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1 Introduction

How are properties encoded in GRW theory? In this chapter I discuss an
influential answer to this question, the so-called Fuzzy Link. Lewis (1997)
argued that GRW theory, when interpreted in terms of the Fuzzy Link, im-
plies that arithmetic does not apply to ordinary objects, an argument now
known as the ‘counting anomaly’. I take this argument as the starting point
for a discussion of the property structure of GRW theory, and collapse inter-
pretations of quantum mechanics in general. The main lesson to be drawn
from the counting anomaly is that the property structure of these theories
are more complex than that of standard quantum theories (and classical me-
chanics) because a seemingly plausible principle, the composition principle,
fails.

2 The Fuzzy Link

The standard way to relate quantum states to physical properties is the
Eigenstate-Eigenevalue Rule (‘E-E rule’ henceforth):1

An observable Ô has a well-defined value for a quantum system
S in state |ψ⟩ if, and only if, |ψ⟩ is an eigenstate of Ô.

1A classical source for this rule is Dirac (1930, pp. 46-47).
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States that are not eigenstates of Ô defy interpretation on the basis of this
rule and are not assigned a property. Yet a measurement of Ô produces a
definite outcome even if the system is not in an eigenstate of Ô. To solve
this problem standard quantum mechanics postulates that whenever a mea-
surement is performed, the system’s state instantaneously collapses into one
of the eigenstates of Ô with a probability given by the Born rule. This leaves
the system in a state that can be interpreted on the basis of the E-E rule.
But the introduction of measurement-induced collapses brings a plethora of
new problems with it. What defines a measurement? At what stage of the
measurement process does the collapse take place (trigger problem)? And
why should the properties of a physical system depend on observers?

Ghirardi, Rimini, and Weber (1986) proposed an ingenious way to overcome
these difficulties.2 Their approach is now known as ‘GRW theory’. Rather
than appealing to observers, GRW theory sees collapses an integral part of
what happens in nature. It postulates that on average a collapse occurs every
10−16s. There are, however, crucial differences between the collapses of stan-
dard quantum theory and those of GRW theory. In GRW theory position
is privileged and the theory’s mechanism induces collapses in the position
basis. However, a collapse can leave a system in a proper eigenstate only
if the basis is discrete and hence a system’s wave function (in the position
basis) cannot be arbitrarily narrow after a collapse. This fact is enshrined
in GRW theory, which postulates that a collapse leaves the system not in a
precise eigenstate of the position operator but in a state that is ‘close’ to it.
Technically speaking, the original state gets multiplied by a sharply peaked
Gaussian which makes the state more localised (where the variance of the
Gaussian is of the order 10−7m). In the context of GRW theory it is therefore
more adequate to speak of a localisation process rather than a collapse.

However, a more localised state is still not an eigenstate of the position
operator, and as far as interpreting states using the E-E rule is concerned
we’re back where we started. One way around the problem is to look for an
alternative to the E-E rule. Common wisdom has it that ‘close enough’ is

2The theory has been put in a particularly simple form by Bell (1987). For a compre-
hensive review of ‘GRW type’ theories see Bassi and Ghirardi (2003). A semi-technical
summary of the main ideas can be found in Frigg and Hoefer (2007). For a discussion of
collapse theories in general see Gao (2017, Ch. 8).
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good enough: for a particle to be located at x it is sufficient to say that its
wave function is peaked over a narrow interval around x (see, for instance,
Sakurai 1994, 42-3). Albert and Loewer (1995) give an exact formulation of
this idea and say that a particle with wave function ψ(r) is located in the
interval R iff

∫
R |ψ(r)|2dr ≥ 1− ϵ, where ϵ is a positive real number close to

zero (throughout I use ‘iff’ for ‘if and only if’). The generalisation of this
rule to a system with n degrees of freedom is straightforward and leads to
the following definition:

Consider n objects e1, ..., en. The system E = {ei, ..., en} consist-
ing of these n entities with wave function ψ(r1, . . . , rn) has the
property of being in the n-dimensional interval R1 × . . .×Rn iff∫

