
   
 

   
 

 
The Predictive Reframing of Machine Learning Applications:  

Good Predictions and Bad Measurements 
 
 
 
Abstract 
Supervised machine learning has found its way into ever more areas of scientific inquiry, where the 
outcomes of supervised machine learning applications are almost universally classified as predictions. I 
argue that what researchers often present as a mere terminological particularity of the field involves the 
consequential transformation of tasks as diverse as classification, measurement, or image segmentation 
into prediction problems. Focusing on the case of machine-learning enabled poverty prediction, I explore 
how reframing a measurement problem as a prediction task alters the primary epistemic aim of the 
application. Instead of measuring a property, machine learning developers conceive of their models as 
predicting a given measurement of this property. I argue that this predictive reframing common to 
supervised machine learning applications is epistemically and ethically problematic, as it allows 
developers to externalize concerns critical to the epistemic validity and ethical implications of their 
model's inferences. I further hold that the predictive reframing is not a necessary feature of supervised 
machine learning by offering an alternative conception of machine learning models as measurement 
models. An interpretation of supervised machine learning applications to measurement tasks as 
automatically-calibrated model-based measurements internalizes questions of construct validity and 
ethical desirability critical to the measurement problem these applications are intended to and presented as 
solving. Thereby, this paper introduces an initial framework for exploring technical, historical, and 
philosophical research at the intersection of measurement and machine learning. 
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I Introduction 
 In the past decade, machine learning (ML) has evolved from a predominantly exploratory field to 
an increasingly established and more broadly used instrument of inquiry. Advancements in computational 
hardware, unprecedented volumes of data, and new statistical methods have enabled the deployment of 
ML in ever more areas. Today, ML models are applied to tasks as diverse as the automatic segmentation of 
plant images (Smith et al., 2020), unemployment rate forecasting (Chakraborty et al., 2021), or better 
modeling retinal sensory processing (Tanaka et al., 2019). 
 In light of the proliferation of ML applications within science, critical questions emerge regarding 
the epistemology of ML. Whereas issues such as the explanatory potential of ML models (e.g., 
Chirimuuta, 2021; López-Rubio & Ratti, 2019; Sullivan, 2019) or their ability to provide causal knowledge 
(e.g., Canali, 2016; Pietsch, 2016, 2021) have received initial philosophical consideration, relatively little 
has been said about the fact that ML applications are almost universally categorized as predictive. The 
overwhelming tendency to approach ML applications as predictive finds expression, for instance, in 
Agrawal et al.’s seminal book “Prediction Machines” on the economics of ML: “Because it [ML] is 
becoming cheaper it is being used for problems that were not traditionally prediction problems. Kathryn 
Howe, of Integrate.ai, calls the ability to see a problem and reframe it as a prediction problem ‘AI Insight,’ 
and, today, engineers all over the world are acquiring it.” (2018, p. 23). What Agrawal et al. commend as 
“AI Insight,” I take as motivation to critically analyze how exactly ML developers reframe problems as 
prediction tasks. 

My argument will proceed in three parts. In section two of this paper, I will investigate the 
predictive reframing of ML applications. With predictive reframing, I seek to designate the transformation 
of tasks as diverse as measurement problems, image segmentation, or explanatory modeling into statistical 
predictions. Throughout the paper, I illustrate my argument by means of ML-enabled poverty prediction as 
an example of how developers reinterpret a socioeconomic measurement problem as a predictive task. I 
aim to shed light on the often-unacknowledged fact that the predictive reframing involved in applying 
supervised ML to measurement tasks alters their primary epistemic aim. In measurement, we seek to infer 
the value of a property of interest. However, when reframing measurement tasks as predictions, ML 
developers interpret their applications not as inferences of a property but, instead, as predicting a particular 
poverty metric. 
 In section three, I argue that this predictive reframing in ML is neither epistemically nor ethically 
neutral. Reframing and evaluating ML applications as predictions allows developers to leave questions 
central to the original measurement problem outside of the immediate scope of the predictive task. This 
includes, but is not limited to, the question of which measurement is the right measurement for the given 
purpose. Instead of engaging critically with the ethical desirability or epistemic validity of the model's 
inferences with respect to the property of interest, the evaluation of supervised ML models is done based 
on statistical correlation with a given measurement. However, just because a supervised ML model might 
display a high correlation with the known measurement values, i.e., reliably solve the predictive task, it 
does not necessarily follow that the application also adequately addresses the initial measurement problem 
the model is presented as solving. In other words, a supervised ML model might provide good predictions 
but bad measurements.  

ML developers’ tendency to nonetheless present their predictions as solutions to the original 
measurement problem, in conjunction with the fact that the predictive reframing obscures how 
discrepancies between the model’s prediction and the reference measurement might correlate with real-
world poverty, motivates me to propose interpreting some ML applications not as predictions but as 
measurements in the last section of this paper. More specifically, I argue in section four that one can 
interpret supervised ML applications to measurement tasks as automatically calibrated model-based 
measurements and thus, as being calibrated with the help of a reference procedure but ultimately 
measuring the property of interest. Such an understanding of some ML models as measurements 
internalizes questions of construct validity and ethical desirability critical to the measurement problem 
these applications are intended to and presented as solving. In other words, thinking of certain supervised 
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ML applications as model-based measurements rather than predictions brings them out of the frame of 
mere statistical calculus and into more critical engagement with the underlying theoretical and conceptual 
assumptions.  
 My argument also relates closely to scholarship on AI ethics, which often addresses precisely the 
questions that developers, through the predictive reframing of their application, externalize from the 
development and evaluation of ML models. By pointing towards the philosophy of measurement as an 
alternative perspective for understanding normative dimensions of ML applications, I illustrate one way in 
which the philosophy of science might help shed light on issues in AI ethics. My contribution to these 
questions is primarily introductory, highlighting the need for technical, historical, and philosophical 
research at the intersection of measurement and ML.  

