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Abstract

Why does time reversal involve two operations, a temporal reflec-
tion and the operation of complex conjugation? Why is it that time
reversal preserves position and reverses momentum and spin? This
puzzle of time reversal in quantum mechanics has been with us since
Wigner’s first presentation. In this paper, I propose a new approach
to solving this puzzle. First, I argue that the standard account of
time reversal can be derived from the requirement that the continuity
equation in quantum mechanics is time reversal invariant. Next, I an-
alyze the physical meaning of the continuity equation and explain why
it should be time reversal invariant. Finally, I discuss how this new
analysis help solve the puzzle of time reversal in quantum mechanics.

Why does time reversal involve two operations, a temporal reflection
and the operation of complex conjugation in quantum mechanics? Why is
it that time reversal preserves position and reverses momentum and spin?
This puzzle of time reversal has been with us since Wigner’s (1931) first
presentation, although some progress has been made to solve it recently (see,
e.g. Roberts, 2017, 2020; Callender, 2021). According to some authors, time
reversal “can involve nothing whatsoever other than reversing the velocities
of the particles” (Albert 2000, p.20), and “It does not make sense to time-
reverse a truly instantaneous state of a system” (Callender, 2000). While
according to others (Earman, 2002; Malament, 2004; Roberts, 2017), this is
not the case. In this paper, I will propose a new approach to solving this
puzzle of time reversal. I will first give a full derivation of the standard
account of time reversal in quantum mechanics based on the requirement
that the continuity equation is time reversal invariant. Then, I will analyze
the physical meaning of the continuity equation and explain why it should be
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time reversal invariant. Finally, I will discuss how the new analysis may help
solve the puzzle of time reversal in quantum mechanics. In particular, I will
explain why it makes sense to time-reverse certain instantaneous quantities
such as momentum and spin.

Consider the Schrödinger equation for a spin-0 quantum system in an
external scalar potential:

i~
∂ψ(r, t)

∂t
= [− ~2

2m
∇2 + V (r, t)]ψ(r, t), (1)

where ~ is Planck’s constant divided by 2π, ψ(r, t) is the wave function of
the system, m is the mass of the system, and V (r, t) is an external scalar
potential. From this equation we can derive the continuity equation:

∂ρ(r, t)

∂t
+∇ · j(r, t) = 0, (2)

where ρ(r, t) = |ψ(r, t)|2 and j(r, t) = ~
2mi [ψ

∗(r, t)∇ψ(r, t)−ψ(r, t)∇ψ∗(r, t)]
are probability density and probability current density, respectively.

Now I will show how the standard account of time reversal in quan-
tum mechanics can be derived based on the requirement that the continuity
equation is time reversal invariant. First, it can be argued that time reversal
does not change the probability density. From a physical point of view, the
probability density of finding a particle in certain position in space does not
depend on the direction of time. Moreover, from a mathematical point of
view, it can be proved that any transformation of ρ(r, t), F (ρ(r, t)), which
satisfies the nomalized condition

∫
F (ρ(r, t))dr = 1 for any ρ(r, t), must be

an identity transformation.1 Then, we have Tρ(r, t) = ρ(r,−t), where T is
the time reversal operator. The time reversal invariance of the continuity
equation (2) further requires that T j(r, t) = −j(r,−t).

By writing the wave function in the polar form ψ = ReiS/~, where R and
S are real functions, we can obtain the following relation:

j(r, t) =
1

m
ρ(r, t)∇S(r, t). (3)

By using the transformation rules for ρ(r, t) and j(r, t), we have TS(r, t) =
−S(r,−t)+C0, where C0 is a real constant. Then we can obtain the standard
antiunitary transformation rule for the wave function: Tψ(r, t) = ψ∗(r,−t)
when ignoring an overall constant phase. Based on this transformation
rule for the wave function, we can derive the transformation rule for every
observable from its definition (or its operation on the wave function). For
example, for position r, we have TrT−1 = r, and for momentum p = −i~∇,
we have TpT−1 = −p, and for angular momentum L = r × p, we have
TLT−1 = −L.

