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Abstract. Scoring rules measure the accuracy or epistemic utility of
a credence assignment. A significant literature uses plausible conditions
on scoring rules on finite sample spaces to argue for both probabilism—
the doctrine that credences ought to satisfy the axioms of probabilism—
and for the optimality of Bayesian update as a response to evidence. I
prove a number of formal results regarding scoring rules on infinite sam-
ple spaces that impact the extension of these arguments to infinite sam-
ple spaces. A common condition in the arguments for probabilism and
Bayesian update is strict propriety: that according to each probabilistic
credence, the expected accuracy of any other credence is worse. Much
of the discussion needs to divide depending on whether we require finite
or countable additivity of our probabilities. I show that in a number of
natural infinite finitely additive cases, there simply do not exist strictly
proper scoring rules, and the prospects for arguments for probabilism
and Bayesian update are limited. In many natural infinite countably
additive cases, on the other hand, there do exist strictly proper scoring
rules that are continuous on the probabilities, and which support ar-
guments for Bayesian update, but which do not support arguments for
probabilism. There may be more hope for accuracy-based arguments if
we drop the assumption that scores are extended-real-valued. I sketch
a framework for scoring rules whose values are nets of extended reals,
and show the existence of a strictly proper net-valued scoring rules in all
infinite cases, both for f.a. and c.a. probabilities. These can be used in
an argument for Bayesian update, but it is not at present known what
is to be said about probabilism in this case.

1. Introduction

Scoring rules measure the accuracy of a credence assignment, the match
between that assignment and reality. Strictly proper scoring rules have the
property that for any probabilistically coherent credence assignment p, the
expected value of the score of p by the lights of p is better than the expected
value of the score of any other credence q by the lights of p.

Under continuity conditions, the score of a credence that does not satisfy
the axioms of probability is strictly dominated by the score of a credence
that does satisfy these axioms ([12], [10], [15] and [17]; cf. [14]). This
result has been interpreted philosophically as an argument for probabilism,
the doctrine that our credences rationally ought to satisfy the axioms of
probability (e.g., [8], [13]).
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The domination results invoked in the arguments for probabilism are typi-
cally based on finite spaces, though recently Kelley [9] and Nielsen [11] have
found domination theorems in infinite cases. I shall argue that, notwith-
standing these results, the prospects for extending the accuracy-based argu-
ments for probabilism to infinite cases are slim.

Greaves and Wallace [7] have given an expected accuracy based argu-
ment for the optimality of Bayesian update: they showed that the evidence-
response strategy that optimizes expected accuracy proceeds by condition-
alizing on evidence. Here, the prospects for an extension to infinite spaces
will be seen to be mixed.

More explicitly, first, I show that if probabilities are understood to be
countably additive, then there does exist a strictly proper scoring rule on a
countably infinite space, continuous in one plausible sense, and an accuracy
argument for Bayesian update can be given. However, strictly proper scoring
rules on an infinite space do not in general have a domination theorem in
the countable additivity case as needed for the arguments for probabilism.

Second, I give a cardinality argument to show that there are no strictly
proper scoring rules on an infinite space if probabilities are understood to
be merely finitely additive, and discuss the consequences for arguments for
probabilism.

Moreover, I show that in a number of cases, including countably and
finitely additive ones, one cannot use accuracy-based arguments to argue
for Bayesian update. Indeed in these cases one cannot even argue for the
superiority of Bayesian update to anti-Bayesian update where one condition-
alizes on the complement of the evidence. This fact may make one suspicious
of extending accuracy-based reasoning to infinite cases.