R1×...×Rn

|ψ(r1, . . . , rn)|2dnr ≥ 1− ϵ. (1)

Clifton and Monton (1999) call this rule the Fuzzy Link, and I use the label
Fuzzy Quantum Mechanics (FQM) to refer to any interpretation of quantum
mechanics (QM) that assigns properties to states using the Fuzzy Link. Re-
garding GRW theory as a (version of) FQM offers a natural assignment of
properties to post-localisation states.3 For what follows it is convenient to
let P

ϵ,R1×...×Rn
(e1, . . . , en) be the proposition stating that E has the property

of being in the interval R1 × . . . × Rn. This proposition is true iff inequal-
ity (1) holds. Note that E can also consist of just one object e. In this
case the definition reduces to: the entity e with wave function ψ(r) has the
property of being in the interval R, i.e. P

ϵ,R
(e) is true, iff

∫
R |ψ(r)|2dr ≥ 1−ϵ.

Peter Lewis (1997) argues that the Fuzzy Link has the undesirable conclusion
that arithmetic does not apply to macroscopic objects like marbles. This ar-
gument is now known as the counting anomaly. Consider a marble and box
(large enough for the marble to fit in). The marble can be in two states,
namely |ψin⟩ (the marble is inside the box) and |ψout⟩ (the marble is outside

3Ghirardi and co-workers (Ghirardi et al. 1995; Bassi and Ghirardi 1999b) favour a
mass-density interpretation of GRW theory. Space constraints prevent me from discussing
this approach here. However, as Clifton and Monton (2000, 156-161) point out, the prob-
lems I discuss in this paper (in particular the counting anomaly) equally arise under the
mass-density interpretation. So the discussion in what follows mutatis mutandis carries
over to an interpretation of GRW theor based on the mass-density approach.
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the box). These states are mutually exclusive and therefore orthogonal. For
the reasons we have encountered above, a localisation process won’t leave
the marble’s state in position eigenstate; the best one can expect is for the
localisation to leave the marble in a highly asymmetric state of the form
|ψm⟩ = a|ψin⟩ + b|ψout⟩ (or |ψ′

m⟩ = b|ψin⟩ + a|ψout⟩) where 1 > |a| ≫ |b| > 0
and |a|2 + |b|2 = 1. According to the Fuzzy Link, if |b|2 ≤ ϵ then the marble
is in the box:

∫
Rin

|ψm(r)|2dr = |a|2 ≥ 1 − ϵ, where Rin is the region we
associate with being in the box.

Now enlarge the box and put not only one but a large number n of mar-
bles in it (assume that the box is long a slim allowing for the marbles to
be placed in it side by side so that there is no interaction between the mar-
bles). The state of the n-marble system is |ψtotal⟩ = |ψm⟩1 . . . |ψm⟩n. When
we now interpret |ψtotal⟩ in terms of the Fuzzy Link we are faced with a
paradox. While each individual marble is in the box, applying the Fuzzy
Link to the state of the system yields that the system is not in the box:∫
Rin×...×Rin

|ψtotal|2dnr = |a|2n, but |a|2n ≪ 1− ϵ since |a| is smaller than 1.4

So is we construct a system of n marbles each of which individually is in the
box, we end up with an n-marble system which is not in the box. Lewis calls
this the counting anomaly because ensuring (one by one) that each marble is
in the box is how we count marbles. Lewis (1997, p. 320-321) calls this the
enumeration principle. But, as we have just seen, by doing so we end up with
a state in which it is false that the system of marbles is in the box. Hence
counting is impossible and we must conclude that according to GRW theory
(and indeed any version of FQM) arithmetic does not apply to macroscopic
objects such as marbles.

This argument has sparked a heated debate between Ghirardi and Bassi on
one side and Clifton and Monton on the other, centring around the questions
whether the anomaly really arises in GRW, and whether it can be observed.5

I want to take completely different line. I argue that the counting anomaly
can be dissolved by an analysis of the property structure of FQM. I argue

4There is a limit to how close |a| can be to 1 and so there will always be an n so that
|a|2n ≪ 1− ϵ.

