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Abstract
The Ehlers-Pirani-Schild (EPS) constructive axiomatisation of general

relativity, published in 1972, purports to build up the kinematical structure
of that theory from only axioms which have indubitable empirical content.
It is, therefore, of profound significance both to the epistemology and to the
metaphysics of spacetime theories. In this article, we consider extensions
of the EPS axiomatisation towards quantum general relativity based upon
quantum mechanical inputs (Part III). There are two companion papers, in
which we provide a pedagogical walkthrough to the EPS axiomatisation
(Part I), and discuss the significance of constructive approaches to space-
time structure more generally (Part II).
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1 Introduction
In 1972, Ehlers, Pirani, and Schild (henceforth EPS) presented an axiomatisa-
tion of (the kinematics of) the theory of general relativity (GR) which pur-
ported to build up the spacetime structure of that theory from only (suppos-
edly) indubitable empirical posits regarding light rays and particle trajectories
(Ehlers et al., 2012). Leaving aside the extent to which the scheme strictly fulfils
its constructivist ambitions of non-circularly constructing spacetime structure
from basic observational statements—and leaving out in particular the extent
to which EPS managed to provide a scheme for interpreting GR without posits
of external clocks (a stated intention of their article, which was after all pub-
lished as part of a Festschrift for the chronometer Synge)—the EPS scheme and
its subsequent amendments constitute invaluable tools for assessing classical
theory space, including the necessity and/or sufficiency of GR to account for a
certain body of empirical data.

In this paper, we aim to understand the extent to which something resem-
bling the EPS approach to constructing spacetime can be applied when the in-
puts are quantum mechanical rather than classical (as in the original EPS con-
struction). That is, we consider the EPS axiomatic approach to GR’s spacetime
structure with all classical light ray signals replaced by quantum light signals,
and all particle signals replaced by quantum particles; this can be done, or so
we will argue, in a natural fashion (indeed, a number of different natural fash-
ions).1 In making these substitutions and applying the EPS approach, one ulti-
mately derives a superposition of metric structures as the relevant kinematical
structure for quantum spacetime; moreover, as we will see, there is a way of
interpreting these outputs in terms of branching spacetime structures.

1Notably, Audretsch and Lämmerzahl (1991) have extended the EPS scheme by considering
matter that is explicitly modelled as the classical limit of quantum matter (postulate 1 and 2), and
even as rays superposed towave packages (postulate 2’). However, the possibility for the geometric
background to become superposed in virtue of such superposition is not considerd.
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In more detail, what will the resulting kinematics look like? First off, it
seems likely that wewill not thereby arrive at a single Hausdorffmanifold. This
follows directly from a standard result of differential geometry: for a Hausdorff
manifold 𝑀, a geodesic beginning at a point 𝑝 in 𝑀 with an initial tangent vec-
tor 𝑥 must be unique for a non-zero length of time 𝑡. This fails to be true in
our case, because the expectation is that light rays will participate in spatial
superpositions—for example, in a beam-splitter a light ray may be placed in a
superposition of two different paths. Assuming that no spacetime point exists
in more than one branch (we will return to this point), the two geodesics must
lie along different points, so the geodesic from the divergence point fails to be
unique.2

Secondly, in the quantum case, it is clear that axioms can’t be wholly based
upon empirical observations, as is purportedly the case in the original EPS con-
struction. This is because in the case where light enters a superposition, we
can’t directly observe the light going down both paths (either because doing
so would (effectively) collapse the wavefunction, or because in an Everettian
picture observers are confined to individual branches of the wavefunction), so
the existence of the superpositions is an inference that we make to explain the
observed interference effects, rather than a direct observation.3 Moreover, we
also expect that massive particles will participate in superpositions and as a re-
sult wewill get superpositions of different spacetime structures (whether at the
level of themetric or of themanifold—wewill return to this). Once again, these
superpositions will not be observable directly, and in fact at present we do not
even have indirect evidence for them, since no experimental demonstration of
the existence of spacetime superpositions has yet been obtained—the existence
of spacetime superpositions is largely a theoretical conjecture at this stage.4 So
the axioms that we employ in our quantum EPS construction will be somewhat
conjectural, meaning that we have a certain amount of freedom about how to
select them. The methodology we employ here will be based on keeping the
axioms as close as possible to the original EPS axioms while reflecting standard
principles concerning the behaviour of light and particles in a quantum world.

Now, one might ask why it is useful to carry out an EPS construction when
the original operational motivations no longer apply. However, there is more
than one way to motivate the EPS construction. One could see it—arguably as
EPS themselves would have done—as a minimal empirically-driven construc-
tion demonstrating that the kinematics of GR are the correct ones based on the

2Later, on this issue, following e.g. Luc and Placek (2020), we’ll distinguish between ‘local’
branching (in which curves ‘split’), and ‘global’ branching (in which curves do not ‘split’, but the
spacetime in question has ‘trousers’).

3Admittedly, already in classical EPS one explicitly renders light and particle detection as indi-
rect in the sense that one onlymeasures the effect of light and particles rays on probing light signals
in terms of the light signals’ reception time. Quantum EPS’ operational procedure of comparing
light ray input to (interference) output is thus at least in this way continuous to the operational
protocol in classical EPS.

4That said, recently-proposed experiments in table top quantum gravity in reach of actual im-
plementation are seen by many to have the potential to change this. See Huggett et al. (2022) for a
critical review.
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existing evidence. Alternatively, one could take an essentially relationalist po-
sition which insists that the structure of spacetime is literally built up out of the
behaviour of light rays and particles, and therefore if light rays and particles
necessarily behave as specified in the EPS axioms, then it follows that spacetime
necessarily has the structure that EPS derive. The EPS construction is then to
be understood not merely as a epistemic justification for the relativistic kinemat-
ics, but at the same time seen as a metaphysical explanation, i.e., grounding for
it.5 But once we are aiming for explanation rather than epistemic justification
in the quantum case, we are perfectly entitled to even use axioms describing
behaviour that can’t be directly observed—obviously the plausibility of the re-
sulting explanation will depend on the a priori plausibility of the axioms, but
then that is a common feature of scientific explanations. Indeed from this point
of view it’s quite remarkable that the original EPS construction apparently suc-
ceeds in explaining the nature of the relativistic kinematics based solely an ax-
ioms which can be verified by direct empirical observations (though it should
be noted that there are disagreements about the extent to which it does indeed
succeed—see Linnemann and Read (2021a)). Moreover, in addition to the idea
that one can use EPS to realise a relationalist vision with respect to the metrical
structure of spacetime by grounding this in the existence and behaviour of light
rays and particles, we note that if the radar coordinate construction is taken se-
riously and is understood to pertain to the behaviour of actual (and not merely
hypothetical) light rays and particles, then it can be regarded as an implemen-
tation of a certain kind of structuralism (cf. Esfeld and Lam (2008)) whereby
spacetime points have their identities only in virtue of the behaviour of matter.
The EPS construction can then be regarded as evidence that, at least at the level
of local kinematics, GR is compatible with such versions of relationalism/struc-
turalism, provided that we supply ourselves with a sufficient number of light
rays and particles. Attempting a similar construction in the quantum case thus
offers interesting insight into how the relationalist/structuralist might fare in a
quantum gravitational context andwhether there are any additional challenges
over and above those faced in classical GR.

In addition, quantum EPS has significance beyond metaphysics: attempt-
ing to perform a quantum EPS construction is a highly educational exercise
that confronts one with a number of questions regarding the nature and con-
sequences of superpositions of spacetimes, with important lessons for quan-
tum gravity research, in particular the right quantisation of GR. Thus this con-
struction offers a different perspective on some of the conceptual challenges
associated with quantum gravity, where we arrive at these problems from a
top-down operational perspective rather than a bottom-up perspective based
on some specific theoretical framework. Any bottom-up approach to quantum
gravity must ultimately take a stance on the questions we will address, either
by building a methodology based on certain answers to these questions or by
deriving answers to these questions from its basic methodology. For example,

5For a similar case where the epistemic basis also serves as the metaphysical (or modal) basis,
see Adlam (2022). Forms of Humeanism with an ‘epistemic basis’ arguably also are examples of
this kind.
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the first question we have to answer in a quantum EPS construction is ‘Can
there exist superpositions of different spacetime structures?’ and of course all
mainstream approaches to quantum gravity (excluding semiclassical gravity)
answer this question in the affirmative. The EPS approach offers us the oppor-
tunity to parse questions of this kind and examine the consequences of various
possible answers to them in a way that is independent of any particular theo-
retical approach to quantum gravity.

We proceed as follows. §2 rehearses the core features of classical EPS (for
a more detailed introduction, see Linnemann and Read (2021a)). In §3, we
consider the core obstacle to quantum EPS: how to relate spacetime structure
across superpositions? The discussion leads to various variants on how to un-
dertake a quantum EPS project, which will be presented in more detail in §4. In
§5, we select two variants and exhibit some possible axioms for a quantum EPS
scheme. Finally, in §6, we draw the following major lessons from this work:

• Physical lesson: From a strict relationalist point of view, spacetime super-
positions may not be so conceptually distinct from spatial superpositions.

• Theory construction lesson: There is an extreme ambiguity as towhich struc-
ture is subject to quantisation upon quantising a theory like GR.

• Metaphysical lesson on relationism: Quantum EPS can be understood as a
relationist/structuralist project for quantum spacetime. (Related to this,
we present in this article some reflections on how our work bears upon
the hole argument of GR.)

2 Core features of Classical EPS
Classical EPS, as presented in Ehlers et al. (2012), is characterised by three core
attributes:

• Constructivist in the sense of (Carnap, 1967, §2) (note that Carnap uses
the word ‘constructional’ where we use ‘constructivist’):

... to construct 𝑎 out of 𝑏, 𝑐means to produce a general rule that
indicates for each individual case how a statement about 𝑎must
be transformed in order to yield a statement about 𝑏, 𝑐. This rule
of translation we call a construction rule or constructional def-
inition (it has the form of a definition; cf. §38). By a construc-
tional systemwemean a step-by-step ordering of objects in such
a way that the objects of each level are constructed from those
of the lower levels. Because of the transitivity of reducibility,
all objects of the constructional system are thus indirectly con-
structed from objects of the first level. These basic objects form
the basis of the system.
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• Constructive in the sense of Reichenbach (1969): The basis consists of im-
mediately empirically accessible objects or quantities. Arguably, this also
implies that statements are of local nature (locality).

• Kinematical: The (generalised) scheme is concerned only with setting up
a kinematical space for GR (spacetime theories more generally), not its
dynamics.6

Wewill see that it may not be possible for a quantum version of EPS tomain-
tain all of these principles; in particular, it may be necessary to replace construc-
tive elements by structures less amenable to direct empirical access. However,
we reiterate that the classical EPS construction also diverges from these princi-
ples at times—in particular in setting up the basic manifold structure but also
at various other steps when tacit assumptions are smuggled in (see Linnemann
and Read (2021a), in particular §8.1).

3 Obstacles to Quantum EPS
The central challenge for a quantum version of EPS has, we contend, to do with
the notion of spacetime point identity. In this section, we present and discuss
the issues involved here, as well as review a range of manners in which such
issues might be tackled.

3.1 Point identities in classical manifolds
The starting point of the EPS construction is a set of spacetime points which are
initially postulated as distinct individuals despite the fact that at this stage there
is no physical structure to distinguish them.7 If these mathematical spacetime
points are regarded as representing real physical spacetime points endowed
with primitive identities, then it appears to deliver us a kinematicswhichwould
potentially be vulnerable to the hole argument (although of course in order
to actually make the hole argument we also have to add dynamics to the the-
ory)—we will return to this issue later.

However, in fact this starting assumption is arguably harmless, because once
the manifold has been constructed by appeal to the behaviour of particles and
light rays, we may lift the assumption of primitive identities by supposing that
points are identified only by the particles and light rays that pass through them.
We may then think of the actual set of events as referring to the domain of
physical radar coordinates—and physical radar coordinates alone: each point

6See (Curiel, 2016) for an apt account of the kinematical/dynamical distinction, and Linnemann
and Read (2021b) for some further discussion.

7A constructivist program à la EPS is restrictionist in nature: notions like ‘event’ are initially
defined sparsely (and thus permissively), and only then the notion gets more and more restricted
through the introduction of empirically-motivated structure. In this restrictionist sense, the EPS
programme is in the spirit of Klein’s Erlangen approach to geometry—for a modern discussion, see
Wallace (2019).
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of a physical radar coordinate neighbourhood is a (possible) crossing of light
rays. In particular, a change between such physical radar coordinates can be
understood as inducing only a trivial spacetime diffeomorphism, i.e. a diffeo-
morphism that does nothing (rather than just leaving the equations invariant).8

In this manner, it is reasonable to regard EPS’ use of spacetime points as
a convenient mathematical stepping stone. In fact, the EPS construction can
therefore be regarded as an example of Cao’s notion of ‘self-consistent boot-
strapping’ (Cao, 2001), which he advocates as a solution to the problem of how
we can understand the gravitational field as ontologically prior to the manifold
‘spacetime’, despite the fact that the latter is usually required to define local
degrees of freedom to begin with (i.e., the gravitational field is formulated as a
field on themanifold).9 The idea is thatwe startwith “a non-physical bareman-
ifold, on which parameter localisation can be tentatively defined,” then build
up our theory on that manifold, and finally argue that “[i]f the final results in a
diffeomorphism covariant theory are independent of any specificity of param-
eter localisation, except for somemost general features of the gravitational field
... then the whole procedure is a justifiable way of investigating the physical
spacetime and its ontological underpinnings.” EPS can be read as following
a similar approach, except that instead of starting from a manifold they begin
with a set of bare points and derive the manifold structure therefrom: since
the final construction does not require one to identify spacetime points across
different possible worlds, there is no longer any need for these points to have
primitive identities, so the bootstrapping has succeeded.

