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Abstract

Open texture is a kind of semantic indeterminacy first systematically
studied by Waismann. In this paper, extant definitions of open texture
will be compared and contrasted, with a view towards the conse-
quences of open-textured concepts in mathematics. It has been suggested
that these would threaten the traditional virtues of proof, primarily
the certainty bestowed by proof-possession, and this suggestion will
be critically investigated using recent work on informal proof. It will
be argued that informal proofs have virtues that mitigate the danger
posed by open texture. Moreover, it will be argued that while rigor in
the guise of formalisation and axiomatisation might banish open tex-
ture from mathematical theories through implicit definition, it can do
so only at the cost of restricting the tamed concepts in certain ways.
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1 Introduction

Mathematical concepts are usually considered to be completely sharp, without
vagueness or indeterminacy. Recently, this Fregean dogma has been under crit-
ical scrutiny. While making an argument for the applicability of the methods of
conceptual engineering in the philosophy of mathematics, Tanswell argues that
mathematical concepts are subject to open texture, a kind of semantic inde-
terminacy (Tanswell, 2018). Coming from a somewhat different angle, Shapiro
and Roberts (2021) also investigate open texture in mathematics, arguing that
it threatens the traditional role of proof, but that rigorously defined mathemat-
ical concepts are not subject to open texture. In this paper, several definitions
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of open texture will be compared and contrasted, and their connection with
proof and rigor will be examined.

The paper is structured as follows: After this introduction, section 2 sur-
veys definitions of open texture to be found in the literature, comparing and
contrasting them. Then, section 3 explores the consequences of open texture
in mathematics. After that, section 4 is devoted to open texture and rigor,
drawing on recent work on implicit definitions to see to what extent and in
what sense rigor can banish open texture from mathematics (Giovannini &
Schiemer, 2021).

Before beginning with the text proper, a few words abut concepts more
generally should be said. As is established in the literature on open texture,
I will not supply a precise definition of concept. Underlines will be used to
mark mention of concepts - for instance, circle refers to the circle-concept.
Due to to the current interest in conceptual engineering, there are quite a few
recent papers about what the best concept of concept is (e.g., Isaac, 2020;
Koch, 2021). I am partial to concepts being the meanings of words, a posi-
tion recently defended by Thomasson (2021). In particular, this means that
I think that concepts can be patchwork, in the sense of there not necessar-
ily being necessary and sufficient conditions on the application of concepts.
The patchwork nature of concepts has recently been vigorously explored and
defended by Mark Wilson (2008)(see also Haueis, 2022). The concept of group,
for instance, could have as patches the theory of groups in some logic (classical,
relevant, second-order...), groups as internalised to some set theory, or group
objects in certain categories. With that said, not much of what is to follow
will depend on a specific account of what concepts are. Furthermore, concerns
about the ontological nature of mathematical objects will be bracketed here.
For an opinionated survey, the reader is directed to Cellucci (2020).

2 Defining open texture

The notion of open texture was introduced into philosophy by the logical
positivist Friedrich Waismann in a series of papers attacking the
analytic/synthetic distinction and thereby versions of crude verificationism
about meaning (Russell, 2019). Open texture is a form of semantic
indeterminacy. Waismann thought that the open texture of our empirical
concepts hangs together with them not being precisely delimited in all
directions. Before getting into the thick of it, it is worth citing one of the
examples that Waismann uses to motivate the idea of open texture at length:

“Suppose I have to verify a statement such as “There is a cat next door”; suppose
I go over to the next room, open the door, look into it and actually see a cat. Is
this enough to prove my statement? Or must I, in addition to it, touch the cat, pat
him and induce him to purr? And supposing that I had done all these things, can
I then be absolutely certain that my statement was true? . . . What, for instance,
should I say when that creature later on grew to a gigantic size? Or if it showed
some queer behaviour usually not to be found with cats, say, if, under certain
conditions, it could be revived from death whereas normal cats could not? Shall
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I, in such a case say that a new species has come into being? Or that it was a cat
with extraordinary properties?” (Waismann, 1968)

The purpose of this little story is to demonstrate that the concept cat is
open-textured. Using it as an inspiration, there are different ways to sharpen
this idea.

The first would be to take the term “cat” to exhibit a kind of generalised
vagueness (Shapiro, 2006, appendix), such that there are clear cases (the ordi-
nary cat first encountered), a penumbra (a gigantic cat of perhaps variable
size), and clear non-cases (gigantic undead cat). Ordinary language doesn’t
prescribe a use in the penumbra, leaving open whether the concept cat still
applies to the suddenly enlarged cat. On this reading of Waismann’s story, one
can assimilate open texture into vagueness.1 In his book on vagueness, Shapiro
(2006), aware that this is not quite what Waismann most likely had in mind,
offers a definition of open texture in this spirit:

Definition 1 (OTV) A concept C has open texture iff there are cases for which a
competent, rational agent may acceptably assert either that the concept applies or
that it disapplies.

However, this definition arguably misses the core of the dynamic nature of
Waismann’s example: The cat changes, and the observer is confronted with a
new situation. Tanswell (2018) argues that while Shapiro captures one sense
in which a concept can be open, it misses out on an important aspect of
open texture. Shapiro is concerned with agents’ decisions being open in certain
extant hard cases, while Waismann was more concerned with the possibility
of genuinely new cases arising. Intending to capture this thought, Tanswell
defines a concept as open-textured iff there are always possible objects outside
the standard domain of application for which there is no fact of the matter as
to whether the concept applies to them.2 Seemingly independently of Tanswell,
Roberts and Shapiro adopt a similar perspective and define open texture as
follows (Shapiro & Roberts, 2021):

Definition 2 (OTN) A natural language concept C displays open texture iff it
is always possible for there to be an object a such that nothing concerning the
established use of C, and nothing concerning the nonlinguistic facts, determines that
a falls under C, nor does anything determine that a does not fall under C.