I also discuss how one might attempt to make use of Nielsen’s [11] dom-
ination theorem for quasi-strictly proper continuous scoring rules in the
finitely additive case to generate an argument for probabilism, but argue
that these scoring rules treat scores of non-probability credences “unfairly”,
by requiring that they satisfy a condition that the probability credences are
not required to satisfy (and cannot be required to, given the earlier cardinal-
ity argument). And I argue that Kelley’s [9] restriction to countable opinion
sets is unlikely to yield a compelling argument for probabilism in infinite
cases. I also briefly discuss our current insufficient state of the art regarding
scoring rules with hyperreal values and sketch a promising approach using
scores whose values are nets of extended-real values. That approach allows
us to define strictly proper scoring rules in all the infinite cases, and these
scoring rules support the expected inaccuracy argument for Bayesian update
in all infinite cases.

Let us review the formal aspects of the finite case first. Let Ω be a finite
sample space, encoding the possible situations that the credences concern.
Let C be the set of all functions from the power set of Ω to [0, 1]: these
we call credence functions. Let P be the subset of C which consists of the
functions satisfying the axioms of probability. An inaccuracy scoring rule
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is a function s from a set F ⊇ P of credence function to [M,∞]Ω for some
finite M , where AB is the set of functions from B to A. Then s(c)(ω) for
c ∈ F measures the inaccuracy of the forecast c when we are in fact at
ω ∈ Ω, with lower values being more accurate.

Given a probability p ∈ P and an extended real function g on Ω, let Epg
be the expected value with respect to p defined in the following way to avoid
multiplying infinity by zero:

Epg =
∑

ω∈Ω,p({ω})6=0

p({ω})g(ω).

We then say that an scoring rule s is proper on F ⊇ P provided that for
every p ∈ P and every c ∈ F , we have Eps(p) ≤ Eps(c), that it is strictly
proper provided the inequality is always strict when p is not identical with
c, and that it is quasi-strictly proper provided that it is proper and the
inequality is strict when p ∈ P and c ∈ C\P.

Propriety captures the idea that if an agent adopts a probability function
p as their credence, then by the agent’s lights there can be no improvement
in the expected score from switching to a different credence. Strict propriety
adds that by the agent’s lights it would be actually harmful to switch, while
quasi-strict propriety holds that switching to a non-probability credence
would be harmful by the agent’s lights. Proper and strictly proper scoring
rules have been widely studied: for a few examples, see [2], [6], [13], [14],
[19].

A scoring rule is probability-continuous provided that the restriction of s
to P is a continuous function to [M,∞]Ω, where P ⊆ [0, 1]PΩ and [M,∞]Ω

are equipped with the Euclidean topologies, and where PA is the powerset
of A. This is equivalent to requiring the mapping p 7→ s(p)(ω) to be a
continuous function from P to [M,∞] for every ω ∈ Ω.

Say that an score s(c1) is non-strictly dominated by a score s(c2) provided
that s(c2)(ω) ≤ s(c1)(ω) for all ω ∈ Ω, weakly dominated provided that
additionally strict inequality holds for at least one ω, and strictly dominated
if the inequality is always strict.

Predd, et al. [14] showed that if s is a probability-continuous additive1

strictly proper scoring rule, then for any non-probability c, there is a prob-
ability p such that s(c) is strictly dominated by s(p). In other words, any
forecaster whose forecast fails to be a probability can find a forecast that is
a probability and that is strictly better according to s, without any further
evidential input. This strongly suggests that the non-probabilistic forecast
is irrational. Recently, Pettigrew [12] announced that this result holds with-
out the assumption of additivity, merely assuming probability-continuity.
This proof was shown to have flaws [10], but correct proofs were found by
Nielsen [10] and Pruss [15]. Nielsen’s proof also extended the result to the

1A scoring rule is additive if the score at ω ∈ Ω is the sum of scores each of which
depends only on the credence for a single event E and whether that event occurs at ω.
See Section 2.3, below, for an explicit definition.
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quasi-proper case. Pruss [17] has also shown that some kind of probability-
continuity assumption is necessary, and analyzed how far the this assump-
tion can be weakened.

