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Abstract 
 
Robustness analysis (RA) is the prescription to consider a diverse range of 
evidence and only regard a hypothesis as well-supported if all the evidence 
agrees on it. In contexts like climate science, the evidence in support of a 
hypothesis often comes from scientific models. This leads to model-based RA 
(MBRA), whose core notion is that a hypothesis ought to be regarded as well-
supported on grounds that a sufficiently diverse set of models agrees on the 
hypothesis. This chapter, which is the second part of a two-part review of 
MBRA, addresses the thorny issue of justifying the inferential steps taking us 
from the premises to the conclusions. We begin by making explicit what 
exactly the problem is. We then turn to a discussion of two broad families of 
justificatory strategies, namely top-down and bottom-up justifications. In the 
latter group we distinguish between the likelihood approach, independence 
approaches, and the explanatory approach. This discussion leads us to the 
sober conclusion that multi-model situations raise issues that are not yet fully 
understood and that the methods and approaches that MBRA has not yet 
reached a stage of maturity. Important questions remain open, and these will 
have to be addressed in future research.  
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1. Introduction 
 
The core idea of robustness analysis (RA) is the prescription to consider a diverse range of 
evidence and only regard a hypothesis as well-supported if all the evidence agrees on it. In 
many contemporary scientific contexts, the evidence in support of a hypothesis comes from 
scientific models. This leads to model-based RA (MBRA), whose core notion is that a 
hypothesis ought to be regarded as well-supported on grounds that a sufficiently diverse set of 
models agrees on the hypothesis. A general statement of MBRA is as follows (Frigg 2022, Sec 
15.3): 
 

Assume we have a model ensemble  consisting of sufficiently independent models that all represent 
target system T.  
 
Step 1: Robust property 
Premise 1 – Ensemble-Robust-Property: all models in  have property R. This property is called the 
“robust property”.  
Conclusion 1 – Target-Robust-Property: T has R.  
 
Step 2: Common structure 
Premise 2 – Ensemble-Common-Structure: all models in  have structure S. This structure is called the 
“common structure”.  
Conclusion 2 – Target-Common-Structure: T has structure S. 
 
Step 3: Robust Theorem 
Premise 3 – Model-Robustness-Theorem: in all models in  it is the case that, under conditions C, S brings 
about R. This proposition is called the “robust theorem”. 
Conclusion 3 – Target-Robustness-Theorem: under conditions C, S brings about R in T. 

 
In Part I of this review we analysed the core notions of independence and agreement, and we 
discussed what it would take to establish the premises. In the current chapter, Part II of the 
review, we address the thorny issue of justifying the inferential steps taking us from the 
premises to the conclusions. We begin by making explicit what exactly the problem is (Section 
2). We then turn to a discussion of two broad families of justificatory strategies, namely top-
down justifications (Section 3) and bottom-up justifications (Section 4). We end by assessing 
the success of MBRA and highlighting alternative ways of dealing with multi-model situations 
(Section 5).  
 
 
2. The Justificatory Challenge 
 
There is a justificatory problem because the inferences linking the premises and the conclusions 
in each step of the general inference pattern of MBRA are not deductively valid: at each step it 
is possible for the premise to be true while the conclusion is false. But the use of a deductively 
invalid inference pattern needs a justification, assuring us that at least in the instances in which 
we use it, the conclusions we draw are nevertheless correct. One might be inclined to dismiss 
this as a philosophical nicety. Inductive inferences are not deductively valid either, but one 
might say that worries about whether one can infer from the fact that the sun has risen every 
morning in the past that it will also rise tomorrow (Hume 1748/2007) are for exhilarated 
philosophical minds and can be safely set aside by practicing scientists. Whatever one’s views 
on Hume’s problem of induction, the justificatory problem for MBRA is not like that, and it is 
one that should worry practitioners. Talking about econometric models, Cartwright formulates 
the worry thus: 
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Now here is the reasoning I do not understand: “Econometrician X used a linear form, Y 
a log linear, Z something else; and the results are the same anyway. Since the results are 
so robust, there must be some truth in them.” But […] we know that at the very best one 
and only one of these assumptions can be right. We may look at thirty functional forms, 
but if God’s function is number thirty-one, the first thirty do not teach us anything. […] I 
agree that it is a coincidence that they all find the same results. But I do not see what 
reason we have to assume that the correct explanation for the coincidence is that each of 
the instruments, despite its flaws, is nevertheless reading the outcome correctly. (1991, 
154) 