Roberts and Shapiro note that most philosophers of science nowadays
would agree that most, if not all, empirical terms display open texture in this
sense. They point to one possible exception, namely natural kind terms, where

1This is also how, following H.L. Hart, open texture has often been understood in the philosophy
of law (see e.g., Bix, 2013).

2Strictly speaking, the ’always’ is an addition due to Vecht (2020), who adds it to account for
the persistent nature of open texture.
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adherents of something like reference magnetism in the Lewisian sense3 seem
to think that concepts corresponding to natural kind terms do not display
open texture in either of the two senses above.

Coming back to empirical terms, whatever reasons philosophers might have
nowadays for taking them to be open-textured, the primary reason for Wais-
mann is what he calls “the essential incompleteness of description” (Waismann,
1968, p.43): The fact (or postulate) that no description of an empirical object
is ever complete in the sense of supplying all possible details. John Horty
ascribes to Waismann the view that concept ascriptions are made on the basis
of descriptions of objects. He then goes on to provide another definition of open
texture, in my opinion coming closest to capturing the idea of open texture
that seems to lie beneath Waismann’s examples (Horty, 2020):

Definition 3 (OTD) A concept C is open-textured iff for any object a and any
description of that object D on the basis of which one can apply C to a, it is always
possible to add further details to D such that one can no longer apply C to a on the
basis of D.

To my mind, OTD differs from the previous definitions mainly in two
respects: Firstly, it explicitly incorporates an account of concept ascription.
Concepts can be ascribed on the basis of descriptions. One way to think about
this is that a description D of some object a might offer defeasible reasons for
judging that a falls under the concept C. The plausibility of this account will
depend on the precise circumstances and objects under consideration.

For mathematical objects, a platonist might insist that some of our knowl-
edge of mathematical objects comes about by faculties like Gödelian intuition.
Be that as it may, I think that this descriptivist account of concept ascription
has some intuitive plausibility, especially in the light of a moderate natural-
ism about mathematical objects. Some of its consequences will be explored
in the next section. Note that a descriptivist account of concept ascription
need not come together with a descriptivist account of reference, which would
be problematic. Such accounts are known to suffer from various problems,
most importantly Putnam’s model-theoretic arguments (Lewis, 1984; Putnam,
1985).

Secondly, this definition again changes focus: Understanding open texture
as a species of vagueness directs the attention to hard cases, understanding it
as the possibility to go on in either way in the presence of new objects directs
the attention to new cases, and Horty’s definition of vagueness as connected to
the indefinite extensibility of descriptions widens focus to include the dynamics
within a single case. In this sense, it fits Waismann’s story above most snugly,
given that that it is somehow the same initially cat-like entity that undergoes
changes, making us doubt our initial conceptual ascriptions. But of course it
seems to presuppose that extending descriptions doesn’t affect the ascription
of objecthood and identity of objects. It is easy to continue Waismann’s story

3The locus classicus for reference magnetism is Lewis (1984).
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in such a way as to make us doubt that the cat is one entity, and thus maybe
a slightly weakened version of the above definition would be more apt. I don’t
think this matter is especially important for our purposes here.

Before concluding this survey of extant definitions of open texture, it is
worthwhile to consider a worry about ascriptions of concepts on the basis of
definitions: One might think that it is always possible to give descriptions
of objects that immediately and indefeasibly license the ascription of some
concept. For instance, I might describe the cat-like entity a next door by
“The cat next door”, and it would follow from that that a is a cat. But this
description does not provide good reasons to think that a is a cat beyond
some form of testimony. If challenged on the entity being a cat, I might offer
other descriptions, such as “It looks like a cat, moves like a cat, and purrs like
a cat if induced to do so.”. But the link from this description to ascriptions
of cat can be severed: It might turn out that the cat is some kind of highly
advanced robot, for instance. Part of Waismann’s point in his investigations
into open texture was that all such links between empirical concepts, if they
are not purely stipulative, can be severed or defeated. He was working on an
attack on verificationism, and it is easy to see how the considerations above
regarding open texture could be used to attack a proponent of the view that
all descriptions of objects on the basis of which one ascribes concepts have to
be given in terms of what is somehow immediately accessible to experience.
To rescue OTD from the threat of triviality posed by direct descriptions of
the form “a is C”, one should maybe amend the definition of OTD to say
that the description on the basis of which one ascribes some concept has to
provide non-stipulative reasons for the ascription. Waismann’s insight is then
that these reasons for the ascription of empirical concepts are defeasible.

3 Open texture and mathematical concepts

For Waismann, mathematical concepts were paradigmatic examples of con-
cepts with closed texture, in virtue of mathematical objects being completely
describable. In his writings on the philosophy of mathematics and the evolution
of mathematical concepts, Waismann (1936) presented himself as an advo-
cate of the Hilbertian axiomatic method, but was also influenced greatly by
the middle Wittgenstein. Plausibly, he thus considered it possible to describe
any given mathematical object completely in some formal system or calculus.
However, my goal here is not to engage in Waismann scholarship, but rather
to take his ideas on open texture as a starting point for investigations into
matters closer to contemporary philosophy of mathematics. The aim of this
section will be to first describe possible consequences of the presence of open-
textured concepts in mathematics. After that, some space will be devoted to
an initial assessment of the texture of mathematical concepts according to the
definitions of open texture given in the last section.
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3.1 Open texture, proof, and defeasibility

According to Shapiro and Roberts, open texture threatens to undermine one
of the traditional virtues of mathematics, namely the certainty established by
proof. Proof, as traditionally conceived, is the ultimate guarantee of the
truth of a proposition, removing all possible doubt. Once a proposition is
proven, it can be used freely and without second-guessing in all other parts
of mathematics. Open texture poses a threat to this picture:

“And, for this purpose, open texture is a flaw. We would have to constantly check
every lemma used in every proof, to make sure it is still good, that some unforeseen
case has not arisen to undermine the proof, at the level of generality needed.”
(Shapiro & Roberts, 2021, p.179)

Their main example for something like this happening is Lakatos’ well known
study of the proof of Euler’s conjecture. Euler’s proof is threatened by the
open texture of polyhedron (Lakatos, 2015), since monsters such as the urchin
or the hollow cube were initially in the penumbra of the polyhedron-concept,
and admitting them into the class of polyhedra would have vitiated the proof.
These monsters then led to changes in the definition of polyhedron. By the
examples they choose, Roberts and Shapiro make the threat posed by open
texture seem like it is primarily due to unconceived counterexamples.