We now introduce our infinite setup. Suppose that Ω is an infinite space.
Let C be the set of credence functions on the power set of Ω, i.e., functions
from PΩ to [0, 1]. Let Pc and Pf be respectively the sets of countably and
finitely additive probabilities on the power set of Ω. Thus, Pc ⊆ Pf ⊂ C.2

An inaccuracy scoring rule on a set D of credences is a function s from
D to [M,∞]Ω for some finite M . Given a p ∈ Pf and a function g on Ω,
let Epg =

∫
Ω g dp, with the integral being a standard Lebesgue integral if

p is countably additive and defined the same way as a Lebesgue integral—
by splitting g into positive and negative parts and approximating each by
simple functions—if p is finitely additive (for details, see [11]).

If P ⊆ D ∩ Pf , then we say that a scoring rule s on D is P-proper on
D provided that for every p ∈ P and u ∈ D we have Eps(p) ≤ Eps(u).
We say that the propriety is strict provided that the inequality is strict
whenever p 6= u, and that it is quasi-strict provided that the inequality is
strict whenever u /∈ P. The cases of interest to us will be when P is one of Pf

and Pc, in which cases we will respectively talk of s being finitely-additively
(f.a.) and countably-additively (c.a.) proper.

We will say that f.a. or c.a. probabilism is the respective thesis that ra-
tional credence assignments are f.a. or c.a. probabilities.

Our definitions of types of domination extend directly from the finite case.

2. Countably additive probabilities

2.1. A strictly proper scoring rule. We now show that the analogue of
the Pettigrew-Nielsen-Pruss strict domination theorem is in general false in
the infinite c.a. case. Suppose Ω is countably infinite and hence identified
with the natural numbers N. For a c.a. probability p, let p̂ be the sequence
(p̂n)n∈N where p̂n = p({n}). Let ‖v‖q = (

∑
n |vn|q)1/q be the `q-norm of a

sequence v of real numbers, and let `q = `q(N) be the set of sequences with
finite `q norm.

Note that for any c.a. probability p, we have ‖p̂‖1 = 1, and conversely for
any non-negative sequence v with ‖v‖1 = 1, there is a unique c.a. probability
p such that v = p̂. We can thus define a topology on Pc by identifying it
with the non-negative functions in the unit sphere of `1.

Consider this scoring rule:

Sph∗(c)(n) =

{−ĉ(n)
‖ĉ‖2 if c ∈ Pc

−1
2(n+1) otherwise.

Restricted to the probabilities, this is the negative of the spherical accuracy
score. The score is uniformly bounded: the score of any credence c is a
function from N to [−1, 0]. Moreover, because the `2-norm is continuous on

2Assuming the Axiom of Choice, the first inclusion is also strict.
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`1, the score restricted to Pc (with the topology coming from identification
with the non-negative members of `1) is a continuous function to [−1, 0]N,
i.e., for each fixed n, p 7→ Sph∗(p)(n) is continuous. Slightly more strongly,
for any fixed q ∈ Pc, the function p 7→ Eq Sph∗(p) is continuous on Pc, being
the product of the continuous function p 7→ −1/‖p̂‖2 and the function p 7→
〈q̂, p̂〉 (where 〈·, ·〉 is the inner product on `2), which function is continuous
because `1 continuously embeds in `2 (this is like the continuity condition
used by [11] in the f.a. case).

In the Appendix, I prove that Sph∗ is strictly c.a.-proper (which is why I
defined Sph∗ on Pc as I did, rather than just setting it equal to some constant
like−2 outside of Pc). We thus have a continuous uniformly bounded strictly
c.a.-proper scoring rule. But no member of C − Pc has a score that is even
non-strictly dominated by the score of a member of Pc. For if c ∈ C − Pc,
then

∞∑
n=0

Sph∗(c)(n) =
∞∑
n=0

−1

2(n+ 1)
= −∞,

while for any p ∈ Pc we have:

∞∑
n=0

Sph∗(p)(n) =
−
∑∞

n=0 p̂(n)

‖p̂‖2
=
−1

‖p̂‖2
> −∞,

which makes it impossible to have Sph∗(c)(n) ≥ Sph∗(p)(n) for all n. In
particular, the Pettigrew-Nielsen-Pruss strict domination theorem does not
extend to the infinite c.a. case.