 
And worries about MBRA are not confined to the philosophical literature. Climate physicist J. 
Räisänen also draws attention to it: 
 

The risk that the uncertainty in the real world exceeds the variation between model results 
is obvious: even if all models agreed perfectly with each other, this would not prove that 
they are right. From a more physical perspective, some authors have argued that the 
differences between the parametrization schemes used in existing models do not cover 
the actual uncertainty in the representation of subgrid scale processes. (2007, 9) 
 

So the challenge is: how can we justify the inference from facts about models to facts about the 
world? In the next sections, we will discuss and assess two distinct approaches that have been 
taken to address this justificatory challenge: top-down justifications and bottom-up 
justifications. 
 
 
3. Top-Down Justifications 
 
Top-down justifications aim to justify the inferential step by appeal to properties of an entire 
model ensemble. These approaches contrast with what we call bottom-up justifications, which 
are approaches that do not rely on ensemble properties and see confirmation as coming from 
individual models, one at a time. We discuss top-down approaches in this section; bottom-up 
approaches will occupy us in Section 4. 
 
Orzack and Sober address the justificatory challenge and give a negative answer: MBRA cannot 
be justified. To reach this conclusion, they distinguish three cases (1993, 538). The first case is 
one in which “we know that one of a set of models [ ] is true, but we do not know which” 
(ibid.) where, by a model being “true”, they mean that the model represents T accurately in the 
relevant respects. This option is also discussed in the climate modelling literature, although in 
a probabilistic version (cf. the second qualification in Sec. 2). Baumberger et al. (2017), for 
instance, state that “[a]n inference from robustness of projections to their likely truth is 
legitimate if we have reasons to assume that it is likely that at least one model in the multimodel 
ensemble correctly projects the quantity of interest within the specified error margin” (2017, 
10; see also Parker 2011, 584). Orzack and Sober’s second case is that  is known not to 
contain the true model: each model in  is false. Their third case is that it is unknown whether 

contains the true model.  
 
Orzack and Sober argue that it is obvious that the second and the third options fail to support 
the relevant inferences. In the second case, this is because “[i]f we know that each of the models 
is false (each is a ‘lie’), then it is unclear why the fact that R is implied by all of them is evidence 
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that R is true” (ibid.). In the third case this is because “[i]f we do not know that one of the 
models is true, then it is again unclear why a joint prediction should be regarded as true” (ibid. 
538-39).  
 
Let us turn to the first option. The problem with the first case is different from that with the 
second and third cases. Orzack and Sober admit that under the  assumption of the first case the 
inference is valid because a result is robust if all models in  agree on the result, and if  
contains the true model, then all models agree on the truth, and therefore the robust result is 
true. Their worry is that this scenario is unrealistic. For one, it is far from obvious why a true 
model should be part of  to begin with, given that models typically involve simplifications 
and omissions. For another, even if were lucky enough to have an ensemble that contained the 
true model, we would rarely, if ever, be in the situation to know this to be the case.  
 
Whether this point holds depends on other characteristics of the ensemble. Orzack and Sober 
discuss the case where  is the ensemble that scientists have de facto constructed. Under this 
assumption, their argument is hard to refute. But let us now change the scenario and assume 
that the ensemble is a complete ensemble , an ensemble that contains every possible model 
of T. This is of course an entirely hypothetical scenario, but it’s worth asking the question 
whether MBRA would be justified under this strong assumption.  
 