To assess this threat, it is best to be precise about the definition of OT
used. On OTV, open texture is something like the possibility of rational dis-
agreement about the extension of concepts. While this seems to make proof
impossible in some cases, it doesn’t necessarily seem to provide unconceived
counterexamples. On OTN, the definition Roberts and Shapiro are using in the
above quote, there is the possibility of new objects for which it is open whether
the concept under consideration applies to them. Imagine, for instance, a proof
trying to establish something about polyhedra, with a step in which it is used
that polyhedra are always triangulable. But then an interlocutor presents a
new non-triangulable solid S, for which it is open whether it is a polyhedron.
It now seems that the mathematicians considering the proof have a choice: If
they accept S as a polyhedron, the proof does not work as intended. If they
do not, the proof works.

There might be independent reasons to accept or not accept S as a polyhe-
dron: S might satisfy important characteristica for polyhedra, be a polyhedron
according to some working definition, or it might void other proofs about poly-
hedra. Mathematicians are thus not quite free in their choice, as they might be
constrained by, for instance, consistency in their reasons for calling something a
polyhedron or by means-ends reasoning. Nonetheless, unconceived counterex-
amples are in general importantly different, in that there might be a fact of
the matter as to whether they fall under the concept under consideration. So
open texture does pose a threat to the certainty established by proof, but is a
threat of a slightly different nature than that posed by ordinary unconceived
counterexamples. This is because when confronted with a penumbral poten-
tial counterexample, mathematicians must engage in a deliberative process to
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decide whether to take it to be a counterexample. Roberts and Shapiro sug-
gest that open texture in this sense is not a problem for rigorous mathematics,
a claim that will be examined later.

Interpreting open texture as the defeasibility of concept ascription (OTD),
the threat is even more severe: If concept ascriptions can be overturned by
additional descriptive detail, even statements about familiar objects might
turn out false after adding in additional detail. Moreover, if a proof about
some object proceeds on the basis of some set of properties P , the same proof
might not be applicable to an object with properties P , because it might
have additional properties overturning concept ascriptions made on the basis
of P . Put succinctly, reasoning on the basis of concepts subject to OTN is
defeasible, i.e. non-monotonic. Now, in informal mathematical reasoning it
might of course happen that some proof attempt is defeated by pointing out
additional properties some object has, for instance because these properties
deductively entail other statements about the object incompatible with the
desired result. In that case, I think there is a strong intuition that the prover
just made a mistake, in contrast with the relevant cases for OTV and OTN.
Moreover, it should be noted that classical logic is monotonic by assumption,
so formal derivations cannot be overturned by adding additional premises.
Whether this is relevant for informal proof depends on the view one adopts
towards the relationship between informal proof and formal derivations, which
will be discussed now.

The preceding paragraphs let the contention that mathematical proofs
are what grants mathematical knowledge (or even certainty) go unchallenged.
Before challenging it, something should be said about the relationship between
formal derivations and informal proof. In the philosophical literature, it is
nowadays acknowledged that mathematicians usually do not prove theorems
in formal logic, working instead in natural language with various symbolic
additions (Rav, 1999). Moreover, mathematicians often (intentionally) leave
various gaps in proofs, work with diagrams, and heavily rely on background
knowledge of their audience (De Toffoli & Giardino, 2015; Fallis, 2003). So
proof is not just formal derivation, but the precise relationship between proof
and formal derivation is still contested. Some think that informal proofs serve
as abbreviations or indications for formal derivations (Azzouni, 2004), while
others think that proofs are basically recipes or algorithms for proving activi-
ties (Azzouni, 2020; Larvor, 2012). Now, formal derivations are in some sense
not susceptible to open texture: Monotonicity is a structural feature of classi-
cal logical consequence. Moreover, the extensions of predicates in classical logic
are always determinate, there is no penumbra. But this does not tell us any-
thing about whether our mathematical concepts can be captured formally, and
also little about informal proof and open texture. The former will be discussed
later. As to the latter, one could now go through all extant accounts of informal
proof to assess their relationships with open texture, but this would necessi-
tate work beyond the scope of this paper. But in any case, the main aspect of
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proof at stake here is the justification imparted by proofs, and whether that
is threatened by open texture.

In recent work, De Toffoli (2021) sketches a fallibilist account of mathemat-
ical justification through proof. She argues that proof-possession is an overly
demanding standard of mathematical justification, and that instead mathe-
matical justification can be attained in virtue of having something that looks
like a proof to relevant experts, a simil-proof. She distinguishes between tradi-
tional proof and simil-proof, where it is the former that has traditionally been
thought to justify mathematical knowledge. Building on previous work, she
defines a proof to be a correct deductive argument for a mathematical con-
clusion from acceptable premises that is shareable. If one wants to be more
demanding, a condition on transferability or a priori verifiability can be added.
The details of what shareability means are not important here, but transfer-
ability matters for the purposes of dealing with open texture.4 Roughly, an
argument is transferable if consideration of the steps of the argument alone is
enough to convince a relevant expert of the validity of its steps: No testimonial
knowledge or knowledge about the generation of the argument is necessary.
OTV seems to threaten transferability, while OTN and OTD threaten cor-
rectness of deductive inference by making inference defeasible. However, as
mentioned above, De Toffoli holds that proof-possession is too demanding a
standard for mathematical justification for fallible agents - possession of a
simil-proof is enough, so the question now is whether open texture threatens
simil-proofs similarly.

