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Abstract 
 

Robustness analysis (RA) is the prescription to consider a diverse range of evidence 
and only regard a hypothesis as well-supported if all the evidence agrees on it. In 
contexts like climate science, the evidence in support of a hypothesis often comes in 
the form of model results. This leads to model-based RA (MBRA), whose core notion 
is that a hypothesis ought to be regarded as well-supported on grounds that a 
sufficiently diverse set of models agrees on the hypothesis. This chapter, which is the 
first part of a two-part review of MBRA, begins by providing a detailed statement of 
the general structure of MBRA. This statement will make visible the various parts of 
MBRA and will structure our discussion in the remainder of the chapter. We explicate 
the core concepts of independence and agreement, and we discuss what they mean in 
the context of climate modelling. Our statement shows that MBRA is based on three 
premises, which concern robust properties, common structures, and so-called robust 
theorems. We analyse what these involve and what problems they raise in the context 
of climate science. In the next chapter, which is the second part of the review, we 
analyse how the conclusions of MBRA can be justified. 
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1. Introduction 
 
In his discussion of justification, Wittgenstein (1953, §265) tells the story of an imaginary fool 
who buys several copies of the morning paper to assure himself that what it said was true. The 
fool’s instinct to check his information against further sources is laudable, and yet the fool is 
obviously mistaken because, as Wittgenstein insists, “justification consists in appealing to 
something independent”. To assure himself that a particular story in the morning paper was 
true, the fool should have diversified his evidence. In the first instance he should have checked 
other newspapers, making sure they were from different publishers and positioned on different 
parts of the political spectrum. In a next step, he should have checked news outlets other than 
newspapers, and he should have consulted the direct communications of news agencies. If the 
reports from these diverse sources all essentially said the same thing, then he would have been 
justified in regarding it as true. In nuce, robustness analysis (RA) is the prescription to avoid 
the fool’s mistake by considering a diverse range of evidence and only regard a hypothesis as 
well-supported if all the evidence agrees on it.  
 
The maxim to diversify evidence wherever possible is a fixture of the scientific method (Staley 
2004), and RA is therefore often motivated by appeal to experimental practice. Schupbach, 
for instance, introduces RA with the example of Brownian motion (2018, 275-77). Brownian 
motion is the random motion of particles suspended in a medium. It is named after botanist 
Robert Brown, who first described the phenomenon in 1827 when observing pollen particles 
suspended in water. We nowadays regard Brownian motion as a general feature of all matter, 
which is due to the particles being pushed around when colliding with the molecules of the 
medium. To establish this conclusion, it wasn’t enough to look at Brown’s pollen particles. 
Brown himself repeated the experiment first with several different kinds of pollens and then 
also with various inorganic materials. Physicists then continued to vary circumstances by 
using different containers, different media, different light to observe the particles, and so on. 
The phenomenon was regarded as real only once it was detected in all these cases – that is, 
once it was shown to be robust across a wide range of physical circumstances and means of 
observation. Robustness is intended to rule out that the phenomenon only occurs under 
specific circumstances, or that it is an artefact of our means of observation. (For discussions 
of this case that differ from Schupbach’s see, e.g., Mayo (1986), Psillos (2011), Chalmers 
(2011) and Hudson (2020)).  
 
In the case of Brownian motion, the evidence for the phenomenon is experimental. Such cases 
are important, but they are no longer the only game in town. In numerous contemporary 
scientific contexts, the evidence in support of a hypothesis comes from scientific models, and, 
following the imperatives of RA, a hypothesis is regarded as well-supported on grounds that 
a sufficiently diverse set of models (in this context referred to as a model ensemble) agrees on 
it. We call this line of reasoning model-based RA (MBRA). Examples of MBRAs are readily 
to hand. It has been applied to justify results in cosmology (Gueguen 2020), economics 
(Kuorikoski et al. 2010), ecology (Weisberg 2006), population genetics (Plutynski 2006), 
environmental risk analysis (Sprenger 2012), and, indeed, climate science. Leduc et al. note 
that “[a]greements between climate change projections from several models are often 
interpreted as predictors of confidence” (2016, 8302) and Pirtle, Meyer, and Hamilton review 
the literature on climate modelling and report that “a rough survey of the contents of six 
leading climate journals since 1990” yields “118 articles in which the authors relied on the 
concept of agreement between models to inspire confidence in their results” (Pirtle et al. 2010, 
353).  
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In general terms, models are representations of a target system, in our case the world’s climate 
(see Frigg and Hartmann (2020) for a general discussion of scientific models, and Frigg, 
Thompson, and Werndl (2015) for a discussion of climate models). But systems like the 
world’s climate are far too complex to be represented fully and truthfully in a model, which 
is why models always offer representations that are simplified, abstracted, idealised, and 
distorted in one way or another. Yet, proponents of MBRA submit that model-agreement is 
epistemically significant and that results that are robust across a sufficiently diverse set of 
models should be regarded as well-supported. Tebaldi et al. (2011, 1) are explicit about this 
when, in the context of a discussion of future climate projections, they note that “[t]he idea is 
that if multiple models, based on different but plausible assumptions, simplifications and 
parameterizations, agree on a result, we have higher confidence than if the result is based on 
a single model, or if models disagree on the result”. So even though each model in an ensemble 
has its shortcomings, the fact that they all agree on a conclusion is taken to be boost our 
confidence in it. In Levins’ by now proverbial formulation, the idea is that “our truth is the 
intersection of independent lies” (Levins 1966). 
 
