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Abstract

Following Jarrett, Shimony, Hellman etc., an important school of interpretation of
Bell-type theorems is that parameter independence (PI) is a locality condition while
outcome independence (OI), and hence factorizability, are not. A recent series of
articles (e.g. Butterfield, 2007; Norsen, 2009; Norsen, 2011; Seevinck, 2010; Seevinck
and U�nk, 2011) challenges this interpretation by appealing to Bell’s own analysis of
“local causality”. In this article, a defense of the mainstream interpretation is o↵ered.
It is argued that Bell’s “local causality” is inadequate as a condition of locality in the
stochastic case, and a proper condition is provided instead. The analysis of Stochastic
Einstein Locality o↵ered in Butterfield (2007) is also critically assessed. It is shown
that the space-time version of PI is necessary, but not su�cient for locality. As for the
space-time version of OI, it is argued that it is a version of the principle of common
cause, and that it is not a locality condition.
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1 Introduction

Most Bell-type theorems follow the general scheme: from a set of requirements that candi-
date theories are assumed to satisfy, one derives some inequalities (the Bell Inequalities –
henceforth the BI), which are shown to be violated by some quantum statistical predictions.
Furthermore, it is widely agreed that there is strong empirical evidence that such predictions
are accurate, and that the BI are violated by some phenomena. The upshot follows by a
simple modus tollens: no candidate theory or model satisfying the requirements used for the
derivation can give an account of all quantum phenomena.
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The interpretations of the experimental violation of the BI mostly vary with the set of
requirements considered in the derivation. This article focuses on Bell-type theorems in
which the BI are derived from the condition of factorizability on the probability distributions
of the outcome-events. Factorizability is a condition on determinate1 probabilistic models
of the outcomes of a Bell-type experiment. Considering the case of a spin measurement, let
� stand for the “determinate state”2, i (respectively j) for the setting of the apparatus A

(respectively B) measuring a particular component of spin of one of the systems3, and a
(respectively b) for the possible outcomes of measurements by apparatus A (respectively B)
of the spin component, then factorizability is defined as follows:

Definition 1 – Factorizability

A probabilistic model for Bell-type situations is factorizable if and only if:

p(a, b|i, j,�) = p(a|i,�)p(b|j,�).

Factorizability4 thus requires that the probabilities of outcomes at each end of the experiment
be statistically independent, each conditional on the complete specification of the state and
measurement protocol at its respective end of the experiment.

Factorizability was introduced by Bell as a consequence of “local causality”, which he takes
to be a locality condition for determinate probabilistic models (Bell, 1990, 243). If this is
correct, then the conclusion of the Bell-type modus tollens is that no local determinate model
can give an account of all quantum phenomena. This is troubling because it seems to be in
conflict with relativity theory.5 As Bell (1987, 172) puts it:

1A theory or model is determinate if and only if the measurement outcomes are determinate, namely
each experiment will have definite results which may be fixed deterministically or stochastically by the state
of the system (and the measurement context) before the measurement. Note that determinateness implies
neither determinism nor value definiteness.

2The “determinate state” is the state that the candidate determinate theory will ascribe to the system
and which yields probability distributions for the outcomes. We will avoid using the term “hidden state” as
it is at best confusing, at worse misleading. Note also that whether � is a single variable or a set of variables
does not matter in the context of the following.

3The possibility that the apparatuses might also have hidden states has important implications, but not
for our results. See Jones and Clifton (1993) for details.

4In our formulation of factorizability, we take apparatus settings i and j as well as the hidden state � as a
variables on which we conditionalize, and not as a parameter which appears as an index. In the deterministic
case, the settings of the apparatuses have to be taken as parameters on pain of contradiction (see Wüthrich
(2004, p.61-72) for more details). Since we confine ourselves with the stochastic case, we are not constrained
to define a new probability measure where i and j are fixed. We shall indeed consider in general that the
settings of the apparatuses are the result of a stochastic physical process, and not the result of the free choice
of the experimenters. Now, whether the determinate state � should be taken as a parameter or a variable
depends on whether or not we assume that we can assign a probability to it. We shall assume throughout
that probabilities can be assigned both to � and to i, j; therefore we shall consistently use the framework
of conditional probabilities. The extent to which this stands in conflict with the views of Butterfield (2007)
and Seevinck and U�nk (2011) will be discussed later on.

5This might hinge on a certain interpretation of relativity theory. For a serious discussion concerning
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For me then this is the real problem with quantum theory: the apparently essen-
tial conflict between any sharp formulation of fundamental relativity. That is to
say, we have an apparent incompatibility, at the deepest level, between the two
fundamental pillars of contemporary theory . . .

The discussion concerning the interpretations of the experimental violation of the BI by quan-
tum phenomena have focused on the issue of whether such a conflict exists. An influential
result in this regard was (independently) shown by Jarrett (1984) and Shimony (1986). They
showed that factorizability in the conjunction of two distinct conditions on the probability
distributions over outcome-events: Outcome and Parameter Independence.6

Outcome Independence (henceforth OI) expresses the requirement that the outcome of the
measurement on one subsystem be independent of the outcome of the measurement on the
other one:

Definition 2 – Outcome Independence

A probabilistic model for Bell-type situations satisfies Outcome Independence if and only if
for all a, b, i, j, and �:

p(a|b, i, j,�) = p(a|i, j,�) and p(b|a, i, j,�) = p(b|i, j,�);

or, equivalently:

p(a, b|i, j,�) = p(a|i, j,�)p(b|i, j,�).

OI is a condition of statistical independence of the outcome-events. In addition to mere
statistical independence, what is needed to obtain Factorizability is Parameter Independence
(henceforth PI):

Definition 3 – Parameter Independence

A probabilistic model for Bell-type situations satisfies Parameter independence if and only if
for all a, b, i, i0, j, j0 and � :

p(a|i, j,�) = p(a|i, j0,�) and p(b|i, j,�) = p(b|i0, j,�).
Quantum Mechanics, Bell-type theorems, and the theory of relativity, see Maudlin (1994) and references
therein.

6The distinction had been made before, but Jarrett and Shimony were the first to claim its relevance to
the issue whether the experimental violation of the BI stands in conflict with relativity theory. For more
details, see also Jarrett (1989) and Shimony (1989).
Note also that the phrases ‘parameter independence’ and ‘outcome independence’ are Shimony’s. Jarrett

calls similar conditions respectively ‘locality’ and ‘completeness’. Shimony’s and Jarrett’s conditions are not
identical, but the di↵erences are not relevant to the argument presented here.
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that is, the requirement that the outcome of the measurement on one subsystem not depend
upon the setting of the apparatus measuring the other one.

Jarrett and Shimony argued that, while any theory violating PI would stand in conflict
with relativity theory, a theory violating only OI could stand in, as Shimony (1978) puts it,
“peaceful coexistence” with it. The core of their argument is that while a failure of PI could
in principle lead to superluminal signaling, it is not the case for a failure of OI.

Following Jarrett and Shimony, it has been widely accepted that, the violation of the BI do
not necessarily conflict with the locality constraints that many take relativistic theories to
impose on physical processes. To put it simply, this school of interpretation holds that:

Definition 4 – (PI-LOC):

Parameter independence (PI) is a locality condition while outcome independence (OI) is not.

If true, then the BI are not derived from a principle of locality alone.

Criticisms have been recurrently leveled against this interpretation in the literature (e.g.
Berkovitz, 1998a; Berkovitz, 1998b; Jones and Clifton, 1993; Maudlin, 1994). Most of the
debate has focused on the questions of whether Jarrett’s and Shimony’s arguments in terms
of signaling are sound, or of whether the distinction between outcome and parameter inde-
pendence is relevant to various issues of interpretation.

A more recent line of criticism (e.g. Butterfield, 2007; Norsen, 2009; Norsen, 2011; Albert
and Galchen, 2009; Seevinck, 2010; Seevinck and U�nk, 2011) consists in insisting that the
BI should be seen as derived from locality alone. That is to say, the experimental violation
of the BI would constitute a full blow to locality. For example, Albert and Galchen (2009)
quite dramatically write:

And so the actual physical world is nonlocal. Period.

Critics following this trend often argue that this corresponds to Bell’s actual interpretation
of his own theorem, and that this has been largely misunderstood by the protagonists of the
traditional debate.

This article provides a defense of PI � LOC against these most recent attacks.7 It is
argued that Bell’s “local causality” is an inadequate notion of locality in the stochastic
context. It is also argued that Butterfield’s attempt at deriving the space-time version of
outcome independence from Stochastic Einstein Locality fails. Thus the space-time version
of outcome independence does not qualify as a locality condition, and PI � LOC remains
unchallenged.

