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Abstract

Renormalization and Renormalization Group (RG) have proven to be very powerful tools
in contemporary physics, with a decisive in�uence on how to conceive of key physical
aspects, including theories themselves. While they can be tackled from a variety of stand-
points, this paper focuses on a speci�c philosophical issue, that is, which kind of expla-
nation can be provided by means of RG methods. After a short, historical overview to
set out the physical context, we scrutinize recent debates on the topic, with a particular
focus on Morrison's seminal work. With respect to her account, where RG explanation
is portrayed as mathematical, non-reductive, and non-causal, our focus is on the �rst
aspect. Our claim is that RG theory's explanatory role cannot reside exclusively in its
mathematical character, independently from a physical interpretation: mathematical and
physical features intersect in a highly non-trivial way to provide an explanation of physical
phenomena.

Keywords: Renormalization group, E�ective theories, Critical phenomena, Non-causal ex-
planation, Mathematical explanation

1 Introduction

In recent debates on causal vs non-causal explanation � an issue which has attracted much
attention in the current literature on scienti�c explanation (e.g., Reutlinger, 2017a, 2017b;
Reutlinger and Saatsi, 2018; Saatsi 2021) � it has become quite typical to turn to contem-
porary theoretical physics for examples of explanations not reducible to causal terms. The
paradigmatic example is the use which is made of physical symmetries and, more generally, of
principles acting as constraints in physics for illustrating cases of (allegedly) non-causal expla-
nation (see, for example, Lange, 2017, 2019; French and Saatsi, 2018).1 Other examples are
usually provided by identifying the role of the explanans in the explanatory process in abstract,
mathematical properties, structures or procedures (e.g., limiting procedures) used in physics.2

In the last decade, a case for non-causal explanation on which a growing literature has
focused is the �renormalization group explanation of universality�, as has become usual to
call it, where the context is that of the physics of critical phenomena in statistical mechanics
(SM) and condensed matter physics (CMP)3 (e.g., Morrison, 2012, 2015a, 2015b, 2018, 2019;
Reutlinger 2014, 2017a, 2017b; Hüttemann, Kühn and Terzidis, 2015; Saatsi and Reutlinger,
2018; Sullivan 2019).4

1 Unless otherwise necessary, we limit the references to the recent, representative ones.
2 This is well illustrated by the discussion of asymptotic explanations (Batterman, 2000), or, more generally,
by the role of idealizations in science (for recent examples, see Shech, 2018; Palacios and Valente, 2021).

3 SM is the branch of physics which adopts probability theory and statistical methods to investigate large
ensembles of microscopic components � such as molecules and atoms � in their possible con�gurations. CMP
broadly refers to the study of physical systems in their condensed states, namely solid and liquid. From now
on, we will simply cite CMP, though SM represents its core theory.

4 In this literature, the explanandum corresponds to the universality of critical exponents �guring in CMP
critical phenomena. The seminal contribution for this discussion is Batterman (2002).
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Renormalization group (RG) is a technical concept, with an interesting story of cross-
fertizalization between quantum �eld theory (QFT) and SM from the mid-1950s through the
1970s.5 RG and the methods based on this concept are now central, sophisticated ingredients
in the actual practice of physical theorizing. It could surprise that, in order to �nd cases for
the causal/non-causal distinction in natural sciences, philosophers choose to focus on such an
advanced physical technique. In fact, there are some good reasons for philosophers to dwell
on this fundamental tool in contemporary physics. First of all, for its undeniable import from
both a methodological and conceptual point of view. But also because of the new perspective
that RG and the related conception of physical theories as e�ective theories can provide on
traditional issues such as inter-theory relations, reduction and emergence.6

Here we are interested, in particular, in framing the issue of the explanatory role of RG
techniques in the general context of the relationship between mathematics and physics, i.e.,
more precisely, between mathematical and physical explanations. Our focus will be, accord-
ingly, on such questions as to whether RG methods are to be portrayed as a pure mathematical
technique or as a physical tool cast in mathematical terms. We will then scrutinize whether and
to what extent RG theory can bear explanatory information about physical phenomena in case
it is conceived as a genuine mathematical device, as claimed especially by Margaret Morrison in
her in�uential work on the topic. In Morrison (2015a, Ch.2), for example, the declared intent
is to show �that stripped of any physical adornment, mathematical techniques/frameworks are
capable of generating physical information in and of themselves� (p. 51). As RG methods
provide a fruiftul example to explore, the question becomes �how, as a purely mathematical
technique, RG nevertheless appears able to provide us with information about the behaviour
of a system at critical point� (p. 55). As we will see, Morrison takes RG methods to provide
a mathematical, non-reductive, non-causal explanation. By providing an assessment of the
way in which these three elements of RG methods operate and intertwine, our intent is then to
problematize such a characterization, also in the light of the current discussion on RG methods
in the broader context of non-causal explanations.

The paper is structured as follows. Section 2 o�ers a concise historical reconstruction of
RG methods, while emphasizing their conceptual legacy and interpretational subtleties. The
aim is to highlight what makes RG methods particularly fruitful in both QFT and CMP, as a
mathematical technique applied to a physical context. Section 3 provides an overview of the
most up-to-date philosophical literature on the topic, with a speci�c focus on the causal vs
non-causal nature of RG methods, as well as their reductive vs non-reductive interpretation.
In section 4 we discuss and problematize Morrison's account of RG methods, according to
which the latter are portrayed as mathematical, non-reductive, non-causal. We particularly
focus on the mathematical character of RG theory and claim, contra Morrison and others,
that RG methods, while mathematical per se, cannot explain physical phenomena without
supplementary, physical elements. We conclude that no explanation can be guaranteed by RG
without a physically salient interpretation of the speci�c context at stake.

2 Renormalization Group Methods

Right from its early formulation, QFT has been plagued with in�nities, a quite dissatisfying
condition motivating to look for a proper strategy to generate �nite solutions. What became
known as the �old theory of renormalization� was introduced in the 1940s precisely with this
aim, that is, to deal with the divergence problems arising in QFT (at the time, quantum elec-

5 See here, section 2 for a short description. A recent, detailed overview of RG methods, starting from the
seminal contributions by M. Gell-Mann and F. Low, L. Kadano�, M. Fisher and K. Wilson, with attention
also to philosophical aspects, is Williams (2021). Fraser (2020) provides a detailed reconstruction of the
development of RG methods in particle physics, highlighting the role of formal analogies between classical
SM and QFT.

