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Abstract. The persistent pervasiveness of inappropriately small studies in empirical 
fields is regularly deplored in scientific discussions. Consensually, taken individually, 
higher-powered studies are more likely to be truth-conducive. However, are they also 
beneficial for the wider performance of truth-seeking communities? We study the im-
pact of sample sizes on collective exploration dynamics under ordinary conditions of 
resource limitation. We find that large collaborative studies, because they decrease di-
versity, can have detrimental effects in certain realistic circumstances that we charac-
terize precisely. We show how limited inertia mechanisms may partially solve this 
pooling dilemma and discuss our findings briefly in terms of editorial policies.  
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1. Introduction. Sample size is a central parameter at all stages of empirical investiga-
tions, from their production to their evaluation by reviewers and their reception by 
their readership. The issue is both epistemological (the quality of studies depends on 
their epistemic power) and ethical (patients should not be involved in studies for weak, 
if not null, epistemic gains). In this context, scientific communities tend to determine 
normative conventions concerning appropriate sample sizes. Unfortunately, a consen-
sus on this issue is lacking. 

Since the 60s, the literature on sample sizes has been dominated by worries about the 
persistent pervasiveness of “underpowered” studies in the empirical sciences, for in-
stance in the behavioral sciences, ecology, or evolutionary biology (Cohen 1962; Sedl-
meier and Gigerenzer 1989; Button et al. 2013a; Vankov, Bowers, and Munafò 2014; 
Smaldino and McElreath 2016). Small samples are said to contribute to the lower reli-
ability of the empirical sciences, and they may be a core factor in the so-called “repro-
ducibility crisis” (Button et al. 2013b). Hence repeated calls for publication norms re-
quiring higher sample sizes, and often for deeper reforms of the incentive structure of 
science (Higginson and Munafò 2016). Other authors counter that, in some cases, 
well-conducted small studies may be intrinsically preferable (Smith and Little 2018). 
Further, some good data is always better than no data: even information about one sin-
gle animal, if suitably interpreted, can be very valuable (Fries and Maris 2021). In this 
perspective, the real problem may be the uncritical and exclusive use of p <0.05 as a 
measure of the evidence and, more broadly, of Null Hypothesis Statistical Testing 
(NHST) (Bacchetti 2013). Indiscriminate sample size requirements would then be in-
appropriate. Instead, one should encourage, e.g., editorial practices requiring the pre-
registration of studies and their data analysis plans, the publication of data with rele-
vant distributional statistics (Trafimow and Marks 2015), or other statistical paradigms 
such as Bayesianism (Rouder et al. 2009). 

While essential, these discussions primarily investigate how individual studies can 
be made reliable—and, consensually, higher-powered studies are more likely to be 
truth-conducive. However, individual scientists and inquiries are fallible and should 
also be seen as intermediate instruments within broader scientific processes, which are 
expected to converge towards more reliable final results (Laudan 1981; Romero 2016). 
Accordingly, specific scientific practices, such as norms about sample sizes, should 
not be evaluated merely locally—according to their effect on isolated studies—but 
also globally—according to their effects on the broader performance of truth-seeking 
communities (Kitcher 1990). Low sample sizes may then turn out to be problematic in 
specific collective contexts only, e.g., when combined with publication practices that 
“filter out” data below significance thresholds and thereby spoil meta-analyses 
(Romero and Sprenger 2021).  

Be this as it may, before studies can be aggregated through meta-analysis, they need 
to be conducted in the first place, which depends on preliminary choices by scientists 
to investigate this or that particular hypothesis. This is the question we investigate 
here. A recurrent risk in exploratory contexts is that hypotheses are discarded prema-
turely, based on limited data. This leads to an exploration dilemma, aspects of which 



 

  3 

have already been studied by recent papers based on a common versatile model (Zoll-
man 2007; 2010; Rosenstock, Bruner, and O’Connor 2017; Frey and Šešelja 2020): 
when previous studies suggest that a research hypothesis is less promising than alter-
nate ones, should scientists keep collecting data about it?  

