to the

canonical distribution ρc on X, is approximately equal to
∫
XE

f(x)dρm, the

phase average with respect to the microcanonical distribution ρm on XE (when
f is restricted to XE).

The next step is the vital move in the argument. Recall that the combina-
torial argument shows that the equilibrium macro-region is the largest macro-
region. So the macro-value corresponding to the Maxwell-Boltzmann distri-
bution is the macro-value that is taken by more microstates than any other
macro-value on XE .

5 It crucial to be clear on the sense of ‘large’ that is be-
ing used here. What the combinatorial argument shows is that the equilibrium
macro-region is larger than any other macro-region. It does not show that the
equilibrium macro-region is large in an absolute sense, i.e. that it occupies the
largest part of XE . The latter does not follow from the former. A macro-region
can be larger than any other macro-region without being large relative to XE .
Ehrenfest and Ehrenfest-Afanassjewa bridge the gap between a relative and the
absolute sense of ‘large’ by referring to results due to Jeans (1916, §46-§56), who
argues that nearly all states in XE are in the macro-region corresponding to
the Maxwell-Boltzmann distribution. Hence, f assumes the equilibrium value
on almost all states in XE . From this they infer that this value is approximately
equal to the Gibbsian phase average derived in the previous paragraph.

So their conclusion is that in a system in which the combinatorial argument
applies, the Boltzmannian equilibrium value and the Gibbsian phase average
with respect to the macro-variable f are approximately the same.

4 Assessment of Ehrenfest and Ehrenfest-Afanas-
sjewa’s Argument

The considerations we make to assess the Ehrenrests’ argument fall into two
groups. Considerations in the first group concern the combinatorial argument
and its limitations; considerations in the second group concern the identity ar-
gument in the last section. We will focus mainly on the second group, but will
begin by making a few observations about the first.

As has been pointed out previously,6 a core assumption of the combinatorial

5Strictly speaking this is true only under an additional assumption that we discuss in the
next section.

6See, for instance, Uffink (2007) and Werndl and Frigg (2015b).
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argument, namely that E =
∑l

i=1 Niei, is very restrictive. In essence, this as-
sumption implies that the argument only applies (even in an approximate form)
to dilute gases. So it is unsurprising that Ehrenfest and Ehrenfest-Afanassjewa
(1911, 36-60) talk about gas systems when presenting the combinatorial argu-
ment. However, it remains unclear from the text whether they are clear on the
fact that it only applies to dilute gases.

Second, the conclusion that the macro-value of f in the Maxwell-Boltzmann
distribution is the macro-value that is taken by more micro-states than any
other macro-value on XE follows only under the strong assumption that f as-
sumes a different value for every macro-region. However, Lavis (2005, 2008)
pointed out that this need not always be the case.7 Macro-regions can show de-
generacy in the sense that f can assume the same value in several regions. It is
possible that a number of such (non-equilibrium) macro-regions taken together
are larger then the equilibrium region, and so f assumes the equilibrium value
in a region of the state space that is smaller than the union of the degenerate
macro-regions. Lavis (2005, 2008) shows that this happens in the case of the
baker’s gas, thereby driving home the point that degeneracies causing difficul-
ties is more than just a theoretical possibility.

Let us set these concerns aside and assume, for the sake of argument, that
we are dealing with a dilute gas and a ‘well-behaved’ function f (we will dis-
cuss what happens if these assumptions fail in Section 5). Does Ehrenfest and
Ehrenfest-Afanassjewa’s equivalence argument hold under these assumptions?
It is obvious that their argument contains a gap. They conclude from the fact
that f assumes the equilibrium value on nearly all states in XE that the aver-
age of f over XE is approximately equivalent to that value. This, however, is
true only if the non-equilibrium values are not disproportionately far away from
the equilibrium value. If the non-equilibrium values differ significantly from the
equilibrium values, their contribution to the average can be significant and the
average need no longer be equal to the equilibrium value of the function, not
even approximately.

