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Abstract

This paper examines the axioms of algebraic quantum field theory (AQFT)

that aim to characterize the theory as one that implements relativistic causation. I

suggest that the spectrum condition (SC), microcausality (MC), and primitive

causality axioms (PC), taken individually, fall short of fulfilling this goal against

what some philosophers have claimed. Instead, I will show that the “local

primitive causality” (LPC) condition captures each axiom’s advantages. However,

this is only the case because SC, MC, and PC, taken together, imply LPC, as I will

show from a construction by Haag and Schroer (1962).
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Introduction

As put by one of the standard textbooks on the subject (Peskin and Schroeder, 1995),

quantum field theory (QFT) combines three major “themes”: the concept of field,

quantum mechanics (QM), and special relativity (SR). One of the main formulations

of QFT, algebraic QFT (AQFT), has often been highlighted by philosophers due to its

mathematically precise, axiomatic framework. The theory’s core is to assign to every

open, bounded region of spacetime O a set of observables A(O) describing the

physics in said region. For this paper, every A(O) is a von Neumann algebra that, in

particular cases, can be isomorphic to B(H), the bounded, linear operators on some

Hilbert space H—a structure more familiar from ordinary QM. Although there has

been much debate on which formulation we should use to address foundational,

philosophical, and interpretive questions (Fraser, 2009; Wallace, 2011), one could

argue that the fruitfulness of choosing AQFT lies in the rich and robust framework

that its axioms provide. However, as AQFT’s advocates know, these axioms are very

demanding from a mathematical and physical point of view. The clearest evidence of

this restrictiveness is the fact that the attempts to go beyond free fields have proven to

be unsuccessful or require certain modifications (Fredenhagen and Rejzner, 2015;

Buchholz and Fredenhagen, 2020).

Another troublesome instance of the worry of restrictiveness is the multiplicity of

axioms of AQFT that have a causal gloss. Is it not overkill to lay down multiple

axioms striving to do the same job—namely, characterizing the causal structure of a

theory that we know is too demanding? The tendency in the literature on relativistic

causation in QFT has been to single out the “most direct expression of the prohibition
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of spacelike processes” (Butterfield, 2007, p. 303). Jeremy Butterfield has argued in

favor of the spectrum condition, John Earman and Giovanni Valente (2014) have

criticized Butterfield and highlighted primitive causality in its stead, and

microcausality is still the most famous constraint among physicists. In this paper, I

will show in a minimally technical way that none of these causal axioms fully

explains the notion of causation appropriate for AQFT. There are two kinds of

shortcomings for the spectrum condition (SC), microcausality (MC), and primitive

causality (PC) conditions. First, they only capture some (and not all) of the desiderata

for relativistic causation that I will state in a moment. Second, it is often unclear how

it is that each axiom implements its respective desideratum. In this way, I argue

against the strategy in the literature to rivalize the axioms and privilege one among

them.

Additionally, I will show that a fourth condition, local primitive causality (LPC)

(also called the diamond property in older literature), does fully characterize

relativistic causation in the sense of fulfilling all the relevant desiderata. Instead of

making LPC my own favorite axiom, I will show a construction from Haag and

Schroer (1962) with which we will see that it only encompasses the virtues of the

other axioms because it is implied by them. I thus dismiss the initial worry of

redundancy in the axioms or a lack of parsimony in the theory while simultaneously

holding, via LPC, that they are a package deal for characterizing the causal structure

of AQFT.

Before moving on, I will specify what I will mean by relativistic causation and

clarify the methodology of this paper. The physics literature has multiple facets of

the notion of “causation”. First, as a form of “action,” relativistic causation attempts
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to capture a notion of (i) locality and of (ii) a finite speed of propagation of events:

For the relative independence of spatially distanced things (A and B), this

idea is characteristic: external influences from A have no immediate

influence on B; this is known as the “principle of proximal action

[Nahewirkung],” which is only used consistently in field theory. The

complete abolition of this principle would make impossible...the

formulation of empirically testable laws in our familiar sense. (Einstein,

1948, p. 321-322, my translation)

The worry about the immediacy of the propagation of this kind of influence

encapsulates (i) and (ii) into the preclusion of superluminal signaling, arguably the

most famous notion of relativistic causation. Events are independent in a relevant

causal sense if we cannot connect them with a light signal. That is, we have merely

specified what causal connections cannot be. “Relativistic causation” also includes a

notion of causal dependence, not merely independence (Earman and Valente, 2014, p.

4). Here is an account from another renowned physicist:

In physics, causal description...rests on the assumption that the

knowledge of the state of a material system at a given time permits the

prediction of its state at any subsequent time. (Bohr, 1948, p. 312)

Therefore, (relativistic) causation should also capture an idea of (iii) a deterministic

connection between events. Finally, I will add (iv) the metric structure of Minkowski

spacetime as a fourth desideratum since Geroch (2011) showed that superluminal

signaling is not incompatible with SR. Additionally, some of the axioms only require

that the spacetime is globally hyperbolic, not that it is specifically the Minkowski
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one. These are the four desiderata for relativistic causation with which I will

diagnose the axioms.

