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Abstract

One of the main criticisms of the theory of collections of in-
discernible objects is that once we quantify over one of them,
we are quantifying over all of them since they cannot be dis-
cerned from one another. In this way, we would call the collapse
of quanti�ers: ‘There exists one x such as P ’ would entail ‘All x
are P ’. In this paper we argue that there are situations (quan-
tum theory is the sample case) where we do refer to a certain
quantum entity, saying that it has a certain property, even with-
out committing all other indistinguishable entities with the con-
sidered property. Mathematically, within the realm of the the-
ory of quasi-sets Q, we can give sense to this claim. We show
that the above-mentioned ‘collapse of quanti�ers’ depends on
the interpretation of the quanti�ers and on the mathematical
background where they are ranging. In this way, we hope to
strengthen the idea that quanti�cation over indiscernibles, in
particular in the quantum domain, does not conform with quan-
ti�cation in the standard sense of classical logic.
Keywords: quanti�cation, quantum logic, indiscernibility, iden-
tity, in- discernible objects.

*Partially supported by CNPq.

1



1 Introduction
The quantum realm, where quantum theories reign, is the land of
indiscernible things.1 Thus, this �eld o�ers a nice place for motivat-
ing the discussion we intend to promote and shall be used to exem-
plify our claims, although the logical discussion is not restricted to
the quantum world.

Physicists say that all electrons are ‘identical’, meaning indiscern-
ible from one another with respect to intrinsic properties (those that
are independent of the state of the system), and so are all protons, all
atoms of the same substance, and this goes at least to some molecules.2
We still don’t know until what stage these results go, since ‘quan-
tum phenomena have been observed in systems that almost could
be called ‘classical’. But at least for the ‘micro objects’, it can be taken
for granted that in certain situations we cannot discern among those
belonging to a certain collection.3

The consideration of indiscernible entities poses a problem to any
attempt to discuss logical matters. The literature is abundant in point-
ing to the di�erences among ‘classical connectives’ and their quan-
tum correspondents, so as about the validity of some ‘classical’ rules
(such as the Lindenbaum property, the full Theorem of Deduction,
etc.; see [1, 7] and the references therein). A particular case concerns
quanti�cation and this is one of the topics that has not received the
deserved attention until now (some few exceptions being mentioned

1It is disputable whether we really can, as Bohr seems to have proposed, divide
the world into ‘micro’ and ‘macro’ parts. Apparently, quantum mechanics would
be a ‘totalitarian theory’ (to use Leggett’s expression) which applies not only to elec-
trons and protons but also to macroscopic objects; see [14]. But here we shall be
concerned, in the examples mentioned, with the microscopic level only. We as-
sume, as usual, that ‘macroscopic’ objects obey classical logic, although the frontier
is known to be fuzzy.

2We keep the words ‘identical’, ‘identity’, etc. to be used in a logical and mathe-
matical context meaning the same. Today experiments have shown that also ‘big’
molecules such as C60 and C70 present a ‘quantum behaviour’, say in the two-slits
experiment [20].

3I shall leave the discussion about Bohmian mechanics, which encompasses an
ontology similar to classical physics, out of this paper and assume the standards in
quantum theories. It is disputable whether Bohmian’s positions can be known. As
far as I am concerned, they remain hidden.
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below, such as [4, 5, §5]). In general, quantum logicians speak less
about quanti�cation than about the propositional level, but it is to
quanti�cation that we restrict our analysis here. The basic question
can be put this way: consider a collectionA (we shall not refer to ‘sets’
for the reason to be mentioned soon) of indiscernible objects and let
F be a property that applies to them. Then it is supposed that if F
applies to one of these objects, due to their indiscernibility, it should
apply to any other of them as well, at least this is what it seems. So, if
∃xF (x), we ought to conclude that ∀xF (x). This of course would cause
a collapse of quanti�ers and brings a problem for the quanti�cation
in non-re�exive logics. As da Costa and Bueno say [5],

In order to quantify over each object in the domain, such
objects need to be distinguishable from one another. But
this presupposes that identity can be applied to these ob-
jects so that quanti�cation ranges over distinct objects rather
than the same object again and again. Given the identi-
�cation of ‘each’ and ‘all’ in re�exive logics [logics where
identity applies to all objects], the latter presupposes that
the objects that are quanti�ed over have well-de�ned iden-
tity conditions. However, this assumption need not hold in
the cases of logics, such as non-re�exive ones, in which the
principle of identity is restricted. In fact, if we are unable
to speak of the identity of certain objects, we cannot speak
of these objects being di�erent from one another either,
given that di�erence involves the negation of identity.

The problem is with the assumption that indiscernibles are ‘the
same’, as the above quotation seems to suggest. Quantum objects
are absolutely indiscernible in certain situations, as in a bosonic con-
densate, and even so, they are not the same entity. But OK, you can
say that we cannot ascribe to one of them certain characteristics not
shared by the others. So, let us go to another relevant case involving
fermions. As is known, fermions cannot have all the same quantum
numbers, so even in the ‘worst’ situation, they do present a di�er-
ence. A typical example is that of the two electrons of a helium atom
in the fundamental state. The state of the system with the two elec-
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trons is given by a state vector of the form

|ψ12〉 =
1√
2

(
|ψ1, ↑〉 |ψ2, ↓〉 − |ψ2, ↑〉 |ψ1, ↓〉

)
(1)

where the labels ‘1’ and ‘2’ label the electrons and the arrows indicate
the direction of the spin in a given direction; the vector is chosen so
that a permutation of these labels conduce to − |ψ12〉, but the proba-
bilities are the same since | |ψ12〉 |2 = | − |ψ12〉 |2.