To rule out such a scenario one needs to assume that f satisfies some kind
of ‘small fluctuation condition’. The most common condition of this kind is
now known as the Khinchin Condition. The condition plays a crucial role in
the work of Khinchin (1960 [1949]) and variants of it have been appealed to
in the foundational literature on SM, for instance by Malament and Zabell
(1980), Myrvold (2016) and Wallace (quoted in Werndl and Frigg forthcoming.).
This condition requires that the observable f equals the phase average nearly
everywhere on phase space. Formally:

There is a X̄ ⊆ X with µX(X̄) = 1 − δ for a small δ ≥ 0 such that
|f(x)− ⟨f(x)⟩| ≤ ε for all x ∈ X̄ and a very small ε ≥ 0.

7Lavis (2005, 2008) discussed the case of the Boltzmann entropy, but the point obviously
generalises to phase functions.
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Under Ehrenfest and Ehrenfest-Afanassjewa’s assumptions the Boltzmannian
equilibrium macro-region satisfies the condition on X̄. Let Fequ be the value of
f in that macro-region. It then follows that |⟨f(x)⟩ − Fequ| ≤ ε, and therefore
the Boltzmannian value and the Gibbsian average agree, at least approximately.

Ehrenfest and Ehrenfest-Afanassjewa, however, do not appeal to this formu-
lation of the condition, but to a variant of the Khinchin condition that we call
the Ehrenfest-Afanjassewa Condition. The condition is that the observable f is
approximately equal to the Boltzmannian equilibrium value nearly everywhere
on phase space and that the observable does not take extreme values on the
rest of the phase space. Formally, the Ehrenfest-Afanjassewa condition can be
formulated as follows:8

Consider a system of the kind introduced in Section 2 endowed with
an observable f . Further assume that the system has a Boltzman-
nian equilibrium with equilibrium macro-value Fequ. Then there is
an X̄ ⊆ X with µX(X̄) = 1 − δ (for a small δ ≥ 0) such that (i)
|f(x) − Fequ| ≤ ε for all x ∈ X̄ (for a very small ε ≥ 0) and (ii)
|
∫
X\X̄ f(x)dµX − Fequδ)| ≤ γ (for a very small γ ≥ 0).

A simple calculation shows that for systems that satisfy the Ehrenfest-Afanjassewa
Condition with respect to f , the phase average is approximately equal to the
Boltzmannian equilibrium macro-value Fequ:

|⟨f(x)⟩ − Fequ| ≤

|
∫
X̄

f(x)dµX − Fequ(1− δ)|+ |
∫
X\X̄

f(x)dµX − Fequδ| ≤

ε(1− δ) + γ (because of (i) and (ii) of the Khinchin condition).

It is interesting to discuss both the Khinchin and the Ehrenfest-Afanjassewa
conditions because, depending on context, one or the other may turn out to
be more useful. There is, however, a slight mismatch between the Ehrenfest-
Afanjassewa Condition and the calculations of Ehrenfest and Ehrenfest-Afanassjewa:
they perform Gibbsian phase space averaging with the canonical and not the
micro-canonical distribution. However, because of the equivalence of the micro-
canonical and macro-canonical ensemble as discussed above this difference does
not matter; and if for some reason it did, one could simply perform the Gibbsian

8A variant of the Ehrenfest Condidion requires that the observable f is constant nearly
everywhere on phase space and does not take extreme values on the rest of the phase space:

There is an constant C ∈ R and a X̄ ⊆ X with µX(X̄) = 1 − δ (for a small
δ ≥ 0) such that (i) |f(x)− C| ≤ ε for all x ∈ X̄ for a very small ε ≥ 0 and (ii)
|
∫
X\X̄ f(x)dµX − Cδ)| ≤ γ (for a very small γ ≥ 0).