To judge this matter, a more precise definition of simil-proof is needed.
Here is De Toffoli on what a simil-proof is:

“An argument is a Simil-Proof (SP) when it is shareable, and some agents who
have judged all its parts to be correct as a result of checking accept it as a proof.
Moreover, the argument broadly satisfies the standards of acceptability of the
mathematical community to which it is addressed.” (De Toffoli, 2021, p.13)

Note that for agents to be able to judge parts of an argument correct indepen-
dently, it has to be transferable to some extent. Simil-proofs are clearly not
as threatened by open texture, because they allow for the possibility of error,
and thus also for agents to have missed some potential objects for which the
argument does not work. The same holds for the defeasibility induced by open
texture in the sense of OTN.

To take stock, while the traditional picture of proof as the ultimate guaran-
tee of mathematical justification and knowledge is threatened by open texture,
accounts of mathematical justification which allow agents to be fallible are
not vulnerable in the same way, which is of course not surprising. While
Shapiro and Roberts are right that the presence of open texture undermines the
traditional role of proof, that traditional role was under heavy attack anyway.

Still, it is true that the presence of open texture makes using proved
propositions as autonomous building blocks for mathematics harder, since

4“Transferability” was coined by Easwaran (2009) in a study of what distinguishes probabilistic
proofs from genuine proofs.
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sharpening open-textured concepts involved in proofs of said propositions
necessitates a re-appraisal of these proofs. Fortuitously, proofs (and simil-
proofs) have features to make such re-appraisals easier, namely transferability
and convertibility. An argument A for a proposition P is convertible if its
structure is such that it allows the conversion of rebutting defeaters into
undercutting defeaters.5 Easwaran (2015) argues that reasons for mathemat-
ical propositions by published proofs are in general defeasible, but identifies
convertibility as a desideratum on proofs that makes dealing with this defea-
sibility tractable. In the fallibilist context, the transferability of a simil-proof
rules out that the SP uses testimonial or statistical arguments. Transferability
thereby also serves as a minimal requirement for a simil-proof to be convertible.

Allow me to explain convertibility in more detail: A rebutting defeater for
a proposition P is a reason for the negation ¬P of P . In mathematics, a coun-
terexample to some conjecture would for instance prima facie be a rebutting
defeater. Given a reason A for P , an undercutting defeater for A does not
necessarily provide reason for ¬P , but it provides reason to think that A is
not a reason for P . In mathematics, an undercutting defeater for P might
for instance be a counterexample for a lemma used in a (simil)-proof A of P .
The main reason why convertibility is epistemically advantageous is that it
allows one to turn counterexamples to propositions into counterexamples for
lemmata used in proofs of these propositions. A simil-proof without this fea-
ture would not be as detailed as it should be, and would thus not fully lay
down the relevant reasons for the proposition it aims to prove. The require-
ments that convertibility imposes on simil-proofs are a high level of relevant
detail and the barring of certain other sources of evidence that cannot provide
genuinely mathematical justification, such as testimony and statistical correla-
tions, and perhaps even forms of inductive evidence and abductive reasoning.
If Easwaran’s observations are correct, convertibility is not an additional nor-
mative requirement on simil-proofs, but rather a common and desired feature
of simil-proofs in mathematical practice. To put it into Lakatosian terms, con-
vertibility is the feature of simil-proofs that enables lemma incorporation, that
is, that feature which allows one to turn global counterexamples into local
ones, which in turn can be disarmed by modifying lemmata used in the proof.6

Before concluding, some clarifying remarks are in order.7 The first is that
the preceding paragraphs are not meant to tie too close a connection between
open texture and fallibility. The fallibility of human agents is, as far as I can
tell, not directly connected to the open texture of terms in their language.
All I mean to say is that some of the virtues of (simil-)proofs that mitigate
human fallibility also serve to mitigate open texture. They mitigate it in the

5This terminology stems from Pollock’s work 1970.
6Thanks to a reviewer of this journal for encouraging me to be explicit about the connection of

Easwaran’s terminology to the that of Lakatos. For more on this connection, the interested reader
is directed to Easwaran’s paper, which is very explicitly motivated by Lakatosian concerns.

7Thanks to a reviewer for alerting me to the fact that pointing out that fallibility threatens the
reliability of proof is not enough, since that appeal alone would leave me unable to explain what
the problem with the other examples is.
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sense that they make adapting proofs easier once some open-textured con-
cept is sharpened, extended, or perhaps revised. The second remark has to do
with the rarity of actual conceptual revisions caused by new cases for open-
textured concepts in contemporary mathematics. In practice, mathematicians
seem to worry less about open texture than about other threats to the reliabil-
ity of proofs. Proofs of extreme length, such as the proof of the Feit-Thompson
theorem, proofs that are the product of large-scale group collaborations, such
as the classification of finite simple groups, or (purported) proofs that make
use of esoteric techniques available only to small circles of insiders all pose
threats to the reliability of proof (see Habgood-Coote & Tanswell, 2021, for a
discussion of the first two examples). This is because their validity is exces-
sively hard to check for a single agent, or even a community of agents. For
these kinds of threats, it is much less clear whether and to what extent they
are mitigated by the virtues Easwaran and De Toffoli emphasise. In this, open
texture and these other threats differ,

But there is another reason why open texture does not seem like an actual
threat to contemporary mathematical practice, and that is the adoption of
set theory as a foundation for mathematics. Maddy (2019) argues that one
of the functions of set theory as a foundation for mathematics is to provide
a generous arena for mathematics: Set theory is expressive enough to pro-
vide representatives for all kinds of mathematical objects, and adopting set
theory as a foundation seems to at least partially tame open texture. Set the-
ory provides a shared language, thus lessening rational disagreement over the
meanings of terms and leaving open texture as vagueness (OTV) less room. It
restricts additional descriptive detail to that expressible in the language of set
theory, thus restraining open texture as the defeasibility of concept ascription
(OTD). And finally, it restricts the space of new candidate objects for a given
concept to those to be found in the set-theoretic universe(s), thus giving open
texture as the possibility of new cases (OTN) less room to work with.