But the problem is di�erent. Even presenting a di�erence with re-
spect to their spins, we are unable to identify which electron has, say,
spin UP. The most we can say is that one of them has this character-
istic while the other does not; no more information is available. But
we of course (at least informally) can quantify the electrons and say
things like “there exists one electron (of the atom, etc.) with spin UP
in the given direction", and this of course does not entail that both of
them have such a value of spin. So, contrarying da Costa and Bueno,
we agree that we really are unable to speak of the identity of the elec-
trons, but even so, we can say that they have some di�erence. Quan-
tum objects are not classical objects and behave di�erently.

da Costa and Bueno’s claim is valid in the standard frameworks
where identity is de�ned by means of indiscernibility and holds in
full, but not in all domains. In quantifying over indiscernibles, we of
course are not quantifying over the same object “again and again” as
they suggest. In fact, we can agree that indiscernible things are not
the same thing; what we need is just to �nd a framework where this
can be expressed, thus of course we need to go out of standard logical
settings. Thus, let us �x a point here: when we say that a collection of
objects comprises indiscernibles, not always we are thinking of things
like the bosons in a bosonic condensate; it may be the case that we
are speaking of things such as fermions in a situation like that of the
electrons of a helium atom: they can present a di�erence, but we
cannot say which is which. So, we cannot say that ∃xP (x) → ∀xP (x)
even in the context of non-re�exive logics, as the above interpretation
shows (just take P (x) meaning that x is an electron of a He atom with
spin UP in a given direction).

From a mathematical perspective, we need to give life to these
claims, more speci�cally, to the possibility of �nding a mathematical
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framework where we can express a situation where a certain collec-
tion of objects has as elements indiscernible things but so that there
is not just one thing. The way to express that is by means of cardi-
nalities; the collection of the electrons of the He atom is two, even if
we cannot distinguish its elements. Even a bosonic condensate can
be ‘weight’ so that we can have an idea of the quantify of elements
it comprises, although absolutely indiscernible. Quasi-set theory pro-
vides such a framework, as we shall mention below. There, as we
shall see, we really can quantify indiscernible things without the col-
lapse of quanti�ers.

2 A glimpse on the theory of quasi-sets
Let us name ‘Q’ a theory which generalises standard set theory and
which would be able to deal with collections of entities such as the
quanta which in certain situations can be considered as absolutely
indiscernible. Of course, we wish to preserve a standard set theory
inside Q, so ZFA (Zermelo-Fraenkel set theory with atoms) system is
the ‘core’ of the theory, although one could base the theory on a dif-
ferent ground, such as the NBG system or other. So, ZFA enables us
to develop all standard mathematical concepts such as ordinals and
cardinals. The atoms of ZFA are represented in Q by a monadic pred-
icate M , and we call them M-atoms. The entities represented by the
M-atoms sometimes will be termed ‘M-objects’. The novelty is that the
theory encompasses another kind of atoms, the m-atoms, which in
the intended interpretation would play the role of quantum entities;
to these entities, it is supposed that the standard notion of identity
does not apply, and this is done by assuming that expressions of the
form ‘x = y’ are not well-formed if either x or y denote an ‘m-object’.
So, the theory goes in the direction pointed out by Schrödinger, who
has claimed that “the notion of sameness, of identity, really and truly
has no meaning [to the elementary particles]" ([17, p.122]; see [10] for
a discussion).

Quasi-sets are objects that are neither m-atoms nor M-atoms. Their
elements may be either kind of atoms and also other quasi-sets; a ver-
sion of the Axiom of Regularity is used to avoid that a quasi-set can be
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an element of itself. Some quasi-sets do not involve m-atoms in their
transitive closure, that is, they are built within the ‘classical’ part ofQ,
and are termed sets, being copies of the ZFA sets. If the M-atoms are
also dropped out, then we get a version of ‘pure’ ZFC. The unary prim-
itive predicates m, M , and Z cope with m-objects, M-objects and sets
respectively. Two binary primitive predicates are ≡ (indistinguisha-
bility, or indiscernibility), and ∈ (membership) also make part of the
language, so that ‘x ≡ y’ means that x is indistinguishable (or indis-
cernible) from y and ‘x ∈ y’ means that x is an element of y. Further-
more, there is still a unary primitive functional symbol, qc such that
qc(x) is a term which stands for ‘the quasi-cardinal of x’, informally
standing for the number of elements it has. Formulas are de�ned as
usual, and the postulates provide the details of the theory.

Given a formula ϕ(x) of the language, the collection [x : ϕ(x)] is
called a quasi-class; we deserve the usual ‘{’ and ‘}’ for the case of sets.
Given a quasi-set q and x ∈ q, we de�ne the ‘singleton’ of x (relative
to q) as the qset [x]q := [y ∈ q : y ≡ x], that is, the quasi-set of the
indiscernible from x that belong to q; of course, its quasi-cardinal can
be greater than one. If such a quasi-cardinal is precisely one, we call
it the strong singleton of x and denote it by JxKq; the details of how to
derive the existence of such quasi-sets are omitted.