In Section 2, a space-time structure is specified and the question of how Bell-type situations

7For a recent take on these attacks from a very di↵erent point of view, see Friederich (2015).
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can be embedded in it is discussed. To this aim, we follow Earman (1986)8 and define locality
as Einstein Locality. With this in hand, formulations for the space-time (ST) versions
of Factorizability, OI and PI (STFAC, STOI and STPI, respectively) are proposed and
defended.

Section 3 deals with the issue of whether or not Einstein Locality entails STPI and/or STOI.
The question of how to construe Einstein Locality in the stochastic context is discussed. It is
argued (contra Norsen, 2011; Norsen, 2009; Seevinck, 2010; Seevinck and U�nk, 2011) that
Bell’s “local causality” is not an acceptable locality condition. A natural generalization of
Einstein Locality to the stochastic case, or Stochastic Einstein Locality (SEL) is defended
instead. Then, the question of whether our formulation of SEL implies STPI and/or STOI
is discussed. It is shown that STPI is a locality condition, in the sense that failure of STPI
is a case of non-locality. It is also shown, however, that the converse does not hold, that is:
STPI’s holding is not su�cient for SEL to be secured. The upshot is thus that STPI is a
necessary condition for locality, but not a su�cient one. Note, however, that this is all that
the advocate of the mainstream interpretation needs for a modus tollens in the interpretation
of Bell-type experiments. As for STOI, our analysis shows that it is not necessary for locality
to hold. This last result contradicts Butterfield (2007)’s claim. It is shown that Butterfield’s
argument rests on a false assumption, and thus fails to show that STOI (or, in his terms,
SELD1) is a locality condition.

Finally, Section 4 addresses what STOI represents (since it is not a locality condition). It is
argued that STOI, when applied to Bell-type situations, is just a space-time version of the
principle of common cause (STPCC). The question of the appropriate space-time version of
the principle of common cause is discussed. It is argued that failure of STOI is equivalent
to failure of STPCC. Depending on how one interprets failure of the principle of common
cause, the significance of failure of STOI may change. This issue is not fully resolved here,
but one interpretation of failure of the principle of common cause is rejected; namely, that
it amounts to failure of locality.

2 Probabilistic conditions in space-time

2.1 A space-time framework

To provide an assessment of whether failure of Factorizability, PI, and OI threatens locality
or not, we need a specification of how events are to be embedded within space-time. Towards
this end, this section o↵ers a discussion of locality in conjunction with a fixed space-time
framework.

8In that paper, Earman argues that Bell’s factorizability condition is not a locality condition. We extend
Earman’s argument in two ways. First, Earman focusses only on Bell’s factorizability condition: our analysis
deals with parameter and outcome independence. Second, Earman’s argument is mostly confined to the
deterministic context: we generalize the discussion to the stochastic case.

5



A minimal space-time framework should provide a notion of localization of events within the
space-time structure that is considered. In particular, if the notion of spatial separation and
spatially separated systems are to be precisely defined, it should be possible to localize the
systems under consideration within space-time.

This requirement is di�cult to fulfill in standard quantum mechanics (henceforth SQM),
because SQM is not a space-time theory. In e↵ect, SQM provides no representation for
quantum magnitudes as space-time quantities. So, it is not obvious how to discuss locality
issues rigorously.9

We shall suppose that a space-time perspective can be taken on quantum events. Within
ordinary relativistic space-time, quantum events are taken to be localizable in extended
space-time regions. We propose that an event e in region R can be represented by the total
physical state over R.10 We will not consider any space-time point-events in order to avoid
singularities.11 Whenever we shall refer to events embedded in space-time, we shall specify
the regions on which these events are localized. We denote event e located in region R by
eR.

What is at issue is whether certain probabilistic relations between events or failure thereof
is indicative of non-local interactions between events. In order to address that issue we must
examine what counts as a local interaction in relativistic space-time.12

We first need the following notions: domain of influence, time slices, domain of dependence,
and Cauchy surface. Let us begin with domains of influence. Let (M, g) stand for a space-
time, with g a metric on a manifold M. The domains of influence of a point p of M is
defined as follows:

Definition 5 – Domain of influence

The future (respectively past) domain of influence I+(p) (I�(p)) of a point p 2 M is the set
of all the points q of M such that there exists a future(past)-directed timelike curve which
begins at p and ends at q.

One contrasts domains of influence with domains of dependence. In order to define domains
of dependence, we need the notion of time slice:

9That said, it should not be impossible either. One possibility is to endorse the Copenhagen interpretation
in a version that takes the apparatuses to be classical. In this way, one can say that the apparatuses
are located in classical space-time. This is however an unattractive option for assessing the mainstream
interpretation, which is meant to be independent of any interpretation of quantum mechanics.

10One worry arises. If the total physical state over R is fixed, then events are fixed, but the converse might
not hold. An event might then have to be represented by a class of physical states over R. Such details do
not a↵ect our argument.

11Note that Reichenbach considers only point events, as opposed to Butterfield (compare Reichenbach
(1978) and Butterfield (1989), Butterfield (2007)).

12We restrict discussion to space-times in which Cauchy surfaces can be defined. See below for the definition
of a Cauchy surface.
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Definition 6 – Time slice

A time slice S of M is defined to be a spacelike surface S ⇢ M without edges.

With this in hand, one can define the past and future domains of dependence of a time slice
S in the following way:

Definition 7 Domain of dependence

The future (respectively past) domain of dependence D+(S) (D�(S)) of a timeslice S ⇢ M
consists of all those points p 2 M such that every past (future) directed timelike curve
that passes through p and has no past (future) endpoint intersects S. The total domain of
dependence of S is D(S) ⌘ D+(S) [D�(S).

S

D+(S)

D-(S)

Figure 1: Domains of dependence

This is illustrated by Figure 1. With this in hand, we can finally introduce the notions of
(future and past) Cauchy surface:

Definition 8 – Cauchy surface
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A timeslice S is said to be a future (respectively past) Cauchy surface for (M, g) just in the
case that all the points of M to the future (past) side of S are in D+(S) (D�(S)).

S is a Cauchy surface simpliciter just in case it is both past and future Cauchy.

The notion of Cauchy Surface is closely related to the notion of determinism, as well as to
our favorite notion of locality: Einstein Locality. In short, Einstein Locality simply states
that an event localized within a certain region R of space-time should be determined by
an appropriate slice S across its backward light cone. But let us use Earman’s (1986, 462)
definition of Einstein Locality.13

To do so, we need to introduce the notion of global Laplacian determinism:

Definition 9 – Laplacian Determinism

A theory T satisfies Laplacian Determinism if and only if there do not exist two di↵erent
models M1,M2 of T such that M1 and M2 agree on relevant data on a Cauchy surface, but
disagree on relevant data anywhere else.

It is also useful to introduce the notion of local Laplacian determinism:

Definition 10 – Local Laplacian Determinism

A theory T satisfies Local Laplacian Determinism if and only if there do not exist two di↵erent
models M1, M2 of T such that M1 and M2 agree on relevant data on a spacelike surface S
such that S ⇢ I�(R) and R ⇢ D+(S), but disagree on relevant data on R.

This is illustrated by Figure 2.

Finally, Einstein locality (EL) can be formulated:

Definition 11 – Einstein Locality – EL

A theory T satisfies Einstein Locality if and only if, when T is Laplacian deterministic, it is
locally so.

We now have the minimal space-time structure needed for the connection between probability
conditions and locality to be properly discussed.

2.2 Factorizability, PI and OI in space-time

We shall now propose formulations of Factorizability, Outcome and Parameter Independence
within our space-time framework. To this aim, let us consider a Bell-type situation. What
we are given are the outcome-events a and b (for variables A and B). In agreement with the

13For another formulation, see Hellman (1982).
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R

I-(R)  D+(S)

S

Figure 2: Local Laplacian Determinism: The state on R is determined by a time slice S such
that S S ⇢ I�(R) and R ⇢ D+(S).

above, we consider that a and b are located on two regions of space-time R1 and R2. Now,
in order to be able to assess whether the correlations between A and B are the result of a
non-local underlying physical process, we need to make R1 and R2 spacelike separated.

