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heterogeneity of computational science1 

Cyrille Imbert2 and Vincent Ardourel3,4 

 

Abstract. Various errors can affect scientific code and detecting them is a central 

concern within computational science. Could formal verification methods, which are now 

available tools, be widely adopted to guarantee the general reliability of scientific code? 

After discussing their benefits and drawbacks, we claim that, absent significant changes as 

regards features like their user-friendliness and versatility, these methods are unlikely to be 

adopted throughout computational science, beyond certain specific contexts for which they 

are well-suited. This issue exemplifies the epistemological heterogeneity of computational 

science: profoundly different practices can be appropriate to meet the reliability challenge 

that rises for scientific code.  
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1. Introduction. Various types of errors can affect scientific code, the reliability of 

which is a central concern for computational science (Merali 2010). While errors can 

sometimes be innocuous, they can also spoil scientific results and have dramatic 

consequences: it was a conversion error from a 64-bit floating-point number to a 16-bit 

signed integer value that caused the maiden flight of the Ariane 5 launcher in 1996 to end 

in disaster (Lions 1996, 4). Thus, the verification of scientific codes should be a top 

priority task in computational science, for which the most stringent and powerful tools 

available can be expected to be used. Surprisingly, this does not seem to be entirely the 

case, as the case of formal verification methods shows. 

Formal verification methods are automatized procedures based on rigorous mathematical 

tools that aim to check the correctness of code. They can address specification issues and 

verification tasks in programs or design issues within computation systems (e.g., Butler 

and Muñoz 2016; Rushby 2007). That they are neglected (or, at least, partially so) is all the 

more unexpected since they no longer represent an unattainable holy grail for practitioners. 

Certainly, for a long time, they were more an object of inquiry for computer scientists (and 

of false promises) than a tool that was available for scientists; yet today things are 

presently different and some scientists are already making use of these methods. 

Nevertheless, whereas these tools seem to have the potential to boost the reliability of 

codes, they are not widely adopted by scientists. This disjuncture appears even more 

paradoxical given that scientists are, we have every reason to believe, eager to warrant the 

validity of their inquiries. So, from both a scientific and an epistemological perspective, it 

seems even more legitimate today to ask: “If this stuff is so good, why isn’t it used more?” 
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(Rushby 1997, 18). Why does the scientific community not seize on this type of practice 

and why does it continue to shun one of the best tools for increasing confidence in 

scientific code?  

To answer these questions, in this paper we study the epistemological status of formal 

verification methods in scientific practice; we ask whether they can indeed be widely 

adopted in computational science to verify code; and we analyze what their partial neglect 

tells us about the epistemology of computational science. For this purpose, we first review 

philosophical discussions on verification in computational science, emphasizing that 

questions concerning formal verification have largely so far been ignored (section 2). 

Then, we present formal verification methods and describe their increasing use in 

computational science (section 3). We scrutinize their pros and cons, and highlight the 

deeply rooted obstacles to their generalized adoption, from their mathematical features to 

the community organization their use requires. On this basis, we argue that, absent 

significant changes concerning their user-friendliness, these methods are unlikely to be 

widely adopted as standard verification practices across the computational sciences 

(section 4). However, we emphasize that these demanding, high-profile methods can be 

well-suited to specific contexts, and we outline the profile of these contexts (section 5). 

Finally, we analyze the consequences of this scientific heterogeneity both from an 

epistemological and a methodological perspective (sections 6 and 7). 

 

2. Verification in Computational Science. A key issue in the study of computational 

science is to understand how it differs more than quantitatively from non-computational 
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science and whether it raises novel epistemological questions (Frigg and Reiss 2009; 

Humphreys 2009). Because it involves specific types of processes, computational science 

also has specific ways of succeeding and failing. Since such processes are complex and 

have many ways of going wrong, “knowledge-based precautions against error are routine 

with computational methods” (Humphreys 2004 112). In this context, questions related to 

the analysis of errors, their sources, and how to guard against them are emerging as a 

specific domain of inquiry (Fresco and Primiero 2013, Beisbart and Saam 2019). 

Concerning this issue, philosophers have mostly focused on mathematical and modeling 

aspects: they have, for example, investigated how numerical errors may threaten 

reproducibility (Lenhard and Küster 2019), whether they can be treated as modeling errors 

(Fillion and Corless 2014), and what impact they have concerning “the justification of 

results obtained by computer simulation” (Fillion 2017, 138).  

Code verification remains far less discussed by epistemologists of computational 

science. This topic surfaces mainly in discussions about the possibility of keeping 

verification and validation distinct when assessing the reliability of computer simulations. 

Checking the reliability of empirical inquiries that use computational methods involves 

various tasks: these typically include the design of one or several models representing a 

target system, the development of mathematical and computational techniques to explore 

these models, the writing of well-specified code to implement the corresponding 

algorithms, the running of the code on suitable machines, the collection of computational 

results, and the analysis of results so as to derive information about the models under 

investigation and the systems represented. ‘Verification and validation’ is a central 
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methodology for engineers, in which verification is seen as concerning the adequateness of 

the code and the algorithms that explore the mathematical model, while validation aims to 

evaluate whether the mathematical model correctly represents the target phenomenon 

(Oberkampf and Roy 2010). Success depends on how reliably these tasks are completed 

(see again Beisbart and Saam 2019 for details).  