This brings me to my final clarification about methodology. I will devote three

sections of this paper to analyzing each causal axiom. My diagnostic scrutinizes what

it means to be a causal axiom in the sense of capturing the four features of relativistic

causation mentioned before. The main tools at our disposal are the three “themes”

from Peskin and Schroeder: an axiom of AQFT should implement the notion of field

(or, in other words, to make clear what is local in the sense of situating phenomena

in delimited patches of spacetime, as opposed to global) and have a clear input from

QM and SR. This analysis will not, however, take these axioms as members of a

formal system but rather as something more similar to what Rédei and Stöltzner

(2006) have called “soft” axioms: mathematically rigorous but mostly physically

intuitive and hermeneutically rich constraints on a physical theory. As such, my

worries driving this paper are very similar to those of the creators of AQFT: beyond

their mathematical consistency, are these physically meaningful and well-motivated

requirements? Are they interdependent, and if so, do they codify compatible or rival

features of the theory? In short, my diagnostic aims to take the “wide frame allowed

by the general principles and, narrowing the...frame step by step, to look for the

neuralgic spots.” (Haag, 2010, p. 243).

1 The Spectrum Condition

The first axiom we will consider is the spectrum condition (SC):

SC: (a) The joint spectrum of the infinitesimal generators of translations in
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Minkowski spacetime is confined to the forward lightcone. (b) There is a

unique (up to phase factors) vacuum state, which is translationally

invariant and has zero energy-momentum.

I will argue in this section that the role of SC in forbidding superluminal signaling (if

it has one) is unclear. Of the remaining desiderata, this axiom captures the structure

of Minkowski spacetime but is fairly silent about the rest.

An initial problem with SC is that it does not hold for every QFT since the energy

(density) of a quantum field need not be positive (Epstein et al., 1965). On top of that,

the energy-momentum operators do not necessarily coincide with the

energy-momentum (tensor) of the quantum field in question (Earman and Valente,

2014). Now, it is possible to formulate classical SC-analogs that have the advantage of

being generalizable (in a non-unique way) to curved spacetimes (Curiel, 2017) and

study superluminal signaling in more general fields. The key idea behind this

strategy is to generalize the restriction that we will only consider states with positive

energy-momentum (plus the vacuum), which is the usual way in which SC is

interpreted.

However, there are two problems with this strategy relevant to my diagnostic.

First, SC is inherently tied to the global symmetries of Minkowski spacetime. It is

usually supplemented with a local “counterpart,” the axiom of covariance, which

dictates how the algebra of a given region transforms under the unitary

representations of Lorentz transformations. Since SC and the axiom of covariance

cover the demands of the Poincaré group of SR, including both Lorentz

transformations and spacetime translations, the axiom of covariance is usually taken
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as one of the causal axioms of the theory. Now, from this perspective of symmetries,

they are both straightforward applications of Wigner’s theorem: to obtain the

quantum analog of the symmetry group of a classical theory (in this case, the

Poincaré group), take the group’s unitary representations. Thanks to Stone’s

theorem, those unitary representations can be further expressed in terms of their

infinitesimal generators, which, for the translation subgroup, are the key ingredient

for SC. So the way in which SC implements QM and SR only codifies the geometry of

Minkowski spacetime. Although this is a virtue from SC in being explicitly compliant

with SR and in straightforwardly implementing the fourth desideratum of relativistic

causation I laid out, it is a shortcoming of SC as a causal axiom in the sense that we

surely want to be able to claim that there is some form of “relativistic causation” in

AQFT when the theory extends to curved spacetimes. The other problem with the

classical SC-analogs is that they are not sufficient conditions to prohibit superluminal

signaling (Earman, 2014, pp. 103-105). Moreover, quantum fields obtained by

quantizing classical relativistic fields exhibit no superluminal signaling (Earman and

Valente, 2014, pp. 17-18). So whatever the culprit is in ruling out superluminal

signaling in quantum theories, SC does not seem to be the key contributor.

So far, SC (a) does not fulfill the goal we would want for a single causal axiom to

have, or to have in the most exemplary way. What about SC (b)? SC (b) is sometimes

taken not as a characterization of relativistic causation in AQFT but, ironically, as one

of the ingredients needed to question AQFT’s status as a relativistic theory. One of

the consequences of SC (when supplemented with a condition of “additivity” saying

that observables can be expressed in terms of observables of arbitrarily small regions)

is the Reeh-Schlieder theorem. The theorem claims that if we act on the vacuum
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defined by SC (b) with an element of A(O) for some region O, we can generate any

other state. This result is unsettling because it seems that we can measure the energy

of the vacuum in a lab and yet approximate any other quantum state in any other

region of spacetime, even states that do have energy! There are interpretive strategies

and more sophisticated mathematical tools to get out of this problem. Still, they do

not change that SC (b) does not implement the prohibition of superluminal signaling,

even if we manage to show that it does not impede it.