The relativistic space-time structure then gives us the past and future domains of influence,
or backward and forward light cones of R1 and R2. Let S stand for the whole time slice
across the backward light cones of R1 and R2, before they get separated, and such that S ⇢
I� (R1 [R2) and (R1 [R2) ⇢ D+(S). Let S1, S2 and S3 be space-time regions constituting a
partition of S, so that S1 (respectively S2) correspond to the part of the slice within the past
light cone of R1 (respectively R2) which is not within the past light cone of R2 (respectively
R1), and S3 corresponding to the part of the slice lying in the intersection, as in Figure
3.

It is worth emphasizing that, in order to keep the analysis as general as possible, S is here
situated before the backward light cones of R1 and R2 get separated. This stands in contrast
with the way Norsen (2009), Norsen (2011), Seevinck (2010), and Seevinck and U�nk (2011)
propose to frame Bell-type situations in space-time. According to these authors, it is crucial
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Figure 3: A Bell-type situation in space-time: the outcome-events are located on regions
R1 and R2, S is a time slice across the backward light cones of R1 and R2, such that
S ⇢ I� (R1 [R2) and (R1 [R2) ⇢ D+(S).

to consider a surface S that shields o↵ R1 (and R2) from the overlapping of the backward
light cones of R1 and R2. It will become clear that this has no impact on the validity of our
argument in what follows (in particular in Section 4).

Now we need to identify and locate the various causal factors and causal paths that could
give rise to the observed correlations between the outcome-events respectively located on R1

and R2. Only then will we be able to assess whether or not these causal paths correspond to
non-local processes. We thus need to connect the space-time regions described above with
the various causal factors possibly influencing the phenomena. Typically, one considers the
following potential factors: the determinate state � and the parameters i and j. On which
space-time regions can these factors be localized?14

Let us consider first the time slice S. Let � be the total physical state over S. � includes
the determinate state �. Now, the question of how � is to be localized on S is a little
tricky.15 � certainly depends on some parts of S3. That said, the state of S3 and � do not
necessarily coincide. Let S⇤

3 be the region on which � is located. On the one hand, there is
no a priori reason to consider that � depends entirely on S3. In particular, nothing in the
ordinary relativistic space-time framework implies that the determinate state of the quantum
systems involved in Bell-type experiments be localized on the intersection of the backward

14Strictly speaking this language is misleading. States and variables are mathematical objects and are
not “located” anywhere. What we mean by localizing states and variables is localizing the properties of
systems on which the states and values of variables supervene. For brevity though, we will continue to use
the language of localizing states and variables.

15For a di↵erent, but, as far as we can tell, compatible, analysis of the localization of � on the timeslice of
choice, see Seevinck and U�nk (2011, 5, (vi))
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light cones.16 Thus � depends on the state of S3, but perhaps also on the state of S1 and
S2. Accordingly, S⇤

3 overlaps with S3 but may also extend outside of it. On the other hand,
it is not clear for now that � exhausts the state of S3. The localization of the other relevant
factors needs to be discussed in order to settle that matter.

The total physical state � on S also includes the states of the apparatuses. To localize
these within our framework is again not easy, but a little more can be said about the states
of the apparatuses than about the determinate state � of the system under consideration.
We can legitimately localize the states of the two apparatuses on some parts of S1 and S2

respectively, so that they stay spacelike separated.17 It seems physically possible to make
sure that the two apparatuses do not interact with one another. That said, there is no a
priori reason to consider that i and j exhaust S1 and S2 respectively, especially when the
fact the � may well depend on some part of S1 and S2 is taken into account. Let S⇤

1 and S⇤
2

be the regions on which i and j are located. S⇤
1 and S⇤

2 are included in, but do not exhaust
S1 and S2, respectively.

What else does � include that matters? Arguably, if we consider that {�, i, j} are the only
factors that are relevant to Bell-type experiments, then whatever else is included on � does
not matter. If so, then one can safely assume that {�, i, j} exhaust whatever within is
relevant to Bell-type situations, and S⇤

1 , S
⇤
2 and S⇤

3 together exhaust S. Note however that
there is no reason to hold that the regions of S1 on which i and � depend be mutually
exclusive. Similarly for j and � on S2. In both cases, a tight localization of the system may
be di�cult to obtain – especially if the systems are field-like. Since we do not need such
localization for our argument, we allow for some overlap. We only require that the regions
on which i and j depend do not overlap and be spacelike separated.

The upshot is as follows: S⇤
1 , S

⇤
2 , and S⇤

3 exhaust S; S⇤
3 may extend outside of S3; S⇤

1 and
S⇤
2 may overlap with S⇤

3 but may not overlap with one another and must stay spacelike
separated. This is illustrated in Figure 4.18 With this space-time representation of Bell-type
experiments in hand, we can formulate the space-time versions of Outcome Independence
and Parameter Independence (STOI and STPI).

Remember that OI is the requirement that the outcome-events on R1 and R2 be statisti-
cally independent from each other, conditional on the hidden states of the system undergoing
measurement and the parameters of the measurement devices. Within our space-time frame-
work, this translates into: STOI prescribes that the outcome-events a and b, localized on

16We shall clarify this statement later on in Section 4 by explaining why Einstein locality does not imply
that two events localized on spacelike separated regions should be determined by the state over a region of
the intersection of their backward light cones.

17Note that this is again compatible with the analysis o↵ered by Seevinck and U�nk (2011, 5, Note 13).
18One could object that a representation of Bell-type experiments in space-time should take into account

whether {�, i, j} will evolve, either deterministically or stochastically, between S and R1, R2. If so, the
causal factors should be located on the extended regions stretching from S to just below R1 and R2, as
Butterfield (1989) proposes to do. We believe we do not need to do so in the context of this paper. The
definition proposed for SEL in Section 3.3 obviates this problem.
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S

S1* S3*

R1 R2

S2*

Figure 4: A Bell-type situation in space-time: localization of the potential causal factors.

the two spacelike separated regions R1 and R2, are statistically independent, conditional on
the total physical state on an appropriate slice across the backward light cones. That is to
say:

Definition 12 – Space-Time Outcome Independence – STOI

A probabilistic model for Bell-type situations satisfies STOI if and only if for all aR1, bR2,
iS⇤

1
, jS⇤

2
, �S⇤

3
:

p(aR1 , bR2 |�S⇤
3
, iS⇤

1
, jS⇤

2
) = p(aR1 |�S⇤

3
, iS⇤

1
, jS⇤

2
).p(bR2 |�S⇤

3
, iS⇤

1
, jS⇤

2
)

where the subscripts indicate on which space-time regions these states, settings, and outcomes
depend or occur.

On the other hand, Parameter Independence requires that an outcome-event at one end be
determined only by the apparatus parameters on its end, and not by the parameters on
the other end. Translating within our framework, STPI requires that the probability of an
outcome-event a, localized on a region of space-time R1, be determined by the total physical
state on an appropriate slice across the backward lightcone of R1. That is to say:
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Definition 13 – Space-Time Parameter Independence

A probabilistic model for Bell-type situations satisfies STPI if and only if for all aR1, bR2,
iS⇤

1
, jS⇤

2
, �S⇤

3
:

p(aR1 |�S⇤
3
, iS⇤

1
, jS⇤

2
) = p(aR1 |�S⇤

3
, iS⇤

1
, j0

S
⇤
2
); (1)

p(bR2 |�S⇤
3
, iS⇤

1
, jS⇤

2
) = p(bR2 |�S⇤

3
, i0

S
⇤
1
, jS⇤

2
). (2)

The space-time version of Factorizability (STFAC) follows straightforwardly from the above:

Definition 14 – Factorizability: space-time version – STFAC

A probabilistic model for Bell-type situations satisfies STFAC if and only if for all aR1, bR2,
iS⇤

1
, jS⇤

2
, �S⇤

3
:

p(aR1 , bR2 |�S⇤
3
, iS⇤

1
, jS⇤

2
) = p(aR1 |�S⇤

3
, iS⇤

1
).p(bR2 |�S⇤

3
, jS⇤

2
).

We are thus provided with a rigorous space-time framework, and with space-time versions
of the various probability conditions about which we want to assess whether or not they
are locality conditions. We shall begin with STPI. That said, before we can assess whether
STPI is a locality condition or not, we need to discuss the issue of how to construe Einstein
Locality in the stochastic case.