6 For what regards the development of the EFT idea and its relevance to the philosophical debate on inter-
theory relations (and the related debates on reduction, fundamentality and emergence), see, for instance,
Cao and Schweber (1993); Hartmann (2001); Castellani (2002); Butter�eld and Bouatta (2015), Rosaler and
Harlander (2019). A recent historical-philosophical reconstruction of Wilson's work on EFT is Rivat (2021).

2



trodynamics). In its original meaning, renormalization was basically a tool for removing the
in�nities occurring in perturbative calculations in a QFT. To do this, the conventional strat-
egy was more or less the following: �rst, separate the divergent parts (high energy processes)
from the �nite parts (low energy processes) by introducing a cuto� Λ (threshold energy for the
validity of the theory); then, absorb the divergences in some appropriate rede�nition (renor-
malization) of the parameters of the theory (i.e., masses and coupling constants); �nally, to
take into account the neglected high energy e�ects, remove the cuto�.7

A crucial step towards a new understanding of renormalization theory was the introduction
of the RG concept in the QFT framework during the 1950s, on the grounds of renormalization
invariance: that is, an arbitrariness in the choice of the parametrization of the theory to
renormalize (and the consequent introduction of RG as the group of transformations relating
the di�erent parametrizations).8 The fundamental contribution in this direction was Gell-
Mann and Low's (1954) famous paper, �one of the most important ever published in quantum
�eld theory� according to Weinberg (1983, 1). Following Weinberg (1983, 7), this was where
it was �rst realized that QFT has a scale invariance and that the breaking of this invariance
(due to the renormalization procedure) could be accounted for by keeping track of the running
coupling constant.9

Starting with Gell-Mann and Low's analysis, the formulation of RG methods has undergone
a long and varied history throughout the 1960s and 1970s. In fact, up to the early 70s,
the RG ideas of Gell-Mann and Low were substantially neglected.10 A new understanding
of renormalization theory started to take place only after the revival and extension of the
application of RG methods by Kenneth Wilson between the late 60s and early 1970s.11 By
applying his previous results on the RG in �eld theories on a lattice to the study of critical
phenomena (generalizing the 1966 Kadano� theory of scaling near the critical point for an Ising
ferromagnet),12 Wilson in fact laid the basis for the current conception of renormalization as
�an expression of the variation of the structure of physical interactions with changes in the
scale of the phenomena being probed� (Gross, 1985, p. 153), where RG regulates (through the
so-called RG equations) the way in which this variation occurs.

Deeply intertwined with such developments is the emergence of the e�ective theory ap-
proach. In general terms, an e�ective theory (ET) � e�ective �eld theory (EFT) in the frame-
work of QFT � is a theory which �e�ectively� captures what is physically relevant in a given
domain, by providing an appropriate, convenient description of the important physics in a given
region of the parameter space.13 Such a description, only applicable within a well-de�ned do-
main of validity, is thus intrinsically approximate.14

Historically, although �e�ective �eld theories are an old case in physics, going back to the
1936 Euler-Heisenberg nonlinear Lagrangian for photon-photon scattering and they had been
used to derive soft pion theorems since 1967� (Weinberg, 1997, p. 42), it is only in the late 1970s
and thanks to the development of RG methods that it was realized that �e�ective �eld theories

7 This was achieved by letting the cuto� run to in�nity, with the consequently arising problems regarding its
actual meaning. See, for example, Cao and Schweber (1993, pp. 52�55).

8 The seminal works are Stueckelberg and Petermann (1953), Gell-Mann and Low (1954), and Bogoliubov and
Shirkov (1955). For detailed accounts of the early history of RG, see Weinberg (1983); Shirkov (1993); Brown
(1993).

9 More precisely, following Weinberg (1983, p. 7): the scale invariance is broken by particle masses, but these
masses are negligible at very high energy (very short distances) by means of an appropriate renormalization,
which is then the only cause for breaking the scale invariance.

10Apart from Wilson, one of the few in that period to be aware of their importance, according to Weinberg
(1983, p. 10).

11See especially Wilson (1971, 1972). A historical reconstruction of his work is provided in Wilson (1983).
12Kadano�'s (1966) strategy is that of reducing the degrees of freedom of a certain physical system near a
critical point by dividing the model under investigation � for instance, an Ising model in the proximity of the
critical temperature Tc � into microscopically large cells encoding the magnetization as a collective variable.
By a proper iteration of this procedure � which is repeated as long as the cell dimension is smaller than the
correlation function, namely the distance over which the �uctuations of a microscopic variable are associated
with that of another � one is able to provide a characterization of the transition from the ferromagnetic to the
paramagnetic regime. For a philosophical discussion on the topic, see in particular Batterman (2017; 2021).

13See, for such a characterization, Georgi (1997, p. 88).
14Let us stress this aspect of ETs, since it will be of relevance for the discussion in section 4.
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could be regarded as full-�edged dynamical theories, useful beyond the tree approximation�
(ibid.). This led to a radical reconsideration of the nature of the QFTs of the Standard Model
of particle physics, a �change in attitude� (Weinberg, 1997, p. 41) which is at the basis of
the so-called modern view of QFT: that is, the view that �the most appropriate description of
particle interactions in the language of QFT depends on the energy at which the interactions
are studied� (Georgi, 1989, p. 446).15 On this view, current QFTs are understood as EFTs,
each EFT explicitly referring only to those particles (�elds) that are actually of importance
at the range of energies considered.16 By changing the energy scale, the EFT description
accordingly changes, �to re�ect the changes in the relative importance of di�erent particles and
forces� (ibid.).