As good as this may sound, there is of course room to object: Maddy notes
that it is an empirical fact that all mathematical objects of interest can be
represented using set theory, and there are some who take the developments
in homotopy theory to demonstrate that this will soon no longer be the case
(Marquis, 2013). And then there is the question of whether mathematicians
have actually adopted set theory as a foundation, or whether that is merely
the mathematical community’s official stance on these matters. And last but
not least, there is the texture of the concept set itself to worry about. The
latter two of these issues will be taken back up in section 4.

To sum up, the presence of open texture makes some mathematical justi-
fication defeasible and thus threatens the traditional role of proof as pristine
guarantee of certainty. But this impossible standard is rendered untenable by
the fallibility of human agents independently of open texture. Moreover, some
of the features of (simil-)proofs that mitigate fallibility also serve to lessen the
impact of open-textured concepts. This is not necessarily the case for all threats
to the reliability of proofs. Finally, and this will be examined further in section
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4, the adoption of set-theoretic rigor can explain the fact that open-textured
concepts seem to pose little threat to the reliability of proof for contemporary
mathematics. There is, however, no guarantee that set theory will be able to
play this role forever.

3.2 The extent of open texture in mathematics

In this subsection, the extent of open texture in mathematics is investigated.
That is, it is investigated whether and which mathematical concepts are open-
textured, and if so, to what extent. For the sake of clarity, the different
definitions of open texture will be discussed successively.

3.2.1 Extent of open texture as vagueness (OTV)

In a sense, OTV is the least demanding definition of open texture. If one adopts
OTV, many mathematical concepts used in informal mathematical practice
will come out as having open texture, such as concepts like number, space,
or function. For all of these concepts, it was at some point in time the case
that rational, competent mathematicians debated over whether these concepts
should be ascribed to certain entities. Debates about whether negative or com-
plex numbers should be called numbers were once fierce (Wagner, 2017, ch.2),
but nowadays, not much mathematical significance is attached to something
being called a number. In the case of sets, these debates are still ongoing, in
their latest incarnation as a debate between those who think that the set-
concept is univocal, i.e. that there is one determinate universe of sets, such as
Steel (Bagaria & Ternullo, 2020), and those who think that there are many
universes of sets, such as Hamkins (2012) and Priest (2021). Wrapping this
discussion up, Shapiro’s first definition of open texture as something like the
possibility for reasonable disagreement about concept ascription seems to be
quite easily satisfiable even for mathematical concepts.

3.2.2 Extent of open texture as defeasibility (OTD)

On OTD it is less clear in what sense mathematical concepts have open tex-
ture. Recall that according to OTD, a concept has open texture if ascriptions
of that concept on the basis of a description can be defeated by adding further
detail to the description. As mentioned already, Waismann thought that math-
ematical objects, in contrast to physical ones, could be described completely.
For instance, describing a triangle in Euclidean space can be done completely
by giving its three vertices. But of course one would have to then go on to
describe Euclidean space, and so on, until one either hits descriptive bedrock,
whatever that may be, or finds some other way out of this regress. This idea
will be investigated in section 4.

Perhaps the idea that mathematical objects can be described completely
can be sustained with a deflationary attitude towards mathematical objects:
A mathematical object is just a singular term in some formal framework, i.e.
a constant symbol that can be defined in that framework. Put in Carnapian
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terms, the description of a mathematical object is an internal affair, possible
only within some formal language. One problem with this is that in mathe-
matical practice, one usually doesn’t work strictly within a formal language,
but rather in natural language augmented symbolically. Moreover, most math-
ematical objects of interest have a long and complex history, and don’t seem to
be exhausted by mere description in some formal framework.8 There are thus
some large issues here, but working out what a complete description might be
in a formal framework has some interesting consequences nonetheless.9

Restrict attention to some signature Σ in classical logic (first- or second-
order). Let a1, . . . an be constant symbols in Σ, and let ϕ(x1, . . . , xn) be an
open n-ary formula in the language LΣ based on Σ. Intuitively, ϕ completely
describes a1, . . . , an if asserting ϕ of a1, . . . , an determines the truth value of
all other n-ary formulas ψ(x1, . . . , xn) in LΣ. Here, ψ is of course a formula
built up from the signature Σ, and the following definitions are thus sensitive
to the signature chosen. Depending on the this, one might want to restrict the
class of formulas which are determined by ϕ. One might, for instance, not want
to insist on all set-theoretic formulas being settled by the axioms of Peano
arithmetic.

With this setup, one way to explicate this idea syntactically is as follows,
assuming that ⊢ is the classical syntactically determined consequence relation
on LΣ:

Definition 4 (Complete Description) A formula ϕ(x1, . . . , xn) is a complete descrip-
tion iff for all formulas ψ(x1, . . . , xn) in LΣ either ϕ(x1, . . . , xn) ⊢ ψ(x1, . . . , xn) or
ϕ(x1, . . . , xn) ⊢ ¬ψ(x1, . . . , xn) holds.

If one thinks of ϕ as codifying a theory about some concept, one way to
parse this is as saying that said theory is complete. Supposing for a moment
that concepts are ascribed on the basis of single descriptions, this tells us that
a concept is closed-textured if the corresponding description is complete. Many
important theories, such as Peano arithmetic or ZFC are not complete in this
sense, no matter whether one formulates them in first- or second-order logic.
Formulating them in first-order logic does not yield a complete theory because
of non-standard models, and the second-order treatment likewise fails to deliver
completeness because of Gödel’s incompleteness theorems.10 Of course, there
are interesting complete theories, so this is notion is not vacuous.