II Predictive Reframing  
II.1 A Measurement Problem 
 As the United Nations General Assembly notes, “eradicating poverty in all its forms and 
dimensions, including extreme poverty, is the greatest global challenge and an indispensable requirement 
for sustainable development” (United Nations, 2015, p. 5). Effective policy intervention and research 
require reliable and timely information about the state of poverty at an appropriate spatial granularity. 
Through traditional survey-based measurements, such data is generally available for most industrialized 
countries. However, reliable measurements are scarce in developing regions where poverty relief is most 
needed. Even when available, wealth and consumption surveys can lie more than ten years apart and are 
often not provided at the spatial resolution required (Yeh et al., 2020). 

In the absence of timely survey-based poverty metrics, economists must find alternative ways to 
provide information on the poverty of a region that can guide policy intervention and educate scholarship. 
What is needed are practical solutions to a rather typical socioeconomic measurement problem, namely 
that of providing timely and reliable measurements of poverty. 

II.2 Predicting Poverty 
 To address this need for current poverty measurements, particularly in Africa, researchers have 
recently suggested relying on alternative forms of data. With the help of ML, an emerging field of research 
aims to infer poverty metrics in developing regions from data as diverse as mobile phone records and 
satellite imagery (e.g., Blumenstock et al., 2015; Jean et al., 2016; Pokhriyal & Jacques, 2017; Yeh et al., 
2020). In addition to significantly lower costs, these methods can provide information on the poverty of a 
region at a much higher spatial granularity and frequency than survey-based measurements. 
 The developers, however, do not understand their applications as measurement. Instead, they 
speak of poverty prediction, as illustrated by titles such as “Combining satellite imagery and machine 
learning to predict poverty” (Jean et al., 2016) or “Predicting poverty and wealth from mobile phone 
metadata” (Blumenstock et al., 2015). Such an interpretation of the applications’ outcomes as predictions 
might, upon closer inspection, appear somewhat curious. When “predicting,” at least in its original sense, 
one seeks to anticipate or forecast (“Prediction,” 2021). In other words, with the term prediction, we often 
associate inferences about the future.1 However, ML applications to poverty prediction do not aim to 
predict the future but to infer the current state of poverty in a particular region by providing an alternative 
to often outdated and coarse survey measurements. How do ML researchers then understand their models 
as “predicting poverty?” 
 To comprehend how developers understand the outcomes of ML applications as predictions, one 
must look at their development. It is critical to distinguish two components of any machine learning 

 
1 Within scientific discourse, the term “prediction” is not limited to inferences about the future. For instance, 
in statistics, model outcomes are labeled predictions regardless of their temporality. As will become clear in 
the following paragraphs, my characterization of machine learning predictions, equally, is not dependent on 
their temporal relation to the event or property of interest. 
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application: the machine learning model and the learning algorithm. In machine learning, the learning 
algorithm is responsible for adjusting the parameters of an initial generic model based on data and, 
therethrough, “builds” the machine learning model from data (Zhou, 2021, p. 2). A useful heuristic is 
picturing the relationship between the machine learning model and algorithm analogously to that of a 
program and the programmer. Broadly speaking, one can differentiate between three kinds of machine 
learning algorithms. In unsupervised learning, models are trained upon a dataset of which they 
independently discover structural properties. Given instances of a random vector of data points x, 
unsupervised machine learning algorithms infer (aspects of) its probability distribution p(x). Contrarily, 
supervised learning algorithms require a dataset containing an explicit label or target y. In supervised 
learning, one aims to infer unknown cases of y given x by approximating the probability distribution p(y | 
x). A third category of machine learning algorithms, grouped under reinforcement learning, learns through 
external feedback (Goodfellow et al., 2016, pp. 104–106).  
 To “predict poverty,” ML developers generally employ a supervised learning approach.2 
Therefore, developers collect data on the predictor variables (such as features extracted from satellite 
imagery or call data records) and known values of the target variable, usually in the form of survey-based 
poverty metrics. Upon data collection and preprocessing, the development of supervised ML models 
generally consists of two steps: model training and model testing.3 During training, the model’s parameters 
are adjusted based on differences between the initial model’s inference given the feature data and the 
known values of the target variables. Pokhriyal & Jacques (2017), for instance, train Gaussian Process 
models (a specific ML model) on input data consisting of environmental data (on economic activity, access 
to facilities, and metrics of food security) and call data records, as well as known values of the 
Multidimensional Poverty Index (MPI). Blumenstock et al. (2015) train elastic net and tree-based 
ensemble regression models on features extracted from mobile phone network records and known values 
of a composite wealth index. In a second step, the model is then tested based on how well it infers known 
values of the target variable from data it was not trained upon.  