Here, we pursue this investigation with the additional idea that empirical resources 
are limited both at the individual and communal level in terms of available data, num-
ber of published studies, and research time. After reviewing relevant results in the lit-
erature (section 2), we show that the obvious suggestion of pooling empirical re-
sources can sometimes be detrimental (section 3), which creates a mismatch between 
what is good for individual studies and for scientific communities. After highlighting 
the importance of timescales in this discussion, we emphasize how inertia mechanisms 
can slacken these tensions (sections 4-5) and discuss the scope of these results and 
their implications for science policy (section 6). 
 
2. The BGZ Model and Sample Sizes. To study the impact of sample sizes on hy-
potheses exploration, we turn to the Bala-Goyal-Zollman (hereafter BGZ) model 
(Zollman 2007; 2010). A number N of Bayesian agents, arranged in a communication 
network, compare two hypotheses, A and B, corresponding to two actions (typically, 
administering drug A or B to a patient) with success probabilities pA=.5 and pB=pA+ε. 
We suppose that agents know pA (as in Zollman, 2007) and start off with random 
(non-extreme) priors about pB. In each round, those who believe pB > pA perform ac-
tion B n times (our “study size”) and communicate their number of successes and fail-
ures to their neighbors, while the others do nothing, perhaps using their resources else-
where. At the end of each round, agents use the data about B they and their neighbors 
gathered to update their belief distributions over pB, which, following (Zollman 2010), 
we model by beta distributions. The question—typical of exploration dilemmas—is 
whether the community will devote enough resources to B to discover that pB > pA. 

The communication structure of the model can be seen as a publication and reader-
ship network. As scientists usually read major publications in their fields, but not eve-
rything else beyond these, we focus here on two idealized structures, complete graphs 
(all agents are connected together) and wheel-shaped graphs (agents are connected on 
a circle and to an extra central agent), taking them as limiting cases between which ac-
tual communities lie. 

The BGZ model is usually studied by running simulations for a large number of 
rounds and computing their success rate (i.e., the proportion of communities that fi-
nally agree that pB > pA) and their average convergence speed.1 One then explores how 
these metrics depend on other parameters. For instance, well-connected communities 
can be misled by unlucky early runs of data, whereas less connected ones are more ac-

                                                
1 Here, we say that a community has “converged” when either (1) all agents believe A is better, and B is 
no longer investigated), or (2) all are confident that B is better, in the sense that their mean estimate for 
pB is more than two standard deviations above pA. 
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curate but slower because they preserve diversity for longer and thereby secure suc-
cessful convergence  (Zollman 2007, 584; Rosenstock, Bruner, and O’Connor 2017, 
§3). 

The literature about the BGZ model does not systematically discuss the issue of sam-
ple sizes. However, it appears that everything else being equal, when the number n of 
trials per agent per round increases, so do success rates (Rosenstock, Bruner, and 
O’Connor 2017, fig. 3), an effect we reproduced across a wide range of parameter val-
ues. This is unsurprising: larger studies are individually less misleading and therefore 
less likely to lead communities astray. 

However, should we jump to the conclusion that, individually and collectively, 
higher-powered studies are always preferable? Existing investigations are potentially 
uninformative here. First, they vary the size of studies indiscriminately, whereas re-
source limitations imply that large studies may come at the expense of smaller ones. 
We investigate this “pooling dilemma” below. Second, success rates after large num-
bers of rounds are irrelevant. Thus, we investigate success rates in reasonable time 
frames to assess when large studies may be preferable. 