One might think that the definition above is somewhat too demanding,
in that it requires a complete description to provably determine every other
formula. In response, one could weaken this requirement in two ways, all the
while sticking to second-order logic. One could demand semantic complete-
ness: Let |= denote the semantic consequence relation of classical second-order

8See for instance chapter 1.2 of Grosholz (2016) for a historical discussion of circle.
9The following makes no claims whatsoever that this is what Waismann had in mind.
10Thanks to a reviewer for reminding me that the categoricity of second-order Peano arithmetic

does of course not entail its completeness in the sense needed here.
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logic, defined in the usual way as model-theoretic truth preservation. Then the
corresponding definition of complete description would be:

Definition 5 (Complete Description, semantic) A formula ϕ(x1, . . . , xn) is a com-
plete description iff for all formulas ψ(x1, . . . , xn) in LΣ either ϕ(x1, . . . , xn) |=
ψ(x1, . . . , xn) or ϕ(x1, . . . , xn) |= ¬ψ(x1, . . . , xn) holds.

Now, in this sense, second-order Peano arithmetic for instance is a com-
plete description, because it is categorical, that is, it has only one model, up
to isomorphism. Second-order ZFC is only quasi-categorical, fixing a unique
model only up to height and width of the cumulative hierarchy (see Incurvati,
2016, for a critical discussion). But once one has fixed these, one obtains a
categorical description of the universe of sets, and ZFC thus becomes a com-
plete description in the semantic sense. Now, to think that one can somehow
grasp these descriptions and use them to ascribe concepts and other proper-
ties, one needs an antecedent grasp on the semantic consequence relation of
second-order logic, and there are of course notorious philosophical difficulties
with this (see e.g., Shapiro, 1991).

Partly because of these difficulties, and building on the work of others,
Button and Walsh develop the idea of internal categoricity, which doesn’t
make use of semantical notions. Roughly, the idea is to mimic the definition
of categoricity in the object language of second-order logic without semantic
ascent to the set-theoretic metalanguage. Internally categorical theories are
intolerant in a specific sense. Intolerance could be taken to provide another
sharpening of complete describability:

Definition 6 (Complete Description, intolerant) A formula ϕ(x1, . . . , xn) is a
complete description iff the following holds for all formulas ψ(x1, . . . , xn) in LΣ:

⊢∀x1, . . . , xn(ϕ(x1, . . . , xn) → ψ(x1, . . . , xn))

∨∀x1, . . . , xn(ϕ(x1, . . . , xn) → ¬ψ(x1, . . . , xn))

This definition again gives no reason to think that all mathematical objects
can be described completely, but it is noteworthy that a version of second-
order Peano arithmetic and a version of second-order set theory are complete
descriptions in something like this sense (ch. 10-11, Button & Walsh, 2018, see
especially Theorem 10.3).11 This fact seems to provide some reason to think
that the natural numbers and the universe of sets (as described by ZFC) are
not subject to open texture in the sense of OTD. There are two major caveats
here: The first is that the definition above is relativised to some signature. To
fully capture the idea that the provided description is complete, one would
have to strengthen the above definition so as to let ϕ retain determinacy over
perhaps all extensions of LΣ. The second caveat is that this cannot truly be

11The determinacy of arithmetic more generally is a hotly debated topic (e.g., Goodsell, 2021;
Warren & Waxman, 2020).
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used to capture what it means for some concept to be open-textured in the
sense of OTD, because the indefeasibility of consequence is in any case a struc-
tural feature of classical logic. Moreover, to show that important mathematical
concepts are completely describable in any of the senses above, it seems like
one would have to rely on categoricity theorems, and almost all philosophi-
cal applications of such theorems are intensely disputed (Maddy & Väänänen,
2022). But more importantly, these approaches to dealing with open texture
fall under the broader category of approaches using rigor to deal with open
texture, as they rely on capturing the concept in first- or second-order logic,
be it syntactically or semantically. The goal of the last section will be to inves-
tigate whether and to what extent such approaches can be successful, and at
what cost.

These negative considerations notwithstanding, it is certainly the case that
in the context of proof, mathematicians have a certain amount of control over
properties of the objects they are considering, in the sense that they are free to
chose axioms from which to start, and insofar as these axioms describe objects,
they have control over these descriptions. If a mathematician begins a proof
with something like “Let G be a group”, then nothing in the proof defeats this
description of G in and of itself. Of course, the mathematician is likewise free
to change their mind about what object they want to consider, but that is not
a consequence of adding descriptive detail.

3.2.3 Extent of open texture as the possibility of new cases
(OTN)

Turning to the second definition of open texture as the possibility of new,
unsettled cases arising, we see that this definition is somewhat more demand-
ing: For a concept to display open texture in this sense, it always has to be
possible for there to be genuinely new cases. Since unsettledness presumably
implies the possibility for rational disagreement, OTN is stricter than OTV.
However, very similar examples demonstrate that there are mathematical con-
cepts that have open texture according to OTN, such as the concept of number,
space, or perhaps algebraic object. But again, these kinds of examples don’t
seem particularly worrisome. According to Shapiro and Roberts, there are also
clear cases of concepts with closed texture, such as prime natural number or
Euclidean triangle.

Vecht (2020) offers a precise delimitation of open texture under OTN. He
argues that concepts with closed texture correspond to algebraic theories. For
example, the theory of groups corresponds to a closed concept: Something is a
group if and only if it satisfies the axioms of group theory, leaving room neither
for reasonable disagreement nor unsettled cases arising. Implicit here is the
thought that it can be settled once and for all what could count as in principle
satisfying the axioms of group theory. No matter his exact argument12, I think

12Roughly, the idea is as follows: Non-algebraic (assertory) theories make existence claims,
and once the existence of some objects is asserted, Waismann’s essential incompleteness kicks in,
yielding open texture. I don’t follow Vecht’s reasoning that algebraic theories make no existence
claims, especially because he takes Peano arithmetic to be an algebraic theory, and in any case
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that this assumption is unwarranted, see section 4. But in spirit his approach
is similar to a suggestion by Roberts and Shapiro, who argue that rigorously
defined concepts are not subject to open texture (Shapiro & Roberts, 2021,
p.121).