3.2 Point identities in manifold superpositions
In constructing the kinematics for a theory of quantum gravity, the primitive
identity question has additional complexity due to the possibility that we will
get superpositions of spacetime structures, which raises the question ofwhether
we can identify points across branches. A naïve substantivalist about spacetime
would perhaps want to insist that points have primitive identities which allow
for a unique identification of points across branches—even though the actual
identification still has to be chosen and arguably well-justified. In contrast, her
structuralist counterparts who take it that spacetime points have their identities
only in virtue of the behaviour of light andmatter in their vicinity will presum-
ably deny the possibility of such a straightforward identification map. Now,
those falling into the latter of these camps may still attempt to employ the boot-
strapping method advocated by Cao—assuming primitive identities for points
at first and subsequently lifting that assumption—but it’s less clear that this will

8 This is not EPS’ own reading of the radar coordinates; EPS themselves employ radar coordi-
nate charts as part of the usual manifold atlas. This means that they will be linked to non-trivial
diffeomorphism and thus, provided the dynamics is diffeomorphism-invariant, will be subject to
hole argument-type objections as well.

9A similar issue has been discussed in the context of the dynamical approach to spacetime the-
ories promulgated by Brown and Pooley (see Brown (2005); Brown and Pooley (2001, 2006))—see
Norton (2008); Menon (2019); Chen and Fritz (2021); Linnemann and Salimkhani (2021).
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succeed in the quantum context. The reason we were always free to make such
a move in the classical case was that the kinematics produced by the EPS con-
struction involves no internal modal notions, i.e. within a representational con-
text each model represents a single possible world and its interpretation does
not require reference to any other possibleworld, and therefore the construction
will clearly never require any claims about identities of spacetime points across
different possible worlds represented by one kinematical model; on the other
hand, the kinematics produced by the quantum EPS construction will presum-
ably involve distinct branches of the wavefunction each containing some space-
time points, and therefore it’s possible that the construction will involve claims
about identities of spacetime points across different possible branches and in
this sense worlds represented by one kinematical model. So if we are not will-
ing to accept primitive identities of spacetime points, we will have to decide
how to deal with this.

Canwe simply refrain from postulating any identities between points in dif-
ferent branches? This is likely to lead to problems if we ultimately expect to end
up with kinematics directly suitable for a theory like low energy perturbative
quantum gravity.10 In particular, we’d expect to be able to make sense of effects
like the Bose-Marletto-Vedral (BMV) experiment (Bose et al. (2017); Marletto
and Vedral (2017)), where we have two massive particles in spatial superposi-
tions, giving rise to four branches of the wavefunction. Because the masses are
in different positions in each branch, and themasses are sources of gravitational
fields, it follows from general relativity’s identification of the gravitational field
with the structure of spacetime that wemust have different spacetimes in every
branch, but of course at the end the masses are all supposed to end up together
in the same spacetime again, having picked up different phases due to time di-
lation. But if there is no natural map between the four distinct spacetimes, it’s
unclear how the particles in the separate branches could possibly be brought
back together to recombine, or howwe could identify the points in each branch
where they are supposed to meet. It would seem that once particles or photons
go into different spacetimes they should never be able to interact again—they
now live on different manifolds so there’s no sensible way to define something
like a scalar product between the correponding wavefunctions of three-metrics
embedded in different manifolds.

We also need to consider the possibility ofwhatAnandan (1997) dubs ‘quan-
tum diffeomorphisms’, which are individual diffeomorphisms applied sepa-
rately within different branches of the wavefunction (and the associated mani-
folds)—so that one may have, for example, a quantum diffeomorphism which
acts as the identity in one branch, but non-trivially in another (this will be rel-
evant in our discussions of the hole argument below).11 Just as we might de-
mand that a classical spacetime theory be invariant under diffeomorphisms,
so it would seem natural (by a generalisation of Einstein’s principle of gen-

10We discuss in the following sections the degree to which the physical setup of the dynamics
actually has to be sensibly constrained by the kinematical setup.

11We discuss further quantum diffeomorphisms and their relation to general covariance in §A.
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eral covariance) to expect that quantum spacetime theories be invariant under
quantum diffeomorphisms. But the possibility of quantum diffeomorphisms
will cause difficulties if we wish to understand phenomena like recombination
and interference as local effects: for an interaction between particles in different
branches that is local in one choice of coordinate system will cease to be local
under quantum diffeomorphisms. This suggests that if we don’t have identi-
ties between points in different branches we can’t appeal directly to locality to
understand when and where phenomena like recombination happen, which
makes it a little hard to see how such a thing could possibly happen at all.

Indeed, even if the BMVprediction and other predictions of low-energy per-
turbative quantumgravity arewrong, there are still problems, because the issue
goes beyond particular scenarios involving quantum gravity phenomenology:
once we believe that some spacetime superpositions are possible, it follows that
any time a massive object is in a spatial superposition, no matter how small the
mass, the spacetime in which it lives must split into two separate spacetimes.
Of course, for the small masses we deal with in current quantum experiments
the difference between the spacetimes is experimentally insignificant and thus
it is typically assumed that we can completely discount any effects of gravita-
tional back-reaction. But if we accept that there are no identities between space-
time points in different branches of a spacetime superposition, it would seem
to follow that no matter how small the difference is, once objects enter these
different spacetimes they will never again be able to interact: once a massive
particle enters a spatial superposition, it should never be possible to recombine
the branches. But of course we frequently perform experiments where masses
enter spatial superpositions and are then recombined—for example, this oc-
curs every time we put a massive particle into an interferometer where it enters
a superposition of two different paths, with subsequent interference between
these branches demonstrating that recombination has indeed occurred. So even
based on existing experimental evidence we know that if spacetime superposi-
tions are possible it must be possible for their branches to recombine, at least in
the case where the differences between the two spacetimes are small.

Moreover, if we have total freedom to perform arbitrary quantumdiffeomor-
phisms, then there’s also the worry that in many relevant cases we will usually
be able to perform separate diffeomorphisms in each branch until the spacetime
structure looks the same in all the branches. For example, Anandan (1997) con-
siders a case in which we have superpositions of different spacetime structures
around a ‘cosmic string’ which has a superposition of different angular mo-
menta. For each of the branches of this superposition we can find a gauge in
which the metric is flat in each simply connected region outside the string, and
yet a neutron approaching the string will undergo intensity oscillations as a re-
sult of this superposition, whereas it would not oscillate if it were simply in a
classical region with a flat metric. So the superposition must be taken seriously
as an element of reality even though it can apparently be transformed away by
a quantum diffeomorphisms. This demonstrates that if we want to set up a the-
ory of quantum gravity in such away that there is freedom to perform arbitrary
quantum diffeomorphisms, these diffeomorphisms must be implemented very
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carefully in order to ensure that the physical predictions are preserved under
diffeomorphisms even when the differences between spacetime structure can
be transformed away. In Anandan’s case, the solution is to pay attention to
the way the Hamiltonian constraints transform under the diffeomorphism: the
same commutation relations are obtained before and after the diffeomorphism
and thus the physical predictions are the same. More generally, in principle we
would expect that even if a superposition state of manifolds can be brought into
a form such that the metric is alike on all of them, the initial difference in metric
structure will have been transferred into the matter sector: there should be no
way to make metric and matter sector look the same, if the initial differences in
metric structure have a substantive physical effect.12

These considerations suggest strongly that the theory we’re building to-
wards will ultimately need a way to identify at least some points across dif-
ferent branches. Of course, we don’t necessarily have to implement such a
thing at the level of the kinematics: as already alluded to above, it could be
introduced dynamically. That the space of kinematical possibilities vastly un-
derdetermines the range of dynamical possibilities lies in its very nature—the
kinematical space is after all the arena relative to which to define the dynamics.
Moreover, in the formulation of a theory there is often some freedom to shift
constraints between the dynamics and the kinematics. For example, if we want
our theory to be invariant under the transformation which adds 2𝜋 to some
quantity 𝜃, we can either set up our kinematics such that 𝜃 is defined on a circle
and hence is periodic (kinematical symmetry), or we can set up a very general
kinematics such that 𝜃 can take any value on the real line and then demand
through the dynamics that all observables are periodic functions of 𝜃 (dynami-
cal symmetry). Spekkens (2015) in particular has argued that as a consequence
of this freedom of choice, the distinction between kinematics and dynamics is
not empirically grounded and should giveway to other paradigms; this, indeed,
is also part of the moral of the ‘dynamical approach’ to spacetime theories (see
Brown (2005)). On the other hand, this somewhat conventionalist approach to
the kinematic/dynamic distinction may be opposed by the viewpoint of kine-
matical statements as constitutive (and thus, in a sense, non-empirical) state-
ments only on top of which dynamical statements can be formulated to begin
with (see Curiel (2016)). And, surely, even if there is some vagueness around
the question of where to draw the line between the kinematical and the dynam-
ical will be vague, theremay still be value in using the distinction to characterise
physical theorising.

For example, one possible approach to physical theorising involves creat-
ing an extremely general kinematics which allows for all sorts of unphysical
constructions, and then imposing any expected symmetries and invariances at
the level of the dynamics only. In the quantum gravity case, constructing the
most general kinematicswould likely lead us to something that looks like an ap-
proach spearheaded by Hardy (2019), i.e. a bundle of manifolds with maps be-

12This observation reinforces that the issue of linking up ‘branching spacetimes’ is not just about
relating metric structure but rather about relating events as encoded by all field contents together.
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tween themwhich ultimately are to be regarded as being devoid of physical sig-
nificance. We would then impose invariance under quantum diffeomorphisms
as a constraint on the dynamics, and also use the dynamics to model ‘splitting’
and ‘recombining’ by imposing laws with the consequence that a given pair of
manifolds has identical matter content except inside some (not necessarily con-
nected) region, so the manifolds can be regarded as one and the same except
inside that region. So the kinematics would postulate many distinct manifolds;
identity between (parts of) these manifolds would be fixed by the dynamics. In
any case, a manifold-based approach has the advantage that the construction of
the kinematics can be done entirely locally via an EPS-like construction, leaving
non-local features of the theory like holonomies to be encoded in the dynamics.

However, there may be reasons to prefer a different approach. For a start,
we note that in classical theories the notion of ‘local’ is kinematical rather than
dynamical—that is to say, although questions aboutwhether the interactions al-
lowed by the theory are localmust await the specification of somedynamics, the
question of what counts as ‘local’ in the first place is settled at the level of kine-
matics. So one might naturally think that in the quantum case too it should be
necessary to determine what counts as ‘local’ for interactions between branches
before defining any dynamics. Moreover, one might hope that coming up with
a kinematics whichmore closely reflects the symmetries of the dynamics might
ultimately make it easier to actually come up with the correct dynamics. For
example, arguably the main point of difference between loop quantum grav-
ity and quantum geometrodynamics/quantum general relativity is a different
choice of classical kinematics—loops versus 3-metrics/4-metrics—and thus far
the loop approach has concretely beenmore successful; so there is an argument
to bemade that paying attention to these sorts of issues during the construction
of the kinematics may be preferable to deferring it all to the dynamics. A less
general kinematics for the quantumgravity casemight employ something like a
non-Hausdorff (branching) manifold, thus building the possibility of splitting
and recombination into the kinematics rather than the dynamics. However, as
we would require some non-local structures to define the region of branching
and recombining, it might not be possible to construct such a thing using the
EPS methodology alone.

We also note that if one accepts that the local construction of EPS leads only
to a kinematical space of superpositions of manifolds but does not itself relate
points across manifold structures, then one has to show that there can be well-
defined interactions for various kinds of maps between the various superposed
manifold structures in some other sense. In fact, the kinematical space seems
for instance still sufficient to write out regularities and find a best-system rela-
tive to them without a presupposed standard of identifying physical structures
across the manifolds. (That one can indeed find a well-defined and satisfactory
best system, however, needs to be demonstrated. It might be helpful to draw
on an analogy to Huggett’s regularity-relationalism (Huggett, 2006) and, more
generally, super-Humeanism (Esfeld and Deckert, 2017).)

So, let us consider now inmore specific detail the central options for dealing
with the problem of identifying points across branches. In brief, we take the
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different options to consist in the following:

1. Prevent significant spacetime superpositions from forming at all.

2. Identify points across branches based on a criterion of similarity.

3. Identify points across branches by stipulation, potentially independently
of physical goings-on.

Examples of each of these strategies have appeared in the literature, so we will
now examine them in turn.

3.2.1 No large superpositions: Penrose’s collapse approach

Penrose (1996) advocates option (1) above. He invokes the equivalence prin-
ciple, which he interprets as telling us that “it is the notion of free fall which is
locally defined,” and thus he contends that, if we want to map one spacetime
onto another, the natural way to do that is to insist that their geodesics map
onto one another, at least locally. Penrose then observes that for general super-
positions of spacetime structure it will not be possible to find such map, so the
prospects for a natural standard of cross-branch identity don’t seem promising.
Moreover, Penrose considers the absence of such a map to be a serious prob-
lem, because it blocks the construction of a global time-translation operator, so
we have no way of defining the states of well-defined energy (which are usu-
ally defined as the eignestates of the time-translation operator). Inspired by
the standard theory of unstable particles, Penrose takes the absence of a well-
defined energy tomean that the state is unstable, with a lifetime of ℏ divided by
an appropriatemeasure of the energy uncertainty.13 He therefore argues that as
soon as superpositions become large enough to produce interestingly different
spacetime structure in each branch, they will become unstable and undergo a
gravitationally-induced collapse. Thus, in Penrose’s scheme, ultimately wewill
never have to deal with the question of how to map points across branches, be-
cause as soon as the superposition becomes large enough that there is no longer
a natural way to do this, it will immediately collapse.

3.2.2 Dynamical identification: Barbour’s best-matching approach

Barbour (2001), on the other hand, feels that Penrose “is trying to solve a prob-
lem that has already been solved.” The solution, according to Barbour, is op-
tion (2) above: specifically, we can define cross-branch identities using the very
same best-matching procedure that Barbour has already developed to explain
how three-dimensional slices are put together into a four-dimensional object
in his ‘Machian relationalist’ alternatives to Newtonian mechanics and general

13One might wonder about what extent a global time evolution is to be expected in a theory of
quantum gravity. Arguably, Penrose’s posit could, however, be read charitably as claiming that an
approximate standard of global time evolution has to become available at some point towards lower
energies (albeit not necessarily in the deep quantum gravity regime).

12



relativity (see Mercati (2018) for a recent book-length review). This is done
by defining a measure of difference (e.g. the difference between the values of
the 3-metric at matching points, integrated over all points) and seeking a set of
identities between points such that the global measure of difference is extremal.
The configurationwhich extremizes thismeasure of difference is the bestmatch.
Moreover, Barbour has argued that “the three momentum constraints really
do express the guts of Einsteinian dynamics and show that it arises through
the creation of a metric on superspace by best-matching comparison of slightly
different 3-geometries.” (p. 211) Given that GR already appears to make use
of best matching in this sense, Barbour argues that it makes sense to use best
matching in quantum gravity as well: that is, in Barbour’s view the problem of
finding identities between points across different branches of the wavefunction
is exactly the same as the problem of tracking ‘the same point’ across time in
general relativity.