But why is this? That is, why should the fact that a number of models, each deficient in its 
own ways, agree, provide a warrant for regarding the agreed-upon proposition to be well-
supported? This is the core question that a philosophical reflection on MBRA has to answer. 
The aim of this two-part review is to address this question, with a particular focus on climate 
models. This chapter, which is Part I of the review, begins by providing a detailed statement 
of the general structure of MBRA (Section 2). This statement will make visible the various 
parts of MBRA and will structure our discussion in the remainder of the chapter. We explicate 
the core concepts of independence and agreement (Section 3), and discuss what they mean in 
the context of climate modelling. Our statement in Section 2 shows that MBRA is based on 
three premises, which concern robust properties, common structures, and so-called robust 
theorems. We analyse what these involve and what problems they raise in the context of 
climate science (Section 4). We end with a brief conclusion (Section 5). In the next chapter, 
which is Part II of the review, we analyse how the conclusion of MBRA can be justified. 
 
 
2. Model-Based RA 
 
MBRA is a form of inference, and to understand how MBRA works, we have to understand 
what its inference pattern is. The most influential recent analysis of MBRA is Weisberg’s 
(2006), who introduces it with the example of the Lotka-Volterra model of predator prey 
interaction. It is therefore helpful to briefly review Weisberg’s discussion to get to a general 
formulation of MBRA, and then note that this formulation equally applies to climate models. 
 
Consider the fish in the Adriatic Sea. They can be sorted into a population of prey and a 
population of predators, which have sizes  and , respectively. Since predators eat prey, 
the time evolution of the population sizes are related. Their relation can be represented in a 
model that is based on two coupled first-order differential equations, the so-called Lotka-
Volterra equations:  and , where r is the birth rate of the 
prey population, m is the death rate of the predator population, and a and b are linear response 
parameters. This is the Lotka-Volterra model. An analysis of the model shows that the 
populations in it have the so-called Volterra property, namely that a general biocide (the 
uniform reduction of all species) favours prey in the sense that after introducing the biocide 
the number of preys grows and the number of predators shrinks (Weisberg 2006, 735). Further 

V P
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analysis shows that the model has a feature known as negative coupling, namely that 
increasing the number of predators decreases the number of preys and increasing the number 
of preys increases the abundance of predators. Finally, one can show that in this model the 
following holds: if the system is negatively coupled, then it has the Volterra property. 
  
The question now is whether these features of the Lotka-Volterra model are also present in 
real populations of fish in the Adriatic Sea. That is, can we assert that the predator and prey 
populations in the Adriatic Sea have the Volterra property and negative coupling, and that in 
that population the former is brought about by the latter? This is where MBRA enters the 
scene. Weisberg (2006), and later Weisberg and Reisman (2008), consider alternative models: 
a family of models whose equations are the same as in the original Lotka-Volterra model but 
where the parameters have different values; then a model whose equations are the Lotka-
Volterra equations with a density term added, and finally an individual-based model which 
represents individual organisms and their behaviours rather than describing the populations at 
an aggregate level. The result of this modelling exercise is a model ensemble consisting of 
four models (setting aside the protracted but ultimately inconsequential question of how one 
counts models that differ only in their parameter values). One can then show that all these 
alternative models still have the Volterra property and negative coupling, and hence that in 
the class of models that make up the ensemble the following holds: if the system is negatively 
coupled, it has the Volterra Property. Hence, these features are robust in the ensemble in the 
sense that all models in the ensemble have them. This is Weisberg’s motivation for calling the 
Volterra property the robust property R; for saying that negative coupling is the common 
structure S of the models in the ensemble, and for dubbing the proposition that (ceteris 
paribus) S brings about R a robust theorem. 
 
The punchline of MBRA is that the fact that these features hold in all models in the ensemble 
is taken to warrant the belief that all (or at the very least some) of those features also hold in 
the target population, the fish in the Adriatic Sea, because the models in the ensemble are 
sufficiently independent. In this instance, according to Weisberg, MBRA is taken to establish 
the truth of the proposition “under conditions C, negative coupling brings about the Volterra 
property”. The proviso “under conditions C” is added to make explicit the fact that this 
regularity is supposed to hold only ceteris paribus. If, for instance, the prey population catches 
a disease that greatly reduces the number of preys, then the robust theorem may cease to hold. 
 
The general inference pattern of MBRA can be summarised as follows (Frigg 2022, Sec 15.3): 
 

Assume we have a model ensemble  consisting of sufficiently independent models 
that all represent target system T.  
 
Step 1: Robust property 
Premise 1 – Ensemble-Robust-Property: all models in  have property R. This property 
is called the “robust property”.  
Conclusion 1 – Target-Robust-Property: T has R.  
 
Step 2: Common structure 
Premise 2 – Ensemble-Common-Structure: all models in  have structure S. This 
structure is called the “common structure”.  
Conclusion 2 – Target-Common-Structure: T has structure S. 
 
Step 3: Robust Theorem 

Ω

Ω

Ω
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Premise 3 – Model-Robustness-Theorem: in all models in  it is the case that, under 
conditions C, S brings about R. This proposition is called the “robust theorem”. 
Conclusion 3 – Target-Robustness-Theorem: under conditions C, S brings about R in T. 

 
Lloyd (2010, Sec. 5) discusses MBRA and points out that it is a suitable way of looking at 
climate models. She considers an ensemble of 14 climate models and then notes that the 
property of having increasing global mean surface temperature is robust in the ensemble 
because it is exhibited by all models. This is the robust property R. The models also all have 
a common core which consists of physical principles which describe the interaction of 
increasing greenhouse gas emissions with the earth’s energy balance. This is the common 
structure S. Furthermore, an investigation of the models shows that an increasing 
concentration of greenhouse gases brings about increasing global mean surface temperatures. 
This is the robust theorem. Lloyd does not comment on the conditions C, but presumably these 
are conditions that rule out major interference from other factors (such as a large-scale 
volcanic eruption).  
 