There are several worries about justifying MBRA by appeal to . The first is that it is unclear 
what this ensemble would be and how it should be circumscribed. What would the complete 
class of all models of the earth’s climate be? Answering this question would amount to spelling 
out the mathematical form of every possible climate model and explicating how the relevant 
equations represent the climate. One need not have an overly pessimistic outlook on climate 
modelling to come to the conclusion that this an entirely unrealistic endeavour. But even if  
could somehow circumscribed, it is unlikely that this would be of any use. An ensemble of all 
possible models will also contain models that are misrepresentations of the climate (see Frigg 
and Nguyen 2020, Ch.1, for discussion of misrepresentations). But misrepresentations will 
disagree with accurate representations on certain features, and these may well include R and S. 
So it is to be expected that R and S are not actually robust properties in . 
 
In response to this worry, one could change the hypothetical scenario and say that the relevant 
ensemble is the one that contains all models of T that have certain empirical credentials. Call 
this ensemble . Indeed, in his reply to Orzack and Sober, Levins stressed the fact that a 
relevant ensemble must be an ensemble of models with empirical credentials (1993, 554). 
Likewise, Weisberg emphasised that the models in the ensembe must have what he calls “low-
level confirmation” (Weisberg 2006, 740). It is precisely the fact that models in the ensemble 
enjoy a degree of confirmation that makes them relevant. This raises three sets of questions: (a) 
how are we to understand low-level confirmation?, (b) does  warrant the inferences we are 
interested in?, and (c) is there any chance of working with  in practice? 
 
As regards (a), Weisberg (2006) argues that what justifies the inferential step in MBRA is what 
he calls “low-level confirmation”. Low-level confirmation essentially means that the models 
in the ensemble get certain basic features or properties about the system right. Writing about 
the ecological models that we introduced in Part I, Weisberg puts the point thus: 
 

In the predation case, for example, we are confident that ecological relationships can 
be represented with the models described by coupled differential equations. Thus when 
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we discover the consequences of these models, we are confident that most of these 
consequences are true of any system described by the model[s]. This confidence comes 
from low-level confirmation, not from robustness analysis itself. Thus robustness 
analysis is not a nonempirical form of confirmation as Orzack and Sober suggest. It 
does not confirm robust theorems; it identifies hypotheses whose confirmation derives 
from the low-level confirmation of the mathematical framework in which they are 
embedded. (ibid., 741)  

 
However, Weisberg’s notion of low-level confirmation raises several questions. For a start, as 
Houkes and Vaesen (2012, 353) observe, Weisberg is ambiguous about the scope of his notion 
of low-level confirmation. Is it supposed to apply to a broad mathematical framework, say that 
of coupled differential equations? Or to a specific model family? Or to individual models? 
Secondly and relatedly, if low-level confirmation is the sort of confirmation that licenses the 
use of a framework to construct models of phenomena in the first place, then what are the 
features or properties of the framework that we compare to reality to determine when we are 
indeed licensed to do so? Without a clear understanding of the scope in the notion of low-level 
confirmation, it seems particularly hard to give an adequate answer to this question, and it is 
not clear what it would come down to in the case of climate models.  
 
As regards (b), without a better understanding of the nature of low-level confirmation, it is hard 
to see why a set  of models that enjoy a degree of low-level confirmation should in fact 
warrant the inferences we are interested in. Weisberg is aware of this problem and tries to 
address the worry by noting that low-level confirmation licenses us to believe that for all the 
models we have collected to undergo robustness analysis “when we discover the consequences 
of these models, we are confident that most of these consequences are true of any system 
described by the model[s]” (Weisberg 2006, 741, our emphasis). This shifts the target, as the 
systems that the models now are said to represent are fictional systems, that is systems that are 
unrealistic with respect to the actual target system in various respects. What low-level 
confirmation then tells us is that if those fictional systems happened to exist in the real world, 
then we would be entitled to believe that the consequences of our models are true in those 
systems. But this does not solve our initial problem: if we are interested in learning about 
properties of the actual target system and not of fictional systems, low-level confirmation of 
that kind offers no help.  
 