1I thank Phil Pearle and Rodi Tumulka for showing me a proof of this result.
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In addition, by analyzing the probability current acceleration:

∂v(r, t)

∂t
=

1

m
[∇Q(r, t)−∇V (r, t)], (4)

where v(r, t) = j(r,t)
ρ(r,t) is the local velocity for the probability current, and

Q(r, t) = ~2
2m
∇2R(r,t)
R(r,t) , we can obtain the transformation rule for the scalar

potential: TV (r, t) = V (r,−t). Notably this transformation rule applies to
the electric scalar potential Tφ(r, t) = φ(r,−t). Using the definition E =
−∇φ, we can obtain the transformation rule for the electric field TE(r, t) =
E(r,−t). Furthermore, by analyzing the continous equation for a charged
system in an electromagnetic field, we can also obtain the transformation
rules for the magnetic potentials and fields. The probability current for a
spin-0 system with mass m and charge Q in an external electromagnetic
field is

j(r, t) =
1

m
ρ(r, t)[∇S(r, t)−QA(r, t)], (5)

where A(r, t) is the magnetic vector potential. Then T j(r, t) = −j(r,−t)
leads to TA(r, t) = −A(r,−t). Using the definition B = ∇ × A, we can
obtain the transformation rule for the magnetic field TB(r, t) = −B(r,−t).

Lastly, we can also obtain the time reversal transformation rule for spin
in a similar way. The probability current for a spin-s system with mass m
and charge Q and magnetic moment µs in an external electromagnetic field
is

j(r, t) =
1

2m
ρ(r, t)[(ψ∗(r, t)pψ(r, t)− ψ(r, t)pψ∗(r, t))− 2QA(r, t)]

+
µs
s

∇× (ψ∗(r, t)Sψ(r, t))

ψ∗(r, t)ψ(r, t)
, (6)

where S is the spin operator. Then T j(r, t) = −j(r,−t) leads to TS(r, t) =
−S(r,−t). Based on the transformation rules for spin and the wave function,
we can also derive the result T 2 = −I for spin-1/2 systems.

The above analysis provides a full derivation of the standard time reversal
transformation rules in quantum mechanics. Based on this analysis, we can
confirm that the Schrödinger equation is time reversal invariant as usually
thought. This analysis can be extended to relativistic quantum mechanics
and quantum field theory.

Now we need to justify the time reversal invariance of the continuity
equation. The continuity equation in quantum mechanics is a local and
stronger form of the probability conservation law. A weak version of the
probability conservation law states that the total probability of finding a
particle in the whole space is one. The continuity equation says that when
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the local probability density changes continuously or the probability current
is continuous, the increase/decrease of the probability in a volume is equal
to the net probability that flows into/out the volume. It is reasonable to
assume that the probability conservation law, either weak or strong, is valid
under time reversal (and other symmetrical transformations). For example,
if j is not time-reversed either as ρ and thus the continuity equation is not
invariant under time reversal, then in the time-reversed world when the net
probability current flows into a volume, the probability in the volume will
not increase but decrease, which is not reasonable.2

There have been also worries about the physical meaning and measurabil-
ity of j in the continuity equation (see, e.g. Sakurai, 1996).3 I think protec-
tive measurement may provide a further insight here. According to the prin-
ciple of protective measurement (Aharonov and Vaidman, 1993; Aharonov,
Anandan and Vaidman, 1993; Gao, 2015; Piacentini et al, 2017), when the
wave function of a single quantum system is known, one can measure both
ρ and j by a series of protective measurements on the system. Moreover,
when assuming the psi-ontic view (Pusey, Barrett and Rudolph, 2012), ρ
and j, when multiplied by the mass and charge of the system, can be ex-
plained as the mass and charge density and current density (Gao, 2017).
Then the continuity equation can also be explained as the local form of the
conservation law for mass and charge. This will further justify its validity.

Finally, let us see in what sense the above analysis provides an intel-
ligible way to understanding time reversal in quantum mechanics. Ac-
cording to the above analysis, the time reversal invariance of the conti-
nuity equation, along with the reliable transformation rule for the density
Tρ(r, t) = ρ(r,−t), leads to the transformation rule for the current density
T j(r, t) = −j(r,−t). This is consistent with our intuition that time rever-
sal reverses the direction of a current. Note that the current density can
be written as j(r, t) = ρ(r, t)v(r, t), where v(r, t) = 1

m∇S(r, t) is the local
velocity associated with the current. Then, why time reversal involves com-
plex conjugation is because the phase of the wave function is the integral of
the current velocity and time reversal reversing the velocity as argued above
amounts to taking the complex conjugation of the wave function. Several
authors have given a similar account (Earman, 2002; Sebens, 2015; Cal-
lender, 2021). Moreover, why time reversal reverses momentum, spin, and
magnetic fields is because these quantities are related to the current density
or velocity in a certain way.