2 Microcausality

The second axiom we will consider is the microcausality (MC), Einstein causality, or

local commutativity condition:

MC: A(O1) commutes with A(O2) if O1 and O2 are space-like separated.

Let us unpack this condition: since no physical process can occur along a spacelike

trajectory, no measurement in O1 can disturb the outcomes of a measurement carried

out in O2, and vice-versa. Even though we disambiguated in the introduction the

metric structure of Minkowski spacetime (with which we classify the separation of

events as spacelike), MC is often rephrased to say that there would be statistical

correlations if we could connect O1 and O2 with a superluminal signal. However we

want to read MC, it is evident that it is a transcription of the passage I cited from

Einstein in the introduction to the language of operator algebras. For that reason, MC

is taken to be a condition of independence or separability between quantum systems

in regions O1 and O2. Prima facie, MC is a straightforward implementation of
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relativistic causation in the sense of no superluminal signaling. That is, MC attempts

to capture the first two desiderata of relativistic causation that I had laid out. Aside

from only capturing some of the desiderata for relativistic causation in AQFT, this

section will show that MC’s attempt to prohibit superluminal signaling comes with a

“morass of recalcitrant interpretational issues.” (Earman and Valente, 2014, p. 16).

Since the way in which this axiom implements its causal desiderata comes off

badly from my diagnostic, I want to stress its importance for QFT in general before

moving on. First, MC can be easily corroborated for the most common field theories,

or it is a crucial assumption in their construction. Consider the simplest relativistic

free field: a Klein-Gordon (KG) field Φ of mass m. Its dynamics are described by

(∂µ∂µ + m2)Φ = 0 (1)

After a canonical quantization procedure, it is easy to show that the commutator

[Φ(x), Φ(y)] of the field operator at spacetime points x and y is given by

i∆0(x− y; m) = [Φ(x), Φ(y)],

∆0(x− y; m) := − i
(2π)3

∫ d~p
2
√

m2 + ||~p||2
(

e−ip(x−y) − eip(x−y)
)
|p0=
√

m2+||~p||2 ,
(2)

where ∆0(x− y; m) is called the propagator or causal distribution. ∆0(x− y; m)

vanishes for equal times x0 and y0 (for any spatial separation ~x−~y) and for spacelike

values of x− y. Second, MC can be adapted and modified to include fields with spin

or charge via the spin-statistics theorem. It is even a sufficient condition to define a

Lorentz-covariant scattering matrix since it is connected to important analyticity
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properties of the fields (Weinberg, 1995; Duncan, 2012). It is, then, no surprise that

physicists follow Einstein’s suit in putting MC at the heart of relativistic causation in

QFT.

However, MC is not as straightforward as it seems. For it to be a QM-informed

axiom, we must now bite the bullet of not knowing what “measurement” means in a

quantum setting (Earman and Valente, 2014, p. 11). Whatever “measurement” means,

we need observables and states to obtain expectation values. One way to obtain the

theory’s observables is through a quantization procedure of a classical field theory.1

Then, we need a state |Ψ〉 such that AB |Ψ〉 = BA |Ψ〉, where A ∈ A(O1) and

B ∈ A(O2). However, since O1 and O2 are spacelike separated, and since isotony

tells us that A(O1),A(O2) ⊆ A(M) (whereM is Minkowski spacetime) because

O1,O2 ⊆M, this requires that A(M) admits a state. However, it would be absurd

that local operations like A |Ψ〉 or B |Ψ〉 would alter a physical state for all space and

time (Ruetsche, 2011, p. 110).

Despite these problems, MC still seems to be a reasonable axiom for a field theory

in implementing some “separability” of physical subsystems, which, additionally, has

testable consequences in terms of the measurements we can perform in each

subsystem. A reason to probe this further is that, following Einstein’s quotation, the

separability of physical subsystems and the possibility of communicating them are

closely connected, so we need a better grasp of that connection before diagnosing MC

as a causal axiom. I will address those topics separately.

1Since the fields are operator-valued distributions, we also need a sufficiently

smooth test function to smear them before using them in calculations.

10



2.1 Separability/Independence Conditions

This subsection aims to nail down some interpretive difficulties of diagnosing MC as

an axiom in AQFT. Since MC strives to make the separability of quantum field

theoretical systems compatible with the prohibition of superluminal signaling

between them, this subsection sets the stage for my discussion of causation in the

following subsection.

Consider A(O1) ∨A(O2), the algebra generated by A(O1) and A(O2), where O1

and O2 are spacelike separated. A state ω in AQFT is a linear, positive-definite

functional over the operator algebra. For our purposes, ω(A) is the expectation value

of the observable A belonging to some algebra A. Now, consider a pair of states ωj

acting on A(Oj) for j = 1, 2. Then, we should be able to find a state ω acting on

A(O1) ∨A(O2) such that its restriction to A(Oj) is just ωj. To give an illustration

more familiar to readers coming from QM, if the algebras are matrix algebras, the

composition ∨ can be equivalent to a tensor product, and the expectation value ω(A)

can be calculated using the trace prescription for a density matrix ρω. In that case,

the “restriction” from the global state to the local states would be taking the partial

trace over either one of the subsystems.