Is there then another way we could try to define ? An option might be to rely on Parker’s 
notion of adequacy for purpose. According to Parker (2009, 2020) it is wrong to try to confirm 
models wholesale. Instead, what we should (and aften can) do is to confirm whether a model is 
adequate for purpose. Let us then call a model A-adequate if all claims that the model makes 
concerning A are true in the target T.  can then be understood as the set of all A-adequate 
models. Although this may be a definable set, we now face a catch-22. On the one hand, if we 
are interested in A, then the ensemble is superfluous because we can just take one of the models 
to study A. On the other hand, if we are interested in a different aspect B, then it is useless to 
know that models are A-adequate because from the fact that they are A-adequate it does not 
follow that they are also B-adequate. So, either MBRA is superfluous, or A-adequacy fails to 
justify MBRA. 
 
One way out might be to define  as the ensemble of all possibly A-adequate models (i.e. 
this set would span all current scientific uncertainty about how to adequately represent the 
climate system for the predictive tasks at hand). Under the assumption that this ensemble 
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includes at least one model that is A-adequate, learning that all models make the same claims 
concerning A would allow one to infer that those claims are true. However, what this set actually 
consists in and wether it is a well defined set to begin with it is not at all clear (due to concerns 
similar to those that we expressed earlier about ).  
 
As regards (c), even if the problems with (a) and (b) could somehow be circumvented, this 
would still leave us with the question of how to work with  in practice. There seem to be 
two options here: either we work with  itself or we work with a representative sample of it. 
On the latter view, the representative sample plays an evidential function: it is understood as 
informing us about properties of all models in  in much the same way in which an opinion 
poll with a few hundred participants is taken to inform as about the views of the entire 
population. However, neither of these options is realistic in the context of climate science. The 
first option is clearly a non-starter because there is no way to actually construct . The second 
option isn’t viable either because, as mentioned in Part I (Section 4.1), climate model 
ensembles are ensembles of opportunity and they are not constructed to representatively sample 
existing uncertainty. Rather, what models are included in any given multi-model ensemble will 
ultimately depend on contingent factors such as what state-of-the-art models are currently 
available, and whether a modelling group is willing and able to do the requested simulations. 
But even if models were intended to provide a representative random sample of , there are 
reasons to think that they could not actually constitute such a sample because, as Winsberg 
remarks, “[o]ne obvious reason to doubt [this assumption] is that all of the climate models on 
the market have a shared history. Some of them share code; scientists move from one lab to 
another and bring ideas with them; some parts of climate models (though not physically 
principled) are from a common toolbox of techniques, etc.” (2018, 99). But then, if climate 
models are not constructed independently and are likely to share systematic sources of error, it 
really does seem unreasonable to assume that current climate model ensembles can be thought 
of representing anything like a random sample from . In sum, how to construct, and explore, 
a representative multi-model ensemble is by and large an open question. 
 
 
4. Bottom-Up Justifications 
 
As noted previously, bottom-up justifications are approaches that don’t attempt to mount a 
justification based on properties of  as a whole, but rather see support being built up one 
model at a time. In other words, bottom-up approaches make no “detour” via a complete 
ensemble and see members of our ensemble supporting the conclusion directly. In this section 
we discuss three different approaches of this kind. 
 
 
4.1 The Likelihood Approach 
 
Parker (2011, 590) considers the following Bayesian argument for why agreement across 
models should increase confidence in the common result H: 
 

Premise 1: Proposition e warrants significantly increased confidence in predictive 
hypothesis H if p(e|H) >> p(e|∼H). 
 
Premise 2: Take e to be saying that all the models in this ensemble indicate H to be true. 
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Premise 3: The observed agreement among models is substantially more probable if H is 
true than if H is false; that is, p(e|H) >> p(e|∼H). 
 
Conclusion: e warrants significantly increased confidence in H. 