We thus cannot give an argument for probabilism in the c.a. case based
on strict domination or even one based on weak domination using strictly
proper scores continuous on Pc.

2.2. Continuity on all credences. One may object, however, that al-
though Sph∗ is continuous on the c.a. probabilities, it is not continuous on
the whole set of credences C, since as soon as one moves away from Pc, the
score jumps immediately to the function n 7→ −1/(2(n + 1)). The same
intuition that leads us to think that probability-continuity of a scoring rule
is a reasonable assumption in the context of arguments for probabilism—
namely, that close-by credences should have close-by scores—suggests that
we should more generally require continuity on C.

It is not immediately clear, however, what continuity means here. The
scoring rule s is a function from C to [M,∞]Ω. It is natural to impose the
product topology on [M,∞]Ω, which is equivalent to requiring c 7→ s(c)(ω)
to be a continuous function from C to [M,∞] for each fixed ω ∈ Ω, or to
require more strongly that c 7→ Eqs(c) be continuous for each fixed q ∈ Pc.
But the question of the appropriate topology on C is less clear.

One option is to think of C as the infinite product space [0, 1]PΩ, equipped
with the product topology. A basis for this topology can be given by the
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family of sets of the form

NF,x,r = {c ∈ [0, 1]PΩ : ∀A ∈ F [c(A) ∈ (x(A)− r(A), x(A) + r(A))]},

where F is a finite subset of PΩ, x is a function from F to [0, 1], and r is
a function from F to (0, 1].

Say that a scoring rule s is P-distinguishing provided that there isn’t a
p ∈ P and a c /∈ P such that s(p) = s(c) everywhere on Ω. Any P-quasi
strictly proper scoring rule is P-distinguishing. A score’s being probability
distinguishing (in the relevant sense of “probability”) is a necessary condi-
tion for the score to have any hope of yielding an accuracy argument for
probabilism (in the respective sense), since accuracy arguments for proba-
bilism depend on the idea that the scores of non-probabilities are worse than
those of probabilities.

Nielsen’s work [11] in the infinite case uses the product topology. In the
Appendix, we will prove the following using cardinality considerations which
shows a massive failure of continuity in the product topology on [0, 1]PΩ.

Proposition 1. Assume the Axiom of Choice. Let P be Pf or Pc. If Ω is
infinite, then for any P-distinguishing scoring rule s and every p ∈ P, the
scoring rule s fails to be continuous at p with respect to the product topology
on C = [0, 1]PΩ and the product topology on [M,∞]Ω.

It follows that there is no product-topology continuous quasi-strictly
proper scoring rule on C, and no accuracy argument for probabilism on
the basis of a product-topology continuous scoring rule on C. The Propo-
sition applies both in the c.a. case that we are discussing in this section as
well as in the f.a. case.

Here there is some room for further research, however. An opponent of
probabilism is unlikely to hold that every credence in C is rationally accept-
able. Instead they are likely to say that there is some set R of rationally
acceptable credences that includes some but not all non-probabilistic cre-
dences. For instance, Pruss [16] finds a way of avoiding some pragmatic
arguments against inconsistent credences in the special case of credences
that satisfy the zero (p(∅) = 0), normalization (p(Ω) = 1) and monotonic-
ity (if A ⊆ B, then p(A) ≤ p(B)) axioms. Further research is needed to
determine if Proposition 1 can be extended to scoring rules that merely
distinguish P from R−P instead of distinguishing P from C − P.

Next note that there is another natural topology on [0, 1]PΩ. We
can think of [0, 1]PΩ as embedded in the vector space space `∞(PΩ)
of uniformly bounded functions from PΩ to R with the norm ‖f‖∞ =
supA∈PΩ |f(A)|. This norm appears natural in multiple ways.