The most famous form2 of independence in the spirit of my last paragraph is

statistical independence, which is merely taking the expected values of ω1 and ω2 as

probabilistically independent, that is, ω(C) = ω1(C)ω2(C) for some observable

C ∈ A(O1) ∨A(O2). There is no resulting statistical mixture of the individual states

2Earman and Valente (2014, §4-5) survey other ways to formulate independence

conditions.
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because they are localized in disjoint regions. This form of independence looks like a

straightforward rendition of what we would want the compatibility of measurements

carried out in spacelike separated regions to be since we are breaking potential

correlations between the measurements in both regions. However, for statistical

independence to hold, we need an additional assumption about the nature of the

algebras called the split property, which in turn depends on the fields’ energy

densities having certain properties (Fewster, 2016) different from SC that, though

reasonable, are not always fulfilled. That is, it can be shown that statistical

independence can be derived from MC, but it needs additional assumptions. On

their own, MC and statistical independence are logically independent (Earman and

Valente, 2014, p. 11). Moreover, more general forms of independence that avoid

superluminal signaling do not imply MC (Halvorson, 2007, pp. 753-755).

Still, MC does seem to implement some “separability” of physical subsystems,

even if it is not because of their independent statistical predictions. One suggestion is

to see MC more as a form of mereology of the structure of the algebras than a claim

about locality (Ruetsche, 2011, pp. 112-113); the operation ∨ in A(O1) ∨A(O2)

should incorporate and respect MC. However, consider the composition of physical

subsystems of standard QM: take two Hilbert spaces H1 and H2, and construct their

tensor product, H1 ⊗H2. Then the algebras B(H1)⊗ Id2 and Id1⊗B(H2) commute,

and yet QM is not a relativistic theory. This example shows that the composition of

bigger subsystems from commuting algebras is not a feature of relativistic theories

(Halvorson, 2007, p. 752). So even if MC seems reasonable, the way in which it

combines QM and SR brings to light multiple difficulties.
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2.2 MC and causation

Aside from statistical independence, the no-signaling theorem is a result closely

connected to MC, but that shifts our focus from separability to relativistic causation.

In this subsection, I will finally show that the problems of separability and

measurements in the two previous ones disrupt the possibility that MC fully

characterizes relativistic causation in AQFT.

Of the many formulations of the no-signaling theorem, I will follow (Earman and

Valente, 2014, §4.2) to avoid further technicalities. Consider an observable A ∈ A(O1)

with a (countable) spectral decomposition A = ∑i aiEA
i , where the Eis are projectors

and the ais A’s eigenvalues. We can then define a map TA(·) = ∑i EA
i · EA

i over

A(O1) ∨A(O2) that is explicitly related to an A-measurement. Then, for a state ω

and an observable B ∈ A(O2), we have:

ω(TA(B)) = ω(B)

This means that states acting on the algebras of spacelike separated regions are

unaffected by measurements in the other region. The moral is clear: MC allows the

statistical predictions of one of the subsystems to be preserved even after performing

measurements in the other.

However, a few complications stop us from proclaiming victory over

superluminal signaling using MC. First, the preservation of the statistics of the

outcomes of a measurement may not require commutativity after all (Rédei and

Valente, 2010), and the no-signaling theorem only works for a restricted class of
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operations (Ruetsche, 2011, p. 111). Second, even if we have no-signaling theorems,

the statistical independence of subsystems can get bypassed by measurement

protocols like the following one:

Time

O1

O2

O3

Figure 1: O1 and O3 are spacelike separated.

For this setup, successive observations of the same state in O1, O2, and O3 exhibit

correlations between the measurement carried out in O1 and that in O3 (Sorkin,

1993). This result seems to imply that there is some superluminal signaling in QFT.

Recent papers claim to have solved this problem (Bostelmann et al., 2021), but

whether their solution is satisfactory or not, they had to do much more legwork than

merely assuming MC.

In conclusion, although MC seems to shed some light on relativistic causation in

AQFT, multiple difficulties impede us from claiming we have achieved a complete,

clear characterization of it. First, as an axiom stated in terms of quantum

measurements, we fall into the difficulties of understanding what “measurement”

means and, especially, what it means for spacelike measurements to be compatible.
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We tried to implement MC as a form of separability for this purpose. Still, statistical

independence needs more than MC to work, and some other forms of independence

are logically independent of MC or satisfied in non-relativistic cases. Even having

failed to characterize what form of separability MC implies, the no-signaling theorem

made us hopeful that it would still prohibit superluminal signaling. However, the

theorem only works for a particular case of measurements, it can be proved without

MC, and it can be bypassed setups like Sorkin’s. The takeaway is that we still do not

have a good characterization of relativistic causation in AQFT. Every time MC

seemed to lead us in the right direction, interpretive difficulties or other pitfalls

stopped us from clearly seeing the role of MC in prohibiting superluminal signaling.