During development, given input data but not yet knowing the corresponding value of the poverty 
metric in the dataset, the model predicts, i.e., anticipates this value. Subsequently, the value of the target 
variable in the dataset is revealed to the model, and adjustments are made (training) or performance 
metrics are calculated (testing). This explains how, during development, one might understand the 
inferences of supervised ML models as predictions: the model predicts a value in a dataset that is later 
disclosed to it.  
  The application of these models, however, presents itself differently. Researchers propose to 
employ the trained models (or future iterations of them) in regions or at a level of spatial granularity where 
no up-to-date survey-based measurements are available. Nonetheless, the conception of the proposed 
supervised ML applications as “predicting poverty” is an extension of the nature of the inferences during 
the development of the model. When researchers propose that their models might “predict poverty” where 
no survey-based measurements are available, they more precisely suggest that their model anticipates the 
missing value of the poverty metric in the new dataset. Consequently, developers understand the ML 
model not as “predicting poverty,” but, instead, as predicting the hypothetical value of a particular 
poverty metric. This distinction is rather subtle and is, if at all, only mentioned cursorily in the literature. 
For instance, Pokhriyal & Jacques (2017, p. 9784) briefly remark that “throughout the[ir] paper, ‘poverty’ 
refers to the Global MPI.” “Predicting poverty,” in this case, more precisely means predicting the 
Multidimensional Poverty Index of a region.  

The understanding of ML applications as predictive is often presented as a mere terminological 
particularity of the field (e.g., Agrawal et al., 2020, Bell, 2014, p. 2, Hastie 2009, p. xi). Instead, I have 
argued that when presented with a measurement problem, but approaching it as a prediction task, ML 
developers commit to more than a mere act of lexical convention (measuring poverty vs. predicting 

 
2 Recently, a small number of papers have leveraged a semi-supervised learning approach (e.g., Perez et al., 
2019; Zhao et al., 2020). I will leave an explicit treatment of semi-supervised learning for future research. 
3 In practice, the development is often more complex and involves iterative training, testing, and validation 
steps.  
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poverty). Instead, they actively reframe the primary epistemic aim from measuring the poverty of a region 
to predicting the value of a given measurement of poverty. In other words, through the predictive 
reframing, developers conceive of their supervised ML outcomes as second-order rather than first-order 
inferences (see Figure 1).4 
 
Figure 1 
The Predicting Reframing of the Original Measurement Task:  

 

III Good Predictions and Bad Measurements 
III.1 The Evaluation of Machine Learning Predictions 

The predictive reframing of a measurement problem into a prediction task is neither epistemically 
nor ethically neutral. Considerations critical to the original problem are externalized when machine 
learning developers reframe the original measurement task into predictions of a particular poverty metric. 
This shows most clearly in how supervised learning applications are evaluated. 

The initial problem is to provide information on the poverty of a region that can reliably guide 
policy and research. Consequently, poverty measurements are evaluated based on how accurately, 
coherently, or responsibly they capture the target property relative to a given application. Central to 
evaluating any potential solution to the initial problem is the question of whether any particular 
measurement is the right measurement for the context it is applied within. Therefore, measurement experts 
must assess whether any particular measurement can adequately inform, for instance, necessary policy 
decisions and highlight potential limitations.  

The question of which measurement of poverty to use involves both epistemic and ethical 
dimensions. It implies ethical concerns regarding the fairness or social desirability of using a given metric 
(or any form of quantification), issues that should ideally be analyzed within a broader social and historical 
context. Furthermore, it raises closely related epistemic issues such as assuring the construct validity of a 
measurement, i.e., whether a given measurement conforms with theoretical hypotheses surrounding 
poverty and its relation to other properties (see, for instance, Mari et al., 2021, pp. 88–89). Far from mere 
statistical calculus, answering these questions requires a great degree of domain knowledge and critical 
judgment on often competing hypotheses (Boumans, 2015, Chapter 5) as the validity of particular poverty 
metrics is subject to disagreement even within the discipline.5 As much as such evaluation is critical, it is 
also intricate and ideally involves addressing challenging contextual questions that lack clear-cut 
numerical answers (Alexandrova & Haybron, 2016). 
 However, the work on ML-enabled poverty prediction circumvents these critical questions 
regarding the validity, suitability, or social desirability of a particular measurement. Within the reframed 
predictive task, the model’s inferences are no longer understood as measuring (dimensions of) poverty but 
rather, more narrowly, as predicting a given poverty metric. Consequently, when evaluating the model’s 
predictions, a particular way of measuring poverty is taken for granted, leaving questions of how the 
model’s inference relates to the property of interest outside the primary scope of the prediction task.  
 A closer look at the literature helps exemplify my point. For instance, in one of the landmark 
articles on ML-enabled poverty prediction, Blumenstock et al. (2015) predict a composite wealth index 
based on features extracted from call data records provided by Rwanda’s near-monopoly mobile network 

 
4 I thank Michał Wieczorek for suggesting this formulation. 
5 See, for instance, the debate between Nájera Catalán & Gordon (2020) and Santos & Villatoro (2020) or 
research on the discrepancies between income and multidimensional poverty (e.g., Wang et al., 2016). 
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provider. Only when reading the supplementary materials, does one find out that the composite wealth 
index is the first principal component of eight questions asked in a phone survey (Blumenstock et. al, 
2015, Suppl. 1D). These questions are chosen based on their correlation with the first principal component 
of a broader set of asset and household-related questions from a representative national Demographic and 
Health Survey (DHS) and practical constraints during the researchers’ phone survey.6 Ultimately, what the 
ML model predicts is an aggregate measure of phone survey answers to whether the respondent owns a 
refrigerator, radio, television, bicycle, or motor scooter, as well as the size of the household, access to 
electricity, and the number of children. Critically, the authors provide no validation of this composite 
wealth index and do not address how their measure relates to the concept of poverty or its adequacy for 
policy decisions. In other words, the developers leave wide open to what extent the trained model really 
predicts poverty. 