5The first reply to Lewis is Ghirardi and Bassi (1999); subsequent contributions are
Bassi and Ghirardi (1999, 2001), Clifton and Monton (1999, 2000), and Lewis (2003a).
For discussion of the different positions see Frigg (2003) and Lewis (2003b).
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that the problem arises because of the seemingly innocuous but ultimately
faulty assumption that the composition principle holds in FQM. On this
reading Lewis’ argument performs a different function: rather than present-
ing a reductio ad absurdum of GRW theory, it highlights that the property
structure of the theory is more complex that we had assumed. This restores
coherence, but it comes at the cost of a violation of common sense. Every-
day experience suggests that the composition principle holds true for spatial
properties (an intuition which is borne out in classical mechanics as well as
in versions of QM based on the E-E rule), and we have to come to terms
with the realisation the this is not the case in GRW theory.

3 The Composition Principle

The composition principle says that if every object ei of an ensemble E =
{e1, ..., en} has a certain property P , then the ensemble E itself also has
property P , and vice versa. Formally, P (e1)&...&P (en) iff PE, where ‘PE’
means that the ensemble E itself has property P whereas ‘P (e1)&...&P (en)’
expresses the fact that every member of E has property P . To facilitate
notation we refer to the latter property as ‘P̃ ’. The composition principle
then reads: P̃E iff PE. This principle holds true in many cases. The con-
catenation of several objects of temperature T also has temperature T , and
if two object reflect light of certain wavelength then the ensemble of both
objects also reflects light of the same wavelength. However, the principle
does not have the status of universal law (or even a truth of logic) and it
fails in certain cases. Water is wet but water molecules are not; gases have
a temperature but gas molecules do not; horses have a heart but a herd of
horses does not; each musician of an orchestra plays an instrument but the
orchestra as a whole does not. Failures of the principle also occur in physics:
the ensemble of n objects of mass m does not have mass m, and the same
holds true for every additive quantity.

Examples like these highlight that asserting P̃E is not the same as asserting
PE. If we wish to infer P̃E from PE (or vice versa) the composition prin-
ciple has to be invoked. This principle, however, is not a universal law and
its validity in a given context needs to be justified. If we fail to provide such
a justification and assume, without further argument, that the composition
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principle holds true, we are guilty of a fallacy of composition.

The problem with the marbles is a problem of composition. To see how the
problem emerges, we explicitly state the composition principle as regards
position. Let e1, ..., en stand for the marbles and E = {e1, . . . , en} for the
ensemble of all marbles. Let R be the property of being in the n dimensional
Interval R1 × . . . × Rn. R̃E is the statement that all marbles individually
are in the relevant intervals (i.e. e1 is in R1, e2 is in R2, etc.). We then
have R̃E ≡ P

ϵ,R1
(e1)& . . .&P

ϵ,Rn
(en) (where ‘≡’ is the equivalence relation

between propositions). This proposition is true iff
∫
Ri

|ψi(r)|2dr ≥ 1 − ϵ,
i = 1, ..., n, where |ψi⟩ is the quantum state of the ith marble and Ri the
spatial interval in which it should be located. RE is the statement that the
ensemble of marbles is in R and we have RE ≡ P

ϵ,R1×...×Rn
(e1, . . . , en). This

statement is true iff inequality (1) holds. The composition principle as re-
gards position (CPP) says R̃E iff RE. The property of being in the box is a
special case. Choose R = Rin × . . .× Rin and let ‘B’ stand for the property
of being in the box. One can then define B̃E and BE as above, and CPP
says B̃E iff BE.

Is CPP true? The answer is: it depends. Let us first consider the special case
of ϵ = 0, where the Fuzzy Link in effect reduces to the the E-E Rule. One
can show that CPP holds in this case (the prove is given in the Appendix).
So under the E-E rule spatial properties satisfy composition. The situation
changes drastically if we move into FQM proper and assume ϵ > 0. The im-
plication in CPP that runs from left to right no longer holds and CPP is false.
In fact, in FQM only the restricted composition principle as regards position
(RCPP) holds: If RE then R̃E, but not vice versa. Applied to the marble
case RCPP says that if the ensemble of all marbles is in the box (BE), then
every one of its members is in the box as well (B̃E). The converse, however,
is false: if every member of the ensemble (i.e. every individual marble) is in
the box, the same need not be true for the ensemble.