Important to realize that in having a quasi-cardinal, the elements
of the quasi-set can continue to be indiscernible; nothing implies that
they can be ‘counted’ by standard means (that is, by means of bijec-
tions, which need identity for de�ning them). Identity (symbolized
by the equality symbol ‘=’) is not a primitive notion, but a concept of
extensional identity, ‘=E ’, is de�ned this way:

x =E y := (Q(x) ∧Q(y) ∧ ∀z(z ∈ x↔ z ∈ y)) ∨
(M(x) ∧M(y) ∧ ∀z(x ∈ z ↔ y ∈ z)). (2)

The reader could think that it would be more convenient to restrict
the extensional identity to sets and M-objects only. This of course
could be done but brings di�culties for expressing certain things, as
in de�ning certain frames at section (??), as we shall mention there.
But we think that the above de�nition can be used; when two quasi-
sets do have the same elements, they are extensionally identical, end-
point, yet we possibly never know when this happens.
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It can be proven that this identity has all the usual properties of the
standard identity of ZFA for the objects it applies to. Notice that ‘=E ’
does not hold if at least one of the involved terms is an m-atom. So, if
we interpret the m-atoms as denoting quantum elementary systems,
we are within Schrödinger’s realm. Thus, such an interpretation pro-
vides a model for us to show that ∃xP (x) → ∀xP (x) does not hold in
Q.

The relation ‘≡’ has all the properties of an equivalence relation
(re�exive, symmetric and transitive), but it is not a congruence; in
fact, it does not preserve membership: if x ∈ y and x′ ≡ x, we cannot
prove that x′ ∈ y. So,≡ and standard identity (=) are di�erent notions
since the former applies to all entities in the universe of quasi-sets
while the last one (in the form ‘=E ’) applies only to sets and the M-
atoms.

Postulates similar to those of ZFA are given, say a Scheme of Sepa-
ration, union, power, etc. The null quasi-set turns out to be a set and it
is unique, represented by ‘∅’. For ‘classical entities’ (either M-atoms or
sets), an Axiom of Extensionality holds, but when m-atoms are also
involved, we cannot state it in its usual form, so the theory postu-
lates a Weak Extensionality Axiom, which says (with the due de�ni-
tions and existential postulates) that quasi-sets comprising ‘the same
quantities’ (in terms of quasi-cardinals) of elements of the same sort
are indistinguishable. Thus we can treat formally two sulfuric acid
molecules as indiscernible, yet not identical: H2SO4 ≡ H2SO4 and the
quasi-set having only two of such molecules as elements has quasi-
cardinal two. So, the quasi-set can have a quasi-cardinal even if its
elements cannot be discerned from one another.

The elements of a quasi-set can be distinguished in ‘kinds’ by some
property, as in physics we distinguish among electrons, protons and
neutrons. What imports is not their identities, but their kinds and
quantities, as when we consider a sulfuric acid molecule; so, in in-
formal parlance, we can pose a �nite quasi-set as something like the
tuple

q = 〈k1, k2, . . . ;λ1, λ2, . . .〉, (3)

where the k’s indicate the kinds and the λ’s the quasi-cardinals of each
kind. Thus, H2SO4 turns out to be something like 〈H, S,O; 2, 1, 4〉, which
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emphasizes just the kinds and quantities, and not the nature of the
involved entities.4

We can construct (in the metamathematics) a universe of quasi-
sets Q by trans�nite recursion over the class On of ordinals as fol-
lows: Q0 := m ∪M , where m and M are disjoint collections of atoms,
Q1 := P(Q0), . . . , Qλ :=

⋃
β<λQβ if λ is a limit ordinal, and �nally

Q :=
⋃
α∈OnQα. This structure is not rigid, since the identity function

cannot be de�ned for all quasi-sets of the universe (due to the pres-
ence of the m-atoms) and of course, the quasi-function (see below)
that leads an element into an indistinguishable one is a nontrivial
automorphism.

We can de�ned a version of an ‘ordered pair’ as follows: given a
and b in a quasi-set q, de�ne 〈a, b〉z := [[a]z, [a, b]z]P(z), where [a]z and
[a, b]z come from the ‘pair axiom’.5 By means of this de�nition, we
can de�ne binary and n-ary ‘quasi’-relations and ‘quasi’-functions (q-
function). Interesting that a q-function does not distinguish between
its arguments (or values) when there are indistinguishable m-atoms
involved; so, the de�nition says that indistinguishable things are lead
to indistinguishable things. By softening the idea we can also de�ne
q-injections, q-surjections and q-bijections.

The theory has also a version of the axiom of choice we call Ax-
iom of Quasi-Choice, which informally read as follows: given a qset x,
non-empty and formed by disjoint and non-empty quasi-sets, there
exists a quasi-set u such that given an element v of x and an element
t ∈ v, there exists a qset s which is a sub-quasi-set of the qset of the
indiscernibles from t that belong to x with quasi-cardinal one and
whose intersection with u is indiscernible from its intersection with
v. This last a�rmative says that the only element of s is indiscernible
from t, but of course, we cannot state that it is t itself. Obviously, if no
m-atoms are involved, this axiom is equivalent to the standard one
in ZFA. In other words, the quasi-set u is formed by selecting one el-

4It should be remarked that Hermann Weyl has called our attention to precisely
this point, positing that in quantum physics what imports is an ‘ordered decompo-
sition’ emphasizing precisely the kinds and quantities only; see [19, App.B], [10],
[13]. Just to remark, this was also the idea underlying the birth of modern chem-
istry with Boyle, Hooker, and mainly Dalton, to whom the atoms of a given element
are indiscernible – see [9].