3 Parameter Independence: a necessary but not su�-

cient condition of stochastic Einstein locality

In this section, we shall argue that STPI follows from a version of Einstein Locality in
the stochastic context within our space-time framework. We shall first discuss the issue of
how to construe locality in the stochastic case. In Subsection 3.1, Bell’s proposal, i.e. “local
causality”, is presented. Contra Norsen (2009), Norsen (2011), Seevinck (2010), and Seevinck
and U�nk (2011), it is argued that it is not a reasonable locality condition in the stochastic
context. A more satisfactory formulation of the stochastic version of Einstein Locality, SEL,
is proposed. On the basis of our formulation of SEL, we show that STPI is entailed by
SEL, when the latter is applied to Bell-type situations, but also that the converse does not
hold. Since our result contradicts some his findings, we’ll wrap up the section with a critical
assessment of the analysis given by Butterfield (2007).
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3.1 Bell’s Local Causality

Recent criticisms of the mainstream interpretation of the experimental violation of the BI
crucially rely on the claim that Bell’s “local causality” (LC) is an adequate formulation
of locality in the stochastic context. Since factorizability can be derived from LC, if it is
correct that LC is a locality condition, it follows that factorizability is a necessary condition
of locality. Hence, the argument goes, violations of factorizability would be necessarily
violations of locality, and the mainstream interpretation is undermined.

Advocates of LC all seem to agree that its best formulation is found in Bell (1990). There
Bell first roughly characterizes the “principle of local causality” in the following way:

The direct causes (and e↵ects) are near by, and even the indirect causes (and
e↵ects) are no further away than permitted by the velocity of light” (Bell, 1990,
239)

Such a characterization is then made more precise (“sharp and clean”) as follows:

A theory will be said to be locally causal if the probabilities attached to the
values of local beables in a space-time region 1 are unaltered by specification of
the values of local beables in a space-like separated region 2, when what happens
in the backward light cone of 1 is already su�ciently specified, for example by a
full specification of local beables in a space-time region 3....” (Bell, 1990, 239-40)

LC is thus that given a su�ciently complete specification19 of the backward light cone of a
given event e, the probability of e should not be modified by information on events located
outside the backward light cone of e. This translates in the following way in terms of
conditional probabilities:

Definition 15 – Local Causality

Let e be an event located on a region Re of space-time. Let �, stand for the physical state
over a time slice S of space-time across the past light cone of Re. Let n stand for any event
located outside of Re and its backward light cone. Then LC requires that the probability of
the event e, lying over the region of space-time Re, be independent of n, conditional on �:

p(eRe |n, �) = p(eRe |�).

Admittedly, this condition allows for the derivation of the factorization condition.20 This is
because n is interpreted as representing any event outside Re and its past light cone. Indeed,
consider two regions of space-time R1 and R2, on which are respectively located the a and

19See Norsen (2009), Norsen (2011), Seevinck (2010), and most of all Seevinck and U�nk (2011) for
interesting discussions about how the notions of “su�ciency” and “completeness” must be interpreted. This
issue falls beyond the scope of this paper.

20For an explicit derivation of factorizability from LC, see Norsen (2011, VI, A).

14



Figure 5: Bell’s condition of locality in the stochastic case: p(e|�) must be independent of
n.

b outcome-events. Let � stand for the physical state over a time slice across the past light
cones of R1 and R2. Let n, (respectively m), represent any event outside the past light cone
of R1 (respectively R2). Since n (respectively m) can be any event outside R1 (respectively
R2) and its backward light cone, it can be, for each side of the experiment, the choice of
settings or the outcome-event on the other side. Hence, outside of the backward light cone
of R1 are b and j; while, outside of the backward light cone of R2 are a and i. We then
obtain, from LC, that21:

p(a|�, i, j, b) = p(a|�, i) and p(b|�, j, i, a) = p(b|�, j), (3)

from which in turn one can get the factorization condition. Thus, if LC is the correct
construal of locality within the stochastic context, given that factorizability is derivable
from it, factorizability also qualify as a necessary condition of locality.

Note that, if this was correct, then the mainstream interpretation, as characterized by (PI-
LOC) above, would turn out false. Indeed, since factorizability is equivalent to the conjunc-
tion of Parameter and Outcome Independence together, a failure of Parameter Independence
alone or of Outcome Independence alone is su�cient to entail a failure of factorizability. This
means that, if a failure of factorizability counted as a case of non-locality, then a failure of
Parameter Independence alone would count as a case of non-locality, as well as a failure of
Outcome Independence alone. In this case, failure of Outcome Independence alone would
not be less problematic than failure of Parameter Independence alone in so far as locality is
concerned. Thus, the mainstream interpretation is not supported if one follows Bell on the
formulation of locality for the stochastic case.

In what follows, it is argued that, when assessed within the space-time framework and the
definition of Einstein Locality proposed in Section 2, LC does not qualify as an adequate

21We omit the specification of the regions of space-time on which the events are localized.
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condition of locality in the stochastic context.

3.2 Stochastic Locality: Bell’s proposal rejected

However natural and intuitive it may look like, LC appears, under closer scrutiny, to be
too strong a condition. Suspicion of this comes from the fact that relativistic quantum field
theories do not satisfy LC, which Bell himself admits.22

The example that Bell gives to the e↵ect that quantum theories, ordinary or relativistic,
violate LC is symptomatic of a more serious problem for LC. Bell mentions an experimental
set up in which a radioactive nucleus can emit a single ↵-particle, and several ↵-particle
detectors are scattered around the nucleus. As long as none of the counters has detected
that ↵-particle, there is a nonzero probability that, say, counter Ci detects the ↵-particle.
That probability becomes zero if one adds the information that, say Cj, has actually detected
the ↵-particle. Bell’s locality condition is violated in this case.

The problem that the example uncovers is that Bell’s condition somewhat trivializes the
notion of non locality because it makes it ubiquitous. Moreover the example shows that
the non local correlations identified as such by Bell’s condition are not generally those ap-
propriately explainable by a non local physical process between events. So, Bell’s condition
seems inappropriate to the analysis of Bell-type situations.23 A new locality condition for
the stochastic case is required.

3.3 Stochastic Einstein Locality: a proper formulation

Recall Einstein Locality in the deterministic case: it requires that theories that are Laplacian
deterministic be locally so. Laplacian Determinism requires the existence of a Cauchy sur-
face, the state on which determines the outcome-events to the future of the Cauchy surface.
Local Laplacian Determinism requires that events on a region R of space-time be determined
by the state on the intersection of a Cauchy surface to the past of R and the backward light
cone of R.

Let us propose a formulation of Einstein Locality in the stochastic case by forming natural
adaptations of Laplacian Determinism and Local Laplacian Determinism to the stochastic
case. The idea is that instead of demanding that the states be determined, we require that
probability distributions be determined. We arrive at the following definitions.

Definition 16 – Stochastic Laplacianism

22See Bell (1976) reprinted in Bell (1987, 55). Norsen (2011, 17) also admit that Bell’s particular formula-
tion of locality “should not necessarily be regarded as definitive”, given that it seems directly incompatible
with some theories (e.g. non-Markovian or Bohmian theories).

23See Hellman (1982) for a similar criticism.
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A theory T satisfies Stochastic Laplacianism if and only if there do not exist two di↵erent
models M1, M2 of T such that M1 and M2 agree on relevant data on a Cauchy surface,
but disagree on the probability distributions of events anywhere to the future of the Cauchy
surface.

Definition 17 – Local Stochastic Laplacianism

A theory T satisfies Local Stochastic Laplacianism if and only if there do not exist two
di↵erent models M1, M2 of T such that M1 and M2 agree on relevant data on a spacelike
surface S such that S ⇢ I�(R) and R ⇢ D+(S) but disagree on the probability distributions
over events on R.24

Definition 18 – Stochastic Einstein Locality

A theory T satisfies SEL if, when T is Stochastic Laplacian deterministic, it is locally so.

Note that the above formulation of Stochastic Einstein Locality SEL does not entail Bell’s
Local Causality LC. This is because it states that, of all possible determining factors for the
probabilities on R, only some are in fact relevant. It says nothing about whether there are
any correlations between events in R and other events to the future of the Cauchy surface.
Again, because SEL as formulated above says nothing about correlations, it does not entail
Factorizability, which we make explicit in the following subsections. In particular, we’ll
critically assess the analysis o↵ered by Butterfield (2007) in the last subsection.

3.4 Parameter Independence, but not Outcome Independence, is

entailed by Stochastic Einstein Locality

SEL prescribes that the probability distributions of events localized on a given region R of
space-time be determined by the physical state of an appropriate slice S across the backward
light cone of R. How is this applied in the case of Bell-type situations? Consider the
same notation as in Section 2: aR1 and bR2 for the outcome-events localized on R1 and R2,
respectively, R1 and R2 being two spacelike separated regions of space-time. Consider then
the past domains of influence of R1 and R2, and a time slice S across it. Consider then that
the physical states i, j, and � are localized on S⇤

1 , S
⇤
2 and S⇤

3 , respectively.