Given what we have said about composition so far it should not come as a
surprise that such an inference can fail. The surprise, however, is that the
inference fails in the case of a spatial location. Being in the box or, more
generally, being located within an interval seems to be a clear example of
a property for which the composition should hold: if all members of E are
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located in R1 × . . . × Rn then, so it seems, the ensemble E itself should be
located within that interval as well. The counting anomaly shows that his
expectation is wrong.

A critic might now respond that noting is gained by rephrasing the counting
anomaly as a failure of CPP, because any theory in which CPP fails should
be rejected. So the challenge is to make plausible that one can rationally
uphold a theory in which CPP fails. To meet this challenge we need to have
a closer look at the properties involved. Why is it not absurd to hold that
B̃E is true while BE is false?

How do we check that all marbles are in the box? Let us follow Lewis and
endorse his enumeration principle. This means that we first ascertain that
the first marble is in the box, then that the second marble is in the box,
and so on until we reach the nth marble. If each marble turns out to be in
the box, then all n marbles are in the box. Given this, it is necessary and
sufficient for the n marbles to be in the box that B̃E is true (which, recall,
is equivalent to P

ϵ,Rin
(e1)& . . .&P

ϵ,Rn
(ein)).

Isn’t this too strong? Does doesn’t BE equally describe the state of affairs of
all marbles being in the box? The crucial thing to realise is that it doesn’t.
If we follow the procedure given in the enumeration principle, there is just no
reason to assume that BE should be true. We observe one marble after the
other and make sure that it is in the box, which results in the state of all mar-
bles individually being in the box, but not in any property of the ensemble.
One might try to resist this conclusion by arguing that it is just intuitively
obvious that BE describes the state of affairs of all marbles being in the box,
regardless of whether or not it squares with the enumeration principle. But
an appeal to intuition does’t cut the mustard. Properties of ensembles and
of individuals are distinct, and one cannot infer one from the other without
further argument. The required further argument in the current case is CPP,
and we know that this principle doesn’t hold in FQM. Hence, insisting that
BE represents the same state of affairs as B̃E is committing a fallacy of
composition.

But if BE does not describe the state of affairs of all marbles being in the
box, what then does it represent? We are instructed by RCPP that BE
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implies that all marbles are in the box but not vice versa, and so BE has
‘surplus content’ with respect to B̃E. What is this surplus? I have no answer
to this question, and I think we don’t need one. The interest in BE is based
on the belief that it reflects the ‘counting property’, but this is not the case.
Furthermore, it is in general a mistake to think that everything we can define
in the formalism represents something interesting in the world. Not every
formal expression corresponds to a property that is physically relevant, and
BE may well be one of those expressions.

There are two ways to push back against this conclusion. The first, men-
tioned by Lewis (1997, p. 320) and echoed by Clifton and Monton (2000,
p. 160), appeals to the Born rule. If the system is in state |ψtotal⟩ =
(a|ψin⟩ + b|ψout⟩)1...(a|ψin⟩ + b|ψout⟩)n, then it is unacceptable to say that
all marbles are in the box. Born’s rule, so the argument goes, tells us that
the probability of finding the system in state |ψin⟩1...|ψin⟩n is |a|2n, and be-
cause |a|2n ≪ 1 there is only a vanishingly small probability of finding all
the marbles in the box. But it makes no sense to say that the marbles are
in the box if the probability of finding them there is almost negligible.