Let us now add some qualifications to the above general scheme. First, at this point, nothing 
is assumed about the ensemble  beyond the fact that its models are sufficiently independent. 
Specifically, it’s not assumed that  is large or complete (in some relevant sense), or that the 
models in it are well-confirmed. We note, however, that there is an interesting connection 
between the choice of  and the formulation of the conditions C in the robust theorem, 
because the conditions under which the theorem holds will depend on what is covered by the 
models in . In essence, the larger the spectrum of scenarios that are covered by the models 
in , the less restrictive C will be. This is a point that we think is often not sufficiently 
stressed in discussions surrounding the epistemic import of robustness analysis, especially 
when it comes to the conclusion in Step 3. Indeed, it is often assumed that one can talk about 
the conclusion of Step 3 without any reference to the conditions C under which the theorem 
is supposed to hold - see e.g. Kuorikoski et al. (2010) and Schupbach (2018). But without 
such clarification the empirical content of the robust theorem remains unspecified.  
 
Second, rather than construing the argument as one that establishes conclusions in a 
categorical way, one can see it as increasing our confidence in the propositions in the 
conclusions. Indeed, this is how the core idea of MBRA has been summarised in the quotes 
by Leduc et al. and Tebaldi et al. in the previous section, and it is also how Baumberger et al. 
(2017) and Parker (2011) formulate the approach. On this reading, the conclusions in the three 
steps don’t make the categorical statement that T has R, but instead establish that a statement 
is well supported (or at least that it is better supported than it was prior to having carried out 
the MBRA). The conclusion of Step 1, for instance, could then be the statement that we have 
increased confidence that T has R. The issues we discuss in what follows are independent of 
whether conclusions are formulated categorically or in terms of increased confidence. We use 
the categorical formulation for simplicity; readers can always substitute the confidence 
formulation if this is their preference.  
 
Third, Step 3 ensures that there is a genuine connection between S and R, and that it is not just 
a coincidence that systems that have S also have R. However, we recognise that the notion 
“bringing about” is vague, and deliberately so. What notion exactly is appealed to will depend 
both on the context (negative coupling will bring about the Volterra property in a way that is 
different from how the exposure of a human body to high levels of radiation brings about 
cancer) and on one’s philosophical commitments (such as one’s views on causation and laws 

Ω

Ω
Ω

Ω

Ω
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of nature). At a general level, MBRA need not commit to a particular notion of bringing about, 
and a relevant notion can be introduced in specific cases.  
 
Fourth, the above scheme, which involves three steps, is what one might call a complete 
template of MBRA. Depending on the problem at hand and one’s research question, only parts 
of the scheme may be of interest. For instance, one may only want to establish that a system 
has property R while not being interested in identifying a structure S and connecting that 
structure to R in a robust theorem. If so, then one only carries out Step 1. An example of such 
case is a study by Seager et al. (2007) in which they aim to establish through model agreement 
that the Southwestern United States will experience increased aridity and drought over the 
next one hundred years. In another scenario it may be the case that it is known empirically 
that T has R, which makes Step 1 obsolete and a robustness analysis will focus on Steps 2 and 
3. An example of such case is Vicedo-Cabrera et al.’s (2021) attribution study which used 
pairs of factual–counterfactual ensemble runs of daily mean temperature between 1991 and 
2018 from ten general circulation models, to conclude that 37% of the heat wave deaths across 
43 countries from 1991–2018 were attributable to human induced climate change. Here the 
heat wave deaths are taken as given and one tries to show that they are (partly) attributable to 
the common structure of climate physics plus increases in greenhouse gases. In yet other cases 
one may just be interested in Step 3 and aim to establish the connection between S and R, 
while leaving it open whether a particular system has either of the properties. An example of 
such case is Kuorikoski et al.’s (2010) application of MBRA to a family models in 
geographical economics in which they aim to establish the following robust theorem: “Ceteris 
paribus, if firms benefit from economies of scale, goods are costly to transport, and there are 
both immobile and mobile activities, spatial agglomeration occurs when economies of scale 
are high, market power is strong, and transportation costs are low” (2010, 557). 
 
MBRA raises three issues, and these will be the subject matter of our two-part review. The 
first issue concerns the proper articulation of the basic notions in MBRA. In particular, what 
does it mean for models in an ensemble to be sufficiently independent and what does it mean 
for models to agree? We discuss that in Section 3.  
 
The second issue concerns how the premises are established. How do we show that all models 
in the ensemble have the property R, and all models have a common structure S, and that S 
brings about R? For MBRA to get off the ground, we need to know that the premises are true, 
or at the very least have evidence to support them. We discuss the problem of how to establish 
the premises in Section 4.    
 
The third issue is the validity of the inferences drawn. The transition from the premises to the 
conclusion amounts to a transition from what Smith calls model-land (2007, 135) to the real 
world: the premises make assertions about the model ensemble and the conclusion concerns 
the target system. It is obvious that none of the inferences are deductively valid: in each step 
it is possible for the premise to be true while the conclusion is false. What, then, justifies the 
inference from the premises to the conclusions? This is a thorny issue, and we turn to it in the 
second part of this two-part review. 
 
 
3. Articulating Core Concepts  
 
MBRA is based on two core notions: independence and agreement. In this section we look at 
different articulations of these notions in the context of climate modelling.  
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3.1 Independence 
 
As we have seen, a crucial ingredient in MBRA is independence. So the first question we have 
to answer is: what does it mean for models to be independent? There are at least three different 
interpretations of independence that have been discussed in the climate literature, and the 
distinction between them is significant in many respects. Broadly they can be characterized as 
follows:  
 

1. Under the first interpretation, “the assumption of independence is equivalent to the 
interpretation that each model approximates the real world with some random error” 
(Knutti et al. 2010, 2745). This is often referred to as the truth plus error hypothesis 
(or the truth plus error paradigm). 