Concerning aR1 , SEL prescribes that its probability assignment be determined by the physical
state on S1 [ S3. Since we are assuming that the only possible causal influences are �, i,
and j, this region of dependence can be restricted to the subregion S⇤

1 [ S⇤
3 \ S2. Similarly,

concerning bR2 , SEL prescribes that it be determined by the physical state on S2[S3, but this

24Note that, in the above definitions, a time asymmetry has been introduced that was not in Laplacian
Determinism nor Local Laplacian Determinism, which is natural because we are considering the stochastic
case. Note also that, when the probabilities are trivial (0 or 1), Stochastic Laplacianism, respectively global
or local, recovers future Laplacian Determinism, global or local, respectively.
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can be restricted to the subregion S⇤
2[S⇤

3 \S1. So what SEL prescribes in Bell-type situations
is that probability assignments on R1[R2 be determined by S⇤

1 [S⇤
2 [S⇤

3 . But SEL does not
imply that correlated events on R1 [ R2 should be made independent by conditionalization
on the total physical state on S.25 In other words, SEL does not entail STOI as defined in
Section 2, Definition 12.26

If SEL does not prescribe that a be uncorrelated with any event outside the past domain of
dependence of R1 as LC would have it, it still prescribes, once one considers the appropriate
time slice S, that a is not determined by the physical state over S2. And similarly for b. So,
in the end, we can say that SEL, applied to Bell-type situations, becomes:

p(aR1 |�S⇤
3
, iS⇤

1
, jS⇤

2
) = p(aR1 |�S⇤

3\S2 , iS⇤
1
), and (4)

p(bR2 |�S⇤
3
, iS⇤

1
, jS⇤

2
) = p(bR2 |�S⇤

3\S1 , jS⇤
2
), (5)

from which STPI, as defined in Section 2, Definition 13, follows.27 This should be straight-
forward when one considers that the equations above are stronger than STPI: p(aR1) (p(bR2))
is made independent of the state on S⇤

3 \S2 (S⇤
3 \S1) instead of the state on S⇤

3 alone. Indeed,
STPI is:

p(aR1 |�S⇤
3
, iS⇤

1
, jS⇤

2
) = p(aR1 |�S⇤

3
, iS⇤

1
, j0

S
⇤
2
), and : (6)

p(bR2 |�S⇤
3
, iS⇤

1
, jS⇤

2
) = p(bR2 |�S⇤

3
, i0

S
⇤
1
, jS⇤

2
). (7)

Thus, we have shown that the appropriate version of SEL in our space-time framework
implies STPI. As such, STPI counts as a necessary condition for locality. In this sense, part
of (PI-LOC) can be supported: failure of STPI amounts to a case of non-locality. That said,
it also follows from our argument that one cannot support the converse, that is: that STPI
holds does not imply that locality does – in the sense of SEL , and STPI does not qualify
as a su�cient condition for locality. The advocate of the mainstream interpretation could
content herself with this though, since the claim that STPI is su�cient to secure locality is
not needed for the interpretation of the experimental violation of the BI by modus tollens.
What is needed in this latter case is that failure of STPI be su�cient for non-locality.

25Neither does it imply that correlated events on R1[R2 should be made independent by conditionalization
on the “su�ciently complete” state on S in the sense that Norsen, Seevink and U↵fink give to this term.

26This argument is consistent with the derivation of an approximate form of factorizability of the relevant
joint probabilities given in Hellman (1992). A crucial assumption for this derivation is that outcome prob-
abilities at a given wing be treated as physical propensities. This illustrates our point about how outcome
independence and locality relate to one another. Thanks to an anonymous reviewer for pointing that out.

27One might be worried that �S3\S2
may not be well defined since we explicitly left open that it may

depend on regions in S2. In this case, we can simply conditionalize on all �s compatible with the properties
fixed in S3 \ S2.
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Concerning STOI, we have shown that it is not entailed by our definition of locality within
our space-time framework. Now, at least the two following questions arise:

1. Is there no other rationale for taking failure of STOI as failure of locality in a rigorous
space-time framework?

2. If not a locality condition, what is STOI?

Question 2. above will be covered in Section 4. Questions 1. is (at least partially) addressed
through an assessment of the arguments o↵ered in Butterfield (2007) in what immediately
follows.

3.5 Why Butterfield’s argument fails

In his (2007), Butterfield addresses the issue of Stochastic Einstein Locality, its various
possible formulations, and the relationships between these. To do so, he uses a framework
involving the set W of possible worlds w and their histories: one considers an event e
occuring in spacetime M and the probability of e on a hypersurface t in various possible
worlds w in W characterized by their histories, i.e. “the collection or conjunction of all events
up to a given hypersurface” (Butterfield, 2007, 809-13). As Butterfield himself recognizes,
this framework easily translates into a framework à la Helllman used in this article, i.e the
framework involving physical theories and models (Butterfield, 2007, p. 813).

With that framework in hand, Butterfield o↵ers three di↵erent formulations of SEL: SELS
(Stochastic Einstein Locality – Single), SELD1 (Stochastic Einstein Locality – Double –
Version 1), and SELD2 (Stochastic Einstein Locality – Double – Version 2). As it will
become clear, SELS corresponds to our SEL, SELD1 corresponds to our STOI, while SELD2
is a novel notion that will play a crucial role in the argument. Before we get to that point, let
us look at the definitions (adapted to our notation, in which upper-case letters are used for
space-time regions and lower-case letters for the events associated with these regions):

Definition 19 – SELS (Butterfield, 2007, 814):

Let worlds w,w0 2 W match in their history in I�(e) \ I�(t). Then they match in their
probability at t of e:

pt,w(e) = pt,w0(e).

Definition 20 – SELD1 (Butterfield, 2007, 816)

For any world w, for any hypersurface t earlier than the event e and dividing I�(E), and
any event f future to t and spacelike to e and such that I�(E) \ I�(F ) \ I+(t) = ↵:

pt,w(e, f) = pt,w(e).prt,w(f).

As mentioned above, SELS corresponds to our SEL, and SELD1 is roughly our STOI. Now
let us turn to SELD2, in which the event f is moved in the past of the hypersurface t:
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Definition 21 – SELD2 (Butterfield, 2007, 817)

For any world w, for any hypersurface t earlier than the event e and dividing I�(E), and
any possible event f in the di↵erence I�(t)� I�(E):

pH,w(e, f) = pH,w(e).pH,w(f),

where H stands for the history up to hypersurface t and within I�(E).28 SELD2 is repre-
sented in Figure 6.

E

F

t

Figure 6: SELD2.

Butterfield’s main claim is that SELS and SELD1 are equivalent. His argument uses SELD2
as an intermediary, i.e. he shows:

• first that, under certain conditions, SELD1 and SELD2 are equivalent;

• second that, under certain conditions, SELD2 and SELS are equivalent.

If Butterfield is correct, then Stochastic Einstein Locality is equivalent to Outcome Inde-
pendence, and both are locality conditions, i.e. failure of outcome independence is a failure

28
prH,w is defined by reference to H = I

�(t) \ I
�(E) alone because prt,w(f) is trivially 1 whenever f is

past to t.
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of locality, which contradicts our result. In what follows, it will be argued that Butterfield’s
argument is faulty. More precisely, it is argued that his derivation of SELD2 ! SELD1 is
problematic, because one of the assumptions it requires is false. In what follows, a counter-
example to that assumption is o↵ered. If we are correct, then Butterfield’s argument has
failed to prove that SELS implies SELD1, in other words, it has failed to prove that outcome
independence is a locality condition.

In order to show that SELD2 implies SELD1, Butterfield begins with defining two events E
and F , a hypersurface t earlier than E and dividing C�(E), as well as HE, HF , and H⇤ as
follows:

HE = I�(t) \ I�(E)

HF = I�(t) \ I�(F )

H⇤ = I�(t)� I�(E)

Applying SELD2 to this context (see Figure 6), one obtains (the world index will be dropped
from now on):

pHE(e, f) = pHE(e).pHE(f) (8)

From there, Butterfield seeks to derive that SELD1 obtains, i.e.:

pt(e, f) = pt(e).pt(f) (9)

The argument uses two main assumptions. The first one is about how probabilities evolve
in space-time, and it is that, for any event x:

pt(x) = pH(x|H⇤)

In other words, Butterfield assumes that the probability of x on t is the probability of x on
H (or the hypersurface �H that is constituted by the boundary of H) conditional on H⇤,
i.e. the history outside of HE and past to t.