In some more detail: on the RG approach, the e�ect of changing the scale or rescaling
(Λ0 → Λ(s) = sΛ0 ) can in fact be absorbed into a change of the parameters, so that, for one
parameter g a trajectory g = g(s) is de�ned as Λ(s) varies. The RG equations thus describe the
�ow of the parameters in a parameter space as one changes the scale. Then, typically, as one
scales down to lower energies, the solutions of the RG equations approach a �nite-dimensional
sub-manifold in the space of possible Lagrangians:17 in this way, an e�ective low energy theory,
which is formulated in terms of a �nite number of parameters and is largely independent of
the high-energy starting situation, is de�ned.18

What is particularly intriguing about RG (and the related ET concept) is that the same
ideas could be applied to apparently very di�erent �elds, such as the QFTs of particle physics,
on one side, and the physics of critical phenomena, on the other. In fact, while in QFT one
has to deal with short-distance (high-energy) behavior, in CMP one generally revolves around
critical phenomena, and thus long-distance (low-energy) behavior.19 Moreover, while in QFT
the RG is an exact continuous symmetry group (whence its name), in the physics of critical
phenomena (and similar cases where averaging operation are performed) the RG is a discrete
semigroup (i.e., the transformation are not reversible).20 Notwithstanding such (and others)
physical and mathematical di�erences between the RGs used in physical theorizing,21 there is
a common rationale in applying the RG methods as Weinberg (1983, p. 17) points out: they
can be understood as a general strategy to concentrate on the degrees of freedom that are
relevant to the problem at hand.

At this point, since the philosophical discussion on RG explanations has mostly focused on
the case of critical phenomena, let us go in some more detail for what regards RG methods in
such �eld of physical investigation.22 In CMP the main issue is that of �nding a way to deal

15Weinberg (1976) was a crucial contribution for such �change in attitude� in particle physics (Weinberg, 1997,
p. 41), leading to understand the QFTs of the Standard Model as EFTs, that is, the low-energy limit of a
deeper underlying theory which may not even be a �eld theory. On the development of EFT, a �rst-person
contribution is Weinberg (2021).

16We follow theoretical physicists' common usage in referring to �particles� as the objects of current QFTs. The
controversy about what the basic QFT entities really are is not of relevance to the subject matters discussed
here.

17Corresponding to a �xed point in the parameter space (e.g., the coupling-constant space), where a �xed point
is de�ned by the condition that, if the parameter (e.g., the coupling constant) is put at the point, it stays
there while varying the renormalization scale.

18More precisely, independent up to high-energy e�ects that are suppressed by powers of E/Λ where E is the
low energy at which the e�ective theory is appropriate.

19Physical systems display critical phenomena when, under proper conditions (such as low temperature, or
high pressure) they undergo speci�c transformations in the phenomenological features, often associated to
second-order discontinuities of some parameters of the systems themselves. For a thorough discussion of the
theory of critical phenomena see e.g. Binney et al. (1992).

20For a detailed discussion of this point, see Shirkov, (1993, pp. 178-179). Note, as pointed out by Shirkov,
that RG ideas and terminology are even used in contexts where the functional iterations do not form a group.

21See also Weinberg (1983, pp. 13-14).
22The application of RG methods to CMP phenomena is highly diversi�ed. Generally speaking, one is interested
in integrating out short-distance �uctuations, which are typically de�ned in length terms (lattice spacing).
The RG procedure can then be applied in a variety of contexts where the spacing, a, is de�ned according to the
speci�c scale of interest (for instance, one proceeds in evaluating the RG �ow until the spacing is comparable
to the dimension L of the system under investigation). When it comes to account for critical phenomena,
the aim is that of de�ning an algorithm to iteratively map out short-scale �uctuations while evaluating their
contribution to the remaining degrees of freedom. An example is the generalization of the procedure for
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with long-range characteristics, while short-scale �uctuations are those responsible for most
di�culties, such as divergencies. In this context, the general strategy is that of integrating
over all these short-range �uctuations, thus getting an e�ective theory of long-range ones. To
this end, one has to arbitrarily �x a certain length scale, call it a, as the one separating among
short and long wavelength �uctuations. One then proceeds by integrating out the short-range
ones. This integration procedure can lead to di�erent scenarios:

1. It might alter the algebraic structure of the long-wavelength action, thus getting to a
theory which is di�erent from the original one.

2. It might be the case that the e�ective action of the slow degrees of freedom is structurally
similar to the starting one, the whole procedure thus leading to a di�erent set of coupling
constants.

If condition 2. holds, then the procedure is well motivated, for we have arrived at a theory
which is structurally similar to the original one but for a) a changed (renormalized) set of
coupling constants, b) an increased short-distance cut-o�. This procedure can then be iterated
until the cut-o�, an has become comparable to the length scales that we seek to explore. More
importantly, the coupling constants resulting from the renormalization procedure encode much
of the important information about the long-range behaviour of the theory. The renormaliza-
tion approach would be quite useless if each iterative step a(n−1) → an had to be performed
explicitly. In fact, the usefulness of the procedure relies on the fact that a single step already
contains all the information about the renormalization properties of the model (Altland &
Simons, 2010, pp. 409-411).

All in all, it should be evident that the RG framework is a rather generic recipe under
which highly diversi�ed methodologies can be comprehended. According to Shirkov (1993,
p. 178), the development of RG methods follows at least two paths. The �rst corresponds
to the Kadano�-Wilson strategy, whose construction is based on a coarse-graining procedure
de�ning a set of models for a given physical problem (such as in polymers, noncoherent transfer
and percolation phenomena). The second looks for an exact RG symmetry either directly or
by showing the equivalence to a QFT (such as in turbulence, plasma turbulence and phase
transitions). Therefore, it is only by looking at the speci�cities of the problem at stake that the
most suitable RG method can be developed. And this implies engaging with those measurable
properties that �gure as experimental outputs in the various physically salient contexts under
investigation.