Notably, the fact that these tasks are conceptually distinct does not imply that they are 

separately carried out. Accordingly, the question arises of the possibility of assessing the 

reliability of their completion separately, by analyzing the mathematical adequateness of 

the target algorithms and how they are implemented on the one hand and by validating 

models on the other. This question has been intensively discussed over the last decade. On 

the one side, Winsberg maintains that “[t]he sanctioning of simulations does not cleanly 

divide into verification and validation” (Winsberg 2010, 23), citing miscellaneous 

evidence in favor of this claim, from the general inability to prove by mathematical means 

that verification has been achieved, to the analysis of benchmarking as a global activity, or 

the existence of back-and-forth or trial-and-error practices (Winsberg 2010, chap. 2). 

Lenhard also argues that although verification and validation “should be distinguished in a 

conceptual sense, they are interrelated in practice” (Lenhard 2019, 180), rooting his 

arguments in the analysis of practices found in software engineering. On the other side, 

Morrison (2015, chap. 7) argues that Winsberg overstates the impossibility of verifying 

computer simulations and, to this end, presents methods used by scientists, such as error 

assessment or the method of manufactured solutions (see also Fillion (2017) and Rider 

(2019) for similar discussions in the context of equation-solving through error analysis and 
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benchmarks). Beisbart (2019) suggests that confusion in this debate may arise from 

neglect of the distinction between conceptual and computational models. Finally, Jebeile 

and Ardourel (2019) defend the in-practice possibility of disentangling verification and 

validation by discussing the application of formal verification methods by the U.S. Army 

Corps of Engineers to study models of hurricane storm surges.  

Formal methods of code verification are relevant to this discussion since they provide a 

way to verify code independently, stringently, and through abstract automated processes. 

Surprisingly, whereas computer scientists, software engineers, and sociologists have been 

discussing their use for decades (Shapiro 1997; McKenzie 2001), philosophers have 

almost entirely ignored them. Be this as it may, the use of formal methods and that of the 

entanglement of the verification and validation of computational inquiries are two issues 

that, though related, remain distinct. When one can use formal methods to verify 

computational inquiries, an important step is made toward the disentanglement of code 

verification and the validation of inquiries. Nevertheless, the impossibility of using formal 

verification methods does not imply that code verification and validation are necessarily 

entangled. For example, code verification may be carried out by other non-formal methods 

focused on code. An example is N-version programming (NVP), a method aimed at 

detecting errors in codes by involving different individuals or groups who code 

independently (see, e.g., Shapiro (1997, 34) for a discussion). In the same vein, Creel notes 

that an “algorithm is almost always implemented in multiple languages” (2020, 18) and 

may return different outputs for the same target function depending on how it is 

implemented. Accordingly, a means to uncover coding errors is to compare the results 
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issuing from different software packages, as was done successfully by cosmologists 

working on the Dark Energy Survey (ibidem, 19).  

Other non-formal methods, not focused on code, can be employed to verify programs, 

such as the method of manufactured solutions, the use of benchmarks, or a posteriori 

verification methods such as backward error analysis (see, e.g., Fillion and Moir, 2018). 

For the sake of argumentative clarity, we will leave the issue of entanglement for future 

work, and we focus in this paper only on the sheer possibility of using formal methods for 

code verification within computational science. However, the above discussion suggests 

several lessons for the present project. 

First, details matter: epistemologists need to go deeper into the presentation, analysis, and 

discussion of verification methods to discuss their scientific usefulness. Conversely, unless 

their scope is stringently justified, general claims on this issue are unlikely to be 

conclusive. Second, the above discussion concerning the possibility of verification tends to 

be presented as an all-or-nothing matter. But this is too crude since what is possible in 

practice is, for a large part, a gradual matter that depends on various contextual factors. 

Further, verification may bear on multiple aspects of the code, and this activity may itself 

be carried more or less extensively. Even if total verification proves impossible, there is 

much to be analyzed concerning how much partial verification of code is possible and 

should be promoted as a good rule of scientific conduct. Third, a more precise 

investigation is needed of the factors and constraints that make the use of verification 

methods possible or not. Such factors and constraints may be of various kinds: logical, 

computational, and mathematical aspects are naturally crucial, but other essential factors 
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may pertain to the development of scientific communities, how relevant knowledge and 

know-how are shared, or how scientific labor is divided. Fourth, the question of the 

appropriateness of using verification methods cannot be limited to epistemic factors. As 

we shall see, values can play a significant role in the resort to particular methods (see 

Morrison 2014 for preliminary analyses). Finally, while general claims about 

computational science are defended in the above-described discussions, positions are 

based on particular cases and practices. The extent to which those cases are representative 

and whether it is legitimate to oppose them is rarely questioned. This is a worry if the 

usability, advantages, and suitability of computational methods depends on contextual 

factors. Based on these insights, in the remainder of this paper we investigate specifically 

whether formal verification methods offer bright prospects for the whole of computational 

science. 

 

3. Formal Methods and their Increasing Use in Science. The nature and features of 

coding errors make their existence a specific problem, which requires the best efforts to 

detect and correct them. Malfunctional objects are not always a problem. When an error 

manifests itself overtly, it can be fixed. For example, if a pen dries out, or its ink canal 

becomes congested, the effects are immediate: one can no longer write, and the pen is 

changed. Unfortunately, many errors in code are not of this kind. First, it is often the case 

that errors do not spoil the computational processes or the scientific results in ways that 

patently signal an underlying problem. Second, since scientists do not know in advance the 

precise results they should get, they are often in no position to know that something is 
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wrong. Third, even errors that have patent effects can be hard to identify. Finally, various 

errors create trouble only in particular circumstances, and may long go unnoticed until 

they have devastating effects. Overall, scientific codes are objects, the correctness of 

which can hardly be assessed prima facie by those who develop them. This can feed a 

misleading feeling of safety and, without appropriate safeguards, favor the development of 

sloppy science. Naturally, scientists keep developing various methods at the level of code 

or mathematics to detect code errors systematically. For example, backward error analysis, 

by estimating conditioning numbers and residuals,5 allows scientists to detect that the 

numerical solutions of equations are deviating from the exact solution “even though the 

solution to the specified problem is unknown” (Fillion and Moir 2018, 747, our emphasis). 