Importantly, our exploration below integrates a prominent criticism addressed to the 
BGZ model, namely that its results hold only in a limited (and possibly unrealistic) pa-
rameter range “in which learning is especially difficult” (Rosenstock, Bruner, and 
O’Connor 2017, 235); the focus on small effect sizes (typically, ε = pB – pA = .001), 
especially, is seen as a problem (Frey and Šešelja 2020, 1416). We present our results 
for an effect size of 2% (ε = .02) and sample sizes n in the 20–100 range, which we be-
lieve are reasonable.2 (All our results are averaged over 10,000 simulations.) While 
space is missing for details, note that these results are robust for ε between .0001 and 
.1, as long as n is scaled appropriately. If such effect sizes still seem low, consider the 
following. First, the only source of errors in the standard BGZ model is the random 
variation of experimental trials, without any additional noise or systematic study bi-
ases (as in, e.g., (Holman and Bruner 2017)). Adding real-life noise would increase 
both the effects and the sample sizes required to detect them. Second, small effects are 
often investigated by scientists, from physics and genetics to rare side-effects in phar-
macology. 

 
3. The Pooling Dilemma. As mentioned above, larger studies may prima facie seem 
beneficial, both individually and collectively, if they are less likely to lead commu-
nity-wide exploratory dynamics in the wrong direction. However, this result is ob-
tained by looking at the impact of a single varying parameter (here, the number n of 
trials per agent per round) while keeping everything else fixed. In essence, the result 
means that if one could just increase everyone’s resources, the community would do 
better overall. Though helpful in furthering our understanding of the model, this result 
is of limited relevance to the real world. In practice, larger sample sizes come at a 
cost—in terms of funding, of the time of competent experts, etc.—and often entail a 

                                                
2 The parameters α and β determining agents’ initial belief distributions about pB are drawn at random in 
(0,.01], which means that agents are very responsive to evidence. 



 

  5 

decrease in the overall number of independent inquiries because of community-wide 
constraints in terms of available experts, data costs and scarcity (e.g., patients suffer-
ing from a particular disease), or financial resources available for some area of re-
search. This leads to a “pooling dilemma”: should agents produce several small studies 
by themselves or a single large collaborative one? For example, should researchers in 
hospitals conduct their own studies with local patients, or should they try to join forces 
to contribute to a large multicenter trial? This alternative can be studied with respect to 
the interests of individuals (Boyer-Kassem and Imbert 2015) or that of communities. 
We focus here on the latter. 

We explore this dilemma in a straightforward way: we revisit the model above while 
keeping the total amount of data per round, D, fixed. Under such conditions, conduct-
ing larger studies (increasing n) means having less of them (decreasing the number of 
agents N) because D = n·N. Success rates are then subject to two competing mecha-
nisms. On the one hand, larger sample sizes reduce the risk of statistical noise and 
misleading runs of data, thus increasing success rates. On the other hand, a smaller 
number of agents potentially means less scientific diversity—when unlucky studies do 
come out, it is more likely that the entire community will fall for them, hence decreas-
ing success rates. The question, then, is whether the increase in reliability afforded by 
higher-powered studies will make up for the corresponding decrease in diversity. 

 
 

 
Figure 1. Impact of sample size on community outcomes, with constant global amount of data per 
round (D = 500) and numbers of studies and study sizes varying accordingly. 1A: Success rates at the 
end of the evolution. 1B: Temporal evolution of correct consensus rates.  
 

The results plotted in figure 1A are clear, if counterintuitive: from the point of view 
of community-wide research dynamics, when the global amount of data per round is 
kept constant, “non-pooling” communities producing more less powered studies do 
better than “pooling” communities producing fewer more powered studies. This is 
markedly true for less connected graphs; complete graphs—whose agents always take 
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into account all data, whether packaged in smaller or larger batches—should be unaf-
fected, yet even they display a small reliability decrease when there are only a few 
agents, presumably because of a loss of diversity in initial priors.  