 
2. Under the second interpretation, the degree of independence is determined by the 

amount of divergence between models’ outputs independent of observations 
(Abramowitz and Gupta 2008), or by the degree of correlation of observed model 
errors (Bishop and Abramowitz 2013; Sanderson et al. 2015). Approaches of this kind 
are referred to as a posteriori approaches. 

 
3. Under the third interpretation, the degree of independence is determined by the degree 

of shared formulation in the models. Hence, under this conception of independence 
models are classified “based on the independence of their structure” (Abramowitz 
2010). Approaches of this kind are referred to as a priori approaches. 

 
Notice that under the first interpretation, independence is not a matter of degrees. In other 
words, under the first interpretation models are either independent or they are not. By contrast, 
under the second and third interpretations, models can be more or less independent, and what 
we are interested in is the extent to which they are. We now discuss each of these 
interpretations in turn. 
 
Under the first interpretation, what it means for models to be independent is that their errors 
are independent and identically distributed (typically assumed to be normally distributed with 
zero mean). As Knutti et al. (2010, 2745) note, many Bayesian methods that are used to 
interpret the results from multi-model ensembles rely on the assumption that the truth plus 
error hypothesis is true, and according to Leduc et al. (2016, 8302) “the truth-plus-error 
paradigm remains the most widely used technique for processing multimodel ensemble”. 
However, as Annan and Hargreaves (2017) point out, if the truth plus error hypothesis were 
true, it would have remarkable consequences:  
 

Although it has not generally been explicitly stated, even a small ensemble of samples 
drawn from such a distribution would be an incredibly powerful tool. If we could 
sample models from such a distribution, then we could generate arbitrarily precise 
statements about the climate, including future climate changes, merely by proceeding 
with the model-building process indefinitely and taking the ensemble mean. This 
would obviate the need both for computational advances and also for any additional 
understanding of how to best simulate the climate system. (2017, 212-13) 
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As an example of the impact of the error plus truth hypothesis, consider the figure below taken 
from Knutti et al. (2010), showing various probability density functions obtained using a 
Bayesian method developed by Furrer et al. (2007), which relies on the truth plus error 
assumption. The graph shows that the uncertainty in the true value of the temperature change 
(i.e. the width of the probability density function) decreases substantially as the number of 
models included in the ensemble increase from 4 to 21 models.  
 

 
 
Figure 1: Probability density functions for annual global temperature change (for a particular period and under 
a specific scenario) obtained by Knutti et al. (2010) with Bayesian method developed by Furrer et al. (2007), for 
4, 10, and 21 models.  
 
Despite the fact that many Bayesian methods that are used to interpret the results derived from 
multi-model ensembles rely on the truth plus error hypothesis, there are reasons to doubt that 
it is applicable to actual model ensembles. The problem is that models’ errors are often 
correlated, and that the mean of an ensemble does not converge to the truth when the number 
of models in an ensemble increases, as one would expect if the error plus truth hypothesis were 
true. Knutti et al. (2010), for instance, show that the errors of the models’ results in the CMIP3 
are strongly correlated and that the mean of the CMIP3 does not asymptotically converge to 
observations. But crucially, the knowledge that climate models often share many 
simplifications, limitations and assumptions should already provide enough of a reason to 
suspect that this assumption is not appropriate in the first place, as many have noted (see, e.g., 
Knutti et al. (2010) and Bishop and Abramowitz (2013, 886)).  
 
Under the second interpretation, independence is measured in terms of the amount of 
divergence between models’ outputs. Specifically, “the proximity of GCMs results or of their 
errors is used to quantify a posteriori their interdependencies” (Boé 2018, 2772). A posteriori 
approaches can be further divided into ones that assume that the level of dependence reflects 
only the amount of divergence of model outputs independent of observations, and ones that 
also take agreement of model outputs with observations into account. 
 
An instance of the former is Abramowitz and Gupta’s (2008) measure of independence, which 
assesses independence solely on the divergence of outputs independent of observations: the 
closer the models’ outputs under similar input and initial conditions, the more dependent they 
are. Annan and Hargreaves (2017, 213) object that “this approach has the potential weakness 
that models that agree because they are all accurate will be discounted, relative to much worse 
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models, without any allowance being made for their good performance relative to reality”. 
However, Abramowitz and Gupta (2008, 3-4) note that “to choose the best model ensemble, 
we must consider both the independence and performance of potential ensemble members” 
(our emphasis) and that “choosing model weights for an ensemble is then a process of deciding 
on a performance measure (or aggregation of performance measures) and then using a weight 
description that values performance and independence in an appropriate ratio.” So this does 
seem to be a possible reply to Annan and Hargreaves’s concern. However, there nonetheless 
remains a question about how performance relative to reality is integrated into Abramowitz 
and Gupta’s approach, which, as stated, only takes divergence of outputs into account. 
 
Abramowitz et al. present a stronger objection when they argue that “inter-model distances 
alone in the absence of observational data are an incomplete proxy for model independence” 
(2019, 95). According to them, when models perform well (i.e. model-observation distances 
are relatively small) they should not be considered dependent even if their outputs are similar 
(since their outputs are all close to observations). Essentially, this is because “an ideal 
definition of model dependence would only include variability in process representations that 
are not tightly observationally constrained” (ibid., 94). However, if models’ outputs are 
similar merely because the models perform well, then it seems unlikely that the similarities 
across models’ outputs reflect similarities in the sections of models’ representation that are 
not tightly constrained by observations. If this is right, then measures of independence that 
rely on inter-model distances alone in the absence of observational data are clearly inadequate.  
 
To address this concern, other a posteriori approaches assume that the level of dependence is 
a function of the level of model error covariance or error correlation (Collins et al. 2011; 
Bishop and Abramowitz 2013). As Abramowitz et al. (2019, 95) note, these approaches have 
“the advantage that ‘error’ only reflects deviations from an observational product (rather than 
similarity in model outputs per se)” and hence it is perhaps more reasonable to assume that 
“differences in the structure of error between models are likely to reflect differences in the 
sections of model representation that are not tightly constrained by observations”. 
 