Blumenstock et al.’s (2015) article is no exception. Generally, developers offer little justification 
for the choice of a particular poverty metric, nor do they mention critical consideration of alternative 
poverty metrics (e.g., Jean et al., 2016; Pokhriyal & Jacques, 2017). Instead, the evaluation of ML 
predictions is often limited to the computation of correlation metrics with known values of a given 
measurement. However, just because a supervised ML model might display a high correlation with 
recorded values of a particular poverty metric, i.e., reliably solve the predictive task, it does not necessarily 
follow that the application also adequately addresses the initial measurement problem. Given high 
correlation, it can be reasonably assumed that the ML model’s outcomes somewhat accurately reproduce 
the reference measurement. However, such evaluation leaves unaddressed whether a given reference 
poverty metric is the right measurement by critically addressing its suitability for the particular purpose 
and theoretical validity.7 Consequently, it does not necessarily follow that the ML models also produce 
adequate information regarding the poverty of a region. Even when the model might achieve high 
predictive accuracy, it might not provide a reliable solution to the original aim of the researchers. In other 
words, a supervised ML model might provide good predictions but bad measurements.  

III.2 Motivating the Need to Move Beyond the Predictive Reframing 
At this point, I might not have fully convinced the reader that machine learning developers' focus 

on predicting the ground truth data provided by a reference measurement is necessarily problematic. After 
all, policymakers and researchers could, in a separate step, assess the validity or adequacy of the respective 
poverty metric predicted to ensure the machine learning model can provide reliable solutions to the initial 
problem.  

I respond to such a position in two ways. First, I highlight that, in practice, machine learning 
developers often fail to clearly communicate the limitations of their approach, effectively marketing their 
applications as solutions to the original measurement problem. Second, I argue that even if machine 
learning developers were to more explicitly acknowledge the need to further validate the reference 
measurement, fundamental shortcomings remain. In principle, the non-transitivity of the relationship 
between prediction, reference measurement, and construct, as well as considerations regarding the broader 
purpose of scientific research, motivate moving beyond the predictive reframing in supervised machine 
learning. 

III.2.1 Communicating limitations 
 The predictive reframing and the resulting avoidance of questions critical to the initial 
measurement problem are hardly communicated. Most often, developers do not explicitly mention the 
reframing into a prediction task at all. Even if the researchers cursorily note it, they do so in a manner that 
obscures rather than illuminates the distinction: for instance, when developers briefly remark that 
“throughout the paper, ‘poverty’ refers to the Global MPI” and subsequently equate a measurement of a 

 
6 According to the authors, respondents were unable to quickly answer some questions from the DHS 
(Blumenstock et. al, 2015, Suppl. 1D). 
7 I am not committed to any particular notion of measurement validity or adequacy as a detailed treatment of 
the philosophical literature on measurement validation and adequacy (e.g., Alexandrova, 2017, Chapter 6; 
Alexandrova & Haybron, 2016; Bokulich & Parker, 2021; Feest, 2020) lies outside the scope of this paper. 
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property (Global MPI) with that property (poverty) (Pokhriyal & Jacques, 2017, p. 9784). In other cases, 
central aspects of their work, such as the composition of the particular poverty metric the model predicts, 
are only provided in the supplementary materials (e.g., Blumenstock et al., 2015, Suppl. 1D). 
 In this manner, supervised ML applications are often presented (and possibly intended) as solving 
one task but developed and evaluated as solving a different problem. ML-enabled poverty estimation is 
presented as addressing the demand for reliable measurements of poverty in developing regions but 
approached and evaluated as predictions of a given poverty measurement. In other words, the predictive 
reframing and its lack of communication enable developers to focus on a much more limited and 
straightforward problem while marketing their applications as solutions to a more substantial and complex 
one. 
 Even when developers might be aware of the limitations of their approach, these consequences 
might not be as evident to journalists or policymakers interpreting and possibly adopting their research. 
This is underscored by the often-made claim in popular discourse and media that ML algorithms offer 
some immediate (or even naïvely objective) insight into a particular phenomenon. The predictive 
reframing, however, understands the model as merely predicting the missing value in a dataset. This 
interpretation does not necessarily relate the model’s inferences to some feature of reality but, instead, 
often remains firmly within the, one step removed, realm of data. 
 A first step would be for developers to explicitly acknowledge the implications of the predictive 
reframing and, thereby, appropriately relativize the ML model’s predictions. However, expecting ML 
developers to highlight a fundamental limitation of their application runs counter to the natural tendency to 
present their work as favorably as possible. Given the prevalence of predictive reframing within ML 
research, any deviation from it might further conflict with financial incentives such as attracting funding. 
As a discipline heavily driven by industry (Hagendorff & Meding, 2021), the marketing of results arguably 
plays an even more significant role within ML.  