This first assumption seems quite reasonable. On the basis of this assumption, and applying
SELD2 again, Butterfield deduces that:

pt(e) = pHE(e|H⇤) = pHE(e); and (10)

pt(f) = pHF (f |H⇤) = pHF (f). (11)
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Accordingly, what need to be shown, Equation 9, is now:

pt(e, f) = pHE(e).pHF (f) (12)

In order to derive this last equation from Equation 8, Butterfield assumes that the following
ratios of probabilities are equal:

pt(e, f)

pHF (f)
=

pHE(e, f)

pHE(f)
. (13)

Or, equivalently:

pt(e, f)

pHE(e, f)
=

pHF (f)

pHE(f)
. (14)

Butterfield gives an informal argument in favor of the claim that the assumption is plausible.
In what follows, we provide a counterexample, showing that the assumption is false.

To start, Equation 14 can be rewritten as follows:

pt(e, f) = pHE(e|f).pHF (f). (15)

We also know that, in general:

pt(e, f) = pt(e|f).pt(f). (16)

Now, consider three events e, f , and g, such that E and F are spacelike and future to the
hypersurface t as usual, and G is in I�(t)� (HE [HF ) (Figure 8). Let us assume that e, f ,
and g are the outcome-events associated with measurement of the spin along the z direction
for the system efg in the state:

| efgi =
1p
3
(|100i+ |010i+ |001i)

.

Let e be the outcome-event such that a measurement of the spin in the z direction is 1. Let f
be the outcome-event such that a measurement of the spin is 0. Let g be the outcome-event
such that the spin is 0.
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E

F

tG

HE HF

Figure 7: A counterexample to Butterfield’s assumption.

In these conditions, we obtain:

pHE(e|f) = 1/2, and (17)

pHF (f) = 2/3. (18)

So, in this context, Equation 15 becomes:

pt(e, f) = 1/3 (19)

By contrast, examining Equation 16 now, we obtain (given that G happens before t):

pt(e|f) = 1, and (20)

pt(f) = 1/2, so: (21)

pt(e, f) = 1/2, (22)

which contradicts Equation 19, and thus shows that Butterfield’s assumption (Equation
14) is false. It follows from this that Butterfield’s derivation from SELD2 to SELD1 relies
on a faulty assumption, and hence his argument fails to show that SELD1 is a locality
condition.29

In what follows, we o↵er an alternative interpretation for SELD1, or our STOI.

29Note that this result is consistent with Butterfield’s analysis of the quantum field theory case.
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4 Outcome Independence in space-time is equivalent

to the PCC formulated in space-time

In this section, we show that the requirement that STOI holds is equivalent to the demand
that the space-time version of Reichenbach’s Principle of Common Cause (STPCC) holds
when applied to Bell-type situations. To this aim, we shall present first the PCC (Subsection
4.1). We shall then discuss the appropriate space-time formulation of the PCC (STPCC)
and make its relation to STOI clear. We shall end this section by showing that STPCC is
neither a necessary nor su�cient condition for locality, so that STOI is not either.

4.1 The principle of common cause

The PCC is the requirement that, given some correlated events, neither of which causes the
other, one should be able to recover statistical independence of the events by conditionaliza-
tion on a common cause. Or, in other words, the dependence between the events should be
screened o↵ by a common cause.

Let us illustrate this by way of example. Consider the following example. Two of your friends,
Jules and Jim, and who do not know each other, are both cyclothymic.30 While Jules and Jim
display a random distribution of cheerful and crabby days, they are perfectly anti-correlated,
one being always crabby when the other is cheerful and vice versa. One could make sense of
such correlations if 1. both Jules and Jim have opposite taste concerning the proper baking
stage of croissants, 2. they both buy croissants for breakfast every morning in the same
bakery, 3. the baker randomly over- or under-bakes croissants, and 4. Jules and Jim’s moods
are directly determined by the level of satisfaction they take from their breakfast. Such a
situation is a typical example of a common cause pattern: the perfect correlations between
two events, otherwise apparently distributed randomly, and none of which causes the other,
is explained in terms of a common cause. That is to say, the correlation is screened o↵ when
conditionalizing upon the croissants’ baking time in the common bakery. In other word, the
Principle of Common Cause is satisfied.

A rigorous statement of the PCC is the following:31

Definition 22 – The Principle of Common Cause

If coincidences of two events A and B occur more frequently than would correspond to their
independent occurrence, that is, if the events satisfy the relation:

P (AB) > P (A).P (B),

30It should be stressed that Reichenbach’s own examples are of the type of our example: macroscopic
examples taken from ordinary life situations rather than complicated physical phenomena.

31I am here quoting (van Fraassen, 1980, 28). For the original version by Reichenbach, see his (1956,
158-9).
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then there exists a common cause C for these events such that the fork ABC is conjunctive,
that is, satisfies the relations below:

P (AB|C) = P (A|C).P (B|C) (23)

P (AB|C) = P (A|C).P (B|C), (24)

P (A|C) > P (A,C) (25)

P (B|C) > P (B,C) (26)

Conditions (23) and (24) imply that the events A, B and C satisfy the two relations below,
called screening o↵ conditions:

P (A|B,C) = P (A|C); (27)

P (A|B,C) = P (A|C); (28)

and similarly for A and B interchanged. Reichenbach shows that the conditions (23) to (26)
above together imply that P (AB) > P (A).P (B) (Reichenbach, 1956, 160-1).

The PCC is highly controversial.32 Many cases of correlations can be cited which do not
satisfy it. Further, the four conditions above do not properly characterize common causes.
Some examples can be found in which a factor meets all of the above requirements but is
not a common cause.33 Still, what the PCC requires is so commonsensical that we seem to
use it as a guide (quite successfully) both in everyday life and in scientific research.34

What is the PCC supposed to useful for? Reichenbach hoped that the PCC could be part of
the characterization of what he calls “normal causality”.35 He characterized normal causality
as the requirement that causal e↵ects spread continuously through time.36 That the PCC
be satisfied, that is, that correlations between events which do not cause each other must be
explained in terms of a common cause, is, according to Reichenbach, required by “normal
causality”. By contrast, if there is no such common cause while there are correlated events,
then a “causal anomaly” occurs. Normal causality and the requirements associated with

32See Arntzenius (2005) and references therein for a good overview of the issue.
33See Arntzenius (2005, note 1) for such an example.
34That the PCC is too strong a requirement is at the origin of the work by the Budapest school on common

cause systems, and the distinction between common causes, common common causes systems, and separate
common causes systems. For more details on this research program, see Hofer-Szabó (2008) and references
therein. See also their discussion with the Bern school in Grassho↵, Portmann and Wüthrich (2005) and
Hofer-Szabó (2011).

35We wish to express our gratitude to Alexis Bienvenue for useful discussions about Reichenbach’s works
and thought.

36See, for example, Reichenbach (1958, 65).
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it are normative prescriptions for a satisfactory causal picture of the world.37 Correlations
that cannot be explained in terms of a common cause do not satisfy such prescriptions. In
other words, the PCC deems pure chance an unsatisfactory explanation for correlations. As
said before, the interpretation and status of the PCC are controversial. That all correlations
are or should be explainable in terms of a common cause is highly debatable. We shall not
further discuss these issues in this article.

For now, what is important to note in the above is that the PCC is formulated without
mention of locality. As explained before, probability conditions do not by themselves indicate
how the various events and factors are embedded in the space-time structure. In particular,
nothing in the formalism above tells us that the common cause C occurs earlier than its
e↵ects A and B. Along the same lines, nothing in the formalism above precludes that we
consider the probabilities of C, conditional on A and/or B. That Reichenbach had to add
the temporal characteristics of the common causes as restrictions on the above formalism is
symptomatic of this problem (Reichenbach, 1956, p.162).

Common causes and their e↵ects thus have to be explicitly embedded within time, inde-
pendently of the above formalism. Similarly, nothing in the formalism above tells us about
the spatial location of A, B and C. Again, the spatial characteristics of common causes
and their e↵ects have to be specified independently of the condition in terms of probability
distributions. Whether or not the PCC is a locality condition can be assessed only under
the condition that such a specification has been made.

Finally, note that, to the best of our knowledge, there is no statement in Reichenbach’s
own work about the PCC being a locality condition. This historical consideration is in
support of the thesis that the PCC, however useful it may be as a methodological principle,
is not essentially a locality condition. Before we can produce a rigorous argument to this
e↵ect though, we need to discuss the appropriate formulation of a space-time version of the
PCC.