However, despite this advantage, these more sophisticated a posteriori approaches are not 
immune to general concerns that apply to all a posteriori measures of independence. Indeed, 
as Pirtle et al. (2010, 354) remark, all a posteriori measures of independence “essentially treat 
models as black boxes, ignoring the causal reasons for disagreement between models. It is 
possible that two models could agree with respect to outputs despite their having different 
causal assumptions, but such a result, using this approach, would falsely indicate model 
‘dependence,’ because these models would yield the same output despite the fact that they 
make different and possibly conflicting claims about the underlying mechanisms”. Similarly, 
Annan and Hargreaves (2017, 218) worry that “[p]airwise similarity between model outputs 
may arise through convergence of different approaches to understanding the climate system, 
and not merely through copying of ideas, and this would not indicate any dependence as 
defined here. […] We do not believe that coincidentally similar behaviour should be penalised 
by downweighing of these models, as it may represent a true ‘emergent constraint’ on system 
behaviour”. And Abramowitz et al. (2019, 98) worry about the sensitivity of a posteriori 
dependence measures “to the choice of variable, constraining observational data set, metric, 
time period and the region chosen”.  
 
A posteriori approaches are seen as pragmatic approaches to quantifying inter-model 
dependencies, and the underlying hope is that the proximity of models’ results or model error 
correlations are good proxy measures for model interdependencies (i.e. the similarities in the 
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way the models represent the world and its causal structure). However, the objections 
discussed cast doubt on whether a posteriori approaches to quantifying inter-model 
dependencies are really fit for purpose. In light of this, some scientists argue that inter-model 
dependencies should be assessed using a priori approaches instead, where “the independence 
of models is judged a priori, based only on the knowledge of their codes, and not of their 
results” (Boé 2018, 2772). 
 
However, a priori approaches are still very much in their infancy. A very basic a priori 
approach is the “institutional democracy” proposed by Leduc et al. (2016). In contrast to the 
popular but highly criticised “one model, one vote” approach (Knutti 2010), under 
institutional democracy models that come from the same institution (i.e. the same modelling 
centre) are assumed to be fully dependent if they lead to equivalent projections and hence are 
considered as a single model when their signals are statistically indistinguishable (but not 
otherwise). The motivation behind this approach is that “[c]limate models developed within a 
given research group or institution are prone to share structural similarities” (Leduc et al. 
2016, 8301) and hence institutional democracy could be used as a proxy for quantifying inter-
model dependences. However, many have found the institutional democracy approach 
unsatisfactory, since models can have significant similarities despite not being from the same 
modelling centre and hence “deciding whether or not two GCMs are independent based on 
their institutions is just a first step. A better knowledge of how code similarity impacts 
GCMs[’] results is needed to go forward” (Boé 2018, 2772). 
 
Annan and Hargreaves (2017) propose a general account of independence that is determined 
a priori in terms of the anticipated outputs of the models. According to them, two models 
should be considered independent if a researcher’s subjective belief about a possible outcome 
of one of the models in the ensemble is not affected by learning an output of the other model. 
However, this assessment of independence is extremely subjective, and they only show how 
it is supposed to work in cases where all the researcher knows is the model’s institution. 
 
Boé (2018) has recently proposed using the number of shared components by GCMs as a 
proxy for model independence, where each GCM is characterized by its four key components: 
atmosphere, ocean, land surface, and sea ice models.  However, Boé acknowledges that this 
approach “is still crude and has some limits” (ibid., 2777). For a start, determining whether 
two components are different is not a trivial exercise and is bound to be rather subjective. 
Indeed, Boé relies on the version numbers of the GCMs’ components to determine whether 
two components are different, but as Abramowitz et al. note “it is unlikely that the approach 
to version numbering is consistent across modelling centres, meaning that two components 
might be very different even if they share a major version number, or vice versa” (2019, 94). 
Furthermore, as Boé (2018, 2777) notes, different versions of a component “often share 
identical parameterization schemes and are therefore themselves not independent”. Another 
issue that Boé points out is that “the impact of tuning is not considered. Some components 
may be considered ‘identical’ in this work but use different parameters, which may be a source 
of important differences. A better documentation of tuning in GCMs would be necessary to 
go further” (Boé 2018, 2777). Finally, as Abramowitz et al. (2019, 100) remark, “Boé’s 
approach quickly becomes difficult and time consuming for large ensembles such as CMIP, 
given the lack of transparency regarding precisely what constitutes different models and the 
role of tuning”. And furthermore “shared history as it pertains to dependence should only 
include process representations that are not tightly observationally constrained (so that 
Navier–Stokes equations might not represent dependent process treatment, for example)” 
(ibid., 100), which might further complicate things.  
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Overall, although a priori approaches to measure inter-model dependencies may intuitively 
seem more promising, they clearly face considerable challenges. Indeed, there is currently no 
scientific consensus on how to measure inter-model dependencies. 
  
 
3.2 Agreement 
 
Agreement seems to be a simple concept, but on closer examination it turns out that different 
and often incongruent notions of agreement are at work in climate modelling. We follow 
common usage and take “agreement” and “robustness” to be interchangeable (Parker 2011, 
580). We note, however, that some climate scientists (e.g. Pirtle et al. (2010)) assume that for 
a model result to be robust the models not only have to agree on it, but they also have to be 
sufficiently independent from one another. We don’t follow this usage in the remainder of this 
chapter. Even if one were willing to set aside the challenges (discussed in the previous 
subsection) that arise when we try to identify an adequate account of model independence, a 
discussion of the epistemic import of robustness analysis becomes significantly more difficult 
if we muddy the waters by including some notion of epistemic significance in the definition 
of robustness. 
 