Be this as it may, there is no general solution to the problem of detecting and fixing code 

errors, and assessing their impact, and this remains an ongoing worry. Scientific code is 

often of poor quality, and experimental studies have suggested that software is less 

accurate than generally believed (Hatton and Roberts 1994). Further, while good software 

is vital to research, funders, institutions, and practitioners often overlook its importance 

(Goble 2014, 4). Overall, scientific software errors can significantly impact published 

results (Hatton 1997; Merali 2010; Soergel 2015); thus, the existence of methods that can 

systematically and automatically check scientific code and increase its safety should be an 

attractive prospect for scholars interested in the reliability of computational inquiries. 

 
5
 The condition number measures the stability of differential equations and the residual the 

extent to which the numerical solution is tangent to the vector field. 
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Formal verification methods are just such techniques, well-founded mathematically, 

automatically implemented on computers and designed to establish the correctness of 

programs or assist in the development of computer-based systems. They aim to guarantee 

that a computational system will function systematically as expected. They are generally 

associated with formal languages and formal semantics, used to describe the target 

properties of computational systems, and often come with powerful software tools to 

check whether these properties are instantiated by actual codes (Garavel and Graf 2013, 

14; Butler and Muñoz 2016). Formal methods are no longer marginal: they now comprise 

a field of research investigated by a well-structured scientific community with scientific 

books, academic journals, societies, and regular international conferences. In 2011, more 

than one hundred formal method languages were already listed on the Formal Methods 

Wiki (Garavel and Graf 2013, 18). Overall, formal verification is a plural field of activity 

in which various complementary methods have been developed to guard against a range of 

computational errors.  

These methods involve two main steps, viz. specification and verification (Clarke and 

Wing 1996). Specification consists in rigorously describing a computational system and its 

desired properties. One may indeed present specifications informally; however, in 

stringent applications, they are described in formal languages so that computer programs 

can take them as input for verification tasks. Then, formal tools can be used to analyze 

whether the computational system instantiates the target properties. Model-checking and 

theorem-proving are two such prominent methods (see, e.g., Karna et al. 2018). Model-

checking consists in building a finite model of the computational system and checking 
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whether a target property holds in that model by performing an exhaustive state-space 

search. Theorem-proving consists in expressing the computational system as formulas in 

some mathematical axiomatized logic and then proving a statement corresponding to the 

target property within this framework. Other formal verification techniques include 

abstract interpretation or equivalence checking (Garavel and Graf 2013, 214; Campetelli 

2010, 7). 

Formal methods have now been under development for decades by mathematicians, 

logicians, and computer scientists. Because their potential pay-offs are high, debates about 

their scientific role and usefulness have regularly raged between their partisans and the 

pragmatists, who favored more direct and inquiry-relative ways of testing codes (Shapiro 

1997). Until the 1980s or so, formal methods were an object of discussion mainly for 

computer scientists interested in analyzing to what extent computational results could be 

rigorously verified (see De Millo et al. 1979; Dijkstra 1978; Fetzer 1988 for influential 

contributions). The techniques themselves, at that early stage of development, could not 

provide exploitable tools. They had few applications, practitioners tended to consider them 

oddities with no nontrivial scientific applications, and they did not fulfill the hopes they 

raised. Thus, it was legitimate to consider that computational science, as a whole, was 

doomed to rely on informal methods to guarantee the reliability of its code (Shapiro 1997 

and MacKenzie 2001).  

However, there are good “reasons why now is a good time to revisit this hypothesis” 

(Fisher et al. 2017, 4), both within computer science and computational science. First, 

technological progress in computers has made a crucial difference, since faster processors 
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and computers allow scientists to adopt formal methods and apply them to huge search 

spaces. Secondly, there have been decisive improvements in automation, such as the 

development of SAT solvers to deal with problems of Boolean satisfiability.6 Thirdly, 

formal methods have become more accessible, with formal-methods techniques, 

documentation, and licenses now publicly available. Fourthly, the growing complexity of 

computational code is setting the bar higher in terms of the techniques needed to guard 

against errors (ibid., 5). Finally, significant advantages have been reported to derive from 

their actual use in the world of industry: they improve the quality of products, reduce 

the time to market by enabling earlier detection of mistakes, and seem to reduce costs 

(Woodcock et al., 2009, Garavel and Graf 2013, 37). Overall, it is no surprise that major 

actors whose activity hinges on software reliability are increasingly using these methods: 

for example, the Amazon company adopted them in 2011 to help solve difficult design 

problems, and otherwise undetectable bugs were thereby resolved (Newcombe et al., 

2015).  