That said, there does seem to be a difference between these two applications
of best matching. In the case of matching points across time, arguably noth-
ing actually depends on the best matching identification of points, because all
our current field theories obey a locality requirement which ensures that fields
only interact when they are co-located, and hence there can be no interactions
between fields at spacetime points in different time slices. Thus although the
bestmatched constructionmakes everything look simpler, in principlewe could
use a more complicated construction based on some arbitrary choice for how
to identify points across spacetimes which would predict the same empirical
results. So the door is open to interpret best matching as a conventionalist fact
about the way in which we experience and construct spacetime and formulate
our laws, rather than a tool which is used by nature itself. On the other hand—
and as we have already seen—in the branching case the identification of points
across branches would seem to have real empirical consequences if we agree
that objects in different branches are supposed to interact and the branches re-
combine, with the interactions and recombinations being local, i.e. taking place
at ‘the same points’ in each branch. Assuming that we’re not willing to let go
of that locality assumption, it would seem that using different identities across
branches would produce different predictions, since wewould end upwith dif-
ferent combinations of fields interacting. Consider for illustration the BMV ex-
periment inwhich twomasses in superposition states are taken to get entangled
with each other through gravitational interaction (and gravitational interaction
alone): the relevant literature tacitly assumes that the location of themasses are
all relative to one joint lab frame—no matter whether the experiment is mod-
elled through a Newtonian potential, or (low-energy) metric fields, as done by
Christodoulou and Rovelli (2019). But if we perform a quantum diffeomor-
phism which shifts the point at which the recombination occurs within one of
the branches, then the phase changewill be different and the interference effects
will change. So if we use best matching to determine the point of interaction
across different branches we are no longer free to interpret it as a fact about the
way in which we ourselves construct spacetime: nature itself must make use of
best matching.
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Moreover, Barbour’s best matching approach looks difficult to implement
within the EPS scheme for two reasons: (i) Barbour’s best matching requires
us to compare the whole of a three-geometry all at once, and therefore we don’t
have access to that kind of procedure if we are purely dealing with local kine-
matics. And (ii) best matching requires us to employ the actual metric, so it
most likely has to be implemented at the level of the dynamics. So if we accept
Barbour’s approach to cross-branch identities, it would seem that we have to
give up on the ideas that ‘locality’ can be defined at the level of kinematics as
well as that it is a meaningful concept to the local observer herself!

A possible approach to option (2), i.e., dynamical identification, other than
that of best matching would be to invoke an effective field theory description.
Here, we split themetric into a constant background 𝜂𝜇𝜈 plus some small fluctu-
ations ℎ𝜇𝜈, where 𝜂𝜇𝜈 is constant across all the branches so only the fluctuations
ℎ𝜇𝜈 are quantized. We can then use 𝜂𝜇𝜈 to define a ‘background’ which tells us
where the particles recombine. Several options are then available. We could
adopt a description similar to that suggested by Penrose, where spacetime su-
perpositions can occur provided that the difference between the spacetimes is
small enough that the EFT description is possible, but once the differences be-
come too large for this description towork, the superpositionmust collapse. Al-
ternatively, we could say that spacetime superpositions can only be recombined
as long as the differences are small enough for the EFT description to be valid;
once the branches become too different it’s no longer possible for them to be re-
combined, soweget a decoherence-like effect and the branches become separate
non-interacting Everettian worlds. However, both of these options seem a little
troubling, because even when the difference between the spacetimes is small,
the identification between the spacetimes given by 𝜂𝑢𝑣 is only an approximate
matter, and yet it would seem that the resulting identity mapwhich determines
where the recombination occurs can’t be an approximate matter. Also, it seems
odd that the possibility of recombination should depend upon how similar the
branches are, because recombination itself doesn’t seem to come in degrees:
either the branches come back together into one spacetime or they split and
subsequently never interact, so there isn’t really any intermediate option. Thus
the EFT route forces us to postulate a very sharp transition between ‘sufficiently
similar’ and ‘not sufficiently similar,’ even though similarity between branches
is something that presumably varies along some sort of continuous scale. More-
over, these options would seem to compel us to espouse either a collapse model
or the Everett interpretation, so the EFT approach may not be appealing if we
want to avoid collapses and we also want to avoid multiple worlds.

3.2.3 Kinematical indifference: Hardy’s q-diffeomorphism approach

Hardy (2019) takes up option (3) in the context of his work on quantum coordi-
nate systems: he advocates a ‘gauge description’, by which is meant that we ar-
bitrarily choose some way of mapping points from one branch to another. This
enables him to arrive at a scheme of ‘quantummanifolds’, in which each branch
of the wavefunction corresponds to a distinct manifold. (Note that Hardy does
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not prove that the quantum manifolds are in fact manifolds in the usual tech-
nical sense—but potentially the EPS scheme could be used to do that.) The
coordinate systems on these manifolds define a mapping between them but
the mapping is purely conventional and nothing should ultimately depend on
the choice of map. It follows that the final theory should indeed be invariant
with respect to quantumdiffeomorphisms, which (recall) are diffeomorphisms
whose action can be different within each branch of the wavefunction.14

This means that if we do take up option (3), we will have to insist that
all solutions be invariant under quantum diffeomorphisms (let’s call these ‘q-
diffeomorphisms’ in what follows). In particular, if identities between space-
time points in different branches are indeed to be regarded as unphysical—as a
mere ‘gauge choice’—one might wonder whether our standard techniques for
dealingwith systems exhibiting gauge freedom can be extended to this context.
Most gauge theories of interest are associated with constrained Hamiltonian
systems, where the presymplectic phase space 𝑁 of the physical theory arises
as a regular submanifold of a symplectic geometry. In the case of canonical gen-
eral relativity, 𝑁 is defined by a set of four constraint functions per space point;
the three momentum or vector constraints, which enforce diffeomorphism in-
variance, and the Hamiltonian or scalar constraint, which enforces invariance
with respect to global time translations. When we quantize the theory, in or-
der to maintain gauge invariance, we turn each first-class classical constraint
into a quantum operator 𝐶 and insist that the space of physical states must
obey the constraint 𝐶|𝜓⟩ = 0—i.e., the constraints still vanish on the physical
Hilbert space. Let us now take as an example the geometrodynamical approach
to quantum gravity which treats the 3-metric ℎ𝜇𝜈(𝑥) as a field defined on a man-
ifold and then quantizes it to give ℎ̂𝜇𝜈(𝑥). The field eigenstates |𝑒⟩ are the states
ℎ̂𝜇𝜈(𝑥)|𝑒⟩ = ℎ𝜇𝜈(𝑥)|𝑒⟩, so each eigenstate describes a configuration across space-
time. We can define a wave functional Ψ[𝑒] = ⟨𝑒|Ψ⟩, i.e. the wave functional
gives the amplitude for any field configuration, which is to say that in general
it describes a superposition of field configurations. Due to the diffeomorphism
constraint, Ψ[𝑒] is invariant under coordinate transformations in 3-space, i.e.
the same amplitude is assigned to a configuration and to its shifted version.
Thus, as long as different branches in the superposition of spacetime structure
are completely independent and non-interacting, the wave functionals and the
theory more broadly are invariant under the action of q-diffeomorphisms.

However, it’s unclear that the branches are in fact non-interacting: as noted
above, typically it is expected that we should be able to see interference ef-
fects between different branches of the wave functional. Because interference
between distinct branches is not possible within the classical theory, the clas-
sical constraints aren’t designed to enforce invariance of interactions between

14Anandan (1997) makes roughly the same point, suggesting that invariance under quantum
diffeomorphisms can be regarded as a quantum principle of general covariance. Giacomini et al.
(2019) discuss a similar issue within the ‘quantum reference frame’ research programme, although
their quantum reference frames are defined at a given time, whereas Hardy works with coordinate
systems for entire spacetimes.
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branches under q-diffeomorphisms, so it is not obviously the case that the quan-
tised versions of these constraints will successfully enforce invariance with re-
spect to q-diffeomorphisms. Indeed, it can be shown that Dirac quantisation,
in which we first quantize the theory and then apply the constraints, is equiva-
lent to reduced quantisation,15 in which we first apply the constraints and then
quantize the theory, at least in the one-loop approximation. Clearly if we use
reduced quantisation the constraints cannot yield covariance with respect to
quantum diffeomorphisms, because the structure that makes quantum diffeo-
morphismspossiblewas not available prior to quantisation. Thus it seems likely
that Dirac quantisation also will not yield invariance with respect to quantum
diffeomorphisms, so there remains a worry that the standard constraint quan-
tisation used in the construction of quantum theories of gravity will not in fact
always remove all the gauge degrees of freedom.

Further difficulties arise as soon as we include interactions with other fields.
All the important field theories of modern physics are local, i.e. they postulate
only interactions of the form 𝜙(𝑥)𝜒(𝑥) defined between two fields at the same
point. So in the quantum field theory we’d expect to see coupling terms of the
form ℎ𝜇𝜈(𝑥)𝜙(𝑥) where 𝜙(𝑥) is some matter field coupled to the metric. Again,
this will work so long as we’re happy for 𝜙(𝑥) to split up into distinct branches
with each branch coupled only to the metric inside its individual branch and
no interactions between different branches, but in reality we expect the matter
field𝜙(𝑥) to exhibit interference between its branches, and since interference is a
local phenomenon it would seem that performing diffeomorphisms inside one
branch and not another might change the resulting interference of the matter
field 𝜙(𝑥). In order to avoid this we would presumably need to require that the
q-diffeomorphisms go smoothly to zero at all points wherematter fields exhibit
self-interactions, and yet we can’t enforce that requirement without first having
a standard of cross-branch identity of points, since otherwise we will have no
idea which fields 𝜙(𝑥), 𝜙(𝑥′) we are supposed to match up.

One possible way to write down a kinematics for quantum gravity such that
it will indeed have its simplest expression in a form which is covariant with
respect to q-diffeomorphisms may be to write it in terms of closed loops, or
holonomies, since closed loops are preserved by diffeomorphisms.16 This of
course is exactly what quantum loop gravity does. Because the canonical vari-
ables of LQG are loops rather than metric fields at points, no physical content
is encoded in the values of the metric at specific spacetime points, and there-
fore we will never have any need to identify the same point across different
branches.17 However, this looks like a difficult option to implement within an

15See nLab authors (2022).
16The move by Westman and Sonego (2008) to construct scalars and use them to span a new,

diffeomorphism-invariant ‘beable’ space, and Earman’s 1977 notion of Einstein algebra might be
suitable (Kretschman-objection resistant) generally covariant alternatives to themetric as well. No-
tably, in particular for the Einstein/Leibniz algebra approach it is still controversial, though, as to
whether this approach does not just suffer from an analogous issue with diffeomorphism invari-
ance.

17See for instance Rovelli (1991), in particular §1.5, for a definition of the loop variables.
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EPS-style scheme: the EPS scheme is originally intended as an approach to re-
ducing local kinematics to empirical observations on light and (free) particle
movement—a kinematics that is not local is thus by definition out of its reach.

4 Variants of Quantum EPS
Following the discussion in previous sections, we nowpropose several different
ways in which onemight approach a quantum EPS construction. None of these
options is necessarily right or wrong: there is simply a choice to be made about
how much structure we want to put into the kinematics versus the dynamics,
and about what exactly we mean by ‘spacetime’ in the first place. Importantly,
all these proposalswill have to circumvent the obstacles regarding the identities
of spacetime points which were raised in the previous section. In fact, each
variant we present in the following is inspired by one of those proposals (1)-(3)
for dealing with these obstacles. More precisely, in §4.1 we suggest a strategy
which proceeds by ruling out the existence of superpositions of spacetimes (like
Penrose’s approach); in §4.2 we discuss a strategy based on non-local features
(like Barbour’s approach); and in §4.3 we suggest an approach which defers
most of these matters to the dynamics (like Hardy’s approach).

4.1 Option (i): Operationalism about spacetime
One of the lessons of the foregoing discussion is that gaining operational ac-
cess to different branches of a spacetime superposition is extremely nontrivial.
As a result, one might start to question whether it makes sense to expect the
operationally-motivated axioms of EPS to obtain within each individual branch
of the spacetime, given that not all of these branches can have operational sig-
nificance.

Motivated by this, another possible way of thinking about quantum grav-
ity kinematics would be really to commit to the operational approach and ar-
gue that it has the consequence that we can’t have ‘spacetime superpositions’ at
all. That is, spacetime is to be understood as an emergent structure defined in
terms of what is directly operationally accessible to us,18 and thus since super-
positions of spacetimes can be detected only indirectly (e.g. via measurements
of entanglement as in the BMV experiment), they do not in any concrete sense
involve ‘real’ spacetimes.

This emphasizes the fact that there are two different possible ways of think-
ing about the emergence of spacetime within quantum gravity. Many current
approaches to quantum gravity agree that spacetime aswe experience it should
be understood as arising from an underlying substratum of quantum ‘stuff’
which is not defined on any spacetime. There are, however, two possible routes
that this could take: we could imagine that first a ‘quantum spacetime’ (which
can participate in superpositions) arises out of the substratum, and then our

18Or, at least characterised to some extent in terms of what is operationally accessible.

17



ordinary single-valued spacetime emerges from the quantum spacetime in the
macroscopic limit, or we could imagine that our ordinary single-valued space-
time arises directly out of the substratum,with—at least for all effective purposes—
no intermediate layer of ‘quantum spacetime.’ The former approach is presup-
posed in the standard analysis of low-energy quantum gravity tests like the
BMV experimentwherewe are invited to suppose that two different spacetimes
are superposed. The latter approach would have the interesting consequence
that although gravity is due to quantum structure, we nonetheless never get
superpositions of different spacetimes. This approach has its attractions: in
particular, it would sidestep the whole question of identity of spacetime points
across branches, since ‘spacetime points’ would only be defined in the macro-
scopic limit where branches become non-interacting due to decoherence.19 In-
deed, this approach would lead to the conclusion that the decoherence mecha-
nism is an essential feature of the emergence of spacetime, and thus in regimes
without decoherence we shouldn’t expect to arrive at manifold structures of the
kind constructed by EPS.