Because the Boltzmannian equilibrium macro-value Fequ takes up more than δ of phase space,
it follows that Fequ is very close to C. Therefore, |f(x) − Fequ| ≤ ϵ1 for a small ε1 ≥ 0 for
all x ∈ X̄ and |

∫
X\X̄ f(x)dµX − Fequδ)| ≤ γ1 (for a very small γ1 ≥ 0). This is in fact

the original Ehrenfest Condition and so the variant is in equivalent to the original Ehrenfest
Condition.
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calculations with the microcanonical ensemble.

It is important to note that neither of the two conditions is in any way
trivially true. Khinchin could prove his condition only for the special case of
sum functions in non-interacting systems (sum functions are functions in many-
particle systems that can be written as a sum over one-particle functions). The
generalization of this result to the case interacting system is a veritable chal-
lenge and no general solution has been found to date.9

Ehrenfest and Ehrenfest-Afanassjewa argue in their survey that the Ehrenfest-
Afanjassewa condition is satisfied. Their argument is valid but only subject to
a change in one of the assumptions and an additional assumption in their argu-
ment. Namely, first, as outlined above, they assume (by referring to Jeans 1916,
§46-§56) that nearly all states in XE are in the macro-region corresponding to
the Maxwell-Boltzmann distribution. We have seen above that this need not al-
ways be the case. Furthermore, a closer look at Jeans’ text reveals that he does
not actually offer a proof of the claim. What Jeans shows is that the nearly all
of phase space X is taken up by macro-regions with a distribution D very close
to the Maxwell-Boltzmann distribution. Hence the assumption that the macro-
region corresponding to the exact Maxwell-Boltzmann distribution is large in
absolute terms has to be given up. Fortunately a weaker assumption provides
what we need. All that is required for the argument to go through is that the
observable f is such that macro-regions with a distribution D very close to the
Maxwell-Boltzmann distribution have approximately the same macro-value as
the macro-regions with the Maxwell-Boltzmann distribution.10 Note that this
amounts to conditions imposed on the Boltzmannian macro-structure f .

With this new assumption in place, Jeans’ (1916, §46-§56) calculations in-
deed imply that condition (i) of the Ehrenfest- Afanjassewa Condition is satis-
fied. Second, Jeans (1916, §46-§56) shows that the states whose macro-values
are not very close to the Maxwell-Boltzmann distribution take up a tiny fraction
of phase space, i.e. X \ X̄ is extremely small. But what is still needed is the
further condition that f does not take extremely large or extremely low values
on X \ X̄ (and this again is a condition imposed on f). With this new assump-
tion in place, (ii) of the Ehrenfest- Afanjassewa Condition is satisfied. Hence
we conclude that with the modifications just outlined the Ehrenfest-Afanjassewa
condition is satisfied and the Boltzmannian equilibrium value and the Gibbsian
phase average lead to approximately the same result.

To sum up, Ehrenfest and Ehrenfest-Afanassjewa identify an important case

9See Uffink’s (2007, 1020-28) for a discussion.
10Given a certain macro-variable f and allowable difference between the Gibbsian phase

average and the Boltzmannian equilibrium macro-value, one could precisely quantify what
notion of ‘approximately the same macro-value as the Maxwell-Boltzmann distribution’ would
be needed in order for the Khinchin theorem to go though by making use of the calculations
in Jeans (1916, §46-§56).
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where the Boltzmannian equilibrium values and the Gibbsian phase averages
agree. However, their argument relies on strong assumptions, and while these
assumptions are satisfied for certain observables in the case of dilute gases, the
assumptions need not hold in general. In fact, in the remainder of this paper
we discuss cases that do not fit Ehrenfest and Ehrenfest-Afanassjewa’s mould.
First, there are cases where the Boltzmannian equilibrium value is different from
the Gibbsian phase average. This shows that it is an important task for founda-
tional debates to find out under what conditions the Boltzmannian equilibrium
value and the Gibbsian phase average agree or disagree. Examples of disagree-
ment will be discussed in Section 6. Second, there are cases where the Boltz-
mannian equilibrium value and the Gibbsian phase averages agree but where
the Ehrenfest-Afanjassewa condition is not satisfied. The Ehrenfest-Afanjassewa
condition and its variants provide one condition where there is agreement (cf.
also Werndl and Frigg 2017b, ms.).