3 The explanatory role of RG methods

The theoretical import of RG methods has sparked much controversy from an interpretational
point of view. Recent debates on the topic intersect with many others in the philosophy of
science, such as explanation, causality, reduction, emergence, structuralism. Here the analysis
is limited to the explanatory role of RG methods. With respect to this issue, the literature has
focused on the following contraposed positions: reductive vs non-reductive explanation, causal
vs non-causal explanation, mathematical vs non-mathematical explanation. In what follows
we provide a concise survey of the main arguments on the �rst two contrapositions, insofar as
the involved arguments have implications for the mathematical vs non-mathematical character
of RG explanations. In this sense, this section is pivotal to the �nal discussion on the genuine
mathematical character of RG methods. Drawing from those authors who have questioned the
non-causal, and non-reductive nature of RG methods in accounting for critical phenomena, a

the one-dimensional Ising model, that is, the block spin method �rstly developed by Kadano� (1966). In
this case, the spin chain gets subdivided into regular clusters of neighboring spins, the inter-cluster energy
balance gets evaluated, and the procedure is then iterated to de�ne the so-called �xed points � namely, points
which are invariant under the application of the RG map. In all these applications, the lattice spacing is not
arbitrarily �xed, for it corresponds to the actual (statistical) distribution of, say, spins within the system of
interest. What can be de�ned is the number of RG iterations � which, conversely, is strictly dependent on
the way in which we conceptualize the role of the thermodynamic limit.
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�nal argument will be advanced � namely, that RG methods' explanatory import is non purely
mathematical.

Starting with Batterman's (2000, 2002) seminal contribution, the philosophical literature
has focused on the phenomenon of universality in critical phenomena. Batterman (2002),
in particular, exploits the phenomenon of universality in physics to question the traditional
deductive-nomological account of explanation. Universality accounts for the fact that in second-
order phase transitions di�erent micro-systems display the same shape of coexistence curve near
a critical point.23 This calls for an explanation, which is generally given in terms of the RG
analysis of critical phenomena. Such an explanation, Batterman argues, cannot correspond to
standard, Hempellian account, in that RG is a method for de�ning structures which are detail
independent with respect to the behavior of interest (Batterman, 2002, pp. 42-43). On his view,
the explanatory role of RG is thus contingent upon its ability to specify the structural stability
of the system under perturbation of the underlying microscopic details (Batterman, 2002, p.
58; 2019), thus providing a non-reducible and non-causal explanation of critical phenomena.
Importantly, this is also due to the fact that, according to Batterman, the thermodynamic limit
plays an (indispensable) explanatory role in accounting for critical phenomena: it is only by
embracing that limit that one can identify the �xed points of the RG �ow within the abstract
space � the latter being indispensable, together with an analysis of the neighboring topography,
to evaluate the parameters of systems near criticality. Put it otherwise: in�nite systems are an
idealization. Yet, they are necessary to explain the behavior of real (large, but �nite) systems
near criticality (Batterman, 2021, p. 533).

Following a line of reasoning that resonates with Batterman's, however distinct,24 Morri-
son's (2015a) explores whether and how RG methods � which she describes as a purely math-
ematical technique � can supply genuine physical information, where such information could
not be provided by physical assumptions and originate solely from a mathematical framework
(Morrison, 2015a, p. 55). On her account, RG explanation of universality provides a non-
reductive account of how macroscopic behavior emerges from the microscopic one, where the
latter is unable to provide the foundation for the former. Put it otherwise, the insensitiveness
of the universal behavior with respect to the speci�cities of the underlying microphysical basis
is what leads Morrison to claim that the link between the micro and the macro displays a
failure of reduction. In her words (Morrison, 2015b, p. 92): �Emphasising the importance
of emergence in physics is not to deny that reductionism has been successful in producing
knowledge of physical systems. Rather, my claim is that as a global strategy it is not always
capable of delivering the information necessary for understanding the relation between di�er-
ent levels and kinds of physical phenomena.� At the same time, the fact that the underlying
microphysical basis gets washed out via the successive iteration of the RG �ow implies that it
does �no longer play a role in the macro behaviour� (Morrison, 2015b, p. 111), and thus the
RG �ow provide a non-causal explanation of the emergent macroscopic behavior. Importantly,
the non-causal nature of RG explanation is not simply contingent upon the fact that the mi-
croscopic information gets eliminated throughout the iteration. Rather, as Morrison (2018, p.
206) clari�es, �[a]n important consequence of the evolution produced by RG transformations
is [. . . ] that the explanation of universal behaviour cannot be given in terms of the system's
interacting parts�.

This characterization of RG methods has been contested by Hüttemann, Kühn and Terzidis
(2015) on the grounds of a reductive account of structural stability, which is (also) based on
the e�ective character of RG methods. The idea is to argue that the structural stability of
�nite but extremely large systems pivots on the huge number of involved components, despite
the fact that the thermodynamic limit is not met. Indeed, su�ciently large systems become

23If one observes the behavior of various systems in the proximity of this point, what one �nds is that certain
dimensionless numbers, the so-called `critical exponents', are shared by these various systems. And as the
critical exponents encode the behavior of the �uid as a function of the temperature near the critical point,
these systems are said to display a universal behavior in the sense that the same coexistence curve describes
microscopically di�erent systems.

24Morrison's treatment is di�erent from Batterman's, insofar as she aims to show how the application of RG
methods to dynamical systems is to be portrayed as non-causal, due to the structural character of the involved
explanation (see, especially, Morrison 2018, p. 206).
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observationally indistinguishable from in�nite ones, while their �nite nature blocks the anti-
reductionist account à la Batterman. Thus, according to Hüttemann, Kühn and Terzidis, the
occurrence of phase transitions and the existence of universality classes can be reductively
explained in terms of the properties of and the interaction among the underlying components.
Moreover, one can understand the relevance of thermodynamics even if the quantities it employs
are valid only in the thermodynamic limit.25 On this perspective, RG methods show how
systems characterized by di�erent micro-Hamiltonians, and thus by di�erent system-speci�c
qualities, nevertheless give rise to very similar macro-behavior.