Importantly, these results merely exhibit one mechanism making large studies poten-
tially detrimental to the community. As evidence against increasing sample sizes in the 
real world, these results should be taken with a grain of salt since other empirical ef-
fects may make small studies unattractive (see also section 6). For example, low-pow-
ered studies typically display larger vibration effects (i.e., results are more sensitive to 
methodological choices); their protocols, which are less intensively and publicly scru-
tinized, are often less reliable; and when conducted within NHST frameworks, they 
are prone to publication biases and selective reporting (Button et al. 2013a, 367–68). 
Finally, at a broader level, a scientific literature comprising many contradictory, small-
powered, and unreliable studies is harder to make sense of, both for scientists and for 
decision-makers, and it may provide “extra fodder” for industrial merchants of doubt 
willing to cherry-pick results to defend their agendas (Weatherall, O’Connor, and 
Bruner 2020, 1179–80).Furthermore, these results (like others in the BGZ-model liter-
ature) need to be refined by exploring more precisely their temporal interpretation. 
The reason why larger studies eventually do worse when resources are limited is that 
they reduce diversity: the longer diversity is preserved, the more communities accu-
mulate data on B, and the less likely they are to be misled by unlucky data, as in (Zoll-
man 2007; Rosenstock, Bruner, and O’Connor 2017 fig. 5). Thus, a speed/accuracy 
tradeoff is essentially built into the model; the real question is to characterize its pre-
cise features, e.g., by describing the timescale over which it occurs. 

 
4. The Significance of Timescales in Investigations about Research Communi-

ties. Investigations of the BGZ model mostly focus on asymptotic success rates, i.e., 
on the proportion of simulated communities that eventually reach a correct consensus. 
However, time too is a limited resource: asymptotic values are meaningless in practice 
unless attained over realistic timeframes. The “small-study advantage” discussed 
above, in particular, comes at a temporal cost, whose magnitude and real-world rele-
vance require investigation. 

Unfortunately, discussions concerning what should count as a realistic timescale are 
conspicuously absent from the literature. Let us attempt some such first-order calibra-
tion. Scientific results are shared by publishing studies; thus, our model’s “rounds” 
should be interpreted as publication cycles. Assuming that one publication requires 
somewhere between four months and three years, 100 rounds would correspond to 
some 30 to 300 years—incidentally raising concerns about the average convergence 
times described in the literature, which are usually well beyond 100 rounds (Zollman 
2007, fig. 3; Rosenstock, Bruner, and O’Connor 2017, figs. 5 and 8). For the purposes 
of this paper, we stipulate that one round takes six months—which is on the short 
side—and limit ourselves to the first 150 rounds, i.e., 75 years. Furthermore, the litera-
ture usually discusses convergence times only through their averages (if at all). This is 
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too coarse a metric for our purposes. Instead, we plot the time evolution of the propor-
tion of simulated communities that have reached (correct) consensus (figure 1B). 

This temporal perspective shows the sample size–diversity tradeoff in a new light: 
while pooling data to conduct larger studies reduces reliability in the long run, it re-
mains beneficial for communities for some time. As an extreme case, compare 5-agent 
wheels (e.g., “pooling” communities in which 25 agents join forces in groups of 5 to 
produce, in each round, 5 studies of size 100) with 25-agent wheels (“non-pooling” 
communities producing 25 individual studies of size 20). Ultimately, 5-agent wheels 
are about 20% less reliable. Nevertheless, they perform better for roughly 30 years (60 
rounds)—only then does a small-study advantage materialize (figure 1B). Over shorter 
time intervals, communities that produce larger, collaborative studies, or are more con-
nected (the two features being related in practice, as larger studies usually reach a 
larger audience), are more reliable. 

These results cut both ways. They show that the accuracy gains afforded by publish-
ing small studies come at non-negligible temporal costs. However, the time scales at 
which large-studies-producing communities become less reliable do fall within ordi-
nary research timeframes. Ideally, one would like “pooling” communities to perform 
better over all meaningful research timescales. We now explore how to achieve this 
within the model. 