For instance, consider the Kac ring, consisting of an even number N of sites
distributed equidistantly around a circle. On each site there is a spin, which
can be in states up (u) or down (d). A micro-state xkr of the Kac ring is a
specific combination of up and down spin for all sites and the full state space
Z = Kkr consist of all combinations of up and down spins (i.e., of 2N elements).
There are s, 1 ≤ s ≤ N − 1, spin flippers distributed at some of the midpoints
between the spins. The dynamics rotates the spins one spin-site in the clockwise
direction every second (or whichever unit of time one chooses), and when the
spins pass through a spin flipper, they change their direction. The measure that
is usually considered is the the uniform measure µXkr on Xkr (Lavis 2008). The
macro-states usually considered are the total number of up spins, conveniently
labelled as MK

i , where i denotes the total number of up spins, 0 ≤ i ≤ N . The
Kac-ring with the standard macro-state structure is a paradigm example where
Boltzmannian equilibrium values and Gibbsian phase averages agree. However,
it is not an instance of the Ehrenfest-Afanassjewa-condition because, as shown
in Lavis (2005, 2008), the equilibrium macro-region corresponding to an equal
number of up and down spins only takes up less than half of state space (the
rest is taken up by macro-states that are macroscopically distinguishable from
the Boltzmannan equilibrium macro-state). Other examples where the Boltz-
mannian equilibrium value and the Gibbsian phase average agree but where the
Ehrenfest-Afanjassewa condition or one of its variants does not apply include
the baker’s gas with the standard macro-state structure and the ideal gas with
the standard macro-state structure (cf. Werndl and Frigg 2017b, ms.). The
reason why the Boltzmannian equilibrium value and the Gbbsian phase average
agree in these cases will be discussed later in section 7.
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5 Beyond Dilute Gases

As we have seen above, the combinatorial argument is restricted to dilute gases.
Most systems of interest in SM are not of this kind and so this is a serious
restriction. In two recent papers we have discussed this problem at length and
proposed an alternative Boltzmannian definition of equilibrium (2015a, 2015b).
On this definition, it is not size but ‘residence time’ that defines equilibrium:
the macro-state in which the system spends most of its time is the equilibrium
macro-state. More specifically, define LFR to be the fraction of time a system
spends in region R ⊆ X in the long run:

LFR(x) = lim
t→∞

1

t

∫ t

0

1A(Tτ (x))dτ, (5)

where 1A(x) is the characteristic function of R: 1A(x) = 1 for x ∈ R and 0
otherwise.

‘Most’ is interpreted as requiring that the system spends more time in
equilibrium than in any other macro-state, leading to the notion of an γ-ε-
equilibrium:11

Let γ > 0 and let ε be a very small positive real number, ε < γ. If
there is a macro-state MF∗

1 ,...,F∗
l
satisfying the following condition,

then it is the γ-ε-equilibrium state of S: There exists a set Y ⊆
X such that µX(Y ) ≥ 1 − ε, and all initial states x ∈ Y satisfy
LFXMF∗

1 ,...,F∗
l

(x) ≥ LFXMF1,...,Fl
(x) + γ for all macro-states M ̸=

MF∗
1 ,...,F∗

l

Clearly, the value observed in equilibrium is simply the value associated with the
equilibrium macro-state. Further, it should be mentioned that one can prove
that equilibrium states defined in this way correspond to the largest macro-
region in the sense that their measure is γ−ϵ larger than any other macro-region
(Werndl and Frigg 2015b). This provides a notion of equilibrium that is fully
general does not depend on the system’s dynamics, and is hence applicable also
to strongly interacting systems like solids and fluids.