The strict operational approach has precedents in previous work on opera-
tional features of general relativity. In particular, we recall that the connection
between the operational features probed by EPS and themetric field is typically
understood in terms of (her version of) the equivalence principle: in Knox’s
words (Knox, 2013), the equivalence principle “expresses just that fact about
our matter theories that must be true if systems formed from appropriate mat-
ter are to reflect the structure of the metric field, that is, if phenomenological
geometry is to reflect the geometry of the metric field.” (p. 350).20 Knox thus
argues that since the equivalence principle can only be defined in an approxi-
mate and contextual way, it follows that phenomenological geometry is coarse-
grained, because “operationalized reference frames are objects of finite spatial
extent and therefore can’t perfectly instantiate metric structure.” (p. 352) Thus
any spacetime defined in terms of phenomenological, operationally accessible
geometry will also be coarse-grained, meaning that we will not be able to think
of such a spacetime “as a background manifold with exact geometrical prop-
erties.” If we accept Knox’s argument, then it follows that the operational ax-
ioms used by EPS should not be regarded as exactly true even in the classical
case: thus in both the classical case and the quantum case the axioms can be
understood as characterising high-level emergent features, which means that
superpositions of spacetimes need not ever appear.

Of course, if we define spacetime in this operational way we still need some
mathematical way of describing what goes on in scenarios like the BMV experi-
ment, but in principle this can always be done using an effective field theory de-
scription. That is, we define a ‘background spacetime’ using directly observable
operational procedures: since we never observe superpositions directly, this
background spacetime is necessarily classical and single-valued. Then small

19Such an approach is realised in various emergent gravity approaches. For a critical survey, see
Linnemann and Visser (2018).

20For further discussion on the coincidence of (a) what is measured operationally via material
fields and (b) geometrical structure, see Read et al. (2018).
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fluctuations in the metric can be modelled as a quantum field defined on top of
this classical, single-valued spacetime: thus the fluctuations can be in superpo-
sitions but the background spacetime itself cannot. This is how the BMV exper-
iment is currently modelled—it is taken for granted that we have a background
laboratory frame which is used to define meaningful mappings between the
branches of the ‘spacetime superposition.’

That said, the really difficult regimes for quantumgravity are those inwhich
no effective field theory description is possible. Taking a hard-line operational
approach to spacetime suggests that, in fact, an effective field theory description
is always possible, because the operationally defined spacetime must always
exist and be single-valued. Problems might arise, however, when we get into
regimes where the behaviour of the background spacetime can’t be correctly
modelled without taking into account quantum gravity effects.

What would this approachmean for a quantum EPS construction? Straight-
forwardly, it would imply that the quantumEPS constructionwould just reduce
to the classical EPS construction, because all the same classical axioms will be
true of spacetime at the operationally accessible level, and we would not ex-
pect the underlying non-operational structure to be captured by an EPS-style
axiomatisation.

4.2 Option (ii): Non-local scenario
A second possible approach to a quantum version of EPS involves giving up the
ambition of a local constructive approach to quantumgravity, and instead build-
ing up our spacetime from non-local objects like loops, or other objects which
are guaranteed to be preserved under (q-)diffeomorphisms. Indeed, this is ex-
actly the approach that has been taken with some success in the loop quantum
gravity programme (see for instance Rovelli (2004); notably, even the gravi-
tational path integral can be understood in this way, cf. Rovelli and Vidotto
(2015)).

Clearly this option amounts to a severe departure from classical EPS’ core
principle of constructiveness, insofar as that is understood as involving a com-
mitment to locality. Thus acceptance of this option could be interpreted as an
acknowledgement that ‘locality’ in the usual sense simply can’t be preserved
within quantum gravity. However, recall that we noted in the introduction that
one can simply read EPS as an ontological-relationist programwhich builds up
spacetime fromwhat count naïvely as high-level notions. On this construal, not
all ‘high-level’ notions need be operationally or in any other sense immediately
accessible; so one could still accept a ‘quantum EPS’ based on loops or other
such structures as a legitimate extrapolation of the original methodology to the
quantum domain.

Indeed, a non-local construction can be achieved quite naturally within the
structures postulated by classical EPS. Forwemay simply include in our axioms
a postulate ensuring that superpositions always or at least sometimes come to
an end (i.e. the different copies of a light ray in different branches of the super-
position ultimately meet and are combined back into a single light ray). We do
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not have to commit here to an account of how this comes about—that can be
added at the dynamical stage, e.g. by best matching. Thus pairs of manifolds
should be defined such that they coincide at all times except inside one or more
causal diamonds, where a causal diamond is the intersection of the causal fu-
ture of some spacetime point 𝑝1 and the causal past of some other spacetime
point 𝑝2 (for example, 𝑝1 may be identified as the point at which some mass
first enters a spatial superposition and 𝑝2 may be the point at which the spatial
branches of the mass are recombined).

This route fits very nicely into the EPS approach, because an ‘echo’ as em-
ployed by EPS is exactly the right kind of structure to define a causal diamond.
An ‘echo’ in the EPS construction is a map from a point 𝑃 on the trajectory of
a particle to a later point 𝑄 on the same trajectory, understood to be defined by
sending a light ray away from the first point, and then receiving it back at the
later point after its reflection from someobject. The path taken by the light ray in
this case defines precisely one of the boundaries of the causal diamond defined
by𝑃 and𝑄. Echoes play a significant role in the EPS construction, particularly in
the development of radar coordinates, and thus in effect the structure we need
to implement a nonlocal quantumEPS is already inherent in classical EPS. Thus,
motivated by this construction, one could imagine formulating an EPS scheme
which takes as its basic object not ‘messages’ but ‘causal diamonds,’ which en-
sures that spacetime superpositions are ‘anchored’ in a time-symmetric way
such that the resulting manifolds coincide both in the past and in the future. If
we take this approach thenwewill not be postulating a set of distinct manifolds
as in Hardy’s picture: instead we will have a single manifold which branches
at some points and then recombines, i.e. a non-Hausdorff manifold.

Another interesting possibility on the subject of non-locality would be to
explore an approach based on the conjecture that spacetime structure can be
derived from entanglement, which has recently been popularised within quan-
tum foundations.21 These proposals are based on the fact that entanglement
in certain sorts of systems obeys an ‘area law,’ which inspires the conjecture
that perhaps we can arrive at a spacetime metric by writing the distance be-
tween spacetime regions as a function of the degree of entanglement between
them. This approach shares with EPS the motivation of constructing space-
time out of simple first principles, but since entanglement is a paradigmatic
example of non-locality, this approach will evidently not satisfy the locality cri-
terion. But, if we take route (ii) and embrace a non-local EPS approach, one
might hope to find a fruitful unification of the entanglement-based approach
and EPS. One important limitation of the entanglement-based approach is that
since it defines distances between regions in terms of the total amount of en-
tanglement between those regions, it is quite coarse-grained and thus may not
be well-equipped to assign different distances within different branches of the
wavefunction—and thismay lead to problem in cases like the BMV experiment,
since it is very important to the interpretation of this experiment that the par-
ticles are indeed at different distances in different branches. But since the EPR

21See inter alia Van Raamsdonk (2010), Jaksland (2021), Cao et al. (2017).
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construction has been designed to allow us to construct the metric in full de-
tail, it is possible that supplementing the entanglement approach with some
EPS-like axioms would give it the capability to deal with these sorts of cases,
so a combination of the two constructions could be of great interest even if not
precisely in the spirit of the original EPS approach.

4.3 Option (iii): Laissez-Faire scenario
This option involves simplydeferring all questions aboutmaps between branches
and recombination to the dynamics. It is then very straightforward to arrive at
a quantum EPS construction: essentially, we replace classical events with quan-
tum events and then simply require that all the same axioms hold individually
within each branch of the wavefunction. This setup is minimal, but at least
prima facie it would seem to provide a sufficiently well-defined arena relative to
which dynamics can be set up.

Although this is themost straightforward option, somedoubts remain. First,
onemight worry that the resulting kinematics will be too general to be useful—
we might well be better off with a more restricted kinematics which better re-
flects the constraints. Second, one might also wonder if it is really natural to
expect all the classical axioms to hold individually within each branch of the
wavefunction, especially since the axioms are operationally defined and it is
not straightforward to operationally access distinct branches of the wavefunc-
tion.

5 Explicit Laissez-FaireQuantumEPS constructions
In this section, we present two possible starting points for a quantum EPS ax-
iomatisation based on the laissez-faire approach presented in §4.3. In the first,
we explicitly quantise rays andparticles using aHilbert space built out of events;
in the second, we take inspiration from the consistent- and decoherent-history
approaches to quantum mechanics (see Griffiths (2019) for an overview) as
well as the (not fully unrelated) branching spacetime literature (see Luc (2020);
Luc and Placek (2020) for recent introductions). In each case we present the
first few classical EPS axioms and alongside offer the corresponding axioms for
a quantum EPS construction.

5.1 In terms of superpositions
Webeginwith a laissez-faire approach based upon quantised rays andparticles.

1. A point set𝑀 = {𝑝, 𝑞...} is a set of events.

Q:A point set𝑀 = {𝑝, 𝑞...} is a set of events, where each event is identified
with an element in a quantum basis {|𝑣𝑝⟩, |𝑣𝑞⟩...}, so 𝑀 defines a Hilbert
space 𝕄 whose dimension is equal to |𝑀|.
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2. Light rays and particles are subsets of𝑀.

Q: Light rays and particles are sets of superpositions of events, e.g. 𝑃 =
{∑𝑖 𝑐𝑖|𝑣𝑖⟩,∑𝑖 𝑐

′
𝑖 |𝑣𝑖⟩...}where∑𝑖 |𝑐𝑖|

2 = 1where∑𝑖 |𝑐
′
𝑖 |2 = 1. With each particle

𝑃 we can associate a Hilbert space ℙ which is equal to the subspace of 𝕄
defined by all and only those events |𝑒⟩ such that some element of 𝑃 has
support on |𝑒⟩. Likewise, with each light ray we can associate a Hilbert
space 𝕃 defined similarly.

3. The map 𝑒𝑄 ∶ 𝑃 → 𝑃, 𝑝 ↦ 𝑒𝑄(𝑝) is called an echo on 𝑃 from 𝑄.

Q: The map 𝑒𝑄 ∶ ℙ → ℙ,∑𝑖 𝑐𝑖|𝑣𝑖⟩ ↦ 𝑒𝑄(∑𝑖 𝑐𝑖|𝑣𝑖⟩) is called an echo on 𝑃 from
𝑄. The echo map is a map on just the coefficients {𝑐𝑖}, i.e. it transforms
only coefficients and not events themselves.

4. The map 𝑚 ∶ 𝑃 → 𝑄, 𝑝 ↦ 𝑚(𝑝) is called a message from 𝑃 to 𝑄.

Q: The map 𝑚 ∶ ℙ → ℚ,∑𝑖 𝑐𝑖|𝑣𝑖⟩ ↦ 𝑚(∑𝑖 𝑐𝑖|𝑣𝑖⟩) is called a message from 𝑃
to 𝑄.

5. Axiom𝐴1: every particle is a smooth, one-dimensional manifold and any echo on
P from Q is smooth and smoothly invertible.

QA1: Every particle can be written as a superposition of smooth, one-
dimensional manifolds, i.e. we can write 𝑃 = ∑

𝑐𝑖
𝑐𝑖|𝑉𝑖⟩ where each 𝑉𝑖 is a

set of basis elements which correspond to points that belong to a smooth,
one-dimensional manifold. An echo on P fromQ can be split into a super-
position of echoes which are smooth and smoothly invertible, i.e. when
an echo map is applied to a point ∑𝑖 𝑐𝑖|𝑣𝑖⟩, the result is ∑𝑖 𝑐𝑖|𝑞𝑖⟩ where we
can identify a smooth and smoothly invertible echo from 𝑐𝑖 to 𝑞𝑖 for all 𝑖.
In the case where the echo has a fixed starting point this means we end
up with several different smooth manifolds with the same starting point
but different middle and endpoints.

6. Axiom 𝐴2: any message from a particle 𝑃 to another particle 𝑄 is smooth.

QA2: We require that any message from a particle 𝑃 to another particle𝑄
can be split into a superposition of messages which are smooth.

7. Axiom𝐴3: there exists a collection of triplets (𝑈, 𝑃, 𝑃′)where𝑈 ⊂ 𝑀 and𝑃, 𝑃′ ∈
P [with P the set of particles] such that the system of maps {𝑥𝑃𝑃′|𝑈} is a smooth
atlas for𝑀. Each map is written in terms of coordinates (𝑢, 𝑣, 𝑢′, 𝑣′)where 𝑢 and
𝑣 are emission and arrival times at 𝑃 and likewise on 𝑃′.

QA3: There exists a collection of triplets (𝑈, 𝑃, 𝑃′)where𝕌 ⊂ 𝕄 andℙ,ℙ′

such that the system of maps {𝑥𝑃𝑃′|𝑈} is a smooth atlas for 𝑀. Each map
is written in terms of coordinates (𝑢, 𝑣, 𝑢′, 𝑣′) where 𝑢 and 𝑣 are emission
and arrival times at 𝑃 and likewise on 𝑃′.
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8. Claim: Every particle is a smooth curve in𝑀.

QC: The proof of this claim can be rewritten using the axioms above: it
follows straightforwardly from linearity that every particle is a superpo-
sition of smooth curves in 𝑀.

9. Axiom 𝐴4: Every light ray is a smooth curve in𝑀.

QA4: Every light ray is a superposition of smooth curves in 𝑀.