 
 
The first premise follows directly from Bayes’ theorem and the second one is simply a 
statement of robustness and hence is assumed for the sake of argument. We call this the 
likelihood approach because the soundness of this argument crucially depends on whether the 
third premise (that the likelihood of H given data e is substantially greater than the likelihood 
of ∼H give the same data) can be plausibly justified in reference to today’s climate model 
ensembles. Parker, herself, doesn’t think so, for she worries that there are many reasons why 
climate models might all indicate the truth of a predictive hypothesis, despite it being false: 
 

First, there are climate system features and processes—some recognized and perhaps 
some not—that are not represented in any of today’s models but that may significantly 
shape the extent of future climate change on space and time scales of interest. In addition, 
when it comes to features and processes that are represented, different models sometimes 
make use of similar idealizations and simplifications. Finally, errors in simulations of 
past climate produced by today’s models have already been found to display some 
significant correlation (see, e.g., Knutti et al. (2010); Pennell (2011)). Thus, in general, 
the possibility should be taken seriously that a given instance of robustness in ensemble 
climate prediction is, as Nancy Cartwright once put it, “an artifact of the kind of 
assumptions we are in the habit of employing” (1991, 154). Perhaps with additional 
reflection and analysis, persuasive arguments for p(e|H) >> p(e|∼H) can be developed in 
some cases, but at present such arguments are not readily available (Parker 2011, 591). 

 
Parker’s worry is that models might tend to indicate the truth of a hypothesis H because they 
share similar idealizations and simplifications, despite H not being true, and hence it is hard to 
justify the assumption that p(e|H) >> p(e|∼H). One might suggest that a satisfactory measure 
of model independence could help address Parker’s concern. The idea here might be the 
following: if we can show that models in an ensemble do not involve similar idealizations and 
simplifications, then we might be able to alleviate the worry that models agree merely because 
they are similar – and hence we might be in a better position to justify Premise 3. 
 
But a little reflection shows that things are not as straightforward as they may seem. As Parker 
(2006, 363) notes, climate models in a multi-model ensemble “often incorporate conflicting 
assumptions about what the climate system is like”. And, arguably, the more dissimilar models 
are, the more conflicting assumptions one might expect them to incorporate. But if this is right 
then one might plausibly worry that having highly dissimilar models in an ensemble merely 
replaces one worry with another, as far as the above argument is concerned. For although we 
no longer have to worry that models might agree because they share similar simplifications and 
idealizations, we now have to ask why models agree despite making conflicting assumptions 
about what the climate system is like. In other words, given that the models make conflicting 
assumptions about the climate system and hence “the models are […] incompatible with respect 
to ontology” (ibid., 364), why should we expect that the models are more likely to agree 
regarding the truth of a hypothesis on the assumption that the hypothesis is true, rather than on 
the assumption that the hypothesis is false? If anything, the knowledge that models agree 
despite making incompatible assumptions about the target system might suggest that the 
models are agreeing for reasons that are independent of what the climate system is like.  
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4.2 Independence Approaches  
 
The idea that, in order for a robust result to be reliable, the various different means of access 
should be reliably independent goes all the way back to Levins’ “independent lies” (see Section 
1 of Part I) and has been elaborated by Wimsatt (1981) who argued that “we feel more confident 
of objects, properties, relationships and so forth that we can detect, derive, measure or observe 
in a variety of independent ways because the chance that we could simultaneously be wrong in 
each of these ways declines with the number of independent checks” (ibid., 196).  
 
According to Kuorikoski et al. (2010), Wimsatt’s view of what it takes for a robust result to be 
reliable is relevant for assessing the epistemic import of model robustness. This is because, 
according to them, when models in an ensemble include the same (realistic) core assumptions 
C about the target system, but different simplifying or “tractability” assumptions (assumptions 
that we know to be strictly false about the target system), it is reasonable to assume that the 
probability that each model has to reach the correct result is independent of whether or not the 
other models reach the correct result, since “the modeler should have no positive reason to 
believe that if one tractability assumption induces a certain kind of error (due to its falsity) in 
the result, so does another” (Kuorikoski et al. 2010, 562). In light of this, they argue that if the 
same result R can be derived from several models involving the same substantial assumption 
C, but different tractability assumptions, this should rationally increase our confidence in the 
robust theorem. Their argument can be reconstructed as follows:  
 

Premise 1: Models that share a common core S (and satisfy conditions C) but involve 
completely different tractability assumptions can be assumed to be reliably independent. 
That is, conditional on the hypothesis that result R holds (or does not hold) in any target 
that satisfies conditions C, one’s confidence that a model will reach R is not affected by 
whether the other models reach R or not. 
 