5An alternative de�nition could be 〈a, b〉z := [JaKz, JaKz ∪ JbKz]P(z).
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ement indiscernible from some element of each element of x. Other
formulations could of course be given.

One interesting result is a theorem which asserts that ‘permuta-
tions are not regarded as observable’, a central thing in quantum me-
chanics. In this theory this needs to be introduced by a postulate, the
Indistinguishability Postulate, which read as follows: for all vectors
|ψ〉, all operators Â and all particle label permutation operator P , we
have that 〈ψ|Â|ψ〉 = 〈Pψ|Â|Pψ〉, that is, the expectation value of the
measurement of an observable A (represented by the self-adjoint op-
erator Â) for the system in the state |ψ〉 is the same before and after the
action of the permutation operator P . In other words, permutations
are not observable. In Q, we have a theorem which says that given
a quasi-set q, if x ∈ q, y ≡ x being y ∈ q′ where q ⊆ q′, but y /∈ q, then
(x \ JxKq) ∪ JyKq′ ≡ q. In words, we are ‘exchanging’ an indistinguish-
able from x by an indistinguishable from y and the resulting quasi-set
remains indistinguishable from the original one. This is of course a
version of the Indistinguishability Postulate and does not need to be
introduced by force (as a postulate), resulting in Q from the assumed
indistinguishability of the involved elements.

In the theory of quasi-sets, we can do the following move. Sup-
pose we have a quasi-set q with n indiscernible elements. De�ne a
subquasi-set q′ with n− 1 of them, which is possible from the axioms;
just consider the quasi-set q\JaKq, where a ∈ q and JaKq is the strong sin-
gleton of a relative to q.6 Then we can say that there is one element of
q that has a characteristic not shared by the others, namely, to belong
to the complement of q′ relative to q. But due to their indiscernibility,
we cannot point to one of them and say ‘this one’.

3 Still on quanti�cation over indiscernibles
So, quanti�cation over collections of indiscernible objects demands
a di�erent logic, and a di�erent way to look at the quanti�ers. The

6In this case, since all elements of q are indiscernible, the n strong singletons
are also indiscernible, but the postulates grant that there are n of them. The nota-
tion ‘JaKq ’ stands for a quasi-set with cardinal one and whose only element is indis-
cernible from a, but the theory is unable to prove that it is really a since there is no
identity holding among them.
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�rst question would be this one: why quasi-sets, that is, why go out
of classical logic? The answer comes from the interpretation of the
word ‘semantics’ as used in this context. We suppose that quantum
mechanics has a certain underlying logic, where the meaning of the
quanti�ers is syntactically given, but we are trying to provide them
with appropriate semantics, in the sense of considering what they
say about an intended domain. Surely we can apply also to quantum
languages what da Costa et al. said in general about semantics for
non-classical logics (and we agree with them):

. . . it is [important] to note that a set theoretical semantics
[that is, a semantics grounded on a standard concept of set]
for a non-classical logic (. . . ) being constructed within clas-
sical set theory, (. . . ) reveals itself, from the philosophical
perspective, completely unsatisfactory (my emphasis). [6]

They continue

[m]ore generally, the usual set-theoretical semantics, given
the way it is articulated at present, depends on its underly-
ing set theory: if one changes such a theory, the semantics
itself is, ipso facto, changed. In particular, the same is the
case for Tarski’s de�nition of truth.

We could add ‘. . . and, of course, the meaning of the quanti�ers’
to the last expression. As we see, the choice of metamathematics is
extremely relevant for formal semantic discussions and, further, a
logical system (and this can of course be extended to scienti�c the-
ories) cannot be understood out of (at least) an intended interpreta-
tion. Thus, in order to provide the right semantics for any reasonable
quantum theory, we should accompany its account to indiscernibility,
which is impossible to do within a standard framework.7

7We shall not enter in this important topic here; the resume is that standard
mathematical frameworks, as we shall comment a little bit below, work with indi-
viduals, that is, with entities endowed with identity conditions, given by the stan-
dard theory of identity, which of course is not the case of quantum systems. Notice
that one of the main characteristics of an individual is its re-identi�ability, that it,
it can be recognized later as being that individual from before; it is clear that this
does not happen with quantum objects.
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Just to state the problem with more precision, let L be a quite sim-
ple pure quanti�cational �rst-order language where x1, x2, . . . name
the individual variables and P stands for a unary predicate.8 Let
A = 〈D, I〉 be a structure for L and let us suppose further that D is
a quasi-set of indiscernible elements, that is, s ≡ t for any s, t ∈ D,
where ‘≡’ is the indiscernibility relation, which has the properties of
an equivalence relation. As we see, it is not enough to assume a col-
lection of indiscernible entities, but it is necessary to say where such
collections are living, and surely the place is not a standard set theory.