Importantly, the use of formal methods is also expanding and they are no longer mere 

oddities in the sciences, as highlighted by the prominent examples below. Airplanes 

represent highly critical systems involving many computers and automatic systems, where 

the absence of runtime errors is crucial. Unsurprisingly, these methods are used in 

 
6 SAT is a central decision problem dealing with the possibility of satisfying particular 

Boolean formulas. Because many problems reduce to SAT, advances concerning SAT can 

represent decisive breakthroughs. 
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avionics. For example, the Airbus company uses a formal method called Astrée to check 

the flight-control software of airplanes. Astrée is a static analyzer based on abstract 

interpretation. It allows Airbus to prove the absence of any runtime error in several safety-

critical programs, e.g., in the primary flight control software of the Airbus A340 fly-by-

wire system, a program of 132,000 lines of code (Garavel and Graf 2013, 31). Aerospace, 

more generally, is a field in which formal methods have achieved prominence. For 

instance, the French National Aerospace Research Centre “has chosen formal methods for 

the verification of critical aerospace software” because simulation and testing are “not 

exhaustive, and still very labor-intensive and costly”, whereas formal verification 

techniques “have the advantage of being automated and exhaustive” (Wiels et al. 2012, 2). 

Formal verification techniques are now officially integrated into certification standards for 

avionics software, namely in the last version of the norm DO-178C that deals with 

“software considerations in airborne systems and equipment certification”. The rationale 

for this replacement of testing techniques by formal verification methods is multi-faceted 

(Moy et al. 2013). For example, formal methods are well-suited for the assessment of 

software robustness (i.e., whether software can keep functioning under abnormal 

conditions). Time gains of “roughly a person-month per flight software release” (ibid., 55) 

are also achievable. Overall, the adoption of formal verification techniques “isn’t simply 

possible but also practical and cost-effective, especially when backed by automated tools” 

(ibid., 55). The revision of the certification standard reflects a new awareness that “formal 

techniques can replace, and not simply augment, testing” (ibid., 56).  
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Large-scale computer simulations in hydrodynamics are another major case of the use of 

formal methods. For example, the ADvanced CIRCulation model (ADCIRC) is used by 

the U.S. Army Corps of Engineers as an ocean circulation model to study coastal flooding 

from tropical storms (see Jebeile and Ardourel (2019) for a philosophical presentation). 

For safety reasons, the reliability of these computer simulations is of great importance, so 

formal methods are employed to check crucial properties of the discretized mesh 

representing the ocean, which comprises 1,224,714 full finite elements. The formal 

method, called Alloy, consists of a declarative specification language with an automatic 

analysis performed by a SAT solver. Static and dynamic properties of the mesh are thereby 

checked, including topological relations and connectivity properties. Jebeile and Ardourel 

highlight several achievements of these methods, such as the verification of the discrete 

mesh, the absence of ‘cut points’ (i.e., regions where the width of the mesh is zero), or the 

dynamic evolution of triangles (viz., whether they change suitably from ‘dry’ to ‘wet’).  

Finally, let us mention the use of formal methods to check the Clinical Neutron Therapy 

System, a complex neutron radiotherapy installation at the University of Washington 

Medical Center. It is presented as “a large-scale case study in applying modern verification 

techniques to check the safety of a radiotherapy system in current clinical use” 

(Pernsteiner et al. 2016, 24). The Alloy Analyzer was notably used to formally check 

different components and their interactions, and several safety-critical flaws were detected, 

demonstrating that formal methods “can provide significant practical benefits” by focusing 

“on deep properties of system components” (ibid., 16). 
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Are the above examples of the use of formal methods for code verification exceptions in 

empirical science or do they correspond to a larger trend? A recent empirical study offers 

insights into this issue (Padilla et al. 2018). The survey involved model builders from 

academia, private industry, and government, with various educational 

backgrounds. Several techniques of verification were reviewed, ranging from informal to 

formal methods. It turns out that simulation verification is mainly “a trial and error 

activity” but that formal methods come in second with 35.8% of respondents opting for the 

former, 21.2% for the latter, and 19.9% for visualization methods (ibid., 6). Moreover, this 

study reveals great disparities across domains. Formal methods are applied to systems 

dynamics models (30,5% of respondents), but hardly used for agent-based models (13.2% 

of respondents). Modelers in the defense (43.5%), healthcare (41.6%), and business 

industries “are more likely to formally verify their models”, whereas modelers in science 

and engineering usually use systematic trial and error (ibid., 7).  

Overall, these empirical findings highlight that the use of formal methods of verification 

is globally expanding in computational science, though very heterogeneously so. This is 

compatible with two scenarios. First, one might consider that the subfields in which they 

are already being used comprise a scientific avant-garde with respect to good 

computational practices, presaging the massive adoption of these methods across 

computational science. In this scenario, we are currently in a transient situation marked by 

the scattered use of these methods by pioneers, accompanied by steady development. 

Alternatively, it may be the case that these methods, though developing in science, cannot 

become a common standard, and are doomed to remain restricted to particular (albeit 
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sometimes large) environments that are well-suited for their use. We maintain, below, that 

the second scenario obtains. 

 

4. Obstacles to the Development of the Use of Formal Methods. Formal methods of 

verification have significant advantages; why, then, if they are so beneficial, would not all 

fields adopt them? We argue in this section that these methods also come with various 

major inconveniences. We characterize the nature of these inconveniences, highlight their 

diversity, ranging from logical to social or organizational constraints, and emphasize that 

these constraints are often well-entrenched and unlikely to disappear in the future with the 

progress of science.7 

To start with, the benefits of formal methods, though substantial, also have intrinsic 

limitations. Firstly, formal methods can warrant only that codes correctly fulfill existing 

formal specifications. Thus, they are conclusive only if these specifications adequately 

catch the target problems. Yet, whether the latter is the case cannot be decided by formal 