First, for countable Ω, the `∞(PΩ) topology restricted to Pc is equivalent
to the very natural `1(Ω) topology on {p̂ : p ∈ Pc} under the correspondence
p 7→ p̂. This follows from Lemma 1 in the Appendix. (Note that Lemma 2
in the Appendix tells us that Sph∗ is continuous on Pc in this topology.)
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Second, for finitely additive probabilities, the distance in this norm is the
total-variation distance between finitely additive probability measures, an
accepted way to measure closeness of measures at least in the countably
additive case.

Third, the space of finitely additive signed measures on Ω with the total-
variation norm is the dual of `∞(Ω) and forms a subspace of `∞(PΩ), and
the total-variation norm (now in the signed case) on such measures is equal
to the `∞(PΩ) norm [5, p. 296].

Now it turns out that there is a c.a.strictly proper score that is continuous
in the `∞(PΩ) but does not satisfy a strict domination result.

To see this, say that a scoring rule s on a set A of credences is uniformly
bounded if there is a finite K such that s(c)(ω) < K for all c ∈ A and
ω ∈ Ω. Say that the P-weak topology on [M,∞]Ω is the weakest topology
that makes Eq(·) continuous on [M,∞]Ω for each fixed q ∈ P. Recall that
we have shown that Sph∗ is continuous on Pc with respect to the Pc-weak
topology on [M,∞]Ω.

In the Appendix, we will prove the following.

Proposition 2. Let P be one of Pc and Pf . Let s be any uniformly bounded
proper score on P that is continuous in the `∞(PΩ) topology on P and the
P-weak topology on [M,∞]Ω. Let f0 : Ω → [M,∞] be any function such
that Epf0 > Eps(p) for all p ∈ P. Then for any c0 ∈ C − P, there is an
extension of s to a P-quasi-strictly proper score s̄ on C such that s̄(c0) = f0

and s̄(p) = s(p) for all p ∈ P.

Note that if s is strictly proper on P, then s̄ will be P-strictly proper on
C. Given the above, let s be the spherical inaccuracy score on Pc (i.e., the
restriction of Sph∗ to Pc), let c0 be any credence in C−Pc, let f0 = Sph∗(c0),
and we will have an `∞(PΩ)-continuous c.a. strictly proper scoring rule s̄
where s̄(c0) = f0 is not (even non-strictly) dominated by any score of a c.a.
probability, for the same reason as was given for the failure of domination
in the case of Sph∗.

So, in the countably additive case, if we understand continuity on C with
respect to the product topology, we do have a strict domination theorem for
any quasi-strictly proper continuous score, but only trivially because there
are no such scores. And if we understand continuity using the `∞(PΩ)
topology, we do not have a corresponding domination theorem (even of a
non-strict variety). In neither case do we have a viable accuracy-based
argument that probabilities are rationally preferable to non-probabilities.

2.3. Other conditions. There is no domination result for strictly proper
scores with `∞(PΩ) continuity where Ω is countably infinite. But maybe
adding some other condition will yield a domination result. The original
Predd et al. strict domination theorem was for additive scores. Perhaps we
have some hope of a domination theorem in our infinite case for additive
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scores. Specifically, an additive score will be of the form:

s(c)(ω) =
∑
A∈PΩ

sA(c(A), 1A(ω)),

for some family of functions {sA}A∈PΩ, where 1A(ω) is 1 if ω ∈ A and 0
otherwise. Now, PΩ is an uncountable set. Note that for the infinite sum
to make sense and have a value in [M,∞], for each ω, at most countably
many summands can be negative.

However, we have the following no-go result that shows that additive
scores fail to be probability distinguishing:

Proposition 3. Assume the Axiom of Choice. If Ω is countably infinite,
then any additive score s has the property that there is a credence c /∈ Pf and
a probability p ∈ Pc such that s(c) = s(p) everywhere on Ω. In particular,
no additive score is c.a. or f.a. quasi-strictly proper.