Our aim is to �nd conditions for both

(1). A |= ∃xiP (x1), and

(2). A |= ∀xiP (x1)

and analyse if they collapse into one another. We remark that the two
above conditions can be rewritten respectively as

1. Q ` (A |= ∃xiP (x1)), and

2. Q ` (A |= ∀xiP (x1))

meaning that (1) and (2) must be proven withinQ. Let’s recall that this
is a typical way to indicate that what we need is a metamathematical
proof, as for instance, it happens in Tarski’s truth conditions, which
depends on the metamathematics, as already indicated.

If D is a standard set (say of a theory such as ZFC), then the condi-
tions for ‘satisfaction’, ‘truth’, ‘model’ and others are the usual ones
[12]. The most interesting case is whenD comprises only indiscernible
elements (say a collection of bosons in the same quantum state).9 In
this case, we make use as a variable assignment a quasi-function s

8In a ‘pure’ quanti�cational language, the only terms are the individual vari-
ables. We don’t lose generality in assuming this. Of course, we can generalize our
simpli�ed example; see [18].

9A Bose-Einstein Condensate is a typical case, obtained when certain atoms or
other quantum entities are cooled to quite closer the absolute zero. As far as the
temperature decreases, the wavefunctions of the elements become so that at that
temperature they behave as a single thing, not presenting any di�erences at all.
Although they are not the same entity, they cannot be discerned by any means. See
[12].
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that assigns elements of D to the individual variables. Before contin-
uing, an important remark is in order here.

In Q, when indiscernible elements appear in the quasi-sets, we
don’t have a way to distinguish among the arguments and among
the values for de�ning a function in the standard sense. So, the no-
tion of quasi-function is introduced in order to cope with this. In-
tuitively, a quasi-function (q-function) between qsets A and B asso-
ciates elements of B to the elements of A in such a way that if the
elements in the domain are indiscernible, then their images are also
indiscernible. More formally, if f is a q-function and 〈a, b〉 ∈ f , a′ ≡ a
and 〈a′, b′〉 ∈ f , then b′ ≡ b. Of course that when the only element indis-
cernible from some object is the object itself (as in standard set the-
ories), the de�nition coincides with the standard one. Let us further
indicate that s[x/d] says that an object referred to as dwas assigned to
the variable x. In Q, let us insist, if indiscernible elements are being
considered, d doesn’t designate a well-determined object, but an ob-
ject whatever of a certain sub-collection of the domain (one electron,
say, without speci�cation of which one), which (of course!) cannot
be discerned from those which are indiscernible from it. But, as it
seems clear, the assignment s does not attribute every object (taken
from a collection of indiscernibles) to x.10 A further remark for clar-
ifying something. We have said in the last footnote that the symbols
of L obey classical logic. We cannot confound language with meta-
language of course. The theory Q involves a ‘classical’ part where all
standard mathematics can be performed. So, if the reader is ques-
tioning the assertion we made, she can consider that L is described
in this ‘classical’ part of Q.

With these ideas in mind, we can state the notion of satisfaction.
As in standard semantics, we associate a subset of D to the predicate
P , let us call it S, that is, I(P ) := S ⊆ D.11 The atomic formula P (x),

10Notice that the assignment s is attributing d ∈ D to x. Since every variable is
indiscernible only from itself –we assume that the elements of the language obey
classical logic–, there is just an element being associated with it, namely, d. The
interesting fact is that we cannot put our �nger over the element designed by d and
say ‘this one’; it is simply ‘d’, and we cannot identify it.

11Another subtlety: if D comprises indiscernible elements, we cannot character-
ize S except by indicating that its elements belong to D (or that are of the ‘kind’
of the elements of D), and its cardinality. Whatever ‘other’ subqset of D with the
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for x indicating an individual variable, is satis�ed in the structure
A = 〈D, I〉 i� s(x) ∈ S (that is, d ∈ S). Let us use again our preferred
example to provide a motivation: suppose again a Sodium atom and
takeD as the qset of all its electrons. Let us de�ne P as indicating that
something satis�es P i� it is an electron of the orbital 2p of the atom.
Then S is the qset of these electrons, and A |= P (x) i� s(x) ∈ S, that is,
i� the assignment given to x is an electron of the orbital 2p. Remem-
ber that the distribution of the electrons in the orbitals is made ac-
cording to the electrons’s quantum numbers n, l,ml and ms (spin) [?].
The di�erences among these quantum numbers do not make the elec-
trons di�erent in the ‘classical’ sense, since it is impossible to know
which group of electrons are in each orbital, something that in princi-
ple should be done in a classical setting. So, by considering the qset of
the eleven electrons, we can take a formula which speci�es the suit-
able quantum numbers for a certain orbital, say 2p, and by the Sepa-
ration Schema of Q we select the desired subqset with six electrons.
This strategy can be generalized for other similar cases so that, going
back to the generalities of logic, it makes sense to reason as if there
are conditions for knowing whether the elements s(xi) ful�l adequate
conditions to be members of the suitable qset, although we continue
unable to know which elements would be them.