 
7 From a methodological perspective, the diverse nature of these constraints implies that 

their description and analysis must draw on different sources in addition to research papers 

about formal methods, typically grey literature (viz. technical reports where techniques and 

methods are discussed) or scholarly studies which analyze how science and scientific 

communities work. This orientation is consistent with the recent naturalistic and practical 

turns in philosophy of science. We thank an anonymous reviewer for highlighting this point. 
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means, since this requires determining whether a formal object adequately corresponds to 

an informal goal. Further, when writing specifications, scientists cannot be certain that all 

relevant aspects and sources of troubles have been taken into account. Accordingly, 

verification proofs of correctness are always relative to particular specifications, and it is 

in the specifications that the problems often lie. Practitioners in this field acknowledge 

these limitations: “[formal methods] can greatly increase our understanding of a system by 

revealing inconsistencies, ambiguities, and incompleteness that might otherwise go 

undetected”, but their use “does not a priori guarantee correctness” (Clarke and Wing 

1996, 626). Moreover, even when errors are detected, it may be hard for practitioners to 

obtain valuable systematic feedback concerning how to handle errors successfully 

(Heitmeyer 2004, 15). In other words, formal methods negatively certify the absence 

of some causes of failure but do not provide general positive warrants about the reliability 

of computational systems.  

Secondly, many verification activities involve tackling undecidable problems. Thus, 

tractable solutions for particular verification problems do not always exist, and existing 

algorithms can solve only restricted verification problems (Garavel and Graf 2013, 16). 

Accordingly, the benefits of formal verification are not always accessible.  

Thirdly, formal methods of verification are not general-purpose tools. Many different 

properties need to be verified, whereas verification methods are targeted at specific types 

of properties: for example, some can be verified with model-checking or abstract 

interpretation, others by theorem-proving. Further, the properties to be verified potentially 

evolve along with the flow of design (Garavel and Graf 2013, 214). Finally, formal 
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verifications techniques are usually relative to particular languages and have mostly been 

developed for specific languages: for example, Lint is a static analysis tool used to detect 

errors in C and Unix programs, and CodeSonar is a tool to check for template errors in C, 

C++, and Java code.8 Conversely, most coding languages are not designed for verification, 

and language chosen constrains the available methods and the set of accessible verification 

proofs. Overall, there is both a wealth of verification tasks and of methods with different 

and limited potentials. The prospects of developing all-purpose and easy-to-use 

verification methods are weak, and the verification of code seems to be doomed to remain 

a patchwork activity.  

Finally, benefiting from formal methods may imply forgoing other epistemic benefits. 

As Wayne (2019) claims: “What’s good for coding is bad for proving! Formal verifiers 

have a dilemma: the more expressive the language, the harder it is to prove anything in it. 

But the less expressive the language, the harder it is to write anything in it” (2019, sect. 

‘Proofs are hard’). Thus, there is a trade-off between the epistemic affordances of coding 

languages with respects to other epistemic virtues, and their potential for formal 

verification. This point raises particular challenges in the context of the development of 

accessible coding practices and user-friendly languages, since these may not be suitable 

for formal verification. Overall, a situation in which practitioners can easily enjoy all the 

 
8  Despite recent works in this direction (see, e.g., Liu et al. 2020), formal verification 

techniques seem to be less developed for widely used programming languages like Matlab 

and Python. 
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advantages of formal methods for all their verification needs does not seem a close 

prospect. 

The other main worry is that using these methods safely remains very costly in terms of 

time, skills, and knowledge. Firstly, both the application of partial and complete 

verification of codes and programs, where this is indeed possible, remains highly time-

consuming, which explains why they are often restricted to critical scientific domains. 

Clearly, users might be satisfied if, e.g., only 90% of their code is formally verified, given 

that formal verification comes in degrees, and the marginal costs to further verify codes 

(say, to verify 99% instead of 95%) tend to be increasing. However, partial verification 

does not escape issues pertaining to languages mentioned above, which explains why it has 

thus far focused mainly on a few high-priority languages, such as C and Java (Wayne 

2019, sect. ‘Partial verification’). Thus, being more flexible about reliability thresholds 

alleviates the costs but does not make formal methods a widely accessible tool. 

Secondly, each formal method exacts its specific heavy toll in terms of learning costs. 

Indeed, it requires resorting to particular formal tools, which have their technicalities and 

are not part of practitioners’ culture in empirical science. Further, because there are no all-

purpose formal methods, practitioners cannot learn one such technique and live happily for 

the rest of their computational lives; instead, they are called upon to develop knowledge of 

the various existing methods so as to be in a position to choose and apply them 

contextually. In brief, using formal methods significantly extends the epistemic burden of 

those trying to use them to study natural systems through computational inquiries. Can we 

expect most scientists to make these efforts? Probably not. Remember that, in general, 
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scientific code is already of low quality (Wilson et al. 2014, 1). The lack of coding 

training, the pressure to publish quickly, and the modalities of project funding already 

provide strong incentives to neglect the writing of good code. Thus, the development of 

good and formally verified codes is even more unlikely. 

A third inconvenience under this heading is that formal methods require extreme clarity 

in advance about the target properties that are to be tested, as well as clear oversight of the 

whole scientific process to avoid working for nothing. But “scientific software is […] 

often explorative: the purpose of the software is usually to help to understand a new 

problem, implying that up-front specifications of software requirements is difficult or 

impossible” (Hannay et al. 2009, 1). Further, because of their lack of scalability, investing 

in formal methods remains risky for researchers in contexts of uncertainty. In brief, using 

formal methods adds strong additional constraints on scientific inquiry and does not square 

well with how research is often conducted. 