In a similar vein, Reutlinger (2017a) argues that there are two sources of ambiguity lead-
ing to erroneously depict RG methods as non-reducible ones. First, the RG framework does
not correspond to standard accounts of reducible explanations, in that it does not target
system-speci�c micro-mechanisms which are responsible for the collective, macro-behavior of
the system. Second, RG explanations are non-reducible in that not all the micro-interactions
among the underlying components are explanatorily relevant (Batterman, 2000, p. 123). How-
ever, while it is true that not all the details of the microscopic environment play a role for
the macro-behavior near a phase transition, this condition does not rule out the possibility of
a reductive explanation, for the latter does not have to treat all micro interactions on a par.
There are causal-mechanical models of explanation which purportedly ignore micro-details
(Reutlinger, 2017a, p. 2999). Can then RG explanations be reductive? Yes, according to
Reutlinger, provided that one accepts a broad characterization of what a reductive explana-
tion is, namely one whose explanandum is contingent upon (certain) information about the
underlying components.26

Following this line of reasoning, Saatsi and Reutlinger (2018) develop an argument to block
the so-called anti-reductionist challenge for RG explanations: reductionists have to account
for the fact that certain components �guring in RG models � such as �xed points in phase
transitions � can be regarded as both indispensable and compatible with reductionism. Their
argument is that, though these components play an indispensable role in RG methods, that role
is merely instrumental and thus in no contradiction with reductionism. To make their case they
propose a counterfactual-dependence account based on two criteria: 1. the explanandum should
be inferred from the explanans, where the inference can be deductive or statistical-inductive;
2. counter-factual variations of the explanans need to produce counter-factual variations of
the explanandum. The RG framework satis�es the reductive, counter-dependence account, in
that it deductively warrants that systems with di�erent micro-details behave in the same way
macroscopically (condition 1) and o�ers a counter-factual account for why a certain system
belongs to a speci�c universality class (condition 2).

Finally, also Franklin (2018) defends a reductive, though non-eliminativist, account of uni-
versality. According to Franklin higher-level explanations are �more parsimonious, more robust,
and have a broader applicability than lower-level explanations� (Franklin, 2018, p. 1295) and
should not be replaced by lower-level explanations. However, higher-level theories can be un-
derstood in lower-level terms and are thus reducible � where the notion of reducibility here
implies two conditions (Franklin, 2018, p. 1296; Woodward, 2003, pp. 226-233):

� Each dependency of the higher-level explanation is described by or derived from a lower-
level dependency.

25An objection that can be raised is that, if one embraces a reductive account of RG explanations, the interaction
among the underlying components is meant to determine the features of the resulting macro-aggregate. For,
as Morrison (2012, p. 156) argues, if this is not the case, then no reductive explanation is available. However,
Hüttemann, Kühn and Terzidis hold that �the fact that a multiplicity of micro-states gives rise to the same
macro-state is no objection to the claim that the micro-state determines the macro-state� (Hüttemann, Kühn
and Terzidis, 2015, p. 189).

26A tangential debate is the one between the so-called common features approach vis-à-vis Batterman and
Rice's (2014) noncausal minimal model approach. While the latter argues that a certain minimal model
is able to explain why systems with di�erent micro-components behave in the same way macroscopically
without appealing to those components which are shared among these diverse systems, according to the
former approach the presence of certain common features is su�cient to explain the common macroscopic
behavior. For a thorough critique of Batterman and Rice's account, see Lange (2015).
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� The approximations, abstractions and idealizations that are performed in order to build
the higher-level explanations are justi�ed from the bottom up.

For what regards more speci�cally the debate on causal vs non-causal explanation,27 and the
use of RG methods as a paradigm case for non-causal explanation, a recent critical analysis
is Sullivan (2019). In a nutshell, Sullivan's argument is based on the claim that �simply
pointing to the fact that the explanation heavily relies on abstraction procedures, such as RG
transformations and Hamiltonian �ow, does not preclude a causal interpretation� (Sullivan,
2019, p. 17). This is articulated by critically discussing what, according to Sullivan, are the
three main motivations for non-causalists to make their case: (1) the RG procedure implies
abstracting from causal (irrelevant) details; (2) RG transformations do not provide a time-
asymmetry, which is required for our commonsense account of causation; (3) RG's explanatory
power is contingent upon the abstract space of models, rather than a causal mapping.

This brief survey was meant to show that the current philosophical debate on the explana-
tory role of RG methods is mainly framed in terms of reductive vs non-reductive or causal vs
non-causal explanation. However, there is a major issue in the background, implicitly assumed
in the debate, on which Morrison has especially focused her attention, namely the relationship
between mathematics and physics in the explanatory process involving RG. More precisely, as
we will see in the following section, most of her work on the topic is devoted to unraveling the
connection between the mathematical framework of RG theory and its application to the vari-
ous �elds of both theoretical and experimental physics. It is the purely mathematical character
of RG explanation, she claims, that grants its non-causal and non-reductive nature.28

4 Morrison on RG explanation: A critical assessment

Morrison developed her standpoint on the nature of RG explanation and its implications on
the debate on reduction and emergence in a series of recent works around what was a central
concern in her research, that is, how is it possible for mathematics to apply to empirical
sciences (Morrison 2012, 2015a, 2015 b, 2018, 2019). Her �rst contribution to the topic (2012)
started precisely with the question as to how physical information can be extracted from a
genuine mathematical framework. In Morrison's (2012, 2015a, 2015b, 2018, 2019), she explores
whether and how RG methods � which she depicts as a purely mathematical technique � can
supply genuine physical information, the latter being conceived as information that could not
be provided by physical assumptions and originates solely from a mathematical framework
(Morrison, 2015a, p. 55). Her intent is to show that there are mathematical strategies that
are able to generate physical information even when stripped of any physical adornment. In
other words, the point is whether RG methods can bring bona �de physical content over and
above their calculational power, thus providing a mathematical explanation of a physical fact.

With regard to the current literature on mathematical explanations of physical phenomena,
Morrison especially refers to discussions by Steiner (1978),29 Baker (2009),30, and Lange (2013;
2017).31 Let us focus on the main points with respect to which she takes a stand in framing
her discourse on RG explanation qua mathematical explanation.

According to Steiner (1978, p. 19) the di�erence between a mathematical and a physical
explanation (of a physical fact) is that the former retains a truth value even when deprived
of its physical content. For him, this condition is crucial in order to discriminate between

27It is worth mentioning that the debate concerning the causal vs non-causal character of RG methods and the
one regarding their reductive vs non-reductive nature are not coincident. As a case in point, while Reutlinger
(2014) maintains that RG theory can be cast in reductive terms, he nevertheless opts for a non-causal account
when it comes to RG's explanatory role (see also Saatsi and Reutlinger, 2018).

28A reference paper on this topic is undoubtedly Batterman (2010), providing a broad analysis of the ex-
planatory role of mathematics when it comes to physical phenomena (as well as other empirical sciences).
According to him, RG methods as applied in the context of critical phenomena represent a paradigmatic
instantiation of what he dubs �non-traditional idealizations�.