To sum the discussion of this section up, some mathematical concepts
clearly have open texture on OTV and OTN. On OTD, matters are somewhat
more complicated, but here we have at least disambiguated matters somewhat
and discussed in what sense mathematical objects in a formal framework can
be completely described. There is one large issue left open by this section,
namely whether rigor, as Shapiro and Roberts suggest, can actually banish
open texture, and it is to this that we will turn to next.

4 Open texture and rigor

In a recent study, Burgess (2015) characterises mathematical rigor as requir-
ing that every proof of a new proposition uses only that which has already
been proven, and that every newly defined term be defined using previously
explained or defined terms. Now, on pain of infinite regress, rigor also requires
axioms, serving as the inferential bedrock for deductions of new propositions,
and primitives, supplying the basic vocabulary in terms of which new terms
can be introduced. At this level of grain, this description is incomplete, leaving
open for instance the notion of logical consequence employed in deduction.13

This section’s object will be to see to what extent the use of axiomatisation,
formal languages and formal theories can close off the texture of mathemat-
ical concepts. Roughly, the idea that Shapiro and Roberts sketch is that the
primitives of formal theories can be thought of as being implicitly defined in a
Hilbertian sense, whence they are closed. Therefore, derivatively defined terms
in these theories are closed too.14 Note that this strategy seems prima facie
promising for terms like “prime natural number” or “Euclidean triangle”, but
less so for terms designating structures, like “group” or “ring”. The latter are
usually defined not as corresponding to the extensions of terms of formal the-
ories, but rather to correspond to whole models of theories, like group or ring
theory, and we will see how that actually pans out in the following.

But before that, an argument due to Tanswell (2018) to the effect that for
instance set-theoretic foundations do not protect mathematical concepts from
open texture deserves to be considered. Briefly, Tanswell appeals to Haslanger’s

think that the distinction between algebraic and assertory/univocal theories should be understood
in terms of attitudes towards theories: Univocal theories have an intended model.

13Burgess takes the underlying axioms to be those of ZFC and the underlying logic to be
classical first-order logic. Burgess’ picture is clearly wedded to the traditional picture of proof
discussed in the last section, but for a critique of Burgess account in particular see Brown (2021).
A more general critique of the epistemological benefits of inferential rigor can be found in Paseau
(2016). It should be noted, however, that Paseau focuses on rigor in arguments and proofs, while
the main concern in this section is rigor in conceptualisation.

14I think that if one were to systematically investigate how open texture propagates using
normal forms for definitions, one would get something like a strong Kleene logic of indetermi-
nacy(Belnap, 1993; Kleene, 1952).
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manifest/operative distinction to argue that while mathematicians often pro-
fess to work in set theory, it does not seem to be the case that the actual
operative concepts used by mathematicians in all fields of mathematics are
those of set theory (Haslanger, 2012). On the one hand, it is not plausible
that all mathematical concepts are actually set-theoretical concepts for famil-
iar Benacerrafian reasons. On the other, there are areas of mathematics, such
as low-dimensional topology, where set theory seems to play almost no role,
even in published proofs (De Toffoli & Giardino, 2015).15 Tanswell makes a
convincing case, but does not directly touch on the central question here, as
the question at hand is whether rigor can in principle be used to close off
texture, not whether that currently is the case in mathematical practice.

As is customary16, the Frege-Hilbert debate on the axiomatic method pro-
vides the background for this discussion of implicit definition (Frege, 1976).
According to Frege, Hilbert’s notion of implicit definition could not serve to
define the meanings of the primitives of a theory. He instead thought that the
basic terms can only be elucidated or explained. If one follows Frege in that,
the strategy of getting rid of open texture in the primitives used via open tex-
ture is of course a non-starter. One hope for evading open texture now would
be direct contact with perfectly sharp mathematical primitives or universals,
maybe through something like Gödelian intuition or Russellian acquaintance.
This situation can be fruitfully compared to reference to natural kind terms
via reference magnetism. Roughly, Lewis’ reference magnetism holds that some
things (water, gold, etc.) are more eligible for being referents than others, aid-
ing reference to them (Lewis, 1984). So maybe one way out of this predicament
would be to hold that some mathematical terms, like “natural number” or
“point” refer magnetically.17 I don’t regard this avenue as particularly promis-
ing, and even if it were to succeed, it would not help with answering the
question at hand, since open texture would then not be closed off by rigor.

Given that the Fregean response seems to require some heavy-duty philo-
sophical commitments, it is natural to turn towards a Hilbertian view: The
primitive terms of some theory T in classical logic are implicitly defined by
the theory. At this point, the recent paper by (Giovannini & Schiemer, 2021)
is helpful. They develop two explications of open texture, and thus two pos-
sible ways in which implicit definition might close off texture. The first way
goes as follows: Adopting a referential theory of meaning, the theory T fixes
the meaning of its primitives by defining the class of models making T true.
In contemporary mathematics, these models are usually understood to be set-
theoretic structures, that is, sets with relations on them. But if the concept of
set has open texture, the concept of set-theoretic structure has open texture
too. Therefore, to banish open texture, one would have to specify a specific set

15In recent work, McLarty (2018) observes that even the set theory used in well-known textbooks
on point-set topology is underdetermined in the sense that it is compatible with various formal
explications, among them both ZFC and categorical set theories.

16Both Shapiro and Roberts and Giovannini and Schiemer discuss the Frege-Hilbert debate
extensively.