Of course, you can ask some questions, let us anticipate one of
them. Question: how can we know that s(x) ∈ S and not in the (say)
3s orbital? The answer goes as follows. It depends on the q-function s
and the formula that de�nes the property ascribed by the predicateP .
Such a formula says that the associated electron has quantum num-
bers typical of those that belong to the 2p orbital. Chemistry teaches
us that there are at most six of them; so, in speaking of d, we just
assume that it designates one, without the need of specifying which
one.12 Notice again that physics says that the electrons in the di�erent
orbitals have di�erent quantum numbers. But this does not enable
us to identify them except by these bunches of proprieties (that give

same cardinality than S (that is, whatever subqset indiscernible from S) would act
as the extension of P as well. This is an interesting trait of quantum mechanics:
it subverts the standard meaning of intensions and extensions, enabling that one
intension may have ‘di�erent’ extensions; see [8].

12We could use Hilbert’s ε symbol for that: εxP (x) stands for one electron with
such and such quantum numbers. See below footnote 20.
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us the quantum numbers), but never individually. So, we are unable
to say which electron is d, but just that it has some quantum num-
bers characteristics of those electrons in the required orbital. If, dear
reader, you question this, are you able to distinguish from the others,
say, the only electron in the orbital 3s? I think that we both should
agree that this discourse is faithful to quantum physics.

Concerning this last point, we should be aware that the orbitals
are not empty places to be ful�lled by electrons as if they were like a
shelf in a library; about this, it would be interesting to pay attention
to the remark made by Bruce Mahan:

A word of caution concerning the interpretation of (. . . ) “feed-
ing” electrons into orbitals is in order. While it is useful to
describe atoms qualitatively by saying that there are elec-
trons “in” certain orbitals, and while it is sometimes help-
ful to think of atoms as being built up by “placing” elec-
trons into a set of vacant orbitals, this language must not be
taken too literally. The orbitals of an atom are not a perma-
nent set of “boxes” rigidly placed on an energy scale (. . . ).
When we say an electron is “in an orbital” we are saying
only that an electron is behaving in a certain manner, and
in this sense an orbital exists physically only if an electron
is “in” it. Moreover, each atom and ion has a unique set of
energy levels determined by its nuclear charge and num-
ber of electrons. Consequently, the energy associated with
a given orbital depends on what other orbitals are occu-
pied, and is not the same for all atoms. [?, p.453]

Thus, we do not pick electrons and destine them to the orbitals,
but the theory gives the conditions for the electrons to behave this
or that way so that the orbitals are being ‘ful�lled’ (pardon for the
expression) by the electrons according to the rules of chemistry. This
is what we need to assume regarding quantum theories; when we say
that there is one quantum so and so, we are just providing conditions
for something of a kind to be so and so, and no identi�cation would
be advanced. This meshes with quanti�cation.

14



4 Semantic conditions for quanti�cation
Let us be a little bit more general now. Our object language is now
a standard one for pure quanti�cational �rst-order logic [18]. Given
an atomic formula13 of the form P n(x1, . . . , xi, . . . , xn) where P n is an n-
ary predicate and the free variables are among the xk. In addition, let
A = 〈D, I〉 be a structure for our language, where D is, again, a quasi-
set of indiscernible elements,14 and s is an assignment q-function for
the individual variables. The valuation function I associates to the
predicate P n a subqset of Dn, regarding the ways Q expresses that.15

Notice again that, by the de�nition of quasi-function, just one element
ofD is associated with each variable;16 you can express that by saying
that the image of x is the element of a strong singleton JdKD, which has
a cardinal one and whose only element is indiscernible from d.17

De�nition 1 Let I(P n) be the n-place q-relation that the interpretation
associates to the predicate P n. Then the sequence (b1, . . . , bi, . . . , bn, . . .)
of elements of D satis�es the atomic formula P n(x1, . . . , xi, . . . , xn) i�
〈s(x1), . . . , s(xn)〉 ∈ I(P n). The sequence doesn’t satisfy the formula oth-
erwise.

13Shall be enough to analyse this case, the most general ones can be got from
extending the reasoning to formulas in general in the usual sense.

14It could be not necessarily so. We could assume that D comprises sub-
collections of indiscernible elements which are discernible from the elements of
another collection of indiscernible elements, and even that there could exist ‘clas-
sical’ elements in D, that is, elements which obey the rules of classical logic. In
more precise terms, D is a quasi-set as described in Q.

15Since ordered tuples need to be understood adequately within the scope of Q;
the details are not relevant here and the reader can reason as usual in standard set
theories.

16Remember again what was said above that the elements of L obey classical
logic. So, a variable x is an individual and the q-function s associates to it just one
element d ∈ D, yet ‘hidden’, that is, yet we may be unable to discern it from others.

17Given a qset A and an element x ∈ A, we can form the ‘unitary qset’ of x as
being the qset of all elements of A that are indiscernible from x. It is denoted [x]A
and may have more than one element (that is, its cardinal, or ‘quasi-cardinal’, may
be greater than one). We also call the ‘strong singleton’ of x the qset JxKD, which is
a subqset of [x]A and has a quasi-cardinal one (for a proof of its existence, see [10,
chap.7]).
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The de�nition is precisely the standard one [15, p.48], but its in-
terpretation is not (so as the interpretation of the quanti�ers can-
not be ‘classical’). The important remark is to remember that s(xj)
is not specifying a well-de�ned element of the domain, so things are
left open in the speci�cation of a which-is-which element; the only
thing that is relevant is its kind (electron, proton, etc.). But a fur-
ther remark is in order here, similar to that already made before,
which we repute as necessary to �x the ideas. We know that the in-
terpretation q-function associates to P n a subqset I(P n) ⊆ Dn of the
domain. The question is the following. Since the elements of D may
be all indiscernible from one another, how can we grant that the tu-
ple 〈s(x1), . . . , s(xn)〉 belongs to I(P n)? An analogy helps also here, and
again we use our example of a Sodium atom. As we know, all the
eleven electrons of the atom are indiscernible from the point of view
of the theory (they have the same intrinsic properties) but they have
di�erent quantum numbers since they are fermions. So, the tuple
will be in I(P n) if the elements s(xj) ful�l the conditions that specify
the subqset I(P n) as already remarked above. This is in conformity
with the way physicists seem to reason.