3 Primitive Causality

From my initial characterization of relativistic causation, SC and MC have aimed at

implementing the role of locality, subluminality, and the metric structure of

Minkowski spacetime. However, I have not talked about determinism. Primitive

causality (PC), or the time slice axiom, will fill this gap. First, we need some

definitions. Consider two spacetime regions O1 and O2. O2 depends causally on O1

if every light ray in the backward (or forward) light cone originating from any point

in O2 intersects O1.
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O1

O2

Figure 2: O2 depends causally on O1.

Then we have:

PC: If O2 depends causally on O1, A(O2) ⊆ A(O1).

Notice that, if O2 ⊂ O1, O2 depends causally on O1, so the property of isotony can

be derived from PC. Although I will not use the term “local primitive causality” to

refer to PC, it is often called that way to contrast it with the following condition,

which is how Haag et al. usually present primitive causality (1962):

Consider a time slice in Minkowski spacetime.3 That is, a region infinitely

extended in space but restricted to a time interval of size τ:

Ot,τ := {x ∈ M :
∣∣x0 − t

∣∣ < τ}. Then A(Ot,τ) = A(M) ∀τ.

M depends causally on any time-slice, and any time-slice is isotonically included in

M, so both versions end up being equivalent. However, this version of the axiom

makes determinism à la Bohr even more salient since the standard interpretation of

3More generally, the spacetime manifold should be globally hyperbolic and the

time slice is some Cauchy surface.
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PC is that there should be a “dynamical law” that allows us to determine the values

of the fields at any given time with the values of the fields at a time slice (Haag, 1996,

p. 48). This claim can be re-stated in the following way: the time-slice provides a

region of evaluation of an initial value problem, and the “dynamical law” is

deterministic (Bogolubov et al., 1990). Clearly, the exact nature of the law depends on

the dynamics of the fields (Earman and Valente, 2014, p. 21). In any case, Earman

and Valente take PC as the “most direct” expression of relativistic causation in AQFT

because deterministic laws have causal-like behavior. This section will argue that

PC’s determinism is not enough to characterize relativistic causation in AQFT.

As I mentioned before, PC is local, and its time-slice version is global. Aside from

this point, I will treat both versions of PC interchangeably. Dimock proved the

relevance of PC for QFT since PC holds for the Klein-Gordon field (1980) and the

Dirac field (1982). However, as an initial value problem, it is trivially fulfilled. The

Lagrangians of field theories are formulated in terms of the fields and their

derivatives at a time slice, and if their derivatives are of a sufficiently higher order,

we can recover the field values in all spacetime (Bogolubov et al., 1990, pp. 330-331).

As such, PC is an entirely reasonable assumption for AQFT to make, but only

because this form of “determinism” is a truism for QFT.4 PC is not, then, a feature of

relativistic causation in AQFT but in field theories in general.

Now, the QFTs considered by Dimock should satisfy PC since their equations of

4Within AQFT, there are technical difficulties that complicate claiming that we can

restrict the global dynamics to those of a time-slice. So if it is a truism in Lagrangian

QFT, it is hardly obvious that it holds in AQFT. Thanks to Noel Swanson for this

remark.
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motion are hyperbolic partial differential equations (PDEs), which are characterized

by having unique solutions within their domain of dependence (Geroch, 2011) and by

having a finite propagation speed (Bär et al., 2007). The notion of domain of

dependence has a precise definition within the realm of PDEs, but, in our case, it is

merely the locus of causally dependent points to some region O, denoted by D(O).

Another example of a hyperbolic PDE is the wave equation describing every

undulatory phenomenon. From this point of view, PC is not a requirement from SR

since it appears in non-relativistic phenomena, nor QM since it appears in classical

ones. It is also not a sufficient characterization of relativistic causation since

Klein-Gordon or similar wave equations would only be relativistic because their finite

speed of propagation is the speed of light, but that does not rule out any higher

speeds! These are the same reasons why PC is not a good causal axiom: the claim

that the dynamics of the field are deterministic does not mean that the theory is

causal in the sense that the dynamics should also respect the light cone structure of

the underlying spacetime (Hofer-Szabó and Vecsernyés, 2018, p. 19).

Additionally, as Earman (2014) has claimed, determinism should not merely

apply to the time evolution of the field observables but to that of the states. If states

ω1 and ω2 give the same predictions with the observables in A(O), they should also

provide the same ones with the observables in A(D(O)). Although I agree with

Earman’s suggestion, he bases it on taking A(O) = A(D(O)) as a result of Haag and

Schroer (1962). However, this equation is not valid in general. We only obtain

A(O) ⊆ A(D(O)) thanks to PC, and that is not what Haag and Schroer prove. They

claim the local primitive causality that I will discuss in the next section.
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4 Local Primitive Causality

In the past sections, we have seen the shortcomings and interpretive problems with

the three causal axioms. Some of their drawbacks stem from not implementing QM,

SR, and locality in a way that is amenable to codifying the desiderata of relativistic

causation I laid out in the introduction, as we saw in the different diagnostics, or

from implementing them in ways that imported interpretive difficulties from each of

those themes. Moreover, of our desiderata for relativistic causation, SC focused on

the metric structure of Minkowski spacetime, MC on locality and subluminality, and

PC on determinism. It is only reasonable to look for a condition that puts all those

advantages in one place. I will show that local primitive causality (LPC) does that for

us, and I will sketch how it does in virtue of being implied by the conjunction of SC,

MC, and PC.