III.2.1 Residuals – Error or Improvement? 
 Moreover, I argue that even if machine learning developers were to communicate the limitations 
of their approach, problems with the predictive reframing persist. Acknowledging that the epistemic target 
and standard of evaluation is a particular poverty metric, highlights the need to further evaluate the 
adequacy or validity of this reference measurement. Performance evaluation would then become a two-
step process ensuring that the model’s inferences reliably reproduce the reference measurement and, in a 
separate step, that the reference measurement is the appropriate metric given the application. In the case of 
ML-enabled poverty inference, developers would, for instance, verify whether the model accurately 
reproduces the metric, whereas policymakers and researchers (possibly together with developers) critically 
question whether the poverty metric predicted serves as the right measurement of poverty for the 
application. 
 I argue that such evaluation would still face a fundamental shortcoming: the relation between the 
ML model’s prediction, the reference measurement, and the latent property of interest is not necessarily 
transitive. Even when the model’s inferences are good enough predictions of the poverty metric and the 
poverty metric is a good enough measurement of poverty, the model’s inferences may not ultimately 
provide reliable information on the poverty of a region. This is because the question of how discrepancies 
between the reference measurement and the ML model’s inference (residuals) relate to the property of 
interest lies outside the scope of such a two-step evaluation. Given that the supervised ML models 
proposed for poverty prediction do not perfectly reproduce the poverty measurements they predict, even 
numerically small residuals might correlate with real-world poverty in ways that undermine the 
prediction’s adequacy and validity.  
 Curiously, it is also conceivable that what might constitute an error in the prediction problem 
might be an improvement in measuring poverty. Imagine a case where, because some conceptual 
commitments of the operationalization of the reference measurement translate less to a particular region, a 
survey-based poverty metric might not measure the poverty of this region adequately. In this case, the 
supervised ML model not relying on those survey responses but on satellite imagery and call data to 
predict the poverty metric might more accurately capture the poverty of this given region. While such a 
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discrepancy between the model’s prediction and the measurements would constitute an error when we 
conceive of its primary epistemic aim as predicting the poverty metric, it might provide an improvement 
with respect to our ultimate goal of measuring poverty. 
 The point, however, is broader than merely the evaluation of individual applications — an 
understanding of supervised ML applications as predictive limits the advancement of the discipline as a 
whole. As long as applications are conceived of and developed to predict or reproduce the results of a 
reference procedure, they are limited to the accuracy and validity of this procedure. The primary value of 
supervised ML is thus restricted to gains in efficiency or applicability (see also Ratti, 2020). This is 
because as long as the primary epistemic aim of these applications is interpreted as predicting the results of 
a given reference procedure, improvements in accuracy relative to the ultimate property of interest are 
errors with respect to the primary epistemic aim.8 

IV How machine learning measures 
Here I propose an alternative conceptualization of supervised ML that avoids the predictive 

reframing and understands applications of supervised ML to measurement problems as measurements. 
Thereby, I hope to not merely avoid some of the problematic aspects of the predictive reframing but also 
situate supervised ML applications within the appropriate frame of reference for the task they are presented 
as solving. When ML applications are presented as solutions to the problem of measuring poverty, they 
should also be developed and evaluated in the context of measurement rather than prediction. Again, I will 
illustrate this point by showing how machine-learning enabled poverty inferences presented as solutions to 
the original problem of measuring poverty can be interpreted as measuring poverty rather than reframing 
them as predicting a given poverty metric. 
 I argue that when supervised ML is applied to measurement tasks, one can conceive of these 
applications as automatically calibrated model-based measurements. By understanding supervised ML 
models as measurement models, one can account for the fact that models are calibrated towards a reference 
procedure and, nonetheless, understand the ultimate property of interest and not the hypothetical results of 
a reference procedure as their primary epistemic target. This is achieved by separating the goal during the 
development of ML models from the epistemic target of their application. The former I propose to 
understand as a predictive activity, namely (steps of) the calibration of a measurement model, whereas the 
latter I suggest understanding as the measurement of a specific property. 
 Let me briefly illustrate my point. One might calibrate a watch towards the measurements of 
reference instruments, such as the network of atomic clocks or calibrate a psychological test towards a set 
of reference scores. However, once in use, one would not commonly conceive of these instruments as 
predicting the reference (such as predicting the hypothetical measurement of the atomic clock or predicting 
the performance relative to the set) but as measuring the property of interest. One employs the calibrated 
clock to measure time and the psychological test to measure cognitive ability. 
 I propose understanding supervised ML applications to measurement problems in the same sense.  
Referring to the example of poverty metrics discussed above, supervised ML models are calibrated 
towards some reference poverty metric, but when intended to be deployed, they should be understood and 
evaluated as measuring poverty. This conceptualization of supervised ML applications I take to be both 
descriptively accurate as it captures better the original epistemic task, as well as instrumentally useful as it 
thereby avoids some of the problematic aspects of the predictive reframing I have touched upon.  

Below, I lay out in some detail a first exploration of how some supervised ML applications might 
be interpreted as automatically calibrated model-based measurements. To this end, I provide a brief 

 
8 One might hold that it is in the nature of supervised ML to be merely reproductive. However, the extensive 
literature on fairness in machine learning illustrates how conceptual and ethical considerations regarding the 
target construct (e.g., that an applicant’s fit for a job is not influenced by gender or race) can be implemented 
to avoid reproducing bias (Mehrabi et al., 2022, Section 5). 
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account of both measurement calibration and model-based measurement to then illustrate how we might, 
analogously, understand supervised ML as the automatic calibration of a model-based measurement.  