Premise 2: If models that share a common core S (and satisfy conditions C) are reliably 
independent, one’s confidence in the robust theorem “in any target that satisfies 
conditions C, S brings about R” should rationally increase as the number of models that 
agree on result R increases. 
 
Conclusion: When models in an ensemble that share a common core S (and satisfy 
conditions C) but involve completely different tractability assumptions agree on a result 
R, this should rationally increase one’s confidence in the robust theorem “in any target 
that satisfies conditions C, S brings about R”. 
 

Several commentators have questioned the soundness of this argument. For an extensive 
assessment of those arguments see Harris’ (2021b); see also Odenbaugh and Alexandrova’s 
(2011) for some earlier objections to Kuorikoski et al.’s (2010) argument and Kuorikoski et al. 
(2012) for some replies. However, we set these concerns aside at this point, and address the 
crucial question of the relevance of this argument to most (if not all) realistic cases of model-
based robustness analysis. Notice that if models in the ensemble do not differ in all or most of 
their tractability assumptions, then there is, according to the current approach, no reason to 
assume that the models are reliably independent; for if models share several tractability 
assumptions (which are potential sources of unreliability), then “discovering that one of the 
models is unreliable should often greatly increase our confidence that the other is too” 
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(Schupbach 2018, 283). As discussed earlier, current climate models do share many similar 
idealizations, simplifications, and uncertain factual assumptions. Hence the models in an 
ensemble of climate models simply will not be independent in the sense of Premise 1.  
 
There are notions other than being reliably independent (in the sense of Premise 1) to which 
one could appeal to motivate the epistemic import of model robustness. Confirmational 
independence (Fitelson 2001) is one of them. Indeed, Lloyd (2009) seems to appeal to this 
notion of independence in her attempt to justify the epistemic import of model robustness (see 
Justus (2012), Vezér (2016)	and Harris (2021b) for some attempts to reconstruct and evaluate 
Lloyd’s argument). However, similar concerns arise with this notion of independence. If 
models share similar idealizations and simplifications, it is at best unclear why we should 
expect their results to be confirmationally independent regarding a hypothesis.  
 
One might suggest that a satisfactory measure of inter-model dependencies – one which, as 
discussed in Part I of this review (Section 3), climate scientists are currently invested in finding 
– could help us address these concerns with independence approaches. The idea here could be 
something like the following: the more dissimilar models are from other models in an 
ensemble, the more reasons for believing that those models’ results are reliably independent or 
confirmationally independent regarding a hypothesis. A problem with this idea, however, is 
that models’ results are either reliably/confirmationally independent regarding a hypothesis, or 
they are not. That is, reliability independence or confirmational independence (as discussed in 
Kuorikoski et al. (2010) and Fitelson (2001)) are not matters of degree. Hence, greater 
dissimilarity across models, despite knowing that the models still share some idealizations, 
simplifications, and uncertain assumptions, does not seem to be enough to dismiss our worries 
about the independence approaches discussed in this section. It is worth noting, however, that 
there have been Bayesian attempts to introduce continuous notions of independence (see e.g. 
Claveau (2013) and Landes (2021)) to which one might try to appeal to motivate the epistemic 
import of model robustness and that might in turn make independence approaches more 
defensible. Hence, the identification of an adequate measure of inter-model independencies 
that would successfully address the concerns with independence approaches discussed in this 
section remains an open question. 
 
 
4.3 The Explanatory Approach 
  
Schupbach (2018) has offered an explanatory Bayesian account of RA to defend the epistemic 
import of model robustness. He agrees with the critical points made previously and submits 
that models in an ensemble can rarely (if ever) be assumed to be reliably independent or 
confirmationally independent regarding a hypothesis. However, he argues that this is not a 
problem, because models do not have to be independent in any relevant sense for their 
consensus to be epistemically significant.  
 