This argument is flawed, but it is flawed in an interesting way because it
draws our attention to an issue that has not received much attention so far,
namely how to calculate probabilities in FQM. Given that FQM alters the
conditions for a property to obtain, the way of calculating probabilities has
to be altered too. Consider a marble in state |ψm⟩ = a|ψin⟩+ b|ψout⟩. What
is the probability p of it being true that the marble is in the box? In standard
QM we associate the state of being in the box with |ψin⟩ and using Born’s
rule we get p = |a|2. In FQM, however, the Fuzzy Link tells us that the
marble is in the box if it is in state |ψm⟩ where |a|2 ≥ 1 − ϵ. Given this,
it does not make sense to say that the probability of finding the marble in
the box equals |a|2 in |ψm⟩. We cannot say that the proposition that the
marble is in the box is true if the system is in state |ψm⟩ and at the same
time take the probability of the proposition to be smaller than one! If we
allow the proposition to be true in states like |ψm⟩ then we have to take these
same states when using Born’s rule to calculate probabilities. In the present
example, one ought to say that the FQM probability of a marble in state |ψ⟩
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to be in the box is |⟨ψ|ψm⟩|2, and not |⟨ψ|ψin⟩ as standard QM has it.6

It is now clear where the problem lies: It is true that the probability of finding
the system in state |ψin⟩1...|ψin⟩n is vanishingly small, but from this it does
not follow that the probability of finding all the marbles in the box is equally
small because these are not the same probabilities. The argument infers from
the fact that the probability of finding the system in state |ψin⟩1...|ψin⟩n is
small that the probability of finding it in the box is equally small, and thus
implicitly associates ‘being in the box’ with the state |ψin⟩1...|ψin⟩n. In doing
so it carries over to FQM a way of thinking about probabilities that contra-
dicts FQM’s basic assumptions.

The second way to push back against my conclusion is to appeal to everyday-
language practices. Lewis (2003, pp. 140-1; 2016; pp. 93-95) argues that an
everyday language claim like ‘all marbles are in the box’ involves both a claim
about individual marbles and the ensemble of marbles because everyday lan-
guage does not distinguish between the two. Therefore one cannot drive a
wedge between claims about individuals and claims about ensembles in the
way that I suggest (Monton (2004) also endorses this argument). Lewis im-
mediately adds that ‘this is an empirical claim about everyday language, and
requires justification’ (2003, p. 140), but expresses confidence that such an
investigation would reveal that ‘we do not make the distinction in ordinary
language between the claim that the ensemble of marbles is in the box and
the claim that each of the marbles individually is in the box’ (2016, p. 93).

Whether Lewis’ claim about ordinary language is true is a factual question
that ultimately can only be settled through empirical research, and the jury
on this is still out. But let’s assume, for the sake of argument, that Lewis
is right and ordinary language does not make a distinction between claims
about individual marbles and ensembles of marbles. How relevant is this for

6There is a question which state exactly one uses to calculate probabilities because
according to the Fuzzy Link, all |ψm⟩ with |a|2 ≥ 1 − ϵ have the property at stake. A
possible response is to take the state with the smallest admissible a (namely |a|2 = 1− ϵ)
and stipulate that p equals |⟨ψ|ψm⟩|2 for all states whose coefficient of |ψin⟩ is smaller
than a and 1 for all states with this coefficient greater that a. The last clause is needed
to prevent that a state which is closer to |ψin⟩ than |ψm⟩ is assigned a probability smaller
than one of being in the box.
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the question of understanding FQM? Views about the importance of ordinary
language vary widely, and the judgement isn’t always favourable. In fact, sig-
nificant strands of analytical philosophy have been concerned with clearing
up the ambiguities and inconsistencies of ordinary language in numerous do-
mains of inquiry. So it is no anathema to replace ordinary language by a
suitably regimented artificial language if this solves problems, and my claim
is that arithmetic is one of those places where such a revisionary attitude is
justified. The most common formal system of arithmetic, Peano arithmetic,
is a first order theory (see, for instance, Machover 1996). The axioms of
Peano Arithmetic capture all standard truths of arithmetic, and being first
order only involve quantification over individuals. So no appeal to ensembles
and ensemble properties is needed to capture the truths of arithmetic. If
ordinary language creates an arithmetic anomaly by importing elements into
the theory that aren’t needed, then the right reaction seems to be to replace
ordinary language by a suitably regimented formal language.7 The counting
anomaly shows us that that position is a more complex property than we
had previously assumed and we have to update our views about it accord-
ingly. If an air of paradox remains, it has to be dispelled in the same way in
which many other fallacies and imprecisions of ordinary language have to be
dispelled.