Defining the causal complement of a region O, O′, as the set of points outside

D(O), we have:

LPC: For a region O ⊂M,5 A(O) = A((O′)′).

This condition is local since its dependence on spacetime regions is explicit; it is a

crucial ingredient in showing that concrete experimental setups exhibit no

superluminal signaling (Buchholz and Yngvason, 1994; Yngvason, 2005); it is the key

assumption in theories of local observables that attempt to ensure that the

determinism of PC is compatible with the temporal evolution of field values in the

5(Hofer-Szabó and Vecsernyés, 2018, p. 19) give a more general definition that I can

give here. See also their footnote 2.
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light cone of their regions (Hofer-Szabó and Vecsernyés, 2018); and it emphasizes the

metric structure ofM underlying the definition of “causal complement.” In

summary, it passes the diagnostic of a causal axiom! It has two further advantages.

First, LPC can be generalized to curved spacetimes and used in concrete

measurement protocols (Fewster and Verch, 2020), thus alleviating some of the

worries I had claimed about SC and MC.6 Second, in keeping this paper minimally

technical, I have avoided any talk on the details of the mathematical structure of

observable algebras for space reasons and because my arguments in this paper are

independent of these considerations. However, these details are vital for relativistic

causation. For example, superluminal signaling is unavoidable if the algebras are the

matrix algebras of standard QM (Hegerfeldt, 1994). From this point of view,

Buchholz and Yngvason (1994; 2005) have shown how LPC and the specific type of

von Neumann algebra relevant for AQFT come together in implementing relativistic

6I should clarify that I am not claiming that LPC solves problems like Sorkin’s para-

dox since that would require a different conception of measurements in QFT from

the one I have been assuming in this paper. The advantages I have presented from

Buchholz, Yngvason, Fewster, and Verch, rely on specific measurement protocols or

experimental setups. Fewster and Verch do not assume LPC explicitly, but they ob-

tain it for free (and with it, its advantages) because their framework relies heavily on

causally convex (i. e., diamond-like) regions, for which LPC is trivially true. However,

their version of LPC is more general than the one I presented here because they work

with local ∗-algebras, not von Neumann algebras, which gives them less topological

structure than the one the derivation of LPC from the other axioms that I cite in the

main text can exploit.
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causation.

At this point, I could claim that LPC, not one of the other three axioms, should be

the most direct expression of relativistic causation in AQFT since it captures all the

desiderata I had stated above. This attempt at privileging one condition would be,

however, too rash. Consider the following construction of (Haag and Schroer, 1962):

x

t

D

C

CrCr

Figure 3: The region shaded with vertical lines is C ′, the causal complement of C. The
red dotted lines extend spatially to form a time-slice of the temporal size of C. Call Cr
the two caps outside of C that extend in the spatial direction.

It is now possible to prove that A(D) = A(C), which is exactly LPC since the

diamond D satisfies D = (C ′)′. All the pieces of the proof have been put together in

(Calderón, 2019, pp. 22-31),7 but here, I can only sketch the main steps. From SC, one

7That proof appeals to Haag Duality, which is not satisfied by some of our best field

theories and only works in particular spacetime regions (Haag, 1996, pp. 145-147). For-
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can prove that the domain of analyticity of the fields in C can be extended to C ∪ Cr

(Borchers, 1961). From PC and MC, we can build a time-slice from C ∪ Cr and C ′,

where C and C ′ localize separated subsystems. The fact that the observables at a time

slice generate those in all spacetime gives some nice closure properties that display

the intimate connection between the local algebras and the regions in which they are

supported. Finally, from MC, the observables from C ′ commute with those of C but

also with those of C ′′(= D). The takeaway from this construction is that even if SC,

MC, and PC individually failed to characterize relativistic causation in AQFT, LPC

captures all the desiderata of relativistic causation in AQFT because it is a fruit of their

conjunction.

5 Outlook

Throughout this paper, we saw that SC, MC, and PC only give partial

characterizations of relativistic causation. Even if this is unsatisfactory for those

casting a vote for an individual axiom as fulfilling that role (or fulfilling it in the most

exemplary way), the need for so many axioms should not be startling anymore

precisely because they highlight different aspects of the causal framework of the

theory. Additionally, LPC encapsulates each axiom’s advantages for the most widely

used regions and theories in AQFT. Assuming LPC has become a widespread move

in more technical literature in AQFT. Still, its motivations are rarely stated, its role as

a causal axiom is left uninterpreted, and its interdependence with the other causal

tunately, essential duality (Halvorson, 2007, p. 841), a less problematic assumption,

can be used instead. Thanks to Noel Swanson for this suggestion.
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axioms is ignored.