IV.1 Measurement Calibration 
 Recent accounts of measurement in both the social (Boumans, 2007, p. 200) and the natural 
sciences (e.g., Morrison, 2009, pp. 49–55; Tal, 2017a, 2017b) equally emphasize the role of models in 
measurement practice. According to such a reading, measurement involves an empirical process, as well as 
theoretical and statistical modeling. In the social sciences, the empirical process can often be limited to 
passive observation. Consequently, researchers have little control over factors other than the property of 
interest that might influence their observations. Modeling provides a means to account for these 
confounding factors to reliably infer the (often latent) property of interest from observations. Within the 
natural sciences, and particularly in laboratory settings, metrologists generally have more control over the 
measurement operation. Nonetheless, when aiming at a particularly accurate measurement outcome, 
modeling remains critical even in the natural sciences to abstract from the measurement any remaining 
influencing factors and bring the outcomes of the specific operation into coherence with other 
measurements and background theory.  
 Measurement experts do so in a process called measurement calibration, which finds one of its 
most definite philosophical expressions in Eran Tal’s work on precision metrology (e.g., 2017a, 2017b). 
According to Tal, the first step towards understanding measurement calibration lies in distinguishing 
between instrument indications and measurement outcomes. An instrument indication “is a property of a 
measuring instrument in the final state after the measurement is completed” (Tal, 2017b, p. 34). Examples 
of instrument indications are the level of a liquid in a thermometer or the change of a pH test strip’s color. 
These instrument indications must be understood as parameters of the particular measuring operation, 
including the specific instrument, environment, and operators. In contrast, measurement outcomes are 
knowledge claims about the state of the object under measurement, such as its temperature or acidity. To 
arrive at a measurement outcome, one must abstract from the measurement the idiosyncrasies of the 
specific operation to bring it into coherence with a broader network of measurement instruments. This 
inference from instrument indications to measurement outcomes is calibration, which Tal proposes to 
understand as a two-part modeling practice. 
 The first step, Tal labels forward calibration. Forward calibration iteratively determines the 
relationship between quantity values provided by a reference procedure and the indications of the 
instrument being calibrated. In a second step, termed backward calibration, one then aims to infer the 
measurement outcome from an instrument indication. Tal proposes to understand both inferences as 
model-based. Background knowledge, as well as statistical and theoretical assumptions, relate the quantity 
values provided by a reference to the instrument indications and later to the measurement outcome through 
iteratively adjusted functional relationships. 
 To illustrate this point, Tal presents the example of calibrating a caliper by placing gauge blocks 
between its jaws. The gauge blocks provide references in the form of quantity values that can be mapped to 
the instrument's indications. However, various other factors affect the instrument’s final state, such as the 
temperature of the environment. To arrive at a precise forward calibration, one must model the measuring 
process as a function of the quantity value provided by the reference object and other parameters 
influencing the reading. This calibration “involves iterative modifications to the model of the apparatus as 
well as to the apparatus itself” (p. 38, emphasis added). Once a satisfactory level of accuracy is achieved, 
the calibration function provides us with a model-based estimate of the instrument indication given a 
quantity value and additional parameters involved in the measurement operation. 
 The instrument indication, in contrast to a measurement outcome, cannot immediately be 
attributed to the object of measurement. To infer the measurement outcome, one again relies on a model of 
the measurement operation: the backward calibration function. The measurement outcome is the best 
estimate of the object’s diameter given the observed instrument indication, the backward calibration 
function, and the parameters of other potential influences on the measurement. If the circumstances 
between forward calibration and measurement are sufficiently similar, and no additional factors need to be 
considered, the backward calibration function is but the inverse of the forward calibration function. This 
modeling and its underlying statistical and theoretical assumptions then warrant the claim that the ultimate 
measurement outcome pertains to the object rather than the specific measurement operation. 
 In summary, Tal’s model-based account of measurement calibration interprets measurement 
outcomes not as the immediate results of a physical operation but as pertaining to an iteratively calibrated 
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model of that system. They are estimates based on a two-way process of inference. First, calibration 
iteratively determines a functional relationship between quantity values provided by a reference and the 
measurement instrument’s indications. Second, measurement outcomes are deduced as best predictors of 
observed instrument indications given the theoretical-statistical model of the system.  

IV.2 Model-Based Measurement 
 Tal’s account highlights the significance of modeling in the calibration of measurements in 
precision metrology. To arrive at the most accurate measurement outcome, the data obtained from the 
instrumented measurement operation must be modeled to account for confounding factors and the 
idiosyncrasies of the specific operation. In other cases of measurement, however, one lacks a measurement 
instrument in the first place. Measurements in the social sciences often rely on data coming from official 
statistics or field observations, not from controlled instrumented measurement operations.9 Rather than 
calibrating a measurement instrument, in the social sciences, the measurement model itself relates the 
observations to the property of interest. In other words, the measurement model also functions as the 
measurement instrument. For this reason, Marcel Boumans (2007) terms these inferences model-based 
measurements.  
 Similarly, I propose to understand supervised ML applications as measurements or, more 
specifically, as automatically calibrated model-based measurements. Supervised ML models are models 
intended to measure a given property that are automatically (the “learning” in machine learning) calibrated 
towards a reference measurement. Nonetheless, one can ultimately interpret their application as measuring 
a property of interest rather than predicting a hypothetical measurement of it. 

IV.3 Supervised Machine Learning as Automatically Calibrated Model-
Based Measurement 
IV.3.1 Model Choice in Machine Learning and Measurement 
 Similar to measurement calibration, one of the first steps in any supervised ML application is 
deciding on an initial model architecture. In the case of ML-enabled poverty inference, the models 
employed range from Gaussian Process Regression (GPR) models (Pokhriyal & Jacques, 2017) and 
Convolutional Neural Networks (CNN) (Xie et al., 2016) to regression models (Blumenstock et al., 2015). 
The model choice depends on theoretical and statistical assumptions such as whether the developers face a 
classification or regression problem, the presumed functional relationship between the target variable and 
the feature vector, computational requirements, and the nature of the input data. CNNs, for instance, are 
primarily applied when models are trained upon visual information. Xie et al. (2016) rely on a CNN within 
a more complex transfer learning architecture to extract spatial information from satellite image data. In 
contrast, Pokhriyal & Jacques (2017) employ a GPR model to infer the poverty of a region based on 
environmental data and call records as these models do not merely output a singular value but also an 
associated uncertainty.  
 However, the model-choice in supervised ML is more complex than that, at times relying heavily 
on intuition or trial and error. Given a model, the developers specify the learning algorithm, kernel 
function, or hyperparameters of the model. For CNNs, the developers decide, for instance, on the number 
of layers, the learning algorithm, or the size of the convolutional filters. For GPR models, the researchers 
must specify the nature of the kernel function that can be interpreted as a similarity measure of individual 
data points. Pokhriyal & Jacques (2017), for example, employ a kernel function that separately accounts 
for nonlinear dependencies in the feature and geographic space of the input data. 
 This initial model choice and specification involved in supervised ML mirrors that in model-based 
measurement. Similar to ML developers, measurement experts must first specify an initial measurement 
model in the form of one or multiple functions. Thereby, theoretical or statistical background knowledge 
and the degree of precision needed, guide the initial specification of the model. Granted, the functions 
underlying a measurement might appear more formally representative of the situation being modeled than 
is the case in ML. Before training, ML models are often vastly more generic than many of the models 
employed in traditional measurements. 