4 Conclusion

I have argued that it is sufficient for the marbles to be in the box that B̃E
(≡ P

ϵ,Rin
(e1)and . . . andPϵ,Rn

(ein)) holds, and that nothing else is needed.
Since counting is a process that is concerned with individual objects rather
than with ensembles, all that is needed for counting is that the conjunction
of all P

ϵ,Rin
(ej) is true. The general lesson we learn from this discussion is

that the property structure of FQM is more complex than that of standard

7The claim is only that first order arithmetic is able to capture standard truths of
arithmetic. The claim is not that no other formulations of arithmetic could be given.
There are of course second order formulations of arithmetic which involve quantification
over predicate variables. But these are introduced to solve problems that have nothing to
do with the counting anomaly, and the existence of these theory does not force us to use
them in the current context.
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QM, a price we have to pay for the admission of non-eigenstates as property-
bearing states.

Appendix

Note that we recovers the E-E rule if we assume ϵ = 0 and replace ‘≥’ is
replaced by ‘=’. A system in state |ψ⟩ has the property U iff |⟨ψ | eu⟩|2 = 1,
where |eu⟩ is the state in the Hilbert space associated with the property
U . This is equivalent to the condition ⟨ψ | P̂eu

| ψ⟩ = 1, where P̂eu
is

the projection operator on |eu⟩. If there is not just one single vector, but
an entire subspace Su of the Hilbert space associated with U , the condition
reads ⟨ψ | P̂

Su
| ψ⟩ = 1, where P̂

Su
is the projection operator on the sub-

space Su. Now choose U to be ‘being located within interval R1 × . . .×Rn’.
Then this condition reads ⟨ψ | P̂

R1×...×Rn
| ψ⟩ = 1. Now expand both |ψ⟩ and

P̂
R1×...×Rn

in the position basis: |ψ⟩ =
∫∞
−∞ ...

∫∞
−∞ dnr ψ(r1, ..., rn)|r1...rn⟩ and

P̂
R1×...×Rn

=
∫∞
−∞ ...

∫
R dnr |r1...rn⟩⟨r1...rn|. Plugging this into the above con-

dition yields: ⟨ψ | P̂
R1×...×Rn

| ψ⟩ =
∫
R1×...×Rn

|ψ(r1, ..., rn)|2dnr = 1, which
obviously is Equ. 1 with the aforementioned changes.

We are now in a position to prove that CP holds for properties thus defined.
⇒: Assume P

R1
(e1)andPR2

(e2)and . . . andPRn
(en) holds, that is,

∫
R |ψi(ri)|2dri =

1; i = 1, . . . , n. Since we built up our collective ‘n-marble entity’ from n
non-interacting marbles the state will not be entangled and can be writ-
ten as the product of the states of the individual marbles: ψ(r1, . . . , rn) =
ψ1(r1) . . . ψn(rn); and since in SQM the wave functions of a well-behaved
quantum state is integrable we can factorise the integral in Def. 2:

∫
R1×...×Rn

|ψ1(r1) . . . ψn(rn)|2dnr =
∫
R1

|ψ1(r1)|2dr1 . . .
∫
Rn

|ψn(rn)|2drn. But by as-
sumption all terms of this product equal one, hence

∫
R1×...×Rn

|ψ1(r1) . . . ψn(rn)|2
dnr = 1.
⇐: Assume P

R1×...×Rn
(e1, . . . , en) holds, that is,

∫
R1×...×Rn

|ψ1(r1) . . . ψn(rn)|2
dnr = 1. Factorise the integral as above:

∫
R1×...×Rn

|ψ1(r1) . . . ψn(rn)|2dnr =∫
R1

|ψ1(r1)|2dr1 . . .
∫
Rn

|ψn(rn)|2drn = 1. It is an axiom of SQM that
∫
Ri

|ψi(ri)|2
dri ≤ 1 for all i = 1, . . . , n. For this reason the above product can equal 1
only if

∫
Ri

|ψi(ri)|2dri = 1 for all i = 1, . . . , n. qed. This completes the proof
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of CP for SQM.