According to Schupbach’s explanatory account of RA, using an additional means to detect the 
same result can incrementally confirm an explanatory hypothesis concerning the target as long 
as its detection is able to rule out a competing explanation for that result left standing by the 
previous detections. These means of detections (which Schupbach calls RA diverse) do not 
have to be independent from one another in any relevant sense for this to happen. To illustrate 
why this is, Schupbach considers the example of Brownian motion mentioned in Part I of this 
review (Section 1). When Brown first observed the curious motion of sample of pollen granules 
suspended in water, Einstein’s molecular explanation for this motion was not the only viable 
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one. The motion might have been due to currents or evaporation of the water, or a sexual drive 
inherent in pollen etc. But according to Schupbach, each new detection of this motion (using 
different materials or different media or different means of suspending the particles etc.) was 
able to rule out a competing explanation for this motion not yet ruled out by previous means of 
detection, and in so doing could incrementally confirm Einstein’s molecular explanation. 
Schupbach argues that distinct means of detection do not have to be independent in any sense 
discussed in the previous section for them to be able to rule out competing explanations for the 
robust result. Consider, for instance, the competing explanation that the motion is exclusively 
due to a sexual drive inherent in pollen. By additionally detecting this motion using an 
inorganic material (instead of granules of pollen), one can rule out this competing explanation. 
However, these two means of detections are not reliably independent since “both could be 
misleading us due to the way particles are being suspended, due to the use of the same medium, 
due to the use of the same environmental conditions surrounding the apparatus, and so on” 
(Schupbach 2018, 283) - and for similar reasons they are also not confirmationally independent 
regarding Einstein’s molecular explanation.  

 
Schupbach suggests that his explanatory account of RA can also shed light on the epistemic 
import of model robustness, in particular. By considering multiple models that “may be quite 
similar apart from some modest differences in their simplifying assumptions” (Schupbach 
2018, 289) and observing that they all reach the same result, one is able to rule out competing 
explanations for that result, thereby incrementally confirming the target explanation for that 
result. In his recent book, Winsberg (2018) argues that Shupbach’s explanatory account of RA 
can shed light on the epistemic import of model robustness in climate science (albeit with some 
qualifications): 
 

Whether or not an ensemble of models is a good candidate for lending strong support 
for a hypothesis via RA depends almost entirely on the extent to which the set of models 
suffices for ruling out competing hypotheses. This means that just because the set of 
procedures we have that detect H are RA-diverse does not imply that we should have 
confidence in H. RA-diversity only implies CEP [cumulative epistemic power], i.e. it 
only implies that you are headed down the road to acceptance as you increase the size 
of the set of procedures. Once we know that a set is RA-diverse the question of whether 
it is large enough to warrant acceptance of H, whether it is sufficiently RA-diverse, is 
a further question. And the answer to that further question will always be a matter of 
judgment, context, considerations of inductive risk, etc. (Winsberg 2018, 194) 

 
Winsberg’s argument for the epistemic import of model robustness in climate science has been 
well received in the literature. According to O’Loughlin (2021, 36), “Winsberg (2018) 
convincingly argues that [Schupbach’s account] can be applied to climate models.” In reviews 
of Winsberg’s book, Lusk (2019) writes that “Winsberg’s argument is a convincing 
reconceptualization of robustness analysis in climate science” and Knüsel (2020, 116) that 
“Winsberg [. . .] makes a novel, convincing suggestion for when multiple sources of evidence 
in favor of a hypothesis are meaningful in climate science”. However, despite this positive 
reception, there are some reasons to be wary of Schupbach’s explanatory account’s ability to 
shed light on the epistemic import of model robustness in climate science.  
 