However, there is an important point which needs to be emphasized

2In this case, energy will be negative in the time-reversed world, which seems to be
also a very serious issue.

3Sakurai wrote, “we would like to caution the reader against a too literal interpretation
of j as ρ times the velocity defined at every point in space, because a simultaneous precision
measurement of position and velocity would necessarily violate the uncertainty principle.”
(Sakurai, 1996, p.102-3)
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here. It is that the above current velocity, unlike the velocity in Newto-
nian mechanics, is not defined as the rate of change of some instantaneous
configurational quantity. This means that one cannot directly determine
the transformation rule for the current velocity by its definition, which is
different from the situation in Newtonian mechanics. This is also the reason
why we resort to the time reversal invariance of the continuity equation to
derive the transformation rule for the current density.4

The above analysis may also help settle the controversy on the mean-
ing of time reversal in quantum mechanics. As noted before, it has been
debated whether an instantaneous quantity should be changed by time re-
versal. According to some authors, it does not make sense to time-reverse a
truly instantaneous quantity (Callender, 2000), and time reversal can involve
nothing other than reversing the rate of change of instantaneous quantities
such as velocities of particles (Albert 2000). The above analysis seems to
disfavor this nonstandard view of time reversal. According to this view, time
reversal will keep both ρ and j in the continuity equation unchanged, and
thus the continuity equation is not time reversal invariant. In other words,
this nonstandard view is inconsistent with the local form of conservation
laws for probability, mass and charge. However, this is not reasonable as
argued before, since in the time-reversed world, when the net probability (or
mass/charge) current flows into a volume, the probability (or mass/charge)
in the volume does not increase but decrease.

Then, what is wrong with the nonstandard view of time reversal? It
seems reasonable to require that an instantaneous quantity should not be
reversed by time reversal, and only the rate of change of something invariant
by time reversal should be reversed by time reversal. But when the rate of
change is produced and determined by an instantaneous quantity, it seems
more reasonable to assume that this instantaneous quantity is also reversed
by time reversal (see also Earman, 2002).5 If not, then the reversed rate
of change cannot be explained in the time-reversed world, and the corre-
sponding law will also be violated. The nonstandard view’s violation of the
continuity equation is just such a case. By the continuity equation, the rate
of change of density is produced and determined by the current density. If
the rate of change of density is reversed by time reversal, while the current
density is not reversed by time reversal, then the rate of change of density
cannot be explained in the time-reversed world, and the corresponding con-

4Note that even though in the de Broglie-Bohm theory we can determine the trans-
formation rule for the velocity of a Bohmian particle by its definition, which is assumed
to be equal to the current velocity, we still need to resort to the time reversal invariance
of the guiding equation to derive the standard transformation rule for the wave function.
Then, why not directly assume the time reversal invariance of the Schrödinger equation?
In my view, the de Broglie-Bohm theory does not help much in solving the puzzle of time
reversal in quantum mechanics (cf. Allori et al, 2008).

5Earman wrote, “If X is produced by Y and Y is ‘turned around’ by time reversal, then
X must also be affected by time reversal.” (Earman, 2002, p.247)
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servation law will be also violated; when the net probability (or mass/charge)
current flows into a volume, the probability (or mass/charge) in the volume
does not increase but decrease. This analysis applies to momentum, spin,
and magnetic fields, since they appear in the current density and produce the
rate of change of density. Note, however, that if an instantaneous quantity
does not produce the rate of change of something invariant by time rever-
sal, then it is indeed reasonable to assume that this instantaneous quantity
should be not reversed by time reversal.

To sum up, I have argued that by analyzing the continuity equation,
the standard account of time reversal in quantum mechanics can be derived.
Moreover, the meaning of time reversal may be clarified by analyzing the re-
lationship between the rate of change and the instantaneous quantity which
produces it. This analysis provides a new way to solve the puzzle of time
reversal in quantum mechanics. It remains to be seen whether this solution
is complete and fully satisfying.
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