 
9 Similarly, information as diverse as expert judgment or theoretical commitments is used as a reference when 
calibrating measurement models (Boumans, 2015, Chapter 5). 
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IV.3.2 Training & Testing as Calibration 
 However, in both cases, the initial model is only a tentative starting point. To move from an 
initially somewhat generic model to one that can reliably infer the poverty of regions, the model is 
iteratively adjusted, based on both input data and known target values. This “training” in supervised ML, I 
argue, can be understood as the calibration of a measurement model. 
 First, one might look at the data upon which the supervised ML models are calibrated. In the case 
of supervised ML-enabled poverty estimation, the most common data sources used are satellite data, 
environmental data, and call data records. The empirical processes producing the data (satellite 
photography, monitoring of environmental conditions, etc.) are generally forms of passive observation not 
specifically designed for the application. This is similar to measurements in the field and social sciences, 
which often rely on secondary data such as government statistics or market data. Identical to traditional 
measurement calibration, the supervised ML applications do not merely require the input data but also the 
known reference values the model is calibrated towards. In the case of supervised ML-enabled poverty 
prediction, the models are calibrated towards known survey-based poverty metrics. 

Based on these data, iterative adjustments are made to parameters in an often statistical model. In 
supervised ML, a model is trained upon both the input data x (obtained through one or many empirical 
procedures) and a corresponding target variable y (obtained through a reference procedure), and thereby 
“learns” to approximate a particular functional relationship. The precise ways in which models are trained 
based on these data vary. Broadly speaking, a learning algorithm, similar to the job of the measurement 
expert, adjusts parameters in an initial model based on differences between the reference data and the 
model’s prediction. 

What is more, the same statistical principle often underlies how adjustments are made to 
supervised ML models and measurement models. In poverty estimation applications, and in supervised ML 
more generally, adjustments to the parameters are often made based on the statistical principle of 
maximum likelihood estimation (Goodfellow et al., 2016, Chapter 5). Thereby, one adjusts the parameters 
of the model to maximize the likelihood so that, under the assumed statistical model, the observed data is 
most probable. The “learning” in supervised ML refers to the fact that the learning algorithm performs 
these adjustments automatically. While not necessarily executed automatically, the same statistical 
principle of maximum likelihood estimation finds application when adjusting measurement models, for 
instance, in econometrics (e.g., Holston et al., 2017).  

Upon this first step of calibration, both model-based measurements and supervised ML models are 
then tested. To test ML models, programmers generally either set a part of the data aside before training or 
use cross-validation methods (Kubat, 2017, pp. 224–225). The goal of testing the ML model or model-
based measurements is to assess its performance and to ensure that the functional relationship generalizes 
to the overall domain of interest. That is, the developers seek to test whether the model’s inferences also 
cohere with reference measurements the model has not “seen” before. If the inferences prove to be 
unsatisfactory, both the ML developers and measurement experts go back to implement changes to the 
initial model specification, the previous calibration procedure, or the empirical process. 

IV.3.3 Application as Measurement 
The trained and tested supervised ML models can then be employed to infer yet unknown values 

of poverty and, thereby, support policy decisions and further research. The underlying assumption is that 
dependent on sufficiently similar circumstances, the functional relationship between x and y that the model 
learned from the training data generalizes to the new instances. Given, for instance, satellite imagery or 
call data records and the probability distribution approximated by the trained and tested supervised ML 
model, one can then infer the poverty of regions beyond the ones the model was trained upon. This 
inference, I argue, is analogous to the second part of the inferential framework by which Tal characterizes 
measurement. Based on data obtained by one or many empirical processes (such as an instrumented 
measurement operation, surveying, or passive observation) and the measurement model previously 
established, one can, given sufficiently similar circumstances, measure unknown values of a property of 
interest.  

Both calibrated measurement and ML-enabled poverty inference rely on a two-part inferential 
process that infers values of a property of interest that best cohere with the data under a model previously 
calibrated and thereby, indirectly, with the values of the property of interest previously provided by a 
reference procedure. Nonetheless, one commonly interprets measurements not as predicting hypotheticals 
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of the reference procedure but as measurements of the property of interest. As mentioned before, one 
might calibrate a watch towards the network of atomic clocks or a temperature sensor towards a reference 
thermometer. However, once in use, one would not conceive of these instruments as predicting the 
reference measurement but as measuring time or the temperature of an object. It is in similar fashion that I 
propose to understand supervised ML applications, by separating the object of calibration of supervised 
ML models from the epistemic aim of their application. Developers might calibrate their model towards a 
reference measurement of poverty. Once deployed, however, the model is intended to measure poverty 
rather than predicting (hypothetical) values of a given poverty metric (see Figure 2). For that reason and 
for all the similarities previously outlined, I argue for a perspective from which to interpret supervised ML 
as automatically calibrated model-based measurement. 