6 An ExampleWhere Boltzmannian Equilibrium
Values and Gibbsian Phase Averages Differ

In this section we see that Ehrenfest and Ehrenfest-Afanassjewa’s result fails to
generalise: in such systems the Boltzmannian equilibrium value and the Gibb-
sian phase average can differ. The six vertex model with energy as the relevant

11Alternatively, ‘most’ can also be understood as referring to the fact that the system spends
at least α > 1/2 of its time in equilibrium, leading to the different notion of an α-ε-equilibrium.
Nothing in what follows hinges on which notion of equilibrium is adopted (cf. Werndl and
Frigg 2015b, forthcominga, forthcomingb).
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Figure 1: The configurations of the six-vertex model.

macro-variable will serve as an example of a case where the Boltzmannian and
Gibbsian equilibrium values differ. Consider a two-dimensional quadratic lattice
with N sites on a torus (the choice of a torus ensures that every grid point has
exactly four nearest neighbours, thus allowing to neglect border effects). Each
site is connected to its four nearest neighbours by edges. Each edge carries an
arrow that either points towards or away from the site. The so called ‘ice-rule’
restricts the allowable arrangements of the arrows: the arrows have to be dis-
tributed in a way such that at each site in the lattice there are exactly two
inward and two outward pointing arrows. It is easy to see that there are exactly
six configurations of the arrows that satisfy the ice-rule, and they are shown in
Figure 1. The name ‘six-vertex model’ is motivated by the existence of these
six configurations.

The reason for the name ‘ice-rule’ is that in frozen water each oxygen atom is
connected to four other oxygen atoms. So the sites can be thought of as repre-
senting oxygen atoms and the edges as representing their bonds. For each bond
there is a hydrogen atom that does not sit in the middle between the two oxygen
atoms but instead occupies a position closer to one of the oxygen atoms. Thus
the arrows can be interpreted as indicating to which oxygen atom the hydro-
gen atom is closer. The ice-rule then corresponds to the requirement that each
oxygen atom has two close and two remote hydrogen atoms. Not only water ice
but also several crystals, in particular potassium dihydrogen phosphate, satisfy
the ice-rule (cf. Baxter 1982; Lavis and Bell 1999; Slater 1941).

The micro-states of the six-vertex model ξ = (ξ1, . . . , ξN ) are given by assigning
one of the six types of configurations of the arrows permitted by the ice rule
to each site in the model. Each of the six configurations has a certain energy
ϵj , 1 ≤ j ≤ 6. Denote by ϵ(ξj) the energy of the jth configuration. Then the
energy of the state ξ is given by:

E(ξ) =

N∑
i=1

ϵ(ξi). (6)

We now assume that the energy of the different configurations is ϵ1 = ϵ2 = 0
and ϵ3 = ϵ4 = ϵ5 = ϵ6 = 1. The probability of the micro-states is given by the
canonical distribution p(ξ) = e−E(ξ)/kT /Z, with Z =

∑
ξ e

−E(ξ)/kT . Note that
this is merely the probability measure over the micro-states, and is per se neither
Boltzmannian nor Gibbsian. For the six-vertex model one usually works with a
stochastic dynamics. More specifically, the underlying dynamics is assumed to
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be an irreducible Markov chain (Baxter 1982; Lavis and Bell 1999; Werndl and
Frigg ms.). The probability p(ξ) is then invariant under the Markov dynamics
and is thus a stationary probability measure.