 

5. Inertia as a Way to Forestall the Pooling Dilemma. Pooling data to obtain larger 
samples doubtlessly produces more reliable individual studies. However, whether it is 
collectively preferable appears, at this stage, to depend on the context. Eliminating this 
contextual discrepancy between the individual and collective epistemic good seems 
well-advised. First, context-dependence makes individual agents aiming at the collec-
tive good likely to miss it for lack of reliable information about the precise context 
they are in. Second, to be effective, scientific norms (like “use large samples if possi-
ble”) ought to be general in scope and free of complicated restricting conditions. Over-
all, whenever statistical power is important and small studies are associated with im-
portant defects, it would be best if data pooling could be recommended blindly. Thus, 
to resolve this individual-social dilemma, we now explore how to make data-pooling 
communities more reliable even in the short run. 

In empirical inquiries, even well-prepared data may be temporarily misleading and 
deceive scientific communities that follow them blindly. Thus, to guard against strokes 
of bad luck, scientists that face unfavorable data should ignore them up to a certain 
point. Accordingly, we investigate here the effects of a simple mathematical inertia 
mechanism (due to (Frey and Šešelja 2020) in the context of a more complex model): 
when their data suddenly show that they are not investigating the most promising hy-
pothesis, agents wait for some rounds before switching. As above, we investigate 
cases where the global amount of data per round is limited and explore reasonable 
timescales. Implications in terms of research policy are discussed in the next section. 
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Figure 2. Effects of inertia on the performance of communities, with constant global amount of data per 
round (D = 500). 2A: Temporal evolution of the rate of correct consensus, with an inertia of 5 rounds 
(compare with figure 1B). 2B: Scatterplot of the time-accuracy tradeoff, for wheel-shaped graphs of 7, 
11, 15, and 25 agents and complete graphs of 7 agents, and inertias between 0 and 5 rounds.   

 
As figure 2 shows, inertia increases long-term reliability across the board; while 

“non-pooling” and less connected networks still do better asymptotically, long-term 
reliability differences between communities become much smaller. Moreover, inertia 
does not significantly impact the timescale over which each community converges, 
usually increasing it by only a few years. Finally, and more to the point, inertia sub-
stantially increases the timeframe over which well-connected and “pooling” communi-
ties are more reliable than “non-pooling” ones (figure 2A). Indeed, over most of the 
research time of a community, conducting higher-powered studies is now preferable; 
low-power “non-pooling” communities take the upper hand only by a small margin 
and over large timescales, typically above 100 rounds (50 years). Our findings are 
summarized in figure 2B: without inertia, we had to choose between fast but ulti-
mately inaccurate “pooling communities” (bottom-left quadrant) and more accurate 
but slow “non-pooling” ones (top-right quadrant). An excellent compromise is reached 
with only five rounds of inertia (top-left quadrant). In sum, mechanisms ensuring iner-
tia seem capable of solving the pooling problem.  
 
6. Discussion. Insights from (idealized) models must always be taken with care (in 
this context, see especially (Rosenstock, Bruner, and O’Connor 2017; Frey and Šešelja 
2018; 2020). We now discuss the scope and interpretation of our results. 

First, this version of the BGZ model describes situations where, perhaps because of 
data or funding shortages, communities cannot at the same time produce high-powered 
studies and preserve scientific diversity. Though particular, such cases are by no 
means rare. However, when no such tradeoff exists and power matters, larger studies 
are unequivocally preferable, provided some error-preserving diversity is maintained. 

Second, the deliberate simplicity of our model, together with our choice of realistic 
parameter values, suggests that the mechanism we analyze is general, and that the 
highlighted tension may be at work in actual communities: large collaborative studies, 
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though more reliable individually, may be globally detrimental when they decrease di-
versity significantly.  

Further, there are reasons to suspect that de-idealizing the model would magnify the 
results. First, the only source of error in the model is statistical noise, whereas in prac-
tice, factors like methodological variations, biases in study design, cognitive and social 
biases, if not deliberate doubt manufacturing, often skew scientific processes (see, e.g., 
(Holman and Bruner 2017). In such contexts, large studies, because they reduce diver-
sity by drying up the research pool, may be especially misleading to communities 
whenever they happen to be affected by such problems. Second, our model’s Bayesian 
agents are careful not to give studies more weight than their sample size warrants. 
However, real-world scientists may give disproportionate weight to both small and 
large studies, thus increasing the potential for incorrect convergence. Similarly, it 
would be interesting to analyze whether statistical filters for publication selection, 
such as the NHST paradigm, create additional worries, as investigated in (Romero and 
Sprenger 2021) for meta-analyses. 