And finally, significant contingent factors may deter individual scientists from using 

these methods. It is easier and safer to use complicated techniques when one has the 

backing of one’s community, which valorizes their use, encourages researchers to apply 

them, provides shared facilities to make their adoption less costly, and institutionalizes 

their learning by apprentices. As for various techniques, the costs and benefits of these 

methods depend on the environment in which they are used and whether common 

resources are already devoted to fulfilling the corresponding standard. Unsurprisingly, 

models that are used jointly by connected teams are more often formally verified (Padilla 

et al. 2018, 498-499). In a nutshell, there is no free lunch when using these methods, which 
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remain costly, both for individuals and for the communities that provide a sound 

environment and resources to facilitate their use. 

Let us take stock. We have listed and characterized several kinds of significant obstacles 

to the use of formal methods. While formal verification methods are high-profile 

techniques which address the crucial goal of verifying scientific code, they are also, as 

shown above, cumbersome, epistemically demanding, high-maintenance, and poorly 

scalable. Many practitioners, therefore, are likely to consider these methods entirely 

unattainable. In this context, it is no surprise that major actors of the Verification and 

Validation community tend to discourage engineers from using them. Oberkampf and Roy, 

for example, briefly note that they “do not recommend formal methods for scientific 

computing software” due to the “effort and expense required, as well as their poor 

scalability” (2010, 159). The additional facts that the listed obstacles are well-entrenched, 

unlikely to disappear, and are operative at both the individual and the community level 

vindicates our additional claim that these methods are unlikely to become widespread 

across computational communities. Accordingly, the elaboration of error-proof codes 

seems to be doomed, in large part, to remain an activity that scientists will continue to 

pursue armed with the lore of non-formal contextual techniques developed over the 

decades to verify code. 
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Yet even if there are strong reasons to discourage the general use of formal verification 

methods and to doubt that they will become part of the standard toolkit of computational 

practitioners, it does not follow that they should be dismissed in all scientific contexts or 

that their inconveniences are always insuperable. We now combine the insights drawn 

from the above cases and analyses, and sketch the types of contexts in which these 

methods may be adapted, typically in terms of the inquiries pursued, amenability to 

standardization, available resources, and organization of the corresponding communities. 

First, the standardization of inquiries can remove much of the inconvenience of the resort 

to formal methods. Many investigations are not exploratory nor carried out by researchers 

working alone. Indeed, a progression towards calibrated inquiries is rather common in the 

development of a science. In periods of “normal science”, investigated questions are 

clearly circumscribed and large communities tackle them (Kuhn 1962; De Langhe 2014). 

In such contexts, scientists usually know in advance the target properties to be verified and 

can plan the time-consuming development of formally verifiable code early in the pipeline. 

Further, the use of formal methods is less adventurous in the context of communities that 

already recognize these methods as part of shared consensus practices, which include 

typical methods and standard norms (Kitcher 1983). Finally, economies of scale that lead 

to favorable cost/benefit ratios are possible for standardized investigations, in which codes 

can be used repeatedly.  

Secondly, because formal methods increase the epistemic burden of computational 

inquiries, their adoption is easier in fields with abundant financial and human resources 

where scientific labor can be suitably divided, and expert collaborators can take charge of 

5. Profiling the Scientific Uses of Formal Methods.  
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developing and formally verifying code. Similarly, within well-organized communities, 

the learning of these methods can be anticipated, institutionally pooled, and facilitated by 

dedicated facilities. 

Thirdly, these methods have to be worth the effort, given their users’ profiles and the 

inquiries they pursue. The cost/benefit ratio of formal methods can vary significantly with 

respect to their target applications or to how much scientific success or failure is positively 

or negatively valued. For fixed costs, they are more attractive when a lot is at stake and 

benefits are high. This may obtain in several types of cases, for example, when applied “to 

the hardest and most difficult problems” (Rushby 1997, 18). Typically, using these 

methods may be worthwhile for high-profile mathematics, e.g., to prove famous 

conjectures in mathematics which have partly computational proofs. More generally, 

computationally costly inquiries are another suitable niche for formal methods since the 

risk of “not conducting verification formally and accepting models as verified increases 

with the complexity of the models” (Padilla et al. 2018, 500). It may be worthwhile to 

verify the code by stringent methods when a second chance is not an option, and the 

software must work immediately (e.g., when researchers obtain a valuable competitive slot 

in a computational center and several runs are not possible). Unsurprisingly, the profiles of 

the prominent examples cited above fall within some of these categories. 

Nevertheless, all the above conditions are far from being met across science. Various 

fields are not standardized with respects to the forms of the problems that are investigated 

nor the methods deployed to tackle them. Much scientific research is practiced in an 

exploratory way that does not square well with formal methods. Funding and human 
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resources are not equally distributed across fields. Many scientific inquiries are not 

associated with high computational costs, major scientific gains, or significant financial or 

human losses in cases of errors. Further, trying to bypass existing difficulties and insisting 

on using formal verification methods can be counterproductive because their felicitous use 

requires deploying a wealth of resources, sidestepping various pitfalls, and is challenging. 

In brief, not only can the attempts to apply these methods in unfavorable contexts be even 

more costly, but they may also be fruitless and lead to unreliable results by non-expert 

practitioners using too-complicated methods. This may be a waste of scientific resources, 

especially if other simpler-to-tame methods can increase our confidence in computational 

codes up to an appropriate level. (Here, remember again that non-formal methods for code 

verifications, though imperfect, have been refined over the years by practitioners and 

already have significant merits (see, again, Shapiro 1997).) 