The proof is given in the Appendix. More generally, it follows from Propo-
sition 3 that no argument based on additive scores will allow one to say that
probabilities (either of the c.a. or the f.a. sort) are always rationally superior
to non-probabilities for a countably infinite Ω.

Another somewhat plausible condition on a scoring rule from the liter-
ature that might be used in an argument for probabilism would be strict
truth-directedness. A scoring rule s is strictly truth directed on a set of cre-
dences provided that if c′ is truer than c at ω, then s(c′)(ω) is better than
s(c)(ω), where c′ is truer than c at ω provided that c′(A) ≥ c(A) whenever
A contains ω and c′(A) ≤ c(A) whenever A does not contain ω, with strict
inequality in at least one case. Campbell-Moore and Levinstein [1] have
argued that truth-directedness is more initially plausible than strict pro-
priety, though it can be used to prove strict propriety given propriety and
additivity. We know that additivity is not a tenable condition in infinite
cases (Proposition 3, above). We also know that continuity, propriety and
strict truth-directedness are insufficient for a (strict) domination theorem
for finite Ω.3

This might lead us to conjecture that in the infinite c.a. case we could run
an argument for probabilism on the basis of scoring rules that are continuous
(either just on the probabilities or fully `∞(PΩ) continuous), strictly proper
and strictly truth-directed. But this is hopeless, as there are no such scoring
rules. More generally:

Proposition 4. Assume the Axiom of Countable Choice.4 Then there is no
strictly truth-directed scoring rule on the set of all extreme credences.

Here, a credence is extreme provided that the credence of every event is
either zero or one. Note that one extreme credence is truer than another just

3See [Anonymized].
4The Axiom of Countable Choice is the special case of the Axiom of Choice where the

collection of non-empty disjoint sets for which a choice function is sought is countable.
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in case the former gets right all the events the latter does but not conversely.
The proof is given in the Appendix.

2.4. Larger spaces. Our example of a strictly proper scoring rule that does
not support any domination result was on a countably infinite space. What
can we say if our space has larger cardinality, such as the interval [0, 1]?

First note that while the powerset algebra is very natural for a countably
infinite space, it is not a natural σ-algebra for c.a. probabilities on typical
uncountable spaces such as Ω = [0, 1]. For instance, if Ω is a topological
space, then a very natural σ-algebra is the Borel σ-algebra B generated by
the open sets. Note that when our σ-algebra is not PΩ, we additionally
require of a scoring rule s that the score of any credence be a measurable
function on Ω with respect to the σ-algebra. While our definitions of pro-
priety and domination were given in the special case of probabilities on the
σ-algebra PΩ, they naturally generalize to any σ-algebra F . Let Pc(F) be
the set of all c.a. probabilities on F and let C(F) = [0, 1]F .

We then have the following result, with proof sketched in the Appendix.

Proposition 5. Assume the Axiom of Countable Choice. If F is countably
generated and contains all singletons, then there is a strictly proper uni-
formly bounded scoring rule s on Pc(F) such that p 7→ s(p)(ω) is continuous
with respect to the `∞(F) topology on C(F) for each fixed ω and there is
a credence c /∈ Pc(F) with c not even non-strictly s-dominated by any c.a.
probability p.

This yields a very broad family of examples. The Borel σ-algebra on any
Polish space (a metric space with a countable dense subset) is countably
generated. In particular, there will be a counterexample to domination of
non-probabilities by probabilities for the Borel σ-algebra on Rn for any n.