However, many additional worries emerged in analyzing this wide variety of

axioms. First, an appropriate interpretation of MC would require tackling the

measurement problem in QFT. One way to address this problem is to introduce a

more sophisticated account of local operations in AQFT, which is where some of the

more technical literature has been heading (Okamura and Ozawa, 2016; Drago and

Moretti, 2020). However, from an interpretational point of view, it is unclear whether

considering a more widespread class of measurements would solve the problem of

answering what “measurement” means. Even if looking for an account of

measurements in QFT seems orthogonal to a project on relativistic causation, I do

think they are connected through the worries that philosophers have raised about the

“operationalist” views of the founders of AQFT and the “algebraic imperialist”

(Ruetsche, 2011) tendencies of the mathematical physicists working in this

formulation of QFT. Additionally, revising the connections between causation and

measurements would require further examining the local algebras’ mathematical

structure and the states that can act on them. The need to appeal to those tools can be

seen not only in the problems of measurements in e. g. MC but in the interplay

between the different formulations of PC as a requirement demanding that we have a

compatible notion of local dynamics and global determinism. That is one of the

problems that even promoting LPC to an additional assumption in AQFT leaves

unsettled.

The second problem is that any account of relativistic causation in AQFT is

challenged by entanglement, which is ubiquitous and maximal in AQFT, even in

spacelike separated regions (Summers and Werner, 1988). Entanglement itself is not
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something we should worry about since it is just a key feature of QM and QFT.

Instead, the origin of the uneasiness about entanglement is that it is often conceived

as a form of non-locality or of non-separability, which conflicts with e. g. conceiving

MC as a form of independence between spacelike separated subsystems. The pull of

entanglement as a problem for causation in AQFT relies heavily on assumptions

outside of the theory’s axiomatic framework about measurements and operations in

QFT (Ruetsche, 2021) and, as such, it is connected to my first remaining worry. These

problems are, to the best of my knowledge, unsettled. I hope this diagnostic points to

some of the issues that need to be addressed and the importance of doing so.

Acknowledgements

Thanks for helpful comments, conversations, and criticisms to David Baker, Gordon

Belot, Josh Hunt, Gabrielle Kerbel, Calum McNamara, Andrés F. Reyes-Lega, Laura

Ruetsche, Noel Swanson, and audiences at the 2022 LMP Graduate Student

Conference and the BSPS Annual Conference. Iván M. Burbano, Aleksandr Pinzul,

and Yixuan Wu also gave me helpful comments on an early version of the

manuscript.

24



References

Bogolubov, N. N., A. A. Logunov, A. I. Oksak, and I. Todorov (1990). General

Principles of Quantum Field Theory. Springer.

Bohr, N. (1948). ON THE NOTIONS OF CAUSALITY AND COMPLEMENTARITY.

Dialectica 2(3/4), 312–319.

Borchers, H. J. (1961). Über die Vollständigkeit lorentzinvarianter Felder in einer

zeitartigen Röhre. Il Nuovo Cimento (1955-1965) 19(4), 787–793.

Bostelmann, H., C. J. Fewster, and M. H. Ruep (2021). Impossible measurements

require impossible apparatus. Physical Review D 103(2), 025017.

Buchholz, D. and K. Fredenhagen (2020). A C*-algebraic Approach to Interacting

Quantum Field Theories. Communications in Mathematical Physics 377(2), 947–969.

Buchholz, D. and J. Yngvason (1994). There are No Causality Problems for Fermi’s

Two Atom System. Physical Review Letters 73(5), 613–616.

Butterfield, J. (2007). Reconsidering Relativistic Causality. International Studies in the

Philosophy of Science 21(3), 295–328.

Bär, C., N. Ginoux, and F. Pfäffle (2007). Wave Equations on Lorentzian Manifolds and

Quantization. European Mathematical Society.

Calderón, F. (2019). A survey of causality in algebraic relativistic quantum field

theory [Undergraduate thesis, Universidad de los Andes].

https://repositorio.uniandes.edu.co/handle/1992/44724.

25

https://repositorio.uniandes.edu.co/handle/1992/44724


Curiel, E. (2017). A Primer on Energy Conditions. In D. Lehmkuhl, G. Schiemann,

and E. Scholz (Eds.), Towards a Theory of Spacetime Theories, pp. 43–104. Springer.

Dimock, J. (1980). Algebras of local observables on a manifold. Communications in

Mathematical Physics 77(3), 219–228.

Dimock, J. (1982). Dirac quantum fields on a manifold. Transactions of the American

Mathematical Society 269(1), 133–147.

Drago, N. and V. Moretti (2020). The notion of observable and the moment problem

for *-algebras and their GNS representations. Letters in Mathematical Physics 110(7),

1711–1758.

Duncan, A. (2012). Dynamics IV: Aspects of locality: clustering, microcausality, and

analyticity. In The Conceptual Framework of Quantum Field Theory. Oxford University

Press.