10. Axiom 𝐿1: any event 𝑒 has a neighbourhood 𝑉 such that each event 𝑝 in 𝑉 can
be connected within 𝑉 to a particle by at most two light rays. Given such a
neighbourhood and a particle 𝑃 through 𝑒, there is another neighbourhood𝑈 ⊂ 𝑉
such that any event 𝑝 in 𝑈 can be connected with 𝑃 within 𝑉 by precisely two
light rays and these intersect 𝑃 in two distinct events 𝑒1, 𝑒2. If 𝑡 is a coordinate
function on 𝑃 ∩𝑉 with 𝑡(𝑒) = 0, then 𝑔 = −𝑡(𝑒1)𝑡(𝑒2) is a function of class 𝐶2 on
𝑈 (i.e. it is twice differentiable on U).
QL1: Because in our construction each event occurs only in a single branch
of the wavefunction, for each event we can define a neighbourhood 𝑉 of
points that arewithin the same branch, and such that each event 𝑝 ∈ 𝑉 can
be connected within 𝑉 to a particle by at most two light rays. Given such
a neighbourhood and a particle 𝑃 through 𝑒, there is another neighbour-
hood 𝑈 ⊂ 𝑉 such that any event 𝑝 ∈ 𝑈 can be connected with 𝑃 within
𝑉 by precisely two light rays and these intersect 𝑃 in two distinct events
𝑒1, 𝑒2 (and since 𝑈 is included in 𝑉 it also belongs to the same branch of
the wavefunction). If 𝑡 is a coordinate function on 𝑃∩𝑉with 𝑡(𝑒) = 0, then
𝑔 = −𝑡(𝑒1)𝑡(𝑒2) is a function of class 𝐶2 on 𝑈 (i.e. it is twice differentiable
on 𝑈).

11. Axiom 𝐿2: the set 𝐿𝑒 of light-directions at an arbitrary event 𝑒 separates the
projective space at 𝑒 into two connected components. In the tangent space at 𝑒,
the set of all non-vanishing vectors that are tangent to light rays consists of two
connected components.
QL2: the set 𝐿𝑒 of light-directions at an arbitrary event 𝑒 separates the pro-
jective space at 𝑒 into two connected components. In the tangent space at
𝑒, the set of all non-vanishing vectors that are tangent to light rays consists
of two connected components. (Note that all of this will take place within
the same branch of the wavefunction: no relationships between the pro-
jective spaces for different branches can be postulated in the laissez-faire
approach).

12. Now we explore the properties of 𝑔 and extract a rank-two tensor from it.

(a) 𝜕𝜇𝑔 = 0.
(b) 𝑔𝜇𝜈 = 𝜕𝜇𝜕𝜈𝑔 defines a tensor at 𝑒.
(c) The tangent vector 𝑇𝜇 of any light ray 𝐿 through the point 𝑒 satisfies

𝑔𝜇𝜈𝑇𝜇𝑇𝜈 = 0.
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(d) 𝑔𝜇𝜈 ≠ 0 on particle rays.

Q: Since we have defined 𝑔 using only points which lie in the same branch
of the wavefunction as the original point 𝑒, this part of the construction is
exactly the same as the classical case and thuswe obtain a rank-two tensor
defined on a local ‘patch’ all within a single branch of the wavefunction.

We will not go through the remaining EPS axioms explicitly here, because
now that we have set up the superposition of manifolds and their coordinatisa-
tions, the remaining axioms do not have to be altered from the classical case.

5.2 In terms of branching spacetime
We turn now to another possible laissez-faire approach, this time based upon
the notion of branching spacetimes.22 The definitions of the set of events, par-
ticles, and light rays, as well as of messages and echoes, are similar to their
counterparts in the classical EPS approach, the only difference being that the
maps corresponding to messages and echoes in the quantum case have to be
allowed to be multi-valued.

1. A point set 𝑀 = {𝑝, 𝑞...} is a set of events.

2. Light rays and particles are subsets of 𝑀.

3. The (possibly multi-valued) map 𝑒𝑄 ∶ 𝑃 → 𝑃, 𝑝 → 𝑒𝑄(𝑝) is called an echo
on 𝑃 from 𝑄.

4. The (possibly multi-valued) map𝑚 ∶ 𝑃 → 𝑄, 𝑝 → 𝑚(𝑝) is called amessage
from 𝑃 to 𝑄.

We then add a new axiom on branching structure:

5. QA0: Each particle (set) 𝑃 can be decomposed as 𝑃 = ⋃𝑛
𝑖=0 𝑃𝑖 with 𝑃𝑖 =

𝑃𝑖−1∪⋃
𝑚𝑖
𝑗=1 𝑝𝑗𝑖 and 𝑃0, 𝑝𝑗𝑖 such thatmessages from other particles onto 𝑃0, 𝑝𝑗𝑖

are always single-valued. The subsets of𝑃, 𝐵𝑗1,...,𝑗𝑛 ∶= 𝑃0∪⋃
𝑛
𝑖=1 𝑝𝑗𝑖 are called

particle branches of 𝑃.

The standard axioms need to be understood without any assumption that the
resulting manifold be Hausdorff (as assumed tacitly in the original EPS con-
struction: see Linnemann and Read (2021a)):

6. Axiom𝐴1: every particle is a smooth, one-dimensional manifold and any echo on
P from Q is smooth and smoothly invertible.

QA1: Every particle is a one-dimensional non-Hausdorff manifold. Any
echo on a branch of 𝑃, denoted by 𝑃𝐵, from a branch of𝑄, denoted by 𝐵𝑄,
is smooth and smoothly invertible.

22For a recent book-length introduction to branching spacetimes and their philosophical signifi-
cance, see Belnap et al. (2022).
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7. Axiom 𝐴2: any message from a particle 𝑃 to another particle 𝑄 is smooth.

QA2: Any message from a particle branch 𝐵𝑃 to another particle branch
𝐵𝑄 is smooth.

8. Axiom𝐴3: there exists a collection of triplets (𝑈, 𝑃, 𝑃′)where𝑈 ⊂ 𝑀 and𝑃, 𝑃′ ∈
P [with P the set of particles] such that the system of maps {𝑥𝑃𝑃′|𝑈} is a smooth
atlas for𝑀. Each map is written in terms of coordinates (𝑢, 𝑣, 𝑢′, 𝑣′)where 𝑢 and
𝑣 are emission and arrival times at 𝑃 and likewise on 𝑃′.

QA3: There exists a collection of triplets (𝑈, 𝐵𝑃, 𝐵𝑃′) where 𝑈 ⊂ 𝑀 and
𝐵𝑃, 𝐵𝑃′ are particle branches relative to 𝑃 and 𝑃′ such that the system of
maps {𝑥𝐵𝑃𝐵𝑃′ |𝑈} is a smooth atlas for 𝑀. Each map is written in terms of
coordinates (𝑢, 𝑣, 𝑢′, 𝑣′)where 𝑢 and 𝑣 are emission and arrival times at 𝐵𝑃
and likewise on 𝐵𝑃′.

9. Claim: Every particle is a smooth curve in𝑀.

QC4: Everyparticle branch𝐵(𝑗1,...,𝑗𝑛) is a smooth curve in𝑀with𝐶 ∶ [0, 1] →
𝑀.
Proof: See Linnemann and Read (2021a) for the proof in the case of 𝑀
being Hausdorff; the proof, however, does not depend on the Hausdorff
assumption, and thus carries over.

10. The nature of particles can be characterised further as follows:
QA4: Consider a particle 𝑃: it is the union of all its branches, i.e. 𝑃 =
⋃

(𝑗1,...,𝑗𝑛)
𝐵(𝑗1,...,𝑗𝑛); each branch𝐵(𝑗1,...,𝑗𝑛) is denoted by the branch index (𝑗1, ..., 𝑗𝑛)

and has a corresponding curve 𝐶(𝑗1,...,𝑗𝑛) ∶ [0, 1) → 𝑀. Then for each such
curve 𝐶(𝑗1,...,𝑗𝑛), there exists:

(i) 𝑔 ∈ (0, 1), and
(ii) a branch index (𝑗1, ...𝑗𝑖−1, 𝑗′𝑖 , ..., 𝑗′𝑛) such that 𝐶(𝑗1,...,𝑗𝑛) = 𝐶(𝑗1,...𝑗𝑖−1,𝑗′𝑖 ,...,𝑗

′𝑛) on
[0, 𝑔) and 𝐶(𝑗1,...,𝑗𝑛) ≠ 𝐶(𝑗1,...𝑗𝑖−1,𝑗′𝑖 ,...,𝑗

′𝑛) on [𝑔, 1].

In other words, each particle 𝑃 is a multifurcate curve of the second kind
in 𝑀.23

Remarks: (1) The axiom is not genuinely empirical as only single branches
of the branching structure can be subject to observation: this point has
already been discussed in the previous sections of this article. (2) Impor-
tantly, and unlike the original EPS for axiom 𝐴3, we do not assume im-
plicitly that the smoothmanifold established byQA3 beHausdorff. (Note

23The branching spacetime literature standardly features bifurcate curves of the second kind:
A bifurcate curve of the second kind is a pair of curves 𝐶,𝐶′ in a manifold 𝑊, with
𝐶,𝐶′ ∶ [0, 1] → 𝑊, such that 𝐶 = 𝐶′ on [0, 𝑔) and 𝐶 ≠ 𝐶′ on [𝑔, 1] for some 𝑔 ∈ (0, 1].
(Luc, 2020, Definition 5)

The multifurcate curve is its natural generalisation.
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Figure 1: One-dimensional branching structure arising from identifying the two
lines on the left hand side.

Figure 2: Two-dimensional branching structure arising from identifying the two
areas on the left hand side.

that the manifold is therefore not guaranteed to be determined uniquely.)
Given that standard differential geometry works with the Hausdorff as-
sumption as a tacit presupposition, it is worth stressing that smooth man-
ifolds can very well be non-Hausdorff. For a first intuitive grasp, consider
how figures 1 and 2 illustrate how charts can still be straightforwardly de-
fined on branching lines and surfaces, providing the right intuition as to
why this is so on branching (and thus non-Hausdorff) manifolds more
generally as well. In particular, one sees from the comparison of the sur-
face to the line case that the idea of a submanifold—effectively a down-
projection of amanifold into a lower dimension space, when seen from the
right chart—does not depend on the Hausdorff condition. (3) An alter-
native to (the above formulation of) QA4 is this: Every particle segment
𝑝𝑗𝑖 is a half-open curve 𝐶 ∶ [0, 1) → 𝑝𝑗𝑖 with lim𝑎→1 𝐶(𝑎) ∈ 𝑝𝑗𝑖+1 for some 𝑗.
QC1: 𝑃 is a submanifold of 𝑀.
Proof: This is analogous to part 1 in the proof of the analogous classical
claim by Linnemann and Read (2021a).

QC2: 𝑃 is non-Hausdorff submanifold of 𝑀.
Proof: This is an immediate consequence of QA4.

QC3: 𝑀 is a non-Hausdorff manifold.
Proof: This follows from the contraposition of that submanifolds of Haus-
dorff manifold are Hausdorff again, and the claims before.
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Remark: Importantly, a non-Hausdorffdifferentiablemanifold is not uniquely
determined by providing atlas structure—after all, it can have both local
and global branching. However, the local branching is to be determined
through observations of the observer (see below)while the global branch-
ing is the kind of fact one can be happy to stay ignorant about in a local
approach (akin to how we cannot expect to learn about the global nature
of the metric in general relativity).

11. Axiom 𝐴4: Every light ray is a smooth curve in𝑀.

QA4: Every light ray is a superposition of smooth curves in 𝑀.

12. Axiom 𝐿1: any event 𝑒 has a neighbourhood 𝑉 such that each event 𝑝 in 𝑉 can
be connected within 𝑉 to a particle by at most two light rays. Given such a
neighbourhood and a particle 𝑃 through 𝑒, there is another neighbourhood𝑈 ⊂ 𝑉
such that any event 𝑝 in 𝑈 can be connected with 𝑃 within 𝑉 by precisely two
light rays and these intersect 𝑃 in two distinct events 𝑒1, 𝑒2. If 𝑡 is a coordinate
function on 𝑃 ∩𝑉 with 𝑡(𝑒) = 0, then 𝑔 = −𝑡(𝑒1)𝑡(𝑒2) is a function of class 𝐶2 on
𝑈 (i.e. it is twice differentiable on U).
QL1: Any event 𝑒 has a neighbourhood 𝑉 such that each event 𝑝 in 𝑉 can
be connectedwithin𝑉 to a particle branch by atmost two light rays. Given
such a neighbourhood and a particle branch 𝐵𝑃 through 𝑒, there is another
neighbourhood𝑈 ⊂ 𝑉 such that any event 𝑝 ∈ 𝑈 can be connectedwith 𝐵𝑃
within 𝑉 by precisely two light rays and these intersect 𝐵𝑃 in two distinct
events 𝑒1, 𝑒2. If 𝑡 is a coordinate function on 𝐵𝑃 ∩ 𝑉 with 𝑡(𝑒) = 0, then
𝑔 = −𝑡(𝑒1)𝑡(𝑒2) is a function of class 𝐶2 on 𝑈 (i.e. it is twice differentiable
on U).
Remark: One might wonder why messages/echos introduced before are
not taken to lead to branching structures. Now, we can assume that light
rays qua messages/echos are determinate, i.e., not branching themselves,
given that the axiom that there is at most one signal going back and forth
(𝐿1) for a certain neighbourhood of the particle is arguably still valid even
if several signals become possible. For each signal can only differ by di-
rection but—being lightlike—not by speed; and given that the signal has
to hit a specific other particle branch from a given particle branch, a re-
striction from the classical case such as that at most only one echo exists
seems to be unchanged by whether or not several light signals are actually
emitted in different directions (as in the quantum case)—or just hypo-
thetically (as in the classical case).

13. Axiom 𝐿2: the set 𝐿𝑒 of light-directions at an arbitrary event 𝑒 separates the pro-
jective space at 𝑒 into two connected components. In the tangent space at 𝑒, the
set of all non-vanishing vectors that are tangent to light rays consists of two con-
nected components.
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QL2: the set 𝐿𝑒 of light-directions at an arbitrary event 𝑒 separates the pro-
jective space at 𝑒 into two connected components. In the tangent space at
𝑒, the set of all non-vanishing vectors that are tangent to light rays consists
of two connected components.
Q: Since we have defined 𝑔 using only points which lie in the same branch
of the wavefunction as the original point 𝑒, this part of the construction is
exactly the same as the classical case and thuswe obtain a rank-two tensor
defined on a local ‘patch’ all within a single branch of the wavefunction.

Just as in the previously-discussed possible laissez-faire construction, we
will not go through the remaining EPS axioms explicitly here, because now
that we have set up the branching manifold picture together with its coordi-
natisation, the remaining axioms do not have to be altered from the classical
case.