29Morrison (2015a, Ch.2; 2018, p. 207).
30Morrison (2015a. Ch.2; 2018, pp. 207-209).
31Morrison (2018, pp. 209-211; 2019, pp. 721-722).
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a genuine mathematical explanation and a physical explanation cast in mathematical terms:
in the latter situation the role of mathematics is simply representational, whereas it is the
physical information which is performing the explanatory work. On this respect, Morrison's
opinion is that Steiner's criterion is perhaps too stringent. Her intent is to relax it and re�ne
the question as to how the calculational power of RG methods provide physical understanding
(Morrison, 2015a, p. 77). In other words, the general point is whether mathematics can, in
and of itself, come up with genuine physical information.

Baker (2009), as well, argues that Steiner's test does not need to be passed for an ex-
planation (of a physical or, in his case, biological fact) to be characterized as mathematical.
Baker's well-known example is that of the life cycle of a North American insect (the cicada)
whose period corresponds to prime numbers (Baker, 2005, pp. 229-233). This condition, which
arises from a mixture of biological and mathematical considerations, is taken by Baker as a
paradigmatic instantiation of the indispensable role of mathematics when it comes to explain
physical phenomena.32 In discussing this example, Morrison (2015a, Ch2; 2018, p. 209) claims
that, though mathematics plays an indispensable role, it is surely not the sole explanatory
element. There is indeed a causal factor which emanates from the biological information about
the cycada's life cycle. And the combination between mathematical and biological information
that this example displays is what, on her view, undermines its distinctively mathematical
character.33 Notably, we will get back to this point while discussing Morrison's account of RG
methods as providing a purely mathematical explanation.

Especially relevant to Morrison's analysis is Lange's characterization of what counts as a
�distinctively mathematical explanation�, namely one which is inevitable to a �stronger degree
than could result from the causal powers bestowed by the possession of various properties�
(Lange (2013, p. 487).34 According to Lange (2013; 2017, Ch. 1), the issue is not so much
whether an explanation appeals to causal or non-causal contingent aspects � though he char-
acterizes a mathematical explanation as a non-causal one � as rather whether its explanatory
role is contingent upon its reference to causal facets. If the latter is the case, then the explana-
tion cannot be quali�ed as distinctively mathematical. Put it otherwise, even if a distinctively
mathematical explanation allows for the presence of causal features into the explanans, the
link between these features and the explanandum follows from mathematical necessity rather
than from a physical law (Lange, 2013, p. 497). The paradigmatic example discussed by Lange
(2013, Ch. 1) is that of a mother who wants to split the available 23 strawberries as a snack
for her three children. Despite the fact that the presence of the three children is what causally
impedes the mother to distribute the strawberries evenly, the reason why this operation cannot
be performed exceeds the speci�c causal contingencies. For it rests upon a mathematical truth,
namely the fact that 23 cannot be divided into 3 equal portions.

According to Morrison (2018, p. 211), her discussion of RG as a case of mathematical,
non-causal explanation is �similar in spirit� to Lange's analysis �in that it emphasizes very
general features of systems�. But it di�ers in that �the explanatory power comes not from
the modal character of a law stated in mathematical terms but from the fact that RG is a
particular type of mathematical framework used to explain structurally stable behaviour in
physical systems� (ibid.). Taking this discussion as the background, there are several reasons
Morrison puts forward to make the case that RG methods constitute a genuine mathematical
explanation. Here we will focus on what appear to be the three main ones. Our plan is to
analyze these arguments, by pointing out some apparent shortcomings.

a) The indispensable explanatory role of RG methods

One of the motivations Morrison o�ers to construct her case is that the critical exponents
�guring in critical phenomena, and the notion of universality thereof, could not be explained

32Afterwards, this example has been much discussed in the literature on scienti�c explanation. See, for ex-
ample, Saatsi (2011) for a critical analysis pointing out to an ambiguity between the explanatory and the
representative role of mathematics (Saatsi, 2011, p. 145).

33More precisely, her argument is that, as the explanation is also contingent upon biological facets which encode
causal information, then the explanation cannot be non-causal. But as she takes mathematical explanations
as a sub-set of non-causal explanations, it follows that this explanation is not distinctively mathematical.

34See also Lange (2019).
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prior to the introduction of RG theory (e.g., Morrison 2015a, p. 57; Morrison, 2015b, p. 110;
Morrison, 2018, p. 216). On this aim, she discusses two issues.

The �rst is whether RG should be regarded as a merely calculational device. Morrison
claims that RG, although a mathematical technique, is nevertheless able to epistemically jus-
tify both the irrelevance of certain microscopic parameters and the existence of collective
behavior.35 Her viewpoint is that the calculational power of RG methods can produce physical
information, insofar as they show how to compute the coupling constants at di�erent length
scales, how to estimate critical exponents, and how universality follows (e.g. Morrison, 2015a,
p. 78; Morrison, 2015b, p. 109; Morrison, 2018, p. 218).

The second issue has to do with the role played by the thermodynamic limit when adopting
RG theory to bring out information about critical phenomena. The point is that, strictly
speaking, a phase transition happens when the number of constituents diverges, but we know
for a fact that phase transitions do happen in physical systems, which are composed of an
admittedly huge, yet �nite, number of components. The question is then how to make sense
of the relation between this idealization about the constituents and the fact that RG provides
us with information about phase transitions. This is a much discussed topic in the framework
of the broader issue concerning the role of in�nite idealizations and their implications on such
questions as reduction, emergence and more generally scienti�c realism in physics.36 Morrison's
response is that, although phase transitions happen in �nite systems, the explanation requires
the limit. In her words, these systems �can be near the �xed point in the RG space and
linearization around a �xed point will certainly tell you about �nite systems, but the �xed
point itself requires the limit� (Morrison, 2015b, p. 110).37 Put it otherwise, Morrison speci�es
that the thermodynamic limit is needed for �nding the �xed points of the RG transformation,
thus stressing the mathematical nature of the involved explanation. On this respect, our
point is not to question that, strictly speaking � namely, from a mathematical point of view
� calculating �xed points of the RG transformation requires the thermodynamic limit. For
this is surely uncontroversial. What is questionable is that RG methods' explanatory power
of speci�c physical phenomena is purely contingent upon their ability to evaluate �xed points.
Put it otherwise, even if the thermodynamic limit is necessary to evaluate RG �ow's �xed
points, RG methods' explanatory role does not rest only upon that limit.