 
Figure 2 
Supervised ML as Automatically Calibrated Model-Based Measurement: 

 
 

IV.3.4 Automatically Calibrated Model-Based Measurements 
 This difference in interpretation, I argue, is decisive and can help address the problems arising out 
of the predictive reframing of measurement tasks within ML previously outlined. Placing supervised 
machine learning applications within the frame of reference of the measurement problem that they are 
originally intended to and presented as solving internalizes precisely those concerns the predictive 
reframing circumvents. Thereby, the onus of ensuring the adequacy and validity of the machine learning 
model’s outcomes relative to the ultimate property of interest is (at least partly) placed on the developers.  
 Once we conceive of these applications as measurements rather than predictions, the accuracy of 
the model’s inferences can no longer be reduced to statistical correlation with a given dataset. Thinking of 
certain supervised ML applications as automatically calibrated model-based measurements rather than 
predictions brings them out of the frame of mere statistical calculus and into more critical engagement with 
the underlying theoretical and conceptual assumptions. This involves ethical and epistemic concerns about 
whether the model is the right measurement of the property of interest (in our example, poverty), for a 
given application. Consequently, machine learning developers must critically deliberate about what 
poverty index is appropriate, compare and combine multiple measurements, and clearly communicate 
potential limitations.  
 However, ideally one does not stop at ensuring the validity and adequacy of the reference 
measurement. Instead, developers must take into account the non-transitivity of the predictions, reference 
measurement, and construct to assess how the model’s inferences, themselves, including differences 
between the model’s measurements and the reference measurement, relate to the ultimate property of 
interest: in our example, poverty. Doing so is likely complicated by the complexity and limited 
mechanistic explanation provided by machine learning models (Chirimuuta, 2021; López-Rubio & Ratti, 
2019). At the same time, is precisely for this reason that the developers themselves, possessing the most 
detailed understanding of their applications, are in the best position to do so.  

Rather than merely illuminating problematic aspects of current practice in machine learning, a 
closer association of supervised machine learning and metrology can help expand machine learning 
developers' toolkit when working toward epistemically and ethically more successful applications. To 
evaluate how the machine learning outcomes, themselves, relate to the construct of interest, developers 
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could interact with the literature on validation in many domains of measurement.10 Taking inspiration from 
methodologies in measurement, such as various forms of validation, can help facilitate closer engagement 
with theoretical and conceptual considerations of their applications. 
 Lastly, an interpretation of the results of supervised ML models as measurements asks ML 
developers to live up to their own claims ¾ not only with respect to the proposed uses of their models but 
also to the self-understanding of the discipline as a whole. If ML claims to be more than glorified statistics 
(Davison, 2019), it must be willing to understand and evaluate its results as more than mere statistical 
predictions. This requires no less than a fundamental rethinking of the development and evaluation of 
supervised ML applications to measurement problems. Involved in that is more than I have covered here. 
Differences in the more implicit epistemic virtues, best practices, and the public’s perception of 
measurement and prediction arguably factor into this proposed conceptual shift as much as a greater need 
for domain knowledge and expertise when developing and evaluating ML models. 

V Conclusion 
 In this paper, I hope to have sketched (i) how ML developers reframe measurement tasks into 
prediction problems, (ii) how this predictive reframing can lead to problems by avoiding questions critical 
to the original measurement task, and (iii) offered an alternative interpretation of supervised ML 
applications as automatically calibrated model-based measurements. I argue that conceptualizing some 
supervised ML applications as measurements correctly identifies the epistemic aim of the original 
measurement task, places their development into the appropriate frame of reference, and properly 
internalizes critical questions, such as whether a certain model is the right measurement of a property.  
 While I have focused on the example of ML-enabled poverty “prediction,” I believe that the 
predictive reframing of supervised ML applications is a rather common feature across disciplines. Other 
machine learning applications in the social sciences, such as psychometrics, are marketed as predicting 
anxiety, depression, and stress while only engaging minimally with the limitations of the questionnaire 
used (e.g., Priya et al., 2020). Similarly, machine learning models trained on videos labeled through 
Amazon’s online crowdsourcing marketplace are presented as predicting personality traits (e.g., Ponce-
López et al., 2016). The application of machine learning to measurement problems in the natural sciences 
might be subject to distinct epistemic and ethical considerations, necessitating its own philosophical 
examination. Nonetheless, the predictive reframing can also be observed here. In the earth sciences, 
machine learning applications trained on tracer-derived proxy measurements or simulated data, “predict” 
mean ages of shallow well samples (Green et al., 2021) or Mesozoic-Cenozoic precipitation (Chandra et 
al., 2021). In these and many other cases, an understanding of certain supervised machine learning 
applications as measurements might provide a helpful change in perspective.  

Moreover, my argument relates in critical ways to current debates on epistemic and normative 
challenges surrounding ML. For instance, the predictive reframing is not merely informative for ML itself, 
but also provides an explanation for the importance of AI ethics research. Currently, a significant part of 
AI ethics addresses precisely the questions that developers, through the predictive reframing of their 
application, externalize from the development and evaluation of ML models. The proposed 
reconceptualization of some supervised ML applications as measurements, thus, might also shed light on 
how developers can internalize and integrate normative and epistemic issues critical to AI ethics.  
 What I set out to do in this paper can best be described as exploratory and introductory. I believe 
that much more can be gained by exploring analogies between measurement and ML within specific 
disciplines, by a more detailed analysis of the nature of calibration, measurement uncertainty, and 
evaluation, and by the transfer of historical insight on measurement to AI Ethics. With this paper, I hope to 
have introduced an initial framework for exploring these issues. 

 
10 For a particularly influential article on measurment validation, see Messick (1987). Recently, ML developers 
have started to engage with measurement and construct validation in the context of AI fairness (Jacobs, 2021; 
Jacobs & Wallach, 2021). 
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