Importantly, the above features, which make differences concerning the unequal 

suitability of formal methods, are somewhat structural. Science involves activities that are 

often exploratory concerning their goals, problems to be tackled, or methods. And the 

various benefits and risks related to scientific inquiries and their applications cannot be 

homogeneous since the scientific or social value attached to scientific findings can vary 

significantly. Furthermore, fundings and human resources can hardly be evenly distributed 

across science. In brief, then i) well-entrenched intrinsic features are an obstacle to the use 

of formal methods (see section 4); and ii) the features that may encourage scientists to use 

them still are not present across science, and this lack of homogeneity is also well-

entrenched too. Thus, even if formal methods do keep developing and become somewhat 
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more accessible, they are still unlikely to become mainstream, and it seems to be a well-

entrenched fact that verification across science will continue to be carried out in deeply 

heterogeneous ways that are both formal and non-formal. 

Overall, our argument mainly relies on the inherent difficulty of singling out and 

eliminating error in scientific code, on an analysis of the intrinsic advantages and 

limitations of formal methods, on the existence of other valuable, though imperfect 

methods for code verification, and on some deeply-rooted features of scientific research 

and communities. Given the lack of knowledge about the merits of future verification 

methods, it would be risky to make predictions about the future development of formal 

verification methods, since the attractiveness of scientific methods depends on their 

comparative merits. The present appeal of formal methods may even decline, at least in 

specific fields, if other user-friendly and powerful methods develop. For example, a 

posteriori methods based on residual analysis and backward error (see supra) may become 

more attractive whenever differential equations are involved. Indeed, these methods can be 

implemented automatically and used “on the fly” as the problem is being solved or after 

the computation is completed, which makes them flexible and appealing tools. Be this as it 

may, absent significant changes concerning central features of formal methods or the 

advent of novel, versatile, and user-friendly verification methods, the above-noted 

heterogeneity concerning how code is verified is unlikely to change. 

Let us note, finally, that our arguments are primarily rooted in an analysis of the 

practical advantages and inconveniences of formal methods. As such, they do not involve 

commitments concerning the nature of mathematical proofs and whether formal methods 
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qualify as such (see, e.g., Dijkstra 1978; De Millo et al. 1979; Mac Kenzie 2001, 316). 

However, they highlight that practical constraints bear on what epistemic agents actually 

do, can do, or should do. As such, they belong to a tradition emphasizing that overly 

idealized descriptions of agents and their capacities can be inadequate for epistemological 

inquiries (see, e.g., Simon 1969; Grandy 1994; Humphreys 2004).  

 

6. From scientific heterogeneity to epistemological heterogeneity  

We now emphasize that this situation of scientific heterogeneity concerning how code is 

verified also qualifies as one of epistemological heterogeneity. Epistemology is a critical 

domain of evaluation that analyzes how epistemic processes work and which factors make 

differences to the quantity and quality of their outputs (see, e.g., Sosa 2007, 73). A key 

question in this domain is whether, and if so when, overtly dissimilar practices work in the 

same underlying epistemic ways. Note, in this respect, that an account implying that 

different scientific practices always have different epistemologies would be trivial and 

non-informative (non-triviality condition). 

From this perspective, a general typological strategy is to conceptualize scientific 

practices so that individual activities can be classified within larger coherent clusters 

highlighting features that make epistemological differences and pointing out homogeneous 

scientific cultures. For example, Kitcher describes scientific (including mathematical) 

practices as multi-dimensional entities involving i) scientific languages, ii) accepted 

statements, iii) accepted schemas of reasoning, iv) questions selected as important, and v) 
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methodological views about the canons of good practices for assessing reliability and 

achieving success, typically standards for proofs in mathematics (Kitcher 1993, 74; 

Kitcher 1983, 63).  

This strategy provides a means to highlight when different practices work in 

epistemologically similar ways and in which cases different scientific practices are 

scientifically and epistemologically distinct – namely when they involve specific 

languages, questions, or canons of good practices. This is the case with formal and non-

formal code verification methods, which can be described as epistemologically distinct 

practices. Consistent with this perspective, MacKenzie characterizes the former as a 

specific “culture of proving” (2001, 306). Further, since verification methods aim at 

establishing the reliability of computational code, they belong to the fifth normative 

dimension described above. As such, differences in verification practices and standards are 

pivotal features which can be used to classify computational activities within 

epistemologically similar or different clusters, depending on how they verify code. In 

particular, practices within a common field (e.g., in computational fluid dynamics) can be 

epistemologically heterogeneous if they are verified differently.  

Such general typological strategies reveal the global epistemological coherence or 

dissemblance of scientific practices and cultures. However, finer-grained and more 

piecemeal analyses can also prove useful, in particular to point out similar epistemological 

features that may be present across different practices. For example, genuinely distinct 

scientific practices from different domains like biology or physics (in the above Kitcherian 

sense) may be epistemologically homogeneous concerning their epistemic sources (e.g., 
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experiments, testimony, or theories), norms of good research practices (e.g., different 

techniques for measuring a mass in physics may fulfill common requirements concerning 

the nature of good measurements), or the problems that they face (e.g., experimental and 

computational activities raise identical issues concerning data or instruments). This shows 

the need for a joint analysis of computational practices that belong to different fields but 

that are (partly) epistemologically homogeneous, in particular if they comply with 

identical verification standards. Conversely, one must be aware that practices may raise 

identical problems but call for distinct analyses if they tackle them in significantly 

different ways. In the present case, scientific code is used across science, is involved in 

different scientific practices, and raises closely related questions. Nevertheless, strong 

heterogeneities remain concerning the procedures and norms applied to solve coding 

issues successfully, here concerning how to verify code.  

Overall, all these analyses show how the non-triviality condition is met. However, let us 

keep in mind that epistemological heterogeneities can be weaker or stronger. Arguably, the 

differences in code verification described above qualify as strong, even if disagreements 

may remain concerning how exactly to conceptualize them and where to draw the lines. 