The way in which Morrison addresses these two issues substantiates her claim that, prior
to the introduction of RG methods, no theoretical basis to explain the universality of critical
exponents as well as other features of statistical physics and QFT was available.38 While the
issue of the explanatory role of RG methods can be tackled from a variety of standpoints (as
seen in section 3), let us discuss, here, whether one can indeed motivate the informational
power of RG methods on this type of indispensability argument. There are at least two points
to be discussed in this regard. One has to do with the putative purely mathematical character
of RG methods, the other with the alleged indispensable character of RG explanation.

First, let us point to a di�culty arising when sharply contrasting mathematical vs phys-
ical import of RG theory in accounting for physical phenomena. As discussed in section 2,
RG theory is a technical, general framework under which a multiplicity of methodologies are
incorporated. The broad idea is the same one (i.e., that of a general strategy, based on scal-
ing procedures, to concentrate on the degrees of freedom that are relevant to the problem at
hand), but the modalities of its application signi�cantly depend on the physical speci�cities of

35In her own words, �RG methods not only provide us with physical understanding of the behaviour of certain
kinds of systems insofar as they explain how the cooperative macro behaviour emerges from the micro level,
they explain the foundation for universality by showing how that behaviour is related to the existence of
�xed points. In connection with this, RG also illustrates the nature of the ontological relation between macro
behaviour and microphysical constituents.� (Morrison, 2015, p. 74).

36See especially Callender (2001) and Butter�eld (2011). A recent, comprehensive paper is Palacios and Valente
(2021).

37As regards the linearization strategy, Wu (2021) uses it for dispensing with the thermodynamic limit. See
Batterman (2021, p. 533) for a counter-argument.

38In Morrison's own words, RG methods provide �an understanding of critical phenomena in statistical physics
as well as features of QFT that were not possible prior to their introduction� (Morrison, 2015a, p. 57; for a
similar claim, see also, 2015a, p. 65).
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the �eld of inquiry as well as of the phenomena studied. This clearly emerges, as highlighted
in section 2, when considering the physical as well as the mathematical di�erences between
RG methods in the analysis of critical phenomena and RG theory in QFT. Thus, we wonder
whether a general idea, stripped o� the technical parts needed for its concrete application,
could be enough for providing an explanation of the physical phenomena at stake. In fact,
even if we restrict the scope of the analysis, and consider RG theory only in the context of the
physics of critical phenomena, the problem remains: in order to get the proper application in a
speci�c physical context, one needs to supplement mathematical with physical information. No
explanation is granted without an appropriate interpretation that is strictly connected to the
speci�c problem at hand. Put it di�erently, we agree that adopting RG methods to explain,
for instance, critical phenomena, involve mathematical features as an essential element. What
we are saying is that this is not enough to speak about a purely mathematical explanation of
such phenomena. In other words, RG methods involve a mixture of physical and mathematical
considerations that prevent considering their explanatory import as purely mathematical. Our
account of RG's explanatory power is thus hybrid: mathematical and physical features intersect
in a highly non-trivial way to account, among others, the behavior of systems near criticality.
On the contrary, Morrison repeatedly underlines the purely mathematical nature of RG ex-
planations. Consider, for example, Morrisons's discussion of Baker's famous cycada argument.
She argues that, though mathematics plays an indispensable role, it does not represent the sole
explanatory element. For, according to her, a causal factor is added arising from biological
considerations about the cycada's life cycle. Therefore, according to Morrison, one could not
speak of a purely mathematical explanation in this case. Now, the same reasoning can be
applied to the case of RG methods' explanation. Though RG methods involve mathematical
features to explain a variety of physical phenomena, there are still physical considerations at
play. Although Morrison repeatedly maintains that RG methods provide a purely mathemati-
cal explanation of critical phenomena, marking the di�erence with Baker's cycada explanation
case, we do not see the di�erence between RG methods providing an explanation for physical
phenomena and Baker's biological explanation about the cycada's life cycle. In both cases
mathematics plays an essential role, but it is not the sole explanatory element.

Second, the fact that RG methods provide a theoretical framework for physical phenomena
is not enough to claim that their role is indispensable. For this condition does not rule out
other alternative, yet-to-come, explanations. This is particularly manifest in the case of RG
methods as applied to critical phenomena, for they involve a coarse-graining procedure that
is inherently approximate (see section 2) and may thus be eventually supplanted by a more
reliable � whatever characterization one aims to o�er of such a term � theory. So, not only
does the putative explanatory role of RG theory have to confront with empirically observable
phenomena � thus implying a coexistence of mathematical and physical considerations which
would render RG methods a non-purely mathematical explanation � it is the very indispensable
role of RG methods in providing an explanation of critical phenomena that can be questioned
in the �rst place.

This intersects with the way in which the notion of e�ectiveness is characterized. As already
discussed, the latter, born in the context of QFT, broadly refers to the limited applicability
of a certain theory: a theory is thus e�ective if its predictions o�er an appropriate description
of the relevant physics in a speci�c domain, out of which the description may be completely
inadequate. A natural extension in the context of CMP leads to a scenario in which the low
energy regimes allows to practically suppress high energy degrees of freedom, thus reducing
the total number of parameters necessary for an appropriate, yet e�ective description. In some
greater detail, while a macroscopic phenomenon should be de�ned according to a many-body
Hamiltonian accounting for the interaction among the underlying micro-components, in most
relevant cases the convenient degrees of freedom to the low-energy regime can be extremely
reduced, thus providing an e�ective description of the macroscopic behavior. The result is
that, instead of dealing with the total dynamics of a system (consisting of something as 1023

components), the focus is on the collective degrees of freedom whereby only a restricted set of
excitations is considered.
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As such, this description arises out of a coarse-graining procedure which leads to information
loss and is thus intrinsically approximate. On this perspective, RG theory is one of the most
re�ned methods to extract the relevant degrees of freedom for a certain domain. Still, it cor-
responds to a coarse-graining procedure that reduces the total number of degrees of freedom,
providing an e�ective description of, among other phenomena, systems near criticality. There-
fore, we question the idea of constructing an indispensability argument based on RG methods.
It may well be the case that, even after the de�nition of a more fundamental (or complete,
in whatever sense) theory is established, RG methods will still be used to account for critical
phenomena. What cannot be inferred is that, if they are currently used to explain critical
phenomena, they should be taken as indispensable.