The first is a fundamental concern. As Harris (2021a) argues, there is an important difference 
between empirically driven RAs and model-based RAs, which may affect the applicability of 
Schupbach’s account to the latter. In empirically driven RAs, the various detections of a result 
(e.g. Brownian motion) are physical measurement processes taking place in the actual world, 



 12 

and the hypothesis that we want to confirm (i.e. Einstein’s molecular explanation), which also 
concerns the actual world, is a possible explanation of these detections. By contrast, in model-
based RAs the various distinct detections of a result are all operations in “model land” and 
since the hypothesis that we want to confirm (e.g. a particular climate hypothesis) concerns the 
actual world the hypothesis is not a possible explanation for these detections. This does not 
necessarily imply that Schupbach’s account is not applicable to model-based RAs in general, 
but it does nonetheless show that any attempt to successfully apply it will have to acknowledge 
this difference and show that it can be applied in spite of it. This point is not addressed in 
Winsberg’s use of Schupbach’s account of RA diversity in the context of climate model 
ensembles, and so questions about the applicability of this account in the context of climate 
remain.  
 
The second concern is of a practical nature. As O’Loughlin (2021, 37) remarks “because 
climate scientists may engage in robustness inferences that are not focused solely on pinning 
down the value of a climate variable and that do not include the elimination of competitor 
hypotheses, we should be critical of the notion that [RA diversity] applies generally across all 
cases of RA in climate science”. Indeed, this is an understatement. Most current multi-model 
ensembles in climate science are not intended to rule out specific explanations for a result, nor 
is it clear how current ensembles could be used in this way. It is also an open question how 
climate model ensembles that would serve this purpose would have to be designed in practice. 
Furthermore, it is hard to reconcile climate scientists’ current efforts to find a measure of inter-
model dependencies (which stem from the view that independence is what matters for choosing 
the best model ensembles) with an approach that sees the role of multi-model ensembles to be 
that of eliminating specific competing explanations for a result.  
 
The third is an epistemic concern. Under Schupbach’s account the extent to which the target 
hypothesis is confirmed is partly determined by how plausible the rival hypothesis is prior to 
elimination (2018, 293-96). Hence, in the case of model robustness, the extent to which the 
target hypothesis will be confirmed would have to partly depend on the agent’s knowledge and 
beliefs about the derivational relationships in a family of models. This gives rise to two worries. 
First, knowledge and beliefs about the derivational relationships in a family of models can vary 
substantially from agent to agent. Hence, although non-omniscient agents might agree that 
some models’ results are RA diverse, they might nonetheless strongly disagree about the extent 
to which this should confirm a hypothesis. Hence, the extent to which a target hypothesis is 
confirmed is bound to be highly contextual. Second, the extent to which a target hypothesis is 
confirmed seems also very difficult to assess within a given context, since it requires agents to 
assess their own knowledge and beliefs about the various derivational relationships in a family 
of models: evidently not an easy task. Although Winsberg acknowledges that “[o]nce we know 
that a set is RA-diverse the question of whether it is large enough to warrant acceptance of H, 
whether it is sufficiently RA-diverse, is a further question” there is here an implicit and 
questionable assumption that scientists are in fact able to assess the extent to which the target 
hypothesis is confirmed by an RA-diverse set of models in the first place. 
 
 
5. Conclusion 
 
In this chapter we have reviewed different ways in which the inferences drawn in MBRA can 
be justified. The sober conclusion can only be that multi-model situations raise issues that are 
not yet fully understood and that MBRA has not yet reached a stage of maturity. Important 
questions remain open, and these will have to be addressed in future research. This marks a 
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juncture where two options are available. The first option is to tackle the issues we have 
discussed head on with the aim of formulating a version of MBRA that does not suffer from 
the difficulties discussed. The other option is to abandon MBRA and explore alternatives. 
Alternatives that one might explore at this point are perspectivism (Giere 2006; Massimi 2022), 
modal modelling (Katzav 2014; Sjölin Wirling and Grüne-Yanoff 2021; Massimi 2022) and a 
programme focussed on managing severe uncertainty (Bradley and Steele 2015; Roussos et al. 
2021), but there may well be others.  
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