A key consideration when formulating a definition of robustness in climate science is how 
many models must agree on a result for it to be deemed robust. While the most straightforward 
notion of robustness would require all models to agree, this notion is not universally accepted. 
Almazroui et al. (2016, 164), for instance, define an increase (or decrease) in the projected 
signal “to be robust if at least 66% of the models agree in the direction of change”. By contrast, 
Screen and Blackport (2019, 11410) define “a robust response as being when nine or greater 
(of the eleven) models depict individual responses of the same sign as the ensemble-mean 
response”. In yet other cases, robustness is assumed to be a non-categorial notion, where “the 
greater the number of models in agreement, the greater the robustness” (Field et al. 2012, 
131).  
 
This draws attention to an important question that arises when defining robustness in climate 
science: is robustness best thought of as a categorical notion? If so, how many models have to 
agree on a result for it to be considered robust?  If not, how should we understand the notion 
of robustness in a non-categorical way, and is robustness comparable across different model 
ensembles and different results? 
 
Another important aspect of a definition of robustness in climate science has to do with what 
it takes for models to agree in the first place. One approach might be to consider a particular 
range of possible results and ask: do all (or most) of the models agree on this range of possible 
results (where the range in question can be determined even after looking at the models’ 
individual results)? If the question is answered affirmatively, then that range is considered 
robust.  This is how Baumberger et al. (2017, 9) seem to understand robustness when they 
write that “[a] model projection is robust if all or most models in the ensemble agree regarding 
the projection. If all models in an ensemble show more than a 4˚C increase in global mean 
surface temperature by 2100 when run under a certain forcing scenario, this projection is 
robust”.   
 
Alternatively, one might define model robustness without reference to a range of possible 
results.  Ukkola et al., for instance, regard “projections as ‘robust’ when the magnitude of the 
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multi-model mean future change exceeded the inter-model standard deviation of the change” 
(2020, 4). This is a very different understanding of robustness, and its application is limited 
to answering the question of whether a particular change (e.g. an increase in mean 
precipitation or an increase in the frequency and duration of seasonal meteorological drought) 
is robust. Under this approach, the question is no longer whether a range is robust, but rather 
whether the mean of the models’ results is sufficiently large (i.e. larger than the inter-model 
standard deviation). This implies that even if most of the models show more than a 4˚C 
increase in global mean surface temperature by 2100 when run under a certain forcing 
scenario, if the mean of the models’ results is not greater than the inter-model standard 
deviation, then the models’ results would not be considered robust. Notice further than under 
this approach, the greater the magnitude of the multi-model mean future change, the more 
spread out the models’ projections are allowed to be before the change is deemed not to be 
robust.  
 
The rationale behind this definition of robustness is not entirely clear and gives rise to several 
questions. To begin with, why should we focus on the multi-model mean to determine whether 
model projections are robust? In other words, why is the multi-model mean the relevant 
variable here, rather than, say, an unequally weighted mean or another variable altogether? 
Indeed, if models are dependent, then it is unclear why the multi-model mean is a meaningful 
variable to consider in the first place. At the beginning of this section, we counselled against 
including a notion of epistemic significance in the definition of robustness, and it is important 
to note that the focus on the multi-model mean is a choice that disagrees with this maxim by 
at least implicitly relying on a model democracy approach, and that this is certainly not the 
only choice available. Furthermore, why should this mean be greater than one inter-model 
standard deviation rather than, say, two standard deviations? We ask these questions to 
highlight the fact that this approach to defining model robustness relies on several not 
obviously natural choices. 
 
Tebaldi et al. (2011, 1) make a distinction between a lack of signal and a lack of information 
due to model disagreement and “categorize three levels of multi-model agreement: 1) the 
majority of models agree that future changes will be statistically significant and of the same 
sign 2) the majority of models show significant change but in opposite directions and 3) most 
of the models show no significant change. The basic idea is that testing for model agreement 
is only meaningful if the models are producing significant changes, i.e., changes outside of 
internal variability” (ibid., 4). This categorization clearly has profound consequences for how 
one determines whether a result is robust. For instance, as Tebaldi et al. remark, “in contrast 
to popular belief, model agreement of future precipitation change is greater than currently 
thought. Only few places in the world show significant changes of opposite sign in different 
models” (ibid., 4). It is also worth noting that, under this approach, the extent of the assessed 
agreement may be affected by the choice of method used to assesses the natural variability of 
the system (since this might affect whether one deems a change in the model to be statistically 
significant).  
 
Each of these three approaches define robustness in a different way, and hence could lead to 
a different assessment of robustness in any given case. The fact that scientists have not agreed 
on a definition of robustness adds a layer of complexity to investigations into the epistemic 
import of model robustness in climate science.  
 
 
4. Establishing the Premises 
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In this section, we turn to the question of how to establish the three premises of the general 
inference pattern of MBRA presented in Section 2.  
 
4.1 Premise of Step 1: Finding the Robust Property 
 
To justify the premise of Step 1, one must establish that all models in an ensemble of models 

 have property R. But what kind of ensemble of models should one consider? There are 
three kinds of ensembles in climate science that are worth discussing: perturbed parameter 
ensembles, multi-model ensembles, and initial condition ensembles. 
 