b) Group vs semi-group argument

A second argument Morrison apparently advances in support of the claim that RG methods
o�er a purely mathematical explanation of physical phenomena invokes the type of structure
underlying RG procedures in CMP. As seen in section 2, in the context of the physics of critical
phenomena the RG structure is that of a discrete semi-group. On this basis, Morrison argues
that, since a semi-group cannot correspond to a symmetry, �as a mathematical explanation
RG has a peculiar status in that its underlying structure cannot be associated with anything
physical� (Morrison, 2015, p. 81). Thus, its explanatory power �can only be a product of its
mathematical power� (ibid.).

This would seem to imply that for the RG structure to be associated with something physical
it should correspond to a group, and not just a semi-group. This is a controversial assumption,
and we do not think it does justice to Morrison's real intent. The reason we explicitly mention
this apparent argument is that the group vs semi-group point will turn relevant in the next
argument.

c) The structural nature of RG explanations

Another point discussed by Morrison in support of the mathematical character of RG expla-
nation is its alleged structural nature. According to her, the fact that RG methods allow to
explain �the structural stability of complex systems in terms of structural constraints and how
they transform� (Morrison, 2018, p. 225) speaks for a structural approach to RG explanation.
For the focus is �on the geometrical and topological structure of ensembles of solutions�, rather
than �deriving exact single solutions for a particular model� (Morrison, 2018, p. 221).

In the philosophical literature, a structural explanation is usually described as one in which
the explanandum follows only from the theory's structure � where the latter typically corre-
sponds to the formal (mathematical) apparatus which is adopted to represent speci�c features
of interest (see for example Bokulich's, 2008, p. 149). On this view, the explanandum is ex-
plained structurally when it follows solely from this formal (mathematical) apparatus to such
an extent that any additional information is spurious to account for it.39 Lange (2017, pp.
182-183) questions this account of structural explanation in that, according to him, it fails to
identify the proper explanatory priority. By claiming that the theory's structure incorporates
the explanandum does not add up to the theory's explanation of the explanandum itself. In
his own words �[t]he mere fact that every model of some theory incorporates the explanandum
does not constitute the theory's explanation of why the explanandum holds. Rather, the the-
ory's explanation involves the reason why every model incorporates the explanandum � that
is, something about the way in which the explanandum follows from the theory� (Lange, 2017,
p. 182).

Drawing from Lange's analysis,40 it seems that the structural features of RG theory, in-
sofar as they can be shared among a class of systems, are not su�cient per se to perform an
explanatory role. More in general, if one is interested in detailing the way in which RG tech-
nique �nds its application in the broad spectrum of both QFT and CMP, one has to seriously
engage with those aspects which make a di�erence in these speci�c �elds. The plasticity of
RG theory resides precisely in the generic character of its description. But it is only when one

39Another recent discussion is, for example, Dorato and Felline (2010).
40From this point, Lange develops a di�erent account, which is based on the role of constraints in explanation.
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considers the di�erence-making factors � namely, the ones arising in speci�c physical contexts
(such as polymers, noncoherent transfer, percolation phenomena, plasma turbulence, phase
transitions, and so on) � that RG theory is able to actually provide an explanation. But as
the latter requires this additional, physical, information it is hard to see how RG could ex-
plain in a bearly mathematical sense. To reinforce this point, let us note that the di�erence
between the mathematical structures which RG theory acquires in the di�erent domains of
application � see point b) about group vs semi-group � seems to weaken the structural import
of RG theory broadly construed. What is indeed the structure that is supposed to provide
the explanatory role, given such physical and mathematical di�erences? In this generalized
version of the issue, it seems to be even less clear where to identify the structural components
from which an explanation could follow. Put it di�erently, what matters here is the group vs
semi-group contrast respectively arising in QFT's and CMP's phenomena � a contrast which
involves a di�erent mathematical structure. That said, even if attention is restricted to the
sole CMP case, one needs to take into account context-dependent details, where the latter
are essential to understand what is going on physically and thus to provide an explanation.
To make an example, though the liquid-gas transition and the ferromagnetic transition are
taken as equivalent (but there are other interesting cases, such as the equivalence of models of
planar magnets to two-dimensional classical Coulomb plasmas, see Altland & Simons, 2010, p.
440), in that they exhibit the same scaling behavior, there is a clear sense in which these two
situations are physically distinct, thus showing di�erent context-dependent details which are
essential to explain the relevant physics.

5 Concluding Remarks

RG methods are an undoubtedly fascinating topic, from both a physical and a conceptual
standpoint. Despite the di�erences in how they are actually applied within the various �elds of
physical inquiry, one key feature can be singled out, namely their ability to provide the proper
set of degrees of freedom for the problem at hand. On this respect, they embody the most
up-to-date mediators between di�erent theoretical levels � the microscopic and macroscopic
realms being just two paradigmatic representatives of a broader class of inter-level connec-
tions. Morrison's contribution to the conceptual assessment of such a technique is arguably
unprecedented. On the one hand, she has explored the connection between the various appli-
cations of RG methods, by outlining both the similarities and di�erences among the diverse
implementations of RG theory. On the other hand, she has indicated how RG methods fall
within the more general discussion around the applicability of mathematics to science, and
how this relates to the account of RG methods as providing a non-causal and non-reductive
explanation of critical phenomena. She has defended an account of RG theory that depicts the
latter as a mathematical, non-reductive, non-causal framework which is able to provide genuine
physical information based on structural considerations. Here we have focused on the putative
mathematical character of RG theory's explanatory role. We have argued that RG methods,
though mathematical per se, cannot provide an explanation unless they seriously engage with
those di�erence-making factors that the speci�c problem at hand presents. As these factors
� which encode physical information � are also responsible for the success of RG theory, the
explanatory role of RG methods cannot be distinctively mathematical.
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