We now study the six-vertex model with the internal energy E as defined
in Equation (6) as the relevant macro-variable for low temperatures. The low-
est energy value is E = 0, which defines a macro-state M0 with macro-region
XM0

= {ξ∗, ξ+} (here ξ∗ is the state where all vertices are in the first configu-
ration, and ξ+ is the state where all vertices are in the second configuration).
Note that the lower the temperature, the larger the probability of the lower en-
ergy states; and the higher the temperature, the more uniform the probability
measure. Hence for sufficiently low temperatures the probability mass is con-
centrated on low-energy states. For this reason XM0 is the largest macro-region.
Because the dynamics is an irreducible Markov chain, the model spends most
of its time in M0. It follows that M0 is the Boltzmannian equilibrium state and
E = 0 is the Boltzmannian equilibrium value (cf. Werndl and Frigg ms.).

Let us now turn to the Gibbsian treatment. Here p(ξ) is the stationary mea-
sure of maximum entropy, and E is the observable. E will assume its lowest
value E = 0 only for two specific micro-states, namely ξ∗ and ξ+. For all other
states (and they all have positive probability) the value of E will be higher.
From this we conclude that the Gibbsian phase average ⟨E⟩ is greater than zero
and hence higher than the Boltzmannian equilibrium value. Thus, the Boltz-
mannian equilibrium value and the Gibbsian phase average differ.

Now, of course, the question is whether this difference can be significant. To
see that this can be so, choose a T such that {ξ∗, ξ+} is still the largest macro-
region but that the probability of this macro-region is equal or less than 0.5.12

Clearly, the Boltzmannian equilibrium value is still E = 0. Yet the second
lowest macro-value is E =

√
N , which is the energy corresponding to micro-

states where all columns of the lattice except one are taken up by states which
are in the first or the second configuration, and the states in the exceptional row
are all states in the third or fourth configuration.13 It follows that ⟨E⟩ is higher
than

√
N/2. Consequently, the Gibbsian phase average and the Boltzmannian

equilibrium value will differ by more than
√
N/2, which is not a difference that is

negligible (especially when N is large). Note also that the Boltzmannian macro-
value that is closest to the value obtained from Gibbs phase space averaging is
larger or equal to

√
N . But this Boltzmannian macro-value is different from the

12As we have seen, for sufficiently low temperatures {ξ∗, ξ+} is the largest macro-region.
The higher the temperature, the more uniform is the probability measure. Hence for suf-
ficiently high temperatures, the largest macro-region will differ from {ξ∗, ξ+}. Because the
canonical distribution is continuous in T , there exists a T such that {ξ∗, ξ+} is the largest
macro-region but its probability is ≤ 0.5.

13Such micro-state correspond to the smallest possible departure from the macro-state with
zero energy because the number of downward pointing arrows is the same for all rows. From
this then follows that there has to be a perturbation in each row and that

√
N has to be the

second lowest value of the internal energy (Baxter and Bell 1999).
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Boltzmannian equilibrium macro-value, which is zero. This again underlines
that Gibbsian phase space averaging results in a different outcome than the
Boltzmannian calculations.14

7 When Boltzmann and Gibbs Agree

Boltzmannian equilibrium values and Gibbsian phase averages can come apart.
This raises the question under what conditions the two coincide. We have al-
ready seen in Section 4 that one situation where there is agreement is when the
Ehrenfest-Afanassjewa condition is satisfied. However, as already noted then,
there are important cases including the baker’s gas with the standard macro-
state structure, the KAC-ring with the standard macro-state structure and the
ideal gas with the standard macro-state structure, that do not in general satisfy
the Ehrenfest-Afanassjewa-condition (or any of its variants).