A predicate P n that obeys this de�nition is invariant by exchange
of indiscernibles, since if it holds, say, for one electron of the 2p level,
it holds for all of them (in 2p). In other words, the atomic formula con-
tinues to be true in the structure even if s(xj) is exchanged by s(xk),
provided that the corresponding elements are in the same orbital.
This is similar to the Indistinguishability Postulate mentioned below.
So, it seems that the substitution by indiscernibles would state a con-
gruence in the sense that if a certain formula (in a simpli�ed version)
ϕ(x) holds for some d ∈ S ⊆ D, it would hold for every d′ ≡ d as well.

But, before believing in this saying, two remarks are in order. De-
spite the similarities with the classical case, as remarked above, this
is a di�erent thing in the quantum domain. In quantum physics, one
of the fundamental assumptions is the Indistinguishability Postulate
(IP) [16], which says (roughly speaking) that the expected value of
the measurement of an observable is the same before and after a
permutation of indiscernibles [10]. What we have in (IP) is the accor-
dance between results of measurement, and not a congruence strictly
speaking. The second and more important remark is that the relation
of indiscernibility of Q is not a congruence, and this is precisely what
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distinguishes it from identity. So, we need to check if the formula we
are using enables the substitution for indiscernibles; following Bour-
baki (in the terminology only), let us call them transportable formulas
[3]. Thus, we postulate that the formulas that quantum physics ac-
cepts as relevant for such issues are transportable in this sense (this
can be sustained as a postulate for now, but of course demands a dis-
cussion which we intend to do in another work). But let me explain a
little by showing that there are formulas that are not transportable,
such as the relation of membership, which is not invariant by substi-
tution of indiscernibles. In other words, there is nothing in the theory
that grants that x ∈ y and z ≡ x entail z ∈ y. The proof is straightfor-
ward within Q and roughly speaking goes as follows. Being x and z
indiscernible elements of a qset D, we can form the strong singletons
of them, namely, the qsets JxKD and JzKD having both quasi-cardinal 1
and comprising just one element indiscernible of (respectively) x and
z. These qsets are also indiscernible from one another since their el-
ements are indiscernible (this is entailed by the Axiom of (Weak) Ex-
tensionality of Q), but the theory doesn’t entail that they are the same
(identical), for this requires identity, and in Q, identity lacks a sense
for some objects, as you surely know already.18 Now we can answer
our �rst question.

De�nition 2 We say thatA |= ∃xiP n(x1, . . . , xi, . . . , xn) i� there exists an
element s(xi) so that the sequence (b1, . . . , s(xi), . . . , bn, . . .) of elements of
S satis�es P n(x1, . . . , xi, . . . , xn).

Notice, again, that the de�nition is similar to the standard one in
classical logic, but its interpretation is not. Really, the reader could
reason as follows, thus accompanying Bueno’s claim: if the formula
is satis�ed by some s(xi), it would be satis�ed by every s(xj) ≡ s(xi).
We remark that this could be the case if ‘≡’ were a congruence, but
it is not. So, the invariance by substitution of indiscernibles doesn’t
hold for any predicate you chose but only for those that conduce to
transportable formulas, so this conclusion cannot be assumed with-
out quali�cation.

18These objects are term m-atoms; for them, expressions like x = y are not well
formed formulas when x or y stand for an m-atom.
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In fact, recall once more, s(xi) is not a proper name for an ob-
ject of the domain, since there are no proper names in the quan-
tum realm; no label can act as a rigid designator [8], [10, p.224]. The
reader should think of s(xi) (let us call it ‘d’) as a parameter, designat-
ing an element of a certain sort (an electron, say) without any com-
mitment to identifying it. In classical �rst order logic, when we state
that P (d) → ∃xP (x), d is a term whatever, free for x in P (x),19 so d
of course designates a speci�c element of the domain (since in stan-
dard semantics all of them do have identity). But in Q things are in
general not so in the following sense: although there can be some el-
ement obeying the formula, not always we can identify it, name it;
we just know that there is (at least) one, but not which one. As said
earlier, d doesn’t name (necessarily) a speci�c object, but some object
in the domain.20

The condition for the universal quanti�er can also be stated in the
same terms, namely,

De�nition 3 We have that A |= ∀xiP n(x1, . . . , xi, . . . , xn) if and only if
every element s(xi)is so that the sequence (b1, . . . , s(xi), . . . , bn) satis�es
P n(x1, . . . , xi, . . . , xn).