Finally, one may wonder whether, when collaboration reduces the number of teams 
working on a problem, scientific diversity is really threatened. Is it not the case that 
countervailing real-world mechanisms—virtuous or otherwise—already shield scien-
tific diversity? Perhaps. For instance, the cost of changing one’s research program, the 
effects of conservative cognitive biases, the constraints coming with scientific grants 
or private funding, or even sheer stubbornness,3 might mimic the effects of inertia and 
push scientists to ignore empirical data, at least temporarily. However, assuming that 
such mechanisms play a diversity-preserving role in just the right way would be over-
optimistic, especially since, as is well-known, powerful forces also promote conform-
ity. Counting on mechanisms that push scientists to ignore data amounts to playing 
with fire. It seems preferable to develop scientific norms that promote diversity explic-
itly by controlled and transparent means. 

Space is missing to discuss in depth how inertia-promoting mechanisms could be in-
stitutionalized. However, here are suggestions. At the editorial and reviewing level, 
methodologically sound studies should not be disqualified based on recent evidence 
contradicting them, especially when large collaborative teams structure communities 
and dissenting investigations tend to be rare. Similarly, studies investigating seemingly 
disconfirmed but insufficiently explored hypotheses should be encouraged—provided, 
naturally, they state all available evidence and do not shun scientific method. While 
guaranteeing inertia may seem complicated in practice, note that very little of it al-
ready produces significant effects. Exactly how much inertia would be needed in prac-
tice depends on how long typical errors actually persist—on this, more work is re-
quired. 

 

                                                
3 Zollman (2007) also investigates the effects of extreme agents, i.e., agents having extreme initial priors. 
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7. Conclusion. The recent literature on sample sizes depicts low-powered studies as an 
endemic problem that may be solved—among other things—by working collabora-
tively and sharing data to develop higher-powered, more reliable studies (see, e.g., 
Button et al. 2013a, 374). However, individual studies are by no means the terminus 
ad quem of science; they are fallible intermediate instruments within broader scientific 
processes, and they should be judged, not just individually, but according to their 
broader impact on the course of science. Our results illustrate that discrepancies may 
arise between these two levels, just like there can be a mismatch between what is ra-
tional individually and collectively in scientific communities (Kitcher 1990). Indeed, 
while one might expect scientific communities to be epistemically better off when in-
dividual studies are high-powered and reliable, and worse off when they are small, we 
have shown that, counterintuitively, this need not always be true. We studied the im-
pact of sample sizes on collective exploration dynamics under conditions of resource 
limitation—a context in which researchers use published studies not to determine con-
clusively whether a hypothesis is true, but to decide whether it is worth investigating 
further. In such cases, setting up a few higher-powered studies instead of many smaller 
ones may be detrimental: when large studies happen—for some reason or other—to be 
misleading, they are more likely to lead the entire community astray.  

Our argument should not be misconstrued as an apology for low-powered studies, 
which have many drawbacks. Rather, it highlights the need to be mindful of the indi-
rect epistemic costs that large studies can occasion through diversity loss, and the im-
portance of mitigating these through thoughtful institutional practices to preserve both 
individual and collective reliability. Overall, our results support the idea that the ques-
tion of sample sizes admits of no unequivocal answer; overly general, context-inde-
pendent norms may be harmful. Which sample sizes are more truth-conducive for sci-
entific communities seemingly depends on the amount of data available, the commu-
nity structure, and the timeframe under consideration. Moreover, studies can serve dif-
ferent purposes at different stages of an investigation, and different sample sizes may 
be appropriate in each case. Science is a remarkably complex collective enterprise. We 
would do well to take heed of this complexity before issuing one-size-fits-all methodo-
logical decrees on sample sizes. 
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