These three kinds of model ensembles are explored through different techniques. Studying a 
perturbed parameter ensemble requires us to vary the parameters in the model and check 
whether, and if so how, the desired results change. This is simple in theory, but it is often 
difficult to do in practice. The number of parameters may be large, and equations may not be 
solvable analytically. In such cases scientists have to resort to computer simulations and run 
multiple versions of the same model, where each version incorporates a different set of 
parameter values. But no amount of simulation results can explore the full range of parameter 
values, and there will always be gaps. These gaps are particularly significant if models are 
large and computationally costly to explore. Contemporary climate models, for instance, have 
hundreds of parameters and yet the available computational infrastructure only allows 
scientists to make a comparatively small number of runs, which results in large parts of the 
parameter space remaining unexplored. For instance,  HadCM3, a global climate model on 
which the UK’s official climate policies were based until a few years ago, has hundreds of 
parameters (leading to billions of combinations of values), and yet the results communicated 
to policy makers were based on less then 300 model runs, only 17 of which were runs of the 
full model (for a discussion of this case, see Frigg, Smith and Stainforth’s 2013; 2015). 
Understanding how changes in model parameters affect the model result of interest in the face 
of difficulties like these has turned into a scientific discipline in its own right, namely 
sensitivity analysis. Philosophical discussions of sensitivity analysis can be found in Bokulich 
and Oreskes’ (2017, Sec. 41.6) and Raerinne’s (2013, Sec. 2); its place in the broader edifice 
of RA is discussed in Justus’ (2012, 801) and Weisberg and Reisman’s (2008, 115). For a 
technical discussion see Saltelli, Tarantola, Campolongo, and Ratto’s (2004). 
 
Things get even more complex when we turn to multi-model ensembles. The purpose of such 
ensembles is to evaluate whether a result is robust under structural changes to the model. This 
involves changing the substantial modelling assumptions and the mathematical structure of 
the model. Such stability is required because if a model is idealised and it turns out that a result 
vanishes when idealisations are removed or changed, then the result is not epistemically 
significant. Fletcher (2020) traces the demand for stability back to Duhem and Maxwell, and 
then discusses topological notions of stability in dynamical systems; for further discussions of 
that kind of stability, see Frigg, Bradley, Du, and Smith’s (2014) and Frigg and Smith’s 
(2022). Making good on this intuition is a challenging task. Unlike in the case of perturbed 
parameter ensembles, where the problem is to establish results about a well-defined ensemble, 
the problem now is how to define the ensemble to begin with. In the example discussed in 
Section 2, Weisberg and Reiman considered a small multi-model ensemble consisting of three 
models and then studied each model individually. But what justifies this choice? Why these 
three models? Why not an ensemble of four, or five models, or an ensemble with a larger, or 
even infinite, number of models? In climate science, multi-model ensembles often include 
considerably more than three models. Phase 6 of the Coupled Model Intercomparison 

Ω
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Projection (CMIP6), for instance, includes over 100 models (PCMDI 2022). However, no 
matter how large ensembles may be, they are nonetheless “ensembles of opportunity” (Tebaldi 
and Knutti 2007; Parker 2013) because the selection of models to be included in these 
ensembles is neither systematic nor standardized, and models are not constructed to sample 
the existing uncertainty. Rather, what models are included in any given multi-model ensemble 
will ultimately depend on contingent factors such as what state-of-the-art models are currently 
available and whether a modelling group is willing and able to do the requested simulations. 
 
The third type of model ensembles, initial condition ensembles, is one in which the initial 
conditions of a model are perturbed, and what is studied is how the result responds to this 
perturbation. In this context there is an important distinction between predictions and 
projections that is worth mentioning, for it affects the interpretation of an initial ensemble. 
Predictions are claims about the actual evolution of the climate system based on current initial 
conditions. Whereas projections are claims about the response of the climate system to 
external forcing scenarios based on possible initial conditions where the system has at least 
partially adjusted to the external forcings a 𝑡! (where 𝑡! is some point of time during the pre-
industrial period). Hence, whereas for prediction an initial ensemble is interpreted as estimates 
of the actual initial conditions, for projections an initial ensemble is interpreted differently, 
namely as potential initial conditions at pre-industrial times. In the climate literature it is often 
assumed that when it comes to projections, initial-condition uncertainty is not very important. 
For instance, Tebaldi et al. (2007) state that “[i]nitial condition uncertainty is most relevant 
for the shortest time scales. Weather is chaotic, and predictions are sensitive to the value of 
observations used to initialize numerical models […] Long-term projections of climate change 
are typically averaged over decades and often across several ensemble members, and are thus 
largely insensitive to small variations in initial conditions”. Indeed, it is common practice to 
only consider very few initial states per model (often only one to five, and rarely more than 
ten). However, initial uncertainty might be more important. Werndl (2020) has recently argued 
that there is little if any justification for the claim that projections are independent of the details 
of the initial ensemble, and research does suggest a much larger number of initial conditions 
are needed to reliably estimate projections (see for instance, Daron and Stainforth (2013) and 
Deser et al. (2012)). 
 
 
4.2 Premise of Step 2: Finding the Common Structure 
 
The task of establishing that the models in the ensemble have a common structure (as required 
by the premise of Step 2) can be broken down into two sub-tasks: (a) say what it means for 
there to be such a structure and (b) state how we find it.  
 
Let us begin with (a). One way in which models in an ensemble can have a common structure 
S is it being the case that every model  in the ensemble can be decomposed into a core 
and a set of idealisations: where  is an index that ranges over all the models in 
the ensemble. The crucial aspect here is that while idealisations are particular to each model 
(hence the index for the idealisations ), the structure  must be common to all models. Rice 
calls this the “decompositional strategy” and argues that it is a dead end: “many of our best 
scientific models cannot be decomposed in the ways required by the decompositional 
strategy” (Rice 2019, 180). The contributions of  to a model’s output cannot be isolated 
from the contributions of the contributions of  because the two are inextricably intertwined 
and they collaborate to produce the model’s output. The idealisations are introduced to render 
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the basic mathematical frameworks applicable, and they often distort difference-making 
features. Hence, there is no such thing as the contribution of the idealisation that can be 
isolated from the result of the core (ibid. 189-95). 
 