Indeed, differences regarding verification standards imply differences concerning the 

norms of good research practices. These globally constrain activities and have far-reaching 

effects concerning issues such as which skills the inquiry requires, who writes the code, 

how to organize teams and divide labor, how computational models are elaborated, and 

which types of errors may remain. Further, as pointed out above, the existence of different 

verification standards may be rooted in practical reasons and need not imply major 
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disagreements concerning basic notions like proofs or evidence. Finally, practices may be 

epistemologically heterogeneous with respect to some aspects and homogeneous and part 

of common cultures with respect to others. Thus, the existence of strong epistemological 

heterogeneities within computational science need not imply any global epistemological 

disunity between the diverse parts of computational science that would call for utterly 

different epistemologies. 

 

7. Methodological Consequences. We now draw methodological morals concerning 

how to pursue the epistemology of computational practices. There is a growing awareness 

that computational methods raise similar problems across fields. Examples include the 

writing of safe code, its verification, the production of reproducible computational 

research, the management of data, the opacity of computational methods, the use of partly 

automated procedures, the use of good pseudo-random numbers, or the visualization of 

results. Should all these issues receive general treatments that apply to all computational 

practices?  

As argued above, the use of formal verification methods seems appropriate only in 

specific situations. This provides a clear example of scientific and epistemological 

heterogeneity, and of the need for contextual analyses that reflect this variety. This also 

illustrates how problems can be common across computational science yet different 

concerning how they are, can, or should be addressed by practitioners. Finally, this 

suggests that, by default, one should guard against assuming that the above questions call 
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for unique answers across contexts. Clearly, it is legitimate to try to offer epistemological 

analyses that are not overly specific nor blind; however, unduly general claims with a too 

vague and unwarranted scope run the risk of being refuted by careful analyses that are 

sensitive to the variety of ways in which scientists pursue computational inquiries. They 

can even trigger spurious counterproductive controversies in which examples rooted in 

different fields are exploited by the contending parties to back up too-general claims. 

Indeed, it is not hard to imagine how a ‘dialogue of the deaf’ concerning the general 

possibility of using formal methods could be fed by the employment of heterogeneous case 

studies.  

In brief, even when they are addressing identical problems, computational scientists can 

take heterogeneous pathways across scientific contexts. Our epistemological analyses of 

computational science ought to reflect such existing heterogeneities and provide contextual 

insights instead of being squeezed into a common straight-jacket. However, the case for 

heterogeneity should not be taken for granted either, and emphasizing that different 

contexts call for different epistemological analyses itself threatens to become a lazy stance. 

As already noted, identical principles, norms, or mechanisms can often be at work beyond 

the overt diversity of contexts and practices. 

 

Overall, the extent to which the challenge of code verification is a typical issue and the 

epistemology of computational science is indeed heterogeneous remains an open question. 

For example, do claims about justification holism in simulations or the difficulty of 

disentangling verification and validation in computational science (see section 2) call for 
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more contextual analyses (formal verification is a way to disentangle things in part, after 

all)? Similarly, can the insights by Lenhard (2018) about the tendency of the modularity of 

computational codes to erode be generalized? Or, are they only valid when codes are 

repeatedly reused, and conditions related to the “economics of the software” within 

commercial science are met? (See Foote and Yoder 1999 for an informed discussion.) 

Unfortunately, it is difficult to determine in advance which epistemological questions 

call for context-specific answers and which may be given general answers. By default, a 

way out of the deadlock is to require that the domain of validity of the arguments and 

evidence that support epistemological claims be clearly highlighted, so as to make their 

scope noncontroversial. 

Let us wrap up. It is now a matter of consensus that general issues in the philosophy of 

science may call for distinct answers as regards physics, biology, social science, etc. The 

same potentially holds true within the philosophy of computational science, where 

idealized and acontextual epistemological pictures that ignore existing specificities may 

require more than simple corrections. Concretely, epistemologists of computational 

science should try to draw a fine-grained map of the features that make genuine 

epistemological differences concerning how computational inquiries function across 

contexts. Thereby, they can hope to draw a line between issues that belong to the general 

epistemology of computational science, and those that call for practice-related or context-

sensitive treatments. 
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8. Conclusion. For decades, the formal verification of computational codes was little 

more than a promissory note, and practitioners had no choice but to resort to non-formal 

methods to test their codes. Now things have changed, and the formal verification of many 

aspects of code can be carried out in actual scientific practice. However, these methods 

come with major and deeply rooted inconveniences, and seem best suited for specific types 

of contexts, sometimes broad, sometimes less so, but not well-adapted for the large variety 

of situations in which computational science is developing. Typically, their adoption is 

easier for research fields that are standardized, well-structured, well-funded, and engage in 

repeat investigations of similar problems. Conversely, it seems more hazardous for small 

groups and communities, for less well-funded fields, or for explorative science in which 

inquiries may take unexpected turns, research topics may be mutable, and problems are not 

standardized. 

Overall, while code verification is a global problem shared by all practitioners in 

computational science, the solution to this problem goes through profoundly different 

epistemic “pathways” (Goldman 2002) across contexts. This illustrates how computational 

science is partly developing into cultures that, at their core, are both scientifically and 

epistemologically heterogeneous. Thus, it would be risky to assume by default that 

computational science has a common epistemology, even when it comes to transversal 

questions like code verification. It remains to investigate how deep and pervasive this 

heterogeneity may turn out to be in a context where the development, diversification, and 

popularization of computational tools is constantly increasing the variety of their uses. 
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