It is straightforward to see that the first half of the proof no longer goes
through if ϵ > 0 and (1) is a proper inequality. The second part, however, is
not affected by this change. For this reason, CPP fails in FQM, but RCPP
holds.

References

Albert, D. Z. and Loewer, B. (1995). Tails of Schrodinger’s Cat. In Perspec-
tives on Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic,
ed. Rob Clifton. Dordrecht: Kluwer Academic Publishers, pp. 81-92.

Bassi, A. and Ghirardi, G. (1999). More about dynamical reduction and the
enumeration principle. British Journal for the Philosophy of Science, 50,
719-34.

Bassi, A. and Ghirardi, G. (2001). Counting marbles: reply to Clifton and
Monton. British Journal for the Philosophy of Science, 52, 125-30.

Bassi, A., and Ghirardi, G. C. (2003). Dynamical reduction models. Physics
Reports, 379, 257-426.

Bell, J. S. (1987). Are there quantum jumps? In Speakable and Unspeakable
in Quantum Mechanics, ed. J. S. Bell. Cambridge: Cambridge University
Press, pp. 201-12.

Clifton, R. (1996). The properties of modal interpretations of quantum me-
chanics. British Journal for the Philosophy of Science, 47, 371-98.

Clifton, R. and Monton, B. (1999). Losing your marbles in wave function
collapse theories. British Journal for the Philosophy of Science, 50, 697-717.

Clifton, R. and Monton, B. (2000). Counting marbles with “accessible” mass
density: a reply to Bassi and Ghirardi. British Journal for the Philosophy of
Science, 51, 155-64.

12



Dirac, P. A. M. (1930). The Principles of Quantum Mechanics. Oxford:
Oxford University Press.

Frigg, R. (2003). On the property structure of realist collapse interpretations
of quantum mechanics and the so-called counting anomaly. International
Studies in the Philosophy of Science, 17, 43-57.

Frigg, R. and Hoefer, C. (2007). Probability in GRW theory. Studies in
History and Philosophy of Modern Physics, 38, 2007, 371-89.

Gao, S. (2017). The Meaning of the Wave Function: In Search of the Ontol-
ogy of Quantum Mechanics. Cambridge: Cambridge University Press.

Ghirardi, G. and Bassi, A. (1999). Do dynamical reduction models imply
that arithmetic does not apply to ordinary macroscopic objects? British
Journal for the Philosophy of Science, 50, 49-64.

Ghirardi, G., Grassi, R., and Benatti, F. (1995). Describing the macroscopic
world: closing the circle within the dynamic reduction program. Foundations
of Physics, 25, 5-38.

Ghirardi, G., Rimini, A., and Weber, T. (1986). Unified dynamics for mi-
croscopic and macroscopic systems. Physical Review, 34D, 470-91.

Lewis, P. J. (1997). Quantummechanics, orthogonality, and counting. British
Journal for the Philosophy of Science, 48, 313-28.

Lewis, P. J. (2003a). Counting marbles: reply to critics. British Journal for
the Philosophy of Science, 54, 165-70.

Lewis, P. J. (2003b). Four strategies for dealing with the counting anomaly
in spontaneous collapse theories of quantum mechanics. International Stud-
ies in the Philosophy of Science, 17, 137-142.

Lewis, P. J. (2016). Quantum Ontology: A Guide to the Metaphysics of
Quantum Mechanics. Oxford: Oxford University Press.

13



Machover, M. (1996). Set Theory, Logic and Their Limitations. Cambridge:
Cambridge University Press.

Monton, B. (2004). The problem of ontology for spontaneous collapse theo-
ries. Studies in History and Philosophy of Modern Physics, 35, 407-21.

Neumann, J. v. (1955). Mathematical Foundations of Quantum Mechanics.
Princeton: Princeton University Press.

Sakurai, J. J. (1994). Modern Quantum Mechanics. Reading, MA: Addison
Wesley.

14