It is worth pointing out that many of the central charges against branching
spacetime formulations24 have little force against the branching spacetime for-
mulation of EPS specifically. To see this, consider the twomain standardworries
that concern (i) a supposed arbitrariness as to when/where the branching oc-
curs, and (ii) violations of energy conservation. The first charge is a serious
concern if one hopes to defend branching spacetimes as basic objects of general
relativity (pace (Luc, 2020)), as the field equations do not determine the split-
ting behaviour. Indeed, not only is it unclear which branching is to be taken but
also—as pointed out before—when and where.25 However, this is not a prob-
lem in our quantum EPS construction since the idea here is simply to provide a
kinematical setup relative to which a proper dynamics is still to be formulated,
and one may reasonably expect that the dynamics will determine the rules of
branching, so there will not be any arbirariness. With respect to the second
charge, it is even less clear in the quantum context than in the general relativis-
tic context as to why the satisfaction of energy conditions should be insisted
upon.

24See Earman (2008) for a collection of objections, and Luc (2020); Luc and Placek (2020) for
various counters.

25To be fair, Luc and Placek (2020) do provide an argument in the later course of their paper
as to why branching that is not specified with respect to the when and where can be excluded on
physical grounds, namely by dismissing non-Hausdorff manifolds which have bifurcating curves
as non-physical. Problematically, though, these are exactly the curves to which the quantum EPS
construction adheres. But, again, it is important to distinguish branching spacetime structure as
basic objects of general relativity as to of a new theory, i.e., the different motivation for introducing
branching spacetime structures: Luc and Placek’s idea is that, for a gluing ofmanifolds to be sound,
it should bemaximal—otherwise the branchingwould just be arbitrary (this argument is, arguably,
a good way to get around the charges of arbitrariness criticised about Luc (2020) above). Then,
indeed, non-Hausdorff manifolds that involve local branching, i.e., bifurcations of the second kind,
are excluded just in virtue of a theorem by Hájíček that precisely characterises such manifolds as
non-maximal. But, as already explicated above, in the kinematical project of quantum EPS, it is
not at all necessary to exclude branching curves to evade full arbitrariness in branching: rather,
the arbitrariness in branching can be left to the dynamics, while still allowing for a local branching
structure.
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5.3 Comparison of the approaches
Both of the above laissez-faire approaches come with their own strengths and
weaknesses. In the superposition-based approach (SP-EPS fromnowon), space-
time has already been quantised, with a Hilbert space made up of events, so we
have a fully quantum spacetime at the level of the kinematics. By contrast, in
the branching-based approach (BS-EPS from now on), spacetime is allowed to
branch but has not been quantised, and we therefore arrive at what might be
regarded as a classical branching spacetime.

One way to interpret the second approach would be to say it is based on a
tacit assumption that spacetime branches are all effectively decohered gravita-
tional histories and thus can be treated as classical objects. From this point of
view, BS-EPS seems less general than SP-EPS. On the other hand, BS-EPS could
still be quantised at a dynamical level—it naturally suggests an implementation
of dynamics in the style of a path-integral formulation, with full flexibility as
to how much interference between the different branches is to be considered.26
Indeed, because BS-EPS does not build quantisation into the kinematics, it of-
fers greater freedom to decide later how to quantise, so in this sense BS-EPS
could be regarded as being more general than SP-EPS. That said, because SP-
EPS has already quantised spacetime, there is less work to do at the level of the
dynamics, and onemight hope that this wouldmake the dynamics easier to for-
mulate. In SP-EPS, the full branching structure (including themetric structure)
formally suggests a promotion to a ket state akin to that of relativistic fields in
quantum field theories.

A further interesting question concerns whether or not the two approaches
are ultimately equivalent: i.e., is it the case that for any possible choice of dy-
namics on the SP-EPS kinematics, there is some possible choice of dynamics on
the BS-EPS kinematics which will lead to an equivalent theory? The answer to
this question may depend on the notion of equivalence one has in mind—it’s
possible that the two are empirically equivalent but structurally different in an
important way. If the two are equivalent in the sense that one considers most
relevant, then the choice between them comes down to pragmatic considera-
tions about which one offers an easier route to a full quantum gravity theory,
but if the two are not equivalent then there could be some fact of the matter
about which one is a better fit to reality.27

6 Lessons from Quantum EPS
To recap: in this article, we have up to this point (i) reviewed the core fea-
tures of the original EPS construction (§2), (ii) considered in some detail the
main conceptual obstacle to a quantum EPS construction—namely, the notion

26Another (completely different) way to make use of the kinematical structure provided by BS-
EPS is to read the branches as representing Bohmian ‘trajectories’. See Tumulka (2005) for a concise
demarcation of Bohmian trajectories from the paths in the path-integral formulation.

27For an introduction to philosophical issues of theory equivalence, see Weatherall (2019a,b).
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of cross-branch spacetime point identity (§3), (iii) discussed various different
ways in which a quantum EPS construction might implemented (§4), and (iv)
presented explicitly two such approaches which fall into what we have dubbed
the ‘laissez-faire’ category (§5). In this final section, we turn to considering
several conceptual upshots from our investigations into a quantum EPS con-
struction.

6.1 Spacetime superpositions versus spatial superpositions
Consider two superficially similar cases: a light ray is put into a superposition
of two different paths, and a nanoparticle is put into a superposition of two
different paths. The conventional quantum description tells us that in the first
case, since the difference between the gravitational fields associated with the
different paths taken by the light is negligible (strictly speaking this needn’t be
correct, because of course electromagnetic fields still have stress-energy content,
but let us simply assume that light’s contribution to the gravitational field is
negligable in what follows) the light goes to two different places in the same
spacetime, while in the second case, because the particle is massive enough
that the two different paths source significantly different gravitational fields,
the massive particles end up in two different spacetimes.

However, our quantum EPS construction offers a different perspective. For
suppose we take seriously the notion that points of spacetime have their iden-
tities in virtue of a construction akin to radar coordinates. Suppose that a light
ray 𝑎 travels in two opposite directions in two branches of the wavefunction,
and that a point 𝑝 is labelled in one branch of the wavefunction as the points
where the light rays 𝑎, 𝑏meet. But 𝑎 and 𝑏 do not meet at all in the other branch
of the wavefunction, so if we take identities of spacetime points to be derived
from radar coordinates it follows that the point 𝑝 does not even exist in that
other branch. The same goes for all other points, and so we conclude that for
this kind of structuralist view about the nature of spacetime point identities,
even in the case where there are no differences in spacetime structure between
the branches, it nonetheless follows that different branches of the wavefunction
represent different spacetimes. From this point of view, the case of spatial su-
perpositions and spacetime superpositions are not really as different as they
may first appear.

This is important for the EPS kinematics. Prima facie, one might think that
wewould need to distinguish somehow between the two possibilities: ordinary
spatial superpositions would correspond to light rays all stayingwithin a single
spacetime, while spacetime superpositions would correspond to light rays go-
ing off into different spacetimes (or different branches of a single non-Hausdorff
spacetime). But the above analysis suggests that actually we don’t need to do
this: any time one of our light rays splits into two separate paths those paths
are to be regarded as belonging to different spacetimes (or different branches
of a single non-Hausdorff spacetime). In some cases, there will be different
arrangements of matter in those spacetimes and thus we will get two distinct
spacetime structures, giving us a spacetime superposition, while in other cases

30



the arrangements of matter will be the same so we will have identical space-
time structures, but since the coupling betweenmatter and spacetime structure
comes in only at the level of the dynamics, we don’t have to worry about these
differences in our quantum EPS construction: kinematically speaking the con-
struction of spacetime is the same in each case.

Thus, on this kind of view about the nature of spacetime point identities,
even when we are dealing entirely with ordinary superpositions with no dif-
ferent spacetime structures involved, the problem raised in §3 still comes into
play: empirically it has been shown many times that branches of superposi-
tions like this can indeed be recombined, but how is the map between the two
branches effected? A naïve substantivalist of course can simply insist that both
branches are defined on the same background spacetime, but proponents of the
structuralist-type view under consideration here don’t have that option, so how
can they make sense of interactions between branches of a superposition at all?

One possible approach would be to deny that spacetime is constructed en-
tirely out of the local behaviour of actual particles and light rays, and instead
identify spacetime with the metric field as constructed out of hypothetical parti-
cles and light rays.28 In this case, the direction in which the actual ray of light
were to go would not matter, because the structure of the spacetime would
come from the fact that hypothetically it could have gone either way: we’ll get
exactly the same hypothetical possibilities for the passage of light rays in both
branches, so both branches of the superposition can be associatedwith the same
background spacetime, which tells us how to map between the two branches.
However, one might question whether this modal take on spacetime and met-
ric structure is strictly in accordance with the operationalist and/or relationalist
underpinnings of EPS.

Note also that if we say that the existence of identical (modal) spacetime
structure is essential to the possibility of mapping between the branches in the
spatial superposition case, then it would seem to follow that there can be no
such map in the spacetime superposition case, where we no longer have identi-
cal spacetime structure. Thus, if wewant tomaintain the existence of spacetime
superpositions (and the possibility of recombination for such superpositions),
we can’t insist that the identical structure plays any special role here; and in
any case since spatial superpositions can be regarded as simply examples of
spacetime superpositions in the limit as somemeasure of difference of structure
goes to zero, one might naturally hope that the procedure for mapping points
between branches should be roughly the same in each case—so we should use
something like best-matching even in the spatial superposition case (we sug-
gest that Barbour himself would probably advocate this).

28This would be something akin to ‘modal relationalism’—see Belot (2011).
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6.2 Comparison with other cases for the quantum nature of
gravity

In the process of constructing a quantum version of EPS, we saw that by start-
ing with some operationally legitimate assumption about quantum signals, we
arrive at the conclusion that spacetime structure involves a superposition of
spacetimes in one form or the other. In other words, we have thus arrived at
yet another plausibility argument as to why gravity should be quantum. In
this section we would like to consider how far the plausibility argument for
the quantum nature of gravity differs from by-now familiar ones, which are,
inter alia, arguments from (i) analogy (say to electrodynamics), (ii) inconsis-
tency of semi-classical gravity, and (iii) inconsistency of classical gravity with
gravitational-induced entanglement.

More specifically, the quantum EPS argument (QEA) argument goes as fol-
lows. Let us understand the EPS construction as a realisation of the relation-
alist vision of constructing spacetime out of the behaviour of light and matter;
then we argue that since light and matter do different things inside different
branches of the wavefunction, different spacetimes necessarily get constructed
inside these different branches, so we get superpositions of spacetimes and
therefore gravity must be quantised. That is, the quantisation of gravity fol-
lows directly from the supposition that it is legitimate to construct spacetime
out of the behaviour of light and particles, as the original EPS construction does.

Of course, like all arguments to the effect that gravitymust be quantum, this
argument is based on some assumptions: primarily the relationalist assumption
that spacetime is in some sense a codification of the behaviour of light andmat-
ter. Evidently the assumptions ofQEAaremore philosophical than the assump-
tions used in other plausibility arguments, which mostly employ specific phys-
ical conjectures—for example, the argument of Eppley and Hannah (1977) (an
argument of type iii)) requires the the assumption that nongravitational mea-
surements lead to a wavefunction collapse. This comparison makes it clear that
QEA depends on preexisting philosophical prejudices in ways that the other
arguments do not, and therefore QEA will not seem compelling to someone
who is not inclined towards the relationalist position in the first place. On the
other hand, because QEA argues for the quantization of spacetime purely on
the basis of a conviction about the nature of spacetime, it is less vulnerable to
refutation by the proposal of alternative models which don’t have the physical
features which led to inconsistencies in the original model (as, for example, has
happened in the case of the Eppley-Hannah argument(Huggett and Callender,
2001; Mattingly, 2006)). So for those who do favour the relationalist view, QEA
may seem a more robust argument than some of the alternatives.

QEA also stands out in virtue of the fact that it is kinematical and construc-
tivist, whereas most of the other arguments for the quantum nature of gravity
take place at the level of the dynamics. This, again, makes QEA more robust
than some alternatives, as it does not depend on any details of the dynamics
and thus will be valid for a large variety of choices for the dynamics. However,
in virtue of being kinematical the QEA does run into all of the ambiguity is-
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sues that we have discussed in this article. But if the kinematicist line of the
QEA is given up, it is hard to see how one can still be constructivist, which
makes up much of the bite of the QEA. To understand the situation better, it
is helpful to recall that the classical EPS scheme can, in virtue of its (more or
less consequent) (empirical) constructivist nature, show compellingly at what
point the phenomena allow for a much more general kinematical arena than
Lorentzian geometry—think for instance of how neither torsion nor differen-
tiability of the metric are backed up well from data or other principles, leaving
theories such as teleparallel gravity and Finsler spacetime as live options. Sim-
ilarly then, the quantum EPS scheme, by being constructivist, despite—or per-
haps because of—its difficulties, makes us aware of the intricacies of formulating
quantum general relativity and neighbouring theories. So, as long as we do not
think of the constructivist undertaking in any strict epistemic or metaphysical
fashion but more as an auxiliary tool for theory construction, we can accept
issues of circularity and happily appreciate instances of ambiguities (such as
they arise with the kinematicist commitment).

Finally, it is worth comparing the scope of the arguments: QEA establishes
the quantumnature of gravity in relation to relatively high-level quantumparti-
cles or ‘light rays’ that themselves do not have internal structure: the treatment
of light just happens at the level of ray optics. In a sense, maybe this limitation
is a virtue, as the QEA can thus be seen as an argument for quantum gravity
even at rather low energies, such as those studied in low-energy perturbative
quantum gravity. Note in this context that arguments of type (i) to (iii) also
only establish the quantum nature of gravity for a limited scope; in particular,
they say little about what quantum gravity (if one still even would like to call
it such) would look like at lower energies.29

6.3 The quantum hole argument
We close by considering how the issues we have discussed in this article may
give new insight into the hole argument. To motivate this, we recall Penrose’s
argument against spacetime superpositions which was introduced in §3.2.1,
andwe suppose for themoment that Penrose is correct: that is, if there exists no
privilegedmapping of one superposed spacetime to the other, then no time evo-
lution operator can be defined and therefore the superposition must undergo
a gravitationally induced collapse. On the other hand, if spacetime points have
primitive identities, then there does exist a privileged mapping of one super-
posed spacetime to the other, and then in turn a time evolution operator can
be defined and therefore presumably we will not observe any gravitationally
induced collapse. If this argument were correct, then this would be an instance
where the existence or nonexistence of primitive identities for spacetime points
would have an immediate and in principle observable impact on real physics:

29For instance, with respect to (i), the analogies to electrodynamics, as well as the identification
of gravity by analogy as yet another spin-𝑛, prima facie only establish a quantum theory of gravity
in line with (non-fundamental) quantum electrodynamics and (quantum) effective field theory,
respectively.
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the existence of primitive identities gives us a stable state, whereas the absence
of primitive identities leads to instability and collapse.