In our (2017b; ms.) we present another set of conditions under which the
Boltzmannian equilibrium value and the Gibbsian phase average coincide. In-
tuitively speaking, the conditions are: (i) the measure on phase space is the
product measure of the one-constituent space; (ii) the macro-variable consid-
ered is the sum of a one-constituent observable; and (iii) this one-constituent
observable takes finitely many values with the same probability. With these
conditions in place, the Average Equivalence Theorem then shows that, if a
Boltzmannian equilibrium exists, the Boltzmannian equilibrium value and the
Gibbsian phase average coincide:

Average Equivalence Theorem (AET). Suppose that a system
with phase space X, dynamics Tt and measure µX is composed of
N ≥ 1 constituents. That is, the state x ∈ X is given by the
N coordinates x = (x1, . . . , xN ); X = X1 × X2 . . . × XN , where
Xi = Xoc for all i, 1 ≤ i ≤ N (Xoc is the one-constituent space). Let
µX be the product measure µX1×µX2 . . .×µXN

, where µXi = µXoc is
the measure on Xoc. Suppose that an observable κ is defined on the
one-particle space Xoc and takes the values κ1, . . . , κk with equal
probability 1/k, k ≤ N .15 Suppose that the macro-variable K is

the sum of the one-component observable, i.e. K(x) =
∑N

i=1 κ(xi).
Then the value corresponding to the largest macro-region as well as
the value obtained by phase space averaging is N

k (κ1 +κ2 + . . . κN ).

This theorem applies to the KAC-ring and the other examples (baker’s system,
ideal gas) mentioned above as cases where the Boltzmannian equilibrium value
agrees with the Gibbsian phase average but where the Ehrenfest-Afanassjewa-
condition does not apply. Hence it eplains in these cases why the Boltzmannian
equilibrium value and the Gibbsian phase average coincide. As it should be, the

14Further examples where the Gibbsian phase average and the Boltzmannian equilibrium
value come apart can be found in our (2017b) and (ms).

15It is assumed that N ia a multiple of k, i.e. N = k ∗ s for some s ∈ N.
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theorem does not apply to the six vertex model with the energy macro-variable
because conditions (i) and (iii) are not satisfied (the measure is not the product
measure of the one-constituent space, and the macro-variable considered is not
the sum of a one-constituent observable, taking values with equal probability).

Note that the conditions of the Average Equivalence Theorem are not nec-
essary for Boltzmannian equilibrium values and Gibbsian phase averages to
coincide. In particular, that the macro-variable is a sum of variable on the
one-component space, that the macro-variable on the one-component space cor-
responds to a partition into cells of equal probability, or that the measure on
state space is the product measure of the measure on the one-component space
are strong conditions that are often not satisfied. This is illustrated by our
example of the dilute gas with the macro-variables we discussed above. As we
have seen, this example is an instance of the Ehrenfest-Afanassjewa condition.
However, it is not an instance of the AET. More specifically, it is not the case
that all sums of possible values of the one-component variable are possible val-
ues of the macro-variable f (because of the requirement that the total energy is
constant, only certain sums of values of the one-component variable are possible
macro-values). Hence the condition that the macro-variable K is the sum of the
one-component variable where all sums of possible values of the one-component
variable are possible values of the macro-variable is violated.

To conclude, the Ehrenfest-Afanassjewa-condition (and its variants) and the
conditions of the Average Equivalence Theorem provide sufficient but not nec-
essary conditions. So they just identify two cases where the Boltzmannian
equilibrium values and Gibbsian phase averages agree. We suspect that there
will be other conditions where that the Boltzmannian equilibrium values and
Gibbsian phase averages agree.

8 Conclusion

We have considered Ehrenfest and Ehrenfest-Afanassjewa’s argument for the
conclusion that Boltzmannian equilibrium values and Gibbsian phase averages
agree. We pointed out that their argument is true only under special circum-
stances. This is not a shortcoming of their proof but an inherent limitation
of the claim: it is not generally the case that Boltzmannian equilibrium values
and Gibbsian phase averages agree. We discussed the example of the six-vertex
model and showed that in that model the two values come apart. We then
offered a general theorem providing conditions for the equivalence of Boltzman-
nian equilibrium values and Gibbsian phase averages. The conditions of the
theorem are sufficient but not necessary. This raises the important question un-
der what other conditions Boltzmannian equilibrium values and Gibbsian phase
averages agree.
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