Earman, J. (2014). No superluminal propagation for classical relativistic and

relativistic quantum fields. Studies in History and Philosophy of Science Part B: Studies

in History and Philosophy of Modern Physics 48, 102–108.

Earman, J. and G. Valente (2014). Relativistic Causality in Algebraic Quantum Field

Theory. International Studies in the Philosophy of Science 28, 1–48.

Einstein, A. (1948). QUANTEN-MECHANIK UND WIRKLICHKEIT.

Dialectica 2(3/4), 320–324.

Epstein, H., V. Glaser, and A. Jaffe (1965). Nonpositivity of the energy density in

quantized field theories. Il Nuovo Cimento (1955-1965) 36(3), 1016–1022.

26



Fewster, C. J. (2016). The split property for quantum field theories in flat and curved

spacetimes. Abhandlungen aus dem Mathematischen Seminar der Universität

Hamburg 86(2), 153–175.

Fewster, C. J. and R. Verch (2020). Quantum Fields and Local Measurements.

Communications in Mathematical Physics 378(2), 851–889.

Fraser, D. (2009). Quantum Field Theory: Underdetermination, Inconsistency, and

Idealization. Philosophy of Science 76(4), 536–567.

Fredenhagen, K. and K. Rejzner (2015). Perturbative Algebraic Quantum Field

Theory. In D. Calaque and T. Strobl (Eds.), Mathematical Aspects of Quantum Field

Theories, pp. 17–55. Springer.

Geroch, R. (2011). Faster Than Light? In Advances in Lorentzian Geometry: Proceedings

of the Lorentzian Geometry Conference in Berlin, Volume 49 of AMS/IP Studies in

Advanced Mathematics, pp. 59–69. American Mathematical Society.

Haag, R. (1957/2010). Discussion of the ‘axioms’ and the asymptotic properties of a

local field theory with composite particles. The European Physical Journal H 35(3),

243–253.

Haag, R. (1996). Local Quantum Physics: Fields, Particles, Algebras (2nd ed.). Springer.

Haag, R. and B. Schroer (1962). Postulates of Quantum Field Theory. Journal of

Mathematical Physics 3(2), 248–256.

Halvorson, H. (2007). Algebraic Quantum Field Theory (with an Appendix by

27



Michael Müger). In J. Butterfield and J. Earman (Eds.), Philosophy of Physics, pp.

731–864. North-Holland.

Hegerfeldt, G. C. (1994). Causality problems for Fermi’s two-atom system. Physical

Review Letters 72(5), 596–599.

Hofer-Szabó, G. and P. Vecsernyés (2018). Locality and Causality Principles. In

Quantum Theory and Local Causality, pp. 17–23. Springer.

Okamura, K. and M. Ozawa (2016). Measurement theory in local quantum physics.

Journal of Mathematical Physics 57(1), 015209.

Peskin, M. E. and D. V. Schroeder (1995). An Introduction to Quantum Field Theory.

Westview Press.

Ruetsche, L. (2011). Interpreting Quantum Theories. Oxford University Press.

Ruetsche, L. (2021). Locality in (Axiomatic) Quantum Field Theory: A Minority

Report. In The Routledge Companion to Philosophy of Physics, pp. 311–322. Routledge.

Rédei, M. and M. Stöltzner (2006). Soft Axiomatisation: John von Neumann on

Method and von Neumann’s Method in the Physical Sciences. In E. Carson and

R. Huber (Eds.), Intuition and the Axiomatic Method, pp. 235–249. Springer

Netherlands.

Rédei, M. and G. Valente (2010). How local are local operations in local quantum

field theory? Studies in History and Philosophy of Science Part B: Studies in History and

Philosophy of Modern Physics 41(4), 346–353.

28



Sorkin, R. (1993). Impossible Measurements on Quantum Fields. In B. Hu and

T. Jacobson (Eds.), “Directions in General Relativity”, Proceedings of the 1993

International Symposium, Maryland, Vol. II: Papers in honor of Dieter Brill, pp. 293–305.

Cambridge UP.

Summers, S. J. and R. Werner (1988). Maximal violation of Bell’s inequalities for

algebras of observables in tangent spacetime regions. Annales de l’I.H.P. Physique

théorique 49(2), 215–243.

Wallace, D. (2011). Taking particle physics seriously: A critique of the algebraic

approach to quantum field theory. Studies in History and Philosophy of Science Part B:

Studies in History and Philosophy of Modern Physics 42(2), 116–125.

Weinberg, S. (1995). Quantum Fields and Antiparticles. In The Quantum Theory of

Fields, Volume 1, pp. 191–258. Cambridge UP.

Yngvason, J. (2005). The Role of Type III Factors in Quantum Field Theory. Reports on

Mathematical Physics 55(1), 135–147.

29


	The Spectrum Condition
	Microcausality
	Separability/Independence Conditions
	MC and causation

	Primitive Causality
	Local Primitive Causality
	Outlook