Now we don’t in fact think Penrose’s argument is correct, because we agree
withGiacomini and Brukner (2021) that there is no reason to think that a space-
time superposition must contain a unique time evolution operator which ap-
plies across all the branches of the superposition. However, Penrose’s argument
nonetheless illustrates the fact that questions around the identity of spacetime
points take on a new relevance when we begin to consider the possibility of
quantum diffeomorphisms (as introduced in §3). The usual form of the hole
argument requires us to make comparisons across different possible worlds,
and thuswhilst these sorts of argumentsmay have some indirect empirical con-
sequences (e.g. they may motivate us to impose a diffeomorphism constraint)
there is of course no possibility of directly observing relationships between dif-
ferent possible worlds. On the other hand, we can certainly devise observations
which ‘observe’ happenings in different branches of thewavefunction, or tell us
something about the relationships between different branches of the wavefunc-
tion, so if spacetime superpositions exist then questions about the identities
of points across branches may in principle have direct significance for real ob-
servations. So the upshot of our discussion here is that introducing quantum
phenomena is likely to make hole argument-style concerns more pressing and
empirically relevant: the indeterminism at the centre of the argument becomes
not merely a matter of which points instantiate which field values, but rather a
matter of there being empirically discernible differences.30

But the approach we have adopted here also suggests a way of avoiding the
hole problem. For in the EPS context, onemight hope that the use of radar coor-
dinates should prevent the hole argument from being made. For radar coordi-
nates label spacetime points in terms of their relation to particles and light rays,
and since particles and light rays are ultimately made out of fields, presumably
when we perform a diffeomorphism on all the fields as in the hole argument,
those particles and light rays will be moved along with the diffeomorphism,
meaning that the coordinates will also be moved by the diffeomorphism, and
therefore the relation between the fields and the coordinates will not change
during the diffeomorphism. Thus, it might seem that the radar coordinate ap-
proach is a particularly appropriate way of assigning coordinates in the context
of general covariance—not only the physics but even the coordinatisation will
be invariant under diffeomorphisms. However, this strategy will work only if
the radar coordinates are defined with respect to the behaviour of actual parti-
cles and light rays. If on the other hand we regard the particles and light rays
as purely mathematical object which are used to derive some abstract choice
of atlas for the point set, then there is no reason why these radar coordinates
should be moved when we apply a diffeomorphism to the actual fields defined
on that point set, and therefore diffeomorphismswill once again give rise to the
hole problem. So if we want to use the radar coordinate scheme as a novel way
of avoiding the hole problem, it is important that the light rays and particles

30Cf. Pooley and Read (2021).
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should be actual.
There are a number of obstacles to this way of avoiding the hole problem.

First, in order for actual light rays andparticles to give rise to a complete,manifold-
like coordinatisation of the point set it seems that both particles and light rays
would have to be fairly ubiquitous, in order that every point should be reached
by enough light rays to ensure that it gets radar coordinates. It’s possible that
our actual universe does indeed have a sufficiently large number of particles
and light rays do to this (e.g. if we make use of the cosmic microwave back-
ground) but on the other hand this doesn’t seem guaranteed. And making this
requirement imposes a constraint for the electromagnetic matter sector from
which light rays derive: as light rays result from the high-frequency limit of
propagating electromagnetic waves, electromagnetic field tensors (and, conse-
quently, stress-energy-momentum tensors) will only be acceptable if they lead
to sufficient light rays upon that limit. In particular, a strictly global electro-
static (as opposed to electrodynamic) field content in the universe would not
be sufficient to allow for the existence of actual radar coordinates. Thus if this
route is adopted, EPS must be expanded to a program for establishing the right
kinematics for Einstein-Maxwell theory rather than just GR.

Second, we note that there is a clash between taking the light rays in the
radar coordinates to be actual, and the proof strategy of classical EPS: for the
proof relies heavily on the notion that the radar coordinates establish a chart on
amanifold and that, once they have done so, charts other than radar coordinates
can be used. One could perhaps argue that other coordinate systems can still be
used as mathematical coordinates even if it is the radar coordinates which are
taken seriously as a meaningful physical labelling of the points, but it would
need to be shown explicitly that the proof strategy of EPS still goes through
under this interpretation.

Finally, there is not just one possible radar coordinate system: the radar co-
ordinates depend on the two particle trajectories with respect to which they
are defined, and each set of radar coordinates is of limited scope. But given
that a compatibility condition needs to hold between radar coordinate systems,
one may suspect that the radar coordinate change should be regarded as a pas-
sive transformation as between any coordinate system change on a manifold,
thus inducing also a corresponding active transformation which will neces-
sarily revive a hole-argument-scenario (as already alluded to above). How-
ever, to just apply the notion of passive and of active transformation as familiar
from the manifold context (and criticise the physical reading of radar coordi-
nates in terms of actual light ray signals) amounts to a petitio principii. The real
question here is whether one can—and, perhaps also, whether one even needs
to—formally express the radar coordinate charts in a way that prevents equiv-
ocation with standard manifold charts. One proposal could consist of piggy-
backing on the manifold structure: we could simply acknowledge the recipro-
cal dependence of the charts on the the fields they are describing. However,
what about the one-dimensional line of the observer? The radar coordinates
are characterised in terms of the emission and the arrival times, which are—on
the standard EPS approach—values in 1-dimensional coordinate charts for the
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two defining particle of the radar coordinates.31 Can we even think of these
times as dependent on the field content?32

7 Outlook
This investigation into the possibility of a quantum generalisation of the EPS
construction has given rise to many interesting questions. First, since the EPS
approach constructs only kinematics, one might naturally ask whether the dy-
namics of a quantum theory of gravity can be constructed on top of the already
established-kinematical structure. Recall for a moment the situation in classical
EPS, in which the dynamics—the Einstein field equations in the case of GR—
is obtainable from a best-system analysis, i.e., read out as the best codification
of how the kinematical structure evolves in different contexts (say by tracking
what kind of energy-momentum content—or even, more directly, what kind of
matter field values—correspond to what kind of values of the basic kinematical
variables established by EPS). If such a proposal already sounded unrealistic in
the classical case, how is it ever to be practically implemented in the quantum
case where we can only observe one out of multiple branch structures? After
all, in the quantum case, data points have to be collected across different con-
texts as well as histories within one and the same overall context (‘branches’).
But note that, at the end of the day, the project of setting up a quantum EPS con-
struction is not one of literally arriving at a proposal for a theory of quantum
gravity but one of conceptual clarification—with themajor lessons summarised
in the previous section.

In any case, it seems necessary to say more on how exactly the dynamics
is expected to dispel the aforementioned threat of arbitrariness with respect to
when and where exactly curves branch—and when and where not. One sim-
ple option is to render gravitational branching as induced by matter branching:
we are well familiar with how matter branching comes about (say as to why a
beam splits in the interactionwith a beam splitter); if the splitting of amanifold
is simply—and only—due to matter splitting, and if—as standardly seen—the
matter splitting is not arbitrary, then there is no issuewith arbitrariness in curve
branching anymore either. Admittedly, though, this resolution only works for
a lower energy regime of general relativity for which gravity is ‘slaved’ to that
matter theory (see Anastopoulos et al. (2021)). For the actual regime of quan-
tum gravity which is decisively marked by independent gravitational degrees
of freedom, the issue will be more cumbersome.

31Axiom 𝐷1 has it that “ Every particle is a smooth, one-dimensional manifold”.
32In fact, how to think of the emission and arrival time is a general issue worth further consider-

ation, even if one takes radar coordinates to be on-par with regular coordinates: what is required,
andwhat exactly is supposed to give rise to the observer’s emission and arrival time? In what sense
is EPS not after all committed to local clocks?
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A General covariance andquantumdiffeomorphisms
As mentioned in the main text, Anandan (1997), Hardy (2019), Giacomini and
Brukner (2021), and others have all proposed some variant or other of a princi-
ple of ‘quantum general covariance’, which encodes invariance under quantum
diffeomorphisms. Note that these authors seem to be equating diffeomorphism
invariance with general covariance, though in fact, following Pooley (2017),
there is a case to be made that the two notions should not be regarded as being
identical. Some unpacking is thus in order.

Various different definitions have appeared in the literature, but following
Pooley (2017), let us say that general covariance is the requirement that “the
equations expressing [the] laws are written in a form that holds with respect
to all members of a set of coordinate systems that are related by smooth but
otherwise arbitrary transformations”, while diffeomorphism invariance is the
requirement that “if ⟨𝑀, 𝐹,𝐷⟩ is a solution of the theory, then so is ⟨𝑀, 𝐹, 𝑑∗𝐷⟩ for
all diffeomorphisms 𝑑” (here,𝑀 is the backgroundmanifold, 𝐹 are any solution-
independent fixed fields on the 𝑀, 𝐷 are dynamical fields, and stars indicate
push forwards33). Famously, as pointed out by Kretschmann, the requirement
of general covariance is not really a restriction on possible theories at all: even
pre-relativistic theories and special relativity can be put in a generally covari-
ant form by simply turning the background metric into a mathematical object
which features explicitly in the laws of the theory.34

In contrast, diffeomorphism invariance is a stronger requirement: for exam-
ple, a generally covariant formulation of special relativitywhere theMinkowski
metric is made explicit in the form of a solution-independent fixed field will
fail to be diffeomorphism invariant, since applying a diffeomorphism to the
dynamical fields but not the metric will move the fields around relative to the
metric and thuswill typically give rise to amodel which is not dynamically pos-
sible. However, in most cases it is still possible to find a way of making a theory
invariant under diffeomorphisms: we simply have to turn the fixed fields into
dynamical fields. For example, in the case of special relativity we could do this
by making the metric a dynamical object governed by an equation requiring
that its Riemann curvature tensor is zero everywhere, so now diffeomorphisms
will act jointly on the metric and the other fields and will thus take solutions
into solutions.

Similar points can be made in the quantum case. By analogy with the clas-
sical case, let us say that quantum general covariance is the requirement that

the equations expressing the laws are written in a form that holds
with respect to all members of a set of coordinate systems that are
related by arbitrary quantum diffeomorphisms.

33For more on what we take Pooley to mean by a ‘fixed field’, see Read (2020).
34For more on the history of general covariance and Kretschmann’s objection, see Norton (1993).

The debate over general covariance has since transformed into a debate over the ‘background in-
dependence’ of general relativity: for further discussion of this issue, see Pooley (2017) and Read
(2016).
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As in the classical case, this requirement is not very substantive: even if the pre-
dictions of a theory depend non-trivially on an identity map between branches,
the theory can be still put in a generally covariant form if we turn the identity
map between branches into a mathematical object which features explicitly in
the laws of the theory. Similarly, let us say that invariance under quantum dif-
feomorphisms is the requirement that

if ⟨𝑀, 𝐹,𝐷⟩ is a solution of the theory, then so too is ⟨𝑀, 𝐹, 𝑑∗𝐷⟩, for
all quantum diffeomorphisms 𝑑.

This is a stronger requirement than quantum general covariance, but again,
evenmodelswith non-trivial dependence on an identitymap between branches
could be put in such a form, provided we can find a way of making the identity
map at least nominally dynamical bywriting it as the solution to some equation.

One way to make the requirement of diffeomorphism invariance more sub-
stantive in either the classical or the quantum case is to be more strict about
what counts as a dynamical field. For example, inspired by Einstein’s action-
reaction principle, onemight argue that any genuinely dynamical object should
not only act but also be acted back upon.35 Under that stipulation, it would fol-
low that in a special relativistic theory themetricwould not really be dynamical,
meaning that it must be regarded as a fixed field, and therefore special relativ-
ity would fail to exhibit diffeomorphism invariance. Similarly, in the quantum
case, if the identity map between branches is independent of the behaviour of
the matter in the branches, then it would have to be regarded as a fixed field,
so any model where the predictions depend non-trivially on the identity map
would fail to exhibit diffeomorphism invariance. Under this construal, in order
to have invariance under quantum diffeomorphisms, we would either have to
ensure that the identity map is purely a form of gauge, or we would have to
make the identity map depend on the configuration of matter—for example,
by defining an identity map in terms of similarity of matter content. Another
way of thinking about general covariance is due to Barbour (2001), who argues
that the true empirical content of general covariance is the manner in which
the respective four-dimensional objects are assembled out of three-dimensional
constituents. If we accept Barbour’s argument, then in fact ‘quantum general
covariance’ should entail not that the theory is invariant under quantum dif-
feomorphisms, but rather than it uses identities between spacetime points in
different branches which are determined by best matching and not by some
other absolute structure.36

References
Emily Adlam. Operational theories as structural realism. arXiv preprint
arXiv:2201.09316, 2022.
35See BrownandLehmkuhl (2016) for recent discussion of Einstein’s understanding of the action-

reaction principle.
36For further discussion of this proposal and others, see Read (2016).

38



Jeeva S Anandan. Classical and quantum physical geometry. In Potentiality,
Entanglement and Passion-at-a-Distance, pages 31–52. Springer, 1997.

Charis Anastopoulos, Michalis Lagouvardos, and Konstantina Savvidou. Grav-
itational effects in macroscopic quantum systems: a first-principles analysis.
Classical and Quantum Gravity, 38(15):155012, 2021.

Jürgen Audretsch and Claus Lämmerzahl. Establishing the riemannian struc-
ture of space-time by means of light rays and free matter waves. Journal of
mathematical physics, 32(8):2099–2105, 1991.

Julian Barbour. On general covariance and best matching. In Craig Callender
andNickHuggett, editors, PhysicsMeets Philosophy at the Planck Scale. 01 2001.

Nuel Belnap, Thomas Müller, and Tomasz Placek. Branching space-times: theory
and applications. Oxford University Press, 2022.

Gordon Belot. Geometric possibility. Oxford University Press, 2011.

Sougato Bose, Anupam Mazumdar, Gavin Morley, Hendrik Ulbricht, Marko
Toros, Mauro Pasternostro, Andrew Geraci, Peter Barker, M.S. Kim, and Ger-
ard Milburn. Spin entanglement witness for quantum gravity. Physical Re-
view Letters, 119(24), Dec 2017. ISSN 1079-7114. doi: 10.1103/physrevlett.
119.240401. URL http://dx.doi.org/10.1103/PhysRevLett.119.240401.