Notice (again!) that in saying (in the metalanguage) ‘for every
element s(xi)’, we are not conferring identity conditions to the ele-
ment designated by it; this element is an element whatever of a sub-
collection of indiscernibles in the domain. If we were in a standard
set theory, then of course we could reason as if this condition (being
obeyed) would entail that the formula is satis�ed for this, for that,
for that one etc. elements of the domain, that is the ‘for all’ could be
transformed in ‘each one’, something that apparently entails iden-
tity. This could not be di�erent, since we are in a standard set theory
where identity makes sense to every object. But we are not there: we
are in Q, and here things act di�erently, as for sure the reader has
understood already.21

19In our pure logic, we state this theorem as P (y)→ ∃xP (x), where y is a variable
distinct from x.

20Using Hilbert’s epsilon symbol [2], perhaps we could write it as εxP (x), but this
needs to be analysed, for by obvious reasons (the lack of identity) the schema of
extensionality ∀x(A(x)↔ B(x))→ εxA(x) = εxB(x) doesn’t hold.

21By the way, this shows that the criticisms advanced by da Costa and Bueno to
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5 Summing up
We have seen above that the claim that the quanti�ers collapse if in-
discernible elements are considered cannot be sustained due (basi-
cally) to the following reasons:

1. The �rst remark is that you cannot even properly discuss any
claim about indiscernible things (but see below) within a ‘stan-
dard’ framework such as the ZFC (or ZFA) system, for there are no
indiscernibles there.22 In such frameworks, there may exist only
‘indiscernibles’ made ad hoc as elements related by some equiva-
lence relation. But this is just a trick to make them appear indis-
cernible. Furthermore, some ‘indiscernibles’, such as Ramsey’s or
Silver’s [11, pp.298�], are invoked in a di�erent notion than that
we are dealing with here. Notice that in such a framework, every
object has identity; Leibniz’s Principle of the Identity of the Indis-
cernibles holds in some way in classical logic and standard math-
ematics (see [10]).

2. Secondly, the theory Q shows that we can vindicate mathemat-
ically something that is assumed in most interpretations of quan-
tum theories, namely, as we have exempli�ed above, that we can
speak (and make sense!) of one quantum object in a certain situ-
ation without providing it with an identity (but just a ‘mock one’,
a ‘false’ identity as when we get a quantum trapped in some de-
vice. Momentarily, we can say that it ‘has identity’, but it loses such

the semantics of ‘non-re�exive logics’ [5] should be put within parentheses since
they ground their semantic reasoning in a standard set theory, contrary to what is
required. The right semantics should be constructed for instance in Q according
to their own requirements that a semantics would re�ect the aims and presuppo-
sitions of the logic [5]. Non-re�exive logics are non-classical systems that depart
from classical logic with respect to the theory of identity. A ‘right’ semantics should
be developed within a set theory where identity is limited, as Q does.

22Well, you could argue that in ZFA (the Zermelo-Fraenkel theory with atoms,
entities that are not set but can be elements of sets) any permutation of atoms con-
duces to an automorphism of the whole universe. This strategy is useful for the
construction of ‘permutation models’, where (inside the model) distinct atoms are
made indiscernible by nontrivial automorphisms. Good, but this doesn’t entail that
the atoms cannot be discerned; in fact, in the whole universe of ZFA, given any atom
a, we can always form the unitary set {a} and distinguish it from any other element
of the universe by the property ‘to belong to the singleton of a’, as seen already.
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‘identity’ as soon is leaves the apparatus; so, it cannot be taken as
an individual and its ‘identity’ is just a fake one). So, ‘There exists x
so-and-so’ means precisely this: there exists something so-and-so,
and we can reason with it without the necessity of identifying it.
In the same vein, ‘For all x so-and-so’ means that every element of
a certain domain is so-and-so, and this can be done without any
reference to their identities.

3. Thirdly, the above discussion, conduced in an adequate mathe-
matical framework, shows that the claim that ‘for all’ is equivalent
to ‘for each’ (this meaning ‘for this, for that, for that other, etc.’ im-
plying that we are able to provide an identi�cation of the elements)
is a false claim. A further example; in a BEC (Bose-Einstein Conden-
sate), it is said that all elements (atoms, molecules, whatever form
the BEC) behave as if they were just one thing (the ‘big wave’) [12].
Of course, we can speak this way and we really understand what
it means, but we have no way to grasp the elements of the BEC one
by one to ful�l the hypothesis of identi�cation.
So, we can respond (and agree) with Bueno’s claim that the rela-
tionships between quanti�cation and identity should be not only
formal [4] but we depart from him in that we should look to the
meaning of quanti�cation by precisely claiming that the under-
standing of quanti�cation over a domain D means precisely this:
‘For all x something’ means exactly that for every x ∈ D something
happens, and we do not need to identify them; by the way, why
should we? If I say that the COVID vaccine is available for anyone
in a certain city, I don’t need to name the inhabitants one by one.
In the same vein, ‘Exists x something’ claims that the sub-collection
of D of the objects that ‘something’ is non-empty, and we of course
do not need to say which ones are them; if someone took the vac-
cine, then someone took the vaccine, endpoint. The identi�cations,
of course, can be made, at least in principle, within a standard set-
ting, but not in all domains. Quantum physics is a testimony that
this is the case, and the theory of quasi-sets provides the stu� for
describing such a case.
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