This is a serious worry and those who wish to perform an RA on a given ensemble will have 
to argue that the models at stake do not face the issue Rice describes. But even if this were 
possible and decomposition would not be an in-principle limitation, there still remain practical 
obstacles, which bring us to (b): saying how to find the common structure. Few ensembles 
will consist of models whose structure naturally decomposes into a core and idealisations, and 
different models may even be formulated in different mathematical frameworks. It is then a 
challenge to find a core structure that they all have in common. Weisberg and Reisman’s 
(2008) ensemble is one case in point. The models use different formalisms and isolating 
negative coupling as the common structure involved much more than just watching out for 
shared elements in the mathematical formulation of the models. Weisberg (2006, 738) 
recognises this difficulty and notes that “[s]uch cases are much harder to describe in general, 
relying as they do on the theorist’s ability to judge relevantly similar structures”. Even if one 
has faith in theorists’ ability to do so, certain cases may present insurmountable obstacles. 
Justus (2012, 802-03) discusses the case of climate models and points out that these large 
computational structures are opaque, and that the sheer number and complexity of equations 
involved undercuts any attempt to duplicate the kind of analysis that Weisberg and Reisman 
were able to carry out on the relatively simple models of the predator-prey system.  
 
This brings us to the issue of scrutability. According to Justus (2012, 802) determining that 
the models in an ensemble have a common structure requires that the models’ structure and 
dynamics be “scrutable”. One could interpret this as the claim that the models have to be 
totally scrutable: we have to know and understand every detail of their structure. But is this 
necessary? Can “partial scrutability” be enough? For instance, we can certainly scrutinise 
climate models to the point that we know that all of them have increasing concentration of 
greenhouse gases. Could this suffice to identify a common structure? Lloyd (2015, 62), for 
instance, seems to think so when she writes that “despite this model variation, all the models 
in this model family share a core representation of greenhouse gases (GHG) as a radiative 
cause. We can consider this the common causal core shared by this entire GHG model-type 
under consideration” (our emphasis). As we will see shortly, this may be requiring too little 
by way of scrutability. But then a question naturally arises: if we don’t think we have to go all 
the way to full scrutability, how much scrutability do we need to be able to identify a common 
structure in a model ensemble?  
 
According to Katzav (2014, 230) “some false assumptions that are shared by all the GCMs in 
question play a crucial role – the models would not run without them – in generating model 
successes”. But then it seems clear that partial scrutability of the kind required by Lloyd in 
her identification of a common structure is not enough. For if Katzav is right, we would, at 
the very least, need enough scrutability to identify as part of the common structure the false 
assumptions that are responsible for the models’ successes. This, in turn, gives rise to two 
concerns. First, as Katzav remarks, this may not always be possible for “[w]e will often have 
good reason to conclude that some shared climate model assumptions are wrong without being 
able to identify which are wrong” (ibid., 230). Second, even if we had enough scrutability to 
determine all the false assumptions that should be identified as part of the common structure, 
the very fact that the common structure would include some false assumptions is problematic. 
For in such cases, we would know that the conclusion of Step 2 of the general inference pattern 
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of MBRA presented in Section 2 is false, and hence it would no longer be clear what the 
epistemic role of Step 2 is.  
 
In sum, when it comes to the premise of Step 2, there remain question marks about the 
identification of a common structure both in principle and in practice.  
 
 
4.3 Premise of Step 3: Understanding Robust Theorems 
 
As we have noted when discussing the Volterra Principle, the formulation of the relevant 
conditions of the robust theorem, which is an important part of Step 3, is a formidable problem. 
The problem is linked to the issues concerning the construction of multi-model ensembles. If 
we fully understood the structure of the models in the ensemble, and if we could show that in 
all these models S brings about R, then we would probably have at least some idea about what 
goes into C. But since a full characterisation of models in the ensemble often remains elusive, 
it is unsurprising that formulating the relevant criteria remains a hard nut to crack.  
 
But even if we had an idea of the content of C, there would be the further worry that C might 
include unrealistic assumptions about the target system. Suppose, for instance, that we didn’t 
know that the Volterra principle is insensitive to density dependence. In this case we could 
not assume that the Volterra principle concerns any system with density dependence, no matter 
how small. But a Volterra principle which concerns only predator-prey systems with no 
density dependence at all is not a theorem about the actual world, because any real system is 
bound to have some density dependence. To give another example, if we don’t know whether 
or not the Volterra principle is sensitive to predators’ and preys’ responses to seasonal 
fluctuations, we cannot assume that the Volterra principle concerns predator-prey systems in 
a seasonal environment. And yet virtually all real-world biological populations live in a 
seasonal environment. Arguably, this might be the very worry that underlies Weisberg’s 
recommendation to collect “a sufficiently diverse set of models so that the discovery of a 
robust property does not depend in an arbitrary way on the set of models analyzed” (2006, 
737). But this is insufficient to put the worry to rest. For no matter how diverse the set may 
be, if all the models in the ensemble involve a particular unrealistic assumption about the 
target system despite differing in many other respects, there is no justification for not including 
that unrealistic assumption in C. But if C ends up including even just one unrealistic 
assumption about the target system, the robust theorems end up being inapplicable to the 
actual world, and this renders them useless for explaining or predicting real-world phenomena. 
 
 
5. Conclusion 
 
In this chapter we have introduced the structure of MBRA and analysed its core concepts and 
premises. We have seen that the articulation of these concepts raises important questions, and 
that establishing the premises is a formidable task. But the most serious challenge still lies 
ahead: justifying the inferential step that takes us from the premises to the conclusions. None 
of the three inferential steps that occur in MBRA are deductively valid. But the use of a 
deductively invalid inference pattern needs a justification, assuring us that at least in the 
instances in which we use it, the conclusions we draw are nevertheless correct. This is the 
topic of Part II of this review.  
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