Harvey R. Brown. Physical Relativity: Space-time structure from a dynamical per-
spective. Oxford University Press, 2005.

Harvey R. Brown and Dennis Lehmkuhl. Einstein, the reality of space and the
action–reaction principle. In P. Ghose, editor, Einstein, Tagore and the nature of
reality. Routledge, 2016.

Harvey R. Brown and Oliver Pooley. The origin of the spacetime metric: Bell’s
Lorentzian pedagogy and its significance in general relativity. In Craig Cal-
lender and Nick Huggett, editors, Physics meets philosophy at the Planck scale.
Cambridge University Press, 2001.

Harvey R. Brown and Oliver Pooley. Minkowski space-time: A glorious non-
entity. volume The ontology of spacetime. Elsevier, 2006.

ChunJun Cao, Sean M. Carroll, and Spyridon Michalakis. Space from Hilbert
space: Recovering geometry frombulk entanglement. Phys. Rev.D, 95:024031,
Jan 2017. doi: 10.1103/PhysRevD.95.024031. URL https://link.aps.org/
doi/10.1103/PhysRevD.95.024031.

Tian YuCao. Prerequisites for a consistent framework of quantumgravity. Stud-
ies in History and Philosophy of Science Part B: Studies in History and Philosophy
of Modern Physics, 32(2):181–204, 2001. ISSN 1355-2198. doi: https://doi.org/
10.1016/S1355-2198(01)00003-X. URL https://www.sciencedirect.com/
science/article/pii/S135521980100003X. Spacetime, Fields and Under-
standing: Persepectives on Quantum Field.

39

http://dx.doi.org/10.1103/PhysRevLett.119.240401
https://link.aps.org/doi/10.1103/PhysRevD.95.024031
https://link.aps.org/doi/10.1103/PhysRevD.95.024031
https://www.sciencedirect.com/science/article/pii/S135521980100003X
https://www.sciencedirect.com/science/article/pii/S135521980100003X


Rudolf Carnap. The Logical Structure ofthe World. Berkeley-Los Angeles, Univ,
1967.

Lu Chen and Tobias Fritz. An algebraic approach to physical fields. Stud-
ies in History and Philosophy of Science Part A, 89:188–201, 2021. ISSN 0039-
3681. doi: https://doi.org/10.1016/j.shpsa.2021.08.011. URL https://www.
sciencedirect.com/science/article/pii/S0039368121001278.

Marios Christodoulou and Carlo Rovelli. On the possibility of laboratory
evidence for quantum superposition of geometries. Physics Letters B, 792:
64–68, 2019. ISSN 0370-2693. doi: https://doi.org/10.1016/j.physletb.
2019.03.015. URL https://www.sciencedirect.com/science/article/
pii/S0370269319301698.

Erik Curiel. Kinematics, dynamics, and the structure of physical theory. arXiv:
History and Philosophy of Physics, 2016.

John Earman. Leibnizian space-times and Leibnizian algebras. In Historical
and philosophical dimensions of logic, methodology and philosophy of science, pages
93–112. Springer, 1977.

John Earman. Pruning some branches from “branching spacetimes”. Philosophy
and Foundations of Physics, 4:187–205, 2008.

J. Ehlers, F.A.E. Pirani, and A. Schild. Republication of: The geometry of free
fall and light propagation. General Relativy and Gravity, 44:1587–1609, 2012.

Kenneth Eppley and Eric Hannah. The necessity of quantizing the gravitational
field. Foundations of Physics, 7(1-2):51–68, 1977. doi: 10.1007/bf00715241.

Michael Esfeld and Dirk-Andre Deckert. A Minimalist Ontology of the Natural
World. Routledge, 2017.

Michael Esfeld and Vincent Lam. Moderate structural realism about space-
time. Synthese, 160(1):27–46, 2008. doi: 10.1007/s11229-006-9076-2. URL
https://doi.org/10.1007/s11229-006-9076-2.

FlaminiaGiacomini andČaslav Brukner. Quantum superposition of spacetimes
obeys Einstein’s equivalence principle, 2021.

Flaminia Giacomini, Esteban Castro-Ruiz, and Časlav Brukner. Quantum me-
chanics and the covariance of physical laws in quantum reference frames.
Nature Communications, 10, 01 2019. doi: 10.1038/s41467-018-08155-0.

Robert B. Griffiths. The Consistent Histories Approach to Quantum Mechan-
ics. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Meta-
physics Research Lab, Stanford University, Summer 2019 edition, 2019.

Lucien Hardy. Implementation of the quantum equivalence principle, 2019.

40

https://www.sciencedirect.com/science/article/pii/S0039368121001278
https://www.sciencedirect.com/science/article/pii/S0039368121001278
https://www.sciencedirect.com/science/article/pii/S0370269319301698
https://www.sciencedirect.com/science/article/pii/S0370269319301698
https://doi.org/10.1007/s11229-006-9076-2


NickHuggett. TheRegularityAccount of Relational Spacetime.Mind, 115(457):
41–73, 01 2006. ISSN 0026-4423. doi: 10.1093/mind/fzl041. URL https:
//doi.org/10.1093/mind/fzl041.

Nick Huggett and Craig Callender. Why quantize gravity (or any other field
for that matter)? Philosophy of Science, 68(S3):S382–S394, 2001.

Nick Huggett, Niels Linnemann, and Mike Schneider. Quantum gravity in a
laboratory? arXiv preprint arXiv:2205.09013, 2022.

R. Jaksland. Entanglement as the world-making relation: distance from entan-
glement. Synthese, page 9661–9693, 2021. URL https://doi.org/10.1007/
s11229-020-02671-7.

Eleanor Knox. Effective spacetime geometry. Studies in History and Philosophy
of Science Part B: Studies in History and Philosophy of Modern Physics, 44(3):
346–356, 2013.

Niels Linnemann and James Read. Constructive axiomatics in spacetime
physics part i: Walkthrough to the Ehlers-Pirani-Schild axiomatisation.
2021a. URL https://arxiv.org/abs/2112.14063.

Niels Linnemann and James Read. On the status of Newtonian grav-
itational radiation. Foundations of Physics, 51(2):53, 2021b. doi:
10.1007/s10701-021-00453-w. URL https://doi.org/10.1007/
s10701-021-00453-w.

Niels Linnemann and Kian Salimkhani. The constructivist’s programme and
the problem of pregeometry. arXiv preprint arXiv:2112.09265, 2021.

Niels Linnemann and Manus R Visser. Hints towards the emergent nature of
gravity. Studies in History and Philosophy of Science Part B: Studies in History and
Philosophy of Modern Physics, 64:1–13, 2018.

Joanna Luc. Generalised manifolds as basic objects of general relativity. Foun-
dations of Physics, 50(6):621–643, 2020.

JoannaLuc andTomaszPlacek. Interpreting non-Hausdorff (generalized)man-
ifolds in general relativity. Philosophy of Science, 87(1):21–42, 2020.

C. Marletto and V. Vedral. Gravitationally induced entanglement between two
massive particles is sufficient evidence of quantum effects in gravity. Physical
Review Letters, 119(24), Dec 2017. ISSN 1079-7114. doi: 10.1103/physrevlett.
119.240402. URL http://dx.doi.org/10.1103/PhysRevLett.119.240402.

James Mattingly. Is Quantum Gravity Necessary?, volume 25, pages 322–335. 09
2006. ISBN 978-0-8176-4380-5. doi: 10.1007/0-8176-4454-7_17.

Tushar Menon. Algebraic fields and the dynamical approach to physical geom-
etry. Philosophy of Science, 86(5):1273–1283, 2019. doi: 10.1086/705508. URL
https://doi.org/10.1086/705508.

41

https://doi.org/10.1093/mind/fzl041
https://doi.org/10.1093/mind/fzl041
https://doi.org/10.1007/s11229-020-02671-7
https://doi.org/10.1007/s11229-020-02671-7
https://arxiv.org/abs/2112.14063
https://doi.org/10.1007/s10701-021-00453-w
https://doi.org/10.1007/s10701-021-00453-w
http://dx.doi.org/10.1103/PhysRevLett.119.240402
https://doi.org/10.1086/705508


Flavio Mercati. Shape dynamics: relativity and relationalism. Oxford university
press, 2018.

nLab authors. Quantization. http://ncatlab.org/nlab/show/quantization,
August 2022. Revision 40.

John D. Norton. General covariance and the foundations of general relativity:
eight decades of dispute. Reports on progress in physics, 56:791–858, 1993.

John D. Norton. Why constructive relativity fails. The British journal for the
philosophy of science, 59(4):821–834, 2008.

Roger Penrose. On gravity’s role in quantum state reduction. General Rela-
tivity and Gravitation, 28(5):581–600, 1996. ISSN 1572-9532. doi: 10.1007/
BF02105068. URL http://dx.doi.org/10.1007/BF02105068.

Oliver Pooley. Background independence, diffeomorphism invariance, and the
meaning of coordinates. In Dennis Lehmkuhl, Gregor Schiemann, and Er-
hard Scholz, editors, Towards a theory of spacetime theories. Birkhäuser, 2017.

Oliver Pooley and James Read. On the mathematics and metaphysics of the
hole argument. The British Journal for the Philosophy of Science, 0(ja):null, 2021.
doi: 10.1086/718274. URL https://doi.org/10.1086/718274.

James Read. Background independence in classical and quantum gravity. University
of Oxford, 2016.

James Read. Geometrical constructivism and modal relationalism: Further as-
pects of the dynamical/geometrical debate. International Studies in the Philos-
ophy of Science, 33(1):23–41, 2020. doi: 10.1080/02698595.2020.1813530. URL
https://doi.org/10.1080/02698595.2020.1813530.

James Read, Harvey R. Brown, and Dennis Lehmkuhl. Two miracles of general
relativity. Studies in History and Philosophy of Science Part B: Studies in History
and Philosophy of Modern Physics, 64:14–25, 2018. ISSN 1355-2198. doi: https:
//doi.org/10.1016/j.shpsb.2018.03.001. URL https://www.sciencedirect.
com/science/article/pii/S1355219817300667.

Hans Reichenbach. Axiomatisation of the theory of relativity. University of Cali-
fornia Press, 1969.

Carlo Rovelli. Ashtekar formulation of general relativity and loop-space non-
perturbative quantum gravity: a report. Classical and Quantum Gravity, 8(9):
1613, 1991.

Carlo Rovelli. Quantum Gravity. Cambridge University Press, 2004.

Carlo Rovelli and Francesca Vidotto. Covariant loop quantum gravity: an elemen-
tary introduction to quantum gravity and spinfoam theory. Cambridge University
Press, 2015.

42

http://ncatlab.org/nlab/show/quantization
http://ncatlab.org/nlab/revision/quantization/40
http://dx.doi.org/10.1007/BF02105068
https://doi.org/10.1086/718274
https://doi.org/10.1080/02698595.2020.1813530
https://www.sciencedirect.com/science/article/pii/S1355219817300667
https://www.sciencedirect.com/science/article/pii/S1355219817300667


Robert W. Spekkens. The paradigm of kinematics and dynamics must yield
to causal structure. In Anthony Aguirre, Brendan Foster, and Zeeya Merali,
editors, Questioning the Foundations of Physics: Which of our Fundamental As-
sumptions are Wrong? Springer, 2015.

Roderich Tumulka. Feynman’s path integrals and Bohm’s particle paths. Euro-
pean Journal of Physics, 26(3):L11, 2005.

Mark Van Raamsdonk. Building up space–time with quantum entan-
glement. International Journal of Modern Physics D, 19(14):2429–2435,
2010. doi: 10.1142/S0218271810018529. URL https://doi.org/10.1142/
S0218271810018529.

David Wallace. Who’s afraid of coordinate systems? an essay on representa-
tion of spacetime structure. Studies in History and Philosophy of Science Part
B: Studies in History and Philosophy of Modern Physics, 67:125–136, 2019. ISSN
1355-2198. doi: https://doi.org/10.1016/j.shpsb.2017.07.002. URL https:
//www.sciencedirect.com/science/article/pii/S1355219817300965.

James Owen Weatherall. Part 1: Theoretical equivalence in physics. Phi-
losophy Compass, 14(5):e12592, 2019a. doi: https://doi.org/10.1111/phc3.
12592. URL https://compass.onlinelibrary.wiley.com/doi/abs/10.
1111/phc3.12592. e12592 10.1111/phc3.12592.

James Owen Weatherall. Part 2: Theoretical equivalence in physics. Phi-
losophy Compass, 14(5):e12591, 2019b. doi: https://doi.org/10.1111/phc3.
12591. URL https://compass.onlinelibrary.wiley.com/doi/abs/10.
1111/phc3.12591. e12591 10.1111/phc3.12591.

Hans Westman and Sebastiano Sonego. Events and observables in generally
invariant spacetime theories. Foundations of Physics, 38(10):908–915, 2008.

43

https://doi.org/10.1142/S0218271810018529
https://doi.org/10.1142/S0218271810018529
https://www.sciencedirect.com/science/article/pii/S1355219817300965
https://www.sciencedirect.com/science/article/pii/S1355219817300965
https://compass.onlinelibrary.wiley.com/doi/abs/10.1111/phc3.12592
https://compass.onlinelibrary.wiley.com/doi/abs/10.1111/phc3.12592
https://compass.onlinelibrary.wiley.com/doi/abs/10.1111/phc3.12591
https://compass.onlinelibrary.wiley.com/doi/abs/10.1111/phc3.12591

	Introduction
	Core features of Classical EPS
	Obstacles to Quantum EPS
	Point identities in classical manifolds
	Point identities in manifold superpositions
	No large superpositions: Penrose's collapse approach 
	Dynamical identification: Barbour's best-matching approach
	Kinematical indifference: Hardy's q-diffeomorphism approach


	Variants of Quantum EPS
	Option (i): Operationalism about spacetime
	Option (ii): Non-local scenario
	Option (iii): Laissez-Faire scenario

	Explicit Laissez-Faire Quantum EPS constructions
	In terms of superpositions
	In terms of branching spacetime
	Comparison of the approaches

	Lessons from Quantum EPS
	Spacetime superpositions versus spatial superpositions
	Comparison with other cases for the quantum nature of gravity
	The quantum hole argument

	Outlook
	General covariance and quantum diffeomorphisms