4.2 The space-time version of the PCC and its relation with STOI

The PCC prescribes that, whenever there are correlations between events which do not
cause each other, there exists a common cause, say c, by conditionalization on which the
correlations are screened o↵. How can such a Principle be appropriately applied to our
space-time structure? Let us consider two correlated events e and f . Consistent with
Section 2, these two events can be located on extended regions of space-time, say Re and Rf ,
respectively. Now, can we choose Re and Rf such that e and f do not cause each other on

37Note that the PCC and normal causality can be meant to give metaphysical or only epistemological
prescriptions, that is, the issue whether they are meant to describe either the true causal structure of the
world or only one of our favorite frameworks when trying to make sense of the world, remains open in
Reichenbach’s writings. We shall not dig into Reichenbach’s work any further in this article.
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the basis of what SEL prescribes? More precisely, does the PCC apply to correlated events
located on spacelike separated regions of a space-time structure in which SEL holds?

Some clarifications concerning our vocabulary are needed here. It will be recalled from
Section 3 that SEL prescribes that the probability distribution over events located on a given
region R of space-time be determined by the total physical state depending on an appropriate
time slice across the backward light cone of R. More generally, Einstein Locality, whether
deterministic or stochastic, imposes some constraints on which regions of space time can
determine each other. It is common in the literature to refer to such constraints in terms of
which regions of space-time can cause each other. On the other hand, the PCC makes use
of the term “cause” as well. The so-called “common cause”, however, is only characterized
by a series of four probability conditions (see Definition 22), without any reference to the
notion of physical determination. The term “cause”, when used both in the context of
the PCC’s common cause and of the structure of ordinary relativistic space-time, is thus
ambiguous.

Here is how we shall clarify this situation. First, we shall avoid talking about common causes
altogether. Instead, we shall focus on screening o↵ events. Granted, the full characterization
of the common cause includes more than its screening o↵ role. That the common cause
satisfies the screening o↵ condition is a consequence of its full characterization. We can
focus on this consequence rather than considering a full version of the PCC because it is
su�cient for our argument. With this in hand, our formulation of what we still call –
with slight abuse of language – the PCC is: there must exist a screening o↵ event for any
two correlated events that do not “cause” each other. Now, what “cause” refers to in this
formulation of the PCC remains to be filled according to the context in which the PCC is
used. In our case, the question arises of how to fill it in the context of a space-time structure
in which SEL holds.

The problem is that it is not all clear whether SEL prescribes anything about causation. This
might depend on which theory of causation is considered as well as on which interpretation
of relativistic space-time one holds. In particular, it is not clear that SEL prescribes that
events located on spacelike separated events do not cause each other. Since we do not want to
take any specific stance either on theories of causation, or on the interpretation of relativistic
space-times, let us consider the two options. If one considers that SEL does not impose any
constraint on causation, then there is no way to apply the PCC to our space-time structure.
In particular, one cannot argue that the PCC applies to events located on two spacelike
separated regions. In this case, the formulation of STOI is simply unmotivated, let alone
motivated by locality conditions.

Let us consider now that the case where the constraints imposed by SEL on which regions of
space-time can determine each other amount to constraints on causation. In this case, SEL
is taken to prescribe that events located on spacelike separated regions cannot cause each
other. Hence, the PCC applies to any two correlated events e and f located on two spacelike
separated regions Re and Rf . Further, the PCC prescribes that there be a screening o↵
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event, by conditionalization on which e and f can be made independent.

Now, what does SEL imply regarding a screening o↵ event? A rather common view is that
SEL prescribes that the screening o↵ event be located within the intersection of the backward
light cones of Re and Rf . In the case of Re for example, SEL prescribes that the probability
of e be determined by the physical state on an appropriate time slice, say Se across its
backward light cone. Similarly for Rf and Sf . We maintain with Earman (1986) that such
a view is not supported by consideration of relativistic space-times.

It will be recalled from Subsection 3.4 that, concerning the probability distribution over
events on Re [ Rf , SEL only implies that it is determined by the state on an appropriate
slice across the union of the backward light cones, Se [ Sf , and not across the intersection
of these, I. In particular, SEL does not imply that the state on a time slice I across the
intersection of the backward light cones of Re and Rf alone determine possible correlations
between events on Re and Rf . First, consistent with SEL, the future domain of dependence
of I is trivial: strictly speaking, it does not determine anything but itself (See Figure 7).
Second, a synchronization of some events on I is not su�cient to guarantee that events on
Re and Rf will be correlated because the correlations could be canceled out by influences
which do not register on I, but only on (Se [ Sf )\I. Third, that we have correlation between
events on Re and Rf does not imply that a synchronization took place between events on I
– that is to say, it does not imply that the screening o↵ event lies on I: for I could contain
synchronized events itself, and the correlations could propagate without the synchronizing
event lying on I. Thus, consistent with SEL, it could be the case that a screening o↵ event
does not lie within a time slice across the intersection of the backward light cones of the
regions on which the two correlated events are located.

Figure 8: The future domain of dependence of the intersection of the backward light cones
is trivial.

Note that this is not saying that were some correlations explained in terms of a screening
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o↵ event lying within their common past, SEL would be violated. Nor is it saying that I
cannot be relevant to correlated events on Re and Rf . In particular, it is not denied above
that, if Se and Sf were fixed, SEL prescribes that variations of the probability distributions
on Re and Rf be determined by variations registering on I. However, the naive space-
time interpretation of the PCC requires more than this determination by I, Se and Sf

being fixed: indeed, it demands that whatever Se and Sf , variations on I alone account for
synchronization of events on Re and Rf . This is an empirical question about our world.
And it is much more than what SEL can rigorously justify. By contrast, the only statement
concerning probability distributions over events on Re and Rf that SEL by itself implies is
that they are to be determined by the total physical state on Se [ Sf .38

In the end then, we can formulate the space-time version of the PCC:

Definition 23 – The Principle of Common Cause: space-time version – STPCC

Let e and f be two events located on spacelike regions Re and Rf of ordinary relativistic space-
time. It is required that, if e and f are statistically dependent, then there is a screening o↵
event c, lying on an appropriate slice across the union of the backward light cones of Re and
Rf , by conditionalization on which e and f are made statistically independent.

p(eRefRf
|cD�(Re)[D�(Rf )) = p(eRe |cD�(Re)[D�(Rf ))p(fRf

|cD�(Re)[D�(Rf ))

Considering the definition above, one realizes that the PCC applied to our space-time struc-
ture (henceforth STPCC) corresponds to STOI. More precisely, in the case of Bell-type
correlations, the requirement above is equivalent to the requirement that STOI holds. Re-
call Bell-type situations as described in Section 2: aR1 and bR2 are correlated outcome-events
located on two regions of space-time R1 and R2. The experiment can be set up so that R1

and R2 are spacelike separated. We consider then the backward light cones of R1 and R2,
and a time slice S across the union of these backward light cones. SEL prescribes that the
total physical state �S on S determines the probability distributions over events on R1 and
R2. If there is a screening o↵ event for the correlations between aR1 and bR2 , then it has to be
located on S, and conditionalizing on �S will guarantee screening o↵. Conversely, if condi-
tionalizing on �S screens o↵ the outcome-events from each other, then there is a screening o↵
event. So, in the case of Bell-type correlations, STPCC becomes the requirement that:

p(aR1 , bR2 |�S) = p(aR1 |�S).p(bR2 |�S). (29)

In the context we are considering, we have been assuming that the only factors on S that
can influence probabilities of aR1 and bR2 are �S⇤

3
, iS⇤

1
, and jS⇤

2
. On this assumption, and in

38Note that our analysis also suggests that the question of whether or not the Principle of Common Cause
– in its full-blown or weak versions as defined in Rédei and Summers (2002) – is valid in Local Quantum Field
Theories is non trivial. See Rédei and Summers (2002), Hofer-Szabó and Vecsernyés (2012), and Hofer-Szabó
and Vecsernyés (unpublished) for more details on this recent debate.
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this situation then, STOI as defined in Definition 12, is equivalent to STPCC, which can be
seen by substituting �S⇤

3
, iS⇤

1
, jS⇤

2
for �S.

So, we have proved that the requirement that STOI holds is equivalent to the requirement
of STPCC in the case of Bell-type situations. From this, one could object to our conclusion
from Section 3 that STOI is not a locality condition in arguing that the PCC is a locality
condition, and hence, that STOI is as well in the case of Bell-type situations. The following
subsection is devoted to undermining such an objection.