17See Marquis (2013) for a classification of mathematical concepts into natural-kind-like
concepts and artefactual tools.
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theory, say ZFC, which is then taken to provide the set-theoretic structures
needed for interpreting T . But the same strategy, on pain of infinite regress,
will not work for ZFC itself, unless one thinks that ZFC can somehow pro-
vide its own models. Ignoring this problem for a moment, this approach is
well-suited to capturing structural concepts like group or ring, and a bit less
well-suited to capturing primitives, like unit of a ring: The primitives of the
theory T can be defined only intensionally, that is, by their extension in any
given model of T .

With this approach, the open texture of the concept T is intended to cap-
ture gets pushed down a level, to the ambient set theory used. Even if some
other way to close off the texture of the concept of set were to be found, the
obvious worry is that T now just captures a different concept than the one it
was originally intended to capture. This worry might already arise when T is
formulated formally in some logic with a given vocabulary, outside of natu-
ral language. While rigor seems to provide a way to produce concepts (in the
sense of terms whose proper use is described by the ambient logic and/or set
theory) that are closed, one might object that these closed concepts are not
the same as the ones captured by natural language. This is a serious concern
and essentially a version of the continuity objection to conceptual engineering
(Prinzing, 2018). In the mathematical context, one worry would be that there
is not one version of rigor, and as standards of rigor change, the logic or set
theory used might change. Moreover, one might want to interpret the theory
T using bearers of meaning other than set, as is done in categorical logic. In
its most acute form, the worry here would be that rigor can close off concepts
only at the cost of hobbling them.

It is best to discuss the other proposal for explicating implicit definition
before responding to this worry. The second precisification of implicit def-
initions proceeds by adopting a use-based, inferentialist theory of meaning,
according to which the meaning of some term is given by the inferential poten-
tial of sentences it occurs in, that is, by what follows from them and from what
they can be deduced. A theory T in some signature then implicitly defines its
primitives by settling the deductive consequences of sentences in which they
occur. This approach seems to be well-suited to defining primitives. The mean-
ing of “unit” in group theory for instance is then exhausted by the inferential
behaviour of the sentences containing “unit”, such as “Every group has a unit”
or “Units are neutral with respect to multiplication”. Moreover, the approach
does not suffer from the same dependence on a set theory, but is instead heav-
ily dependent on the chosen logic and vocabulary. In part because of this, it
seems less well-suited towards capturing structural concepts.

If one for instance defines the natural numbers using Peano arithmetic, it
makes a difference whether the chosen logic is first- or second-order. The lat-
ter makes Peano arithmetic determinate, the former doesn’t. Moreover, the
deductive consequences of the theory will depend on the chosen vocabulary.
Now, this doesn’t really seem to pose a problem for the definition of the the-
ory’s primitives, as one might say in good structural fashion that for instance
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the individual natural numbers are exhausted by their position in the struc-
ture of the natural numbers. However, such restriction to a given vocabulary
again seem to hobble the concept of the natural number sequence as a whole:
In mathematical practice, the natural numbers can be used to index and count
all kinds of things, and induction can be applied to mathematical statements
irrespective of non-arithmetic vocabulary they contain.18 Moreover, it might
again be that the logic used by the mathematical community changes. A pos-
sibly larger worry for the definition of open texture OTN is that on this purely
inferential framework, it is not quite clear in what sense objects fall under the
involved predicates, although one might again adopt a deflationary perspec-
tive towards this. But even then, the worry that the pre-theoretic concept is
just replaced by this process looms large.

Two possible responses are available. One appeals to (enhanced) If-
Thenism or versions of Priest’s mathematical pluralism, arguing that this
replacement is just how mathematics proceeds, teasing out logical conse-
quences in some freely chosen but mathematically motivated logic from freely
chosen but mathematically motivated axioms (Maddy, 2022; Priest, 2021).
The other appeals to the patchwork nature of concepts. In general, concepts
cannot be captured by simple definitions, and a concept is therefore not neces-
sarily replaced by producing a formal theory and relativising it to some logic
or set theory. In investigating such a formalised theory, one just moves to a
different patch of the concept and draws consequences for that patch. Some
of these might be transferable to other patches, and some not. For instance,
adequacy theorems for first-order classical logic show that it doesn’t matter
whether one investigates ZFC using the syntactic or the semantic consequence
relation. In contrast, the move to paraconsistent or intutionistic logic might
make some investigations harder and some easier, and transfer between patches
is not guaranteed, but perhaps still fruitful. Obviously these are mere ges-
tures, but I think taking the recent work by Wilson on patchwork concepts
seriously might pay serious dividends for discussions about mathematical con-
cepts (Wilson, 2008). But that will have to be left for further work. Overall,
the discussion here is inconclusive: Both approaches have their problems, but
especially approach number two produces concepts with closed texture, whose
relationship with the original concepts is unclear.

5 Conclusion

This paper compared and contrasted several definition of open texture. On the
definition favoured by Roberts, Shapiro, and Tanswell, which focuses on the
possibility of unsettled new cases, many mathematical concepts turn out to
have open texture. Adopting Horty’s definition, perhaps closest to Waismann’s
thoughts, makes matters less clear, because it comes with an account of con-
cept ascription based on description that is difficult to apply to mathematical

18Such considerations, i.e. the open-endedness of induction, play an important role in some
strategies for proving the categoricity of the natural numbers (McGee, 1997; Warren, 2020, ch.10).
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objects. No matter which definition one adopts, the traditional role of proof is
threatened, but it is also threatened by the fallibility of human agents. Some of
the virtues mitigating this fallibility also serve to mitigate the impact of open
texture. Moreover, the great de facto reliability of mathematical proof in con-
temporary mathematics in spite of open texture can in part be explained by
the adoption of set-theoretic rigor. The last section of the paper investigated
how and in what sense rigor can close off open texture. The results here were
ambiguous: Rigor seems to produce concepts with closed texture, but it is not
clear that these are as flexible as the natural language concepts that mathe-
maticians actually use. But perhaps they don’t have to be, because the role of
rigor in mathematics is arguably not primarily to aid in discovery, but rather
to ensure consensus when justificatory problems arise.
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