4.3 STPCC is not a locality condition

Before we present our objections to the claim that the PCC is a locality condition, it will
prove useful to analyze the common argument which is given in favor of that claim. Roughly
speaking, the connection between the PCC and locality is made by saying that the PCC,
when applied to correlations between relatively spacelike separated events, becomes a condi-
tion of locality. In Bell-type situations in particular, it seems quite common to believe that,
on the one hand, locality is violated because of the failure of common cause models, and, on
the other hand, were we to find a common cause, locality would be secured. However natural
this idea might seem at first, the argument does not stand when laid out and analyzed in
detail.

Here is how the argument goes. Consider two relatively spacelike separated events. Intro-
ducing the framework of relativity, note then that, under a rather common interpretation
of relativistic constraints, these two events cannot cause each other: spacelike separation
forbids any direct causal link. According to the PCC, if there is any correlation between two
given events, this has to be explained in terms of a common cause. But, the argument goes,
more can be said about such a common cause. In accordance with relativistic constraints,
nothing but events lying within the backward light cone of an event E can have a causal
influence on E. If then the common cause is so conceived as to have a causal influence on
both of the correlated events, it has to lie within their common past.39 However, if there is
a correlation between relatively spacelike separated events, but there is no common cause in
the common past, then a specific form of causal anomaly would occur, namely: non-locality.
That is to say, locality would be preserved if and only if such a common cause could be
found. If the above is true, then the PCC, when construed in space-time terms and applied
to spacelike separated events is a locality condition.

Anyone would have recognized that the argument above looks very similar to our own analysis
in the previous subsection. But in fact, the argument above goes beyond. Let us for now

39It is very likely that anyone formulating this argument would take the “common past” to be within the
intersection of the backward light cones. We have already criticized this part of the argument in the previous
subsection, and that will not be the point at issue in this subsection. Thus, it is not important what is meant
here by “common past”. In particular, it does not matter whether or not the common past is taken to be
located “above” the intersection of the backward light cones.

30



make clear the logic of both arguments, our own in the previous section and the one above,
in more detail.

Leaving aside the issues over rigorous definitions and vocabulary, insofar as relativistic space-
times are assumed to rule out determination of probability distributions other than from
appropriate slices across that past light cones, the argument up to (and including) “a specific
form of causal anomaly occurs”, seems fine. From the requirements of the PCC and of
Locality the claim is made that given spacelike correlated events, a common cause must
exist in the common past of these events. The problem lies in the very last step of the
argument, which states that such a causal anomaly, i.e. a lack of a common cause, amounts
to a form of non-locality. This last step simply does not follow.

To make this point more clear, let us consider the following notation:

• PCC stands for the requirement that any two correlated events that do not cause each
other be screened o↵ from each other by a screening o↵ event;

• SEL stands for the requirement that probability distributions over events located on a
region R of space-time be determined by the state on an appropriate time slice across
the backward light cone of R;

• STPCC stands for the requirement that any two correlated events located on spacelike
separated regions of space-time be screened o↵ from each other by a screening o↵ event
lying within the common past of the correlated events.

Now, the argument above amounts to saying that if one takes the PCC to be true, and if
one wants to apply it to events embedded a space-time structure where Locality holds, then
one can conclude that the PCC prescribes that such events be screened o↵ from each other
by a screening o↵ condition which lies within their common past. This is perfectly fine and
is essentially our own argument in the previous subsection. If, as it has been argued, SEL is
the correct notion of locality in our space-time structure, the argument has the form:

PCC + SEL ! STPCC. (30)

However, it should be clear enough that, from this, it does not follow that the PCC, nor
STPCC is a locality condition. That is to say, it does not follow from this either that (a)
violations of STPCC are violations of SEL, or that (b) SEL is secured whenever STPCC is
satisfied.

What would be needed to draw Conclusion (a) is that SEL prescribes by itself that cor-
relations between relatively spacelike events be screened o↵ by a screening o↵ event lying
in the common past of the correlated events. That is to say, one would have to argue for
the following independent premise (with the question marks indicating that the proposition
following is not claimed to be true):
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SEL
???��! STPCC. (31)

Only with this in hand could someone argue that a violation of STPCC amounts to a form
of non-locality.

What would be needed to draw Conclusion (b), is that SEL cannot fail whenever the STPCC
is satisfied, that is to say, one would need to argue in support of the following independent
premise:

STPCC
???��! SEL, (32)

Of course, the trouble is that neither (31) nor (32) follow from (30). From this of course, it
does not follow that either (31) or (32) is false. That said, it follows that the argument above
alone does not support the thesis that STPCC is a locality condition. What needs to be
assessed is whether (31) and (32) hold, that is to say, whether STPCC is either a necessary,
or a su�cient condition for SEL (or both).

Earman (1986) shows that satisfaction of the PCC is neither necessary nor su�cient for
Einstein Locality to be preserved in the deterministic case. We can generalize his arguments
to the stochastic case, and show that STPCC is neither necessary or su�cient for SEL. First,
it is not necessary. The argument here is very similar to our argument that SEL does not
entail STOI in Section 3. Indeed, SEL prescribes that the probabilities for the given events
be determined by the state on S, but it does not say what form these probabilities should
take. In particular, it says nothing about whether the events should be correlated or not.
So, STPCC has consequences that are not implied by SEL.

Nor is it the case that STPCC is su�cient for SEL. Earman’s counter-example in this case
is that the first half of STPCC “can be satisfied in action-at-a-distance particle theories that
allow an indefinite number of particles” (Earman, 1986, 461). We can flesh out this in the
following way by appeal to Bohm’s theory. That it recovers what is generally taken to be a
satisfactory scheme of explanation for Bell-type correlations is a great achievement of Bohm’s
theory. That it violates Einstein Locality, whether deterministic or stochastic, however, is
one of its most well known drawbacks. Thus, Bohm’s theory is a non-local theory in which
STPCC is secured. Thus, it is simply not the case that STPCC entails SEL.

The upshot is thus that STPCC neither entails, nor is entailed by SEL. Since STOI is simply
the application of STPCC to Bell-type situations, we can now deduce that the argument to
the e↵ect that STOI is a locality condition on the basis of its relation to the STPCC does not
stand. The upshot is thus that STOI is not a locality condition, but a requirement equivalent
to Reichenbach’s Principle of Common Cause applied to Bell-type situations. Hence, failure
of STOI is failure of STPCC. The issue of how to interpret failure of the STPCC remains
open.40

40In particular, we shall leave open here the question whether or not failure of STPCC are to be interpreted
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5 Conclusion

We have provided a rigorous space-time framework, within which we have formulated space-
time versions of Factorizability, Outcome Independence and Parameter Independence (STFAC,
STOI and STPI, respectively). We have argued that Bell’s “Local Causality” LC is not an
adequate locality condition in the stochastic case. We have defined instead a notion of
stochastic locality by generalization of Einstein Locality defined in the deterministic case
(Stochastic Einstein Locality, SEL). We have shown that SEL implies the space-time version
of parameter independence, when applied to Bell-type situations. That said, we have also
shown that the converse does not hold. The space-time version of parameter independence
is a necessary but not a su�cient condition for stochastic einstein locality to hold.

Further, we have shown that SEL does not entail the space-time version of outcome inde-
pendence STOI, so that failure of STOI does not imply non-locality. We have argued that
Butterfield’s argument to the contrary relies on a faulty assumption.

We closed our analysis by showing that the requirement that STOI holds is equivalent to the
demands of the space-time version of the Principle of Common Cause (STPCC) when applied
to Bell-type situations. We have shown that this relation between STOI and STPCC cannot
provide a rationale in order to take STOI as a locality condition. This is because STPCC is
neither necessary nor su�cient for SEL to hold. Whatever the principle of common cause is
about, it is not about locality.

At the end of the day, we have thus provided a space-time framework in which (PI-LOC),
i.e. one of the main claims of the mainstream interpretation of Bell-type theorems and
experiments, can be rigorously assessed. Our result is that it (mostly) holds: failure of
parameter independence alone amounts to a case of non-locality, while failure of outcome
independence does not. This, of course, does not preclude that other definitions of the space-
time structure considered, or of the versions of the various conditions considered, could not
yield alternative results. That said, since Bell’s Local Causality is criticized as an adequate
condition of locality in the stochastic case, and Butterfield’s argument is shown to be faulty,
our analysis undermines the most likely candidates for supporting criticisms against the
mainstream interpretation. Peaceful coexistence is maintained.
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