On the other hand, there are cases where there are no strictly proper
scoring rules. Let κ be a cardinal, and consider the space Ω = {0, 1}κ, the
set of all κ-long sequences of zeroes and ones. One can think of this space
as recording outcomes of κ coin flips, though depending on the probability
function, these coin flips may not be fair or independent. Say that a subset
A of Ω depends only on coordinates in C ⊆ κ provided that for any ω and
ω′ in Ω, if ω(x) = ω′(x) for all x ∈ C, then ω ∈ A if and only if ω′ ∈ A.
Then the product σ-algebra F is generated by the subsets of Ω that depend
only on finitely many coordinates. Note that each member of the product
σ-algebra depends only on countably many coordinates.

For a fixed ω define the extreme (c.a.) probability uω concentrated on ω by
uω(A) = 1 if ω ∈ A and uω(A) = 0 otherwise. Note that if κ is uncountable,
then no singleton {ω} is a member of F (since all the coordinates are needed
to specify a singleton, but the members of F depend only on countably
many coordinates), but nonetheless uω and uω′ are not identical if ω 6= ω′,
since in the latter case there is some subset A that depends on only one
coordinate (namely, a coordinate x such that ω(x) 6= ω′(x)), and hence is
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in F , that contains ω but not ω′ so that uω(A) 6= uω′(A). In the Appendix,
the following is proved by showing that there are at most κω measurable
functions on Ω.

Proposition 6. Assume the Axiom of Choice. If κ is such that 2κ > κω,
and Ω = {0, 1}κ and F is the product σ-algebra, then for any scoring rule,
there are extreme probabilities concentrated on different points that have the
same score.

And hence there is no c.a. or f.a. strictly proper scoring rule on this
Ω (extreme probabilities are automatically c.a.). Note that the inequality
2κ > κω holds if κ = c or more generally if κ = λω for any λ ≥ 2,5 and that
a necessary condition for 2κ > κω is that κ is uncountable.6

2.5. Bayesian update. Any strictly proper scoring rule supports an argu-
ment for Bayesian update in the infinite case exactly as in the finite case,
and we have seen that there is a strictly proper scoring rule on a countable
Ω, and more generally on the Borel σ-algebra of any Polish space.

To be explicit, consider a choice between update strategies that specify
how one changes one’s credence upon learning which event in a finite parti-
tion {F1, F2, . . . , Fn} obtains, where for each i we have p(Fi) > 0 for one’s
prior credence p, which we assume to be a probability, countably additive in
this case. On Bayesian update, one’s credence goes from p to pi = p(· | Fi)
if Fi is learned. But we can have some alternative update strategy where
one’s credence goes to some other set of credences depending on which of
the Fi one learns. Let’s consider a strategy where one’s credence goes to ci

5I am grateful to [anonymized] for pointing me to the case of λω.
6In case one thinks that the lack of a strictly proper scoring rule in Proposition 6 is

solely due to the fact that F lacks singletons, let F∗ be the σ-algebra whose members
are sets that differ from members of F at countably many points (i.e., A ∈ F∗ if and
only if there is a B ∈ F such that A − B and B − A are countable). Partition κ into
two disjoint subsets κ1 and κ2 with κ1 having the same cardinality as κ and κ2 infinite
(this uses the Axiom of Choice). For any α ∈ {0, 1}κ1 , we define a c.a. probability qα as
follows. For any function f from κ to [0, 1], there is a unique c.a. probability rf on the
product σ-algebra that makes the κ coin tosses be independent and assigns probability
f(x) to the xth toss being 1, i.e., rf ({ω ∈ {0, 1}κ : ω(x) = 1}) = f(x). Let f(x) = α(x)
for x ∈ κ1 and f(x) = 1/2 otherwise. Given A ∈ F∗, let A′ be the unique member of
F that differs from A in countably many points, and let qα(A) = rf (A′). Note that qα
assigns zero probability to every singleton and hence every countable set. Strict propriety
of a scoring rule s then requires that s(qα) and s(qβ), for α 6= β, differ on some set that
has non-zero qα probability, and hence that they differ on some uncountable set. Define
the equivalence relation ∼ on F∗-measurable functions by u ∼ v if and only if u and v are
equal outside a countable set. Any ∼-equivalence class contains exactly one F-measurable
function, and we have shown that by strict propriety s(qα) and s(qβ) must be in different
∼-equivalence classes if α 6= β. Thus strict propriety requires that there be at least as
many F-measurable functions as α ∈ {0, 1}κ1 . There are 2κ such α, while the proof of
Proposition 6 show that there are at most κω real-valued functions that are F-measurable.
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on Fi. Then one’s expected score will be:

Ep

(
n∑
i=1

1Fis(ci)

)
=

n∑
i=1

p(Fi)Epi(s(ci))

≥
n∑
i=1

p(Fi)Epi(s(pi)) = Ep

(
n∑
i=1

1Fis(pi)

)
.

The right hand side is the expected score of the Bayesian update strategy.
By strict propriety, the inequality is strict unless ci = pi for every i, and
hence a Bayesian update strategy beats any other update strategy. Nothing
in this argument depends on the finiteness of Ω (and if we like, we can even
extend it to a countably infinite partition {Fi}).

3. Finitely additive probabilities

3.1. Strict propriety. An f.a. strictly proper scoring rule would have to
assign a different score, i.e., a different extended-real function on Ω, to every
different f.a. probability. But, given the Axiom of Choice, it can be shown
that there are more f.a. probabilities than extended-real functions on Ω if
Ω is infinite. Indeed, recalling that a credence function is extreme provided
that it assigns 0 or 1 to every event, we have:

Proposition 7. Assume the Axiom of Choice. Suppose Ω is infinite. Then
for any scoring rule s on Pf , there are different extreme f.a. probabilities
that have the same score everywhere on Ω.

Proof. Let κ be the cardinality of Ω. Any ultrafilter U on Ω defines a unique
extreme f.a. probability measure pU such that pU(A) = 1 if A ∈ U and
pU(A) = 0 otherwise, and there are 22κ ultrafilters on Ω by the Axiom of
Choice [3, Theorem II.7.1]. On the other hand the cardinality of [0, 1]Ω is

(2ℵ0)κ = 2ℵ0×|Ω| = 2κ (where we also used the Axiom of Choice). �

It immediately follows that:

Corollary 1. Assume the Axiom of Choice. Suppose Ω is infinite. Then
no scoring rule is f.a. strictly proper on Pf .

This result was first obtained by Michael Nielsen (correspondence) under
additional continuity assumptions.

Taking the algebra on which our probabilities are defined to be PΩ is
very natural if Ω is countable, but less natural when Ω is not countable. But
there is another natural case, that of the Borel sets in a Polish space. From
Proposition 5 we learned that there is always a c.a. strictly proper scoring
rule in such a case. This is not true in the infinite f.a. case (with the natural
extension of definitions to f.a. probabilities defined over an algebra smaller
than PΩ).
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Proposition 8. Assume the Axiom of Choice. If Ω is an infinite Polish
space, and B are the Borel sets on Ω, then for any scoring rule s on Pf(B),
there are different extreme f.a. probabilities on B that have the same score
on Ω.

Proof. There are continuum many Borel measurable functions between two
infinite Polish spaces, and [M,∞] is a Polish space. On the other hand,
any countable set on a Polish space will be in B. If A is a countably infinite
subset of Ω, then there will be 22ω extreme f.a. probabilities (see the proof of
Proposition 7) on A, each of which extends to an f.a. probability on B. �

3.2. Coincident scores. Note that Propositions 7 and 8 are closely analo-
gous to Proposition 6. All three tell us that in certain cases there are more
(f.a. or c.a., respectively) extreme probabilities than possible scores, and
hence for any scoring rule, there will be distinct probabilities, even extreme
probabilities, that get the same score.

There is reason to think that this is bad news for the prospects of
accuracy-theoretic analysis of credences in these cases. The f.a. cases appear
somewhat more problematic than the c.a. cases, since the f.a. cases include
the very natural case of the powerset algebra on a countably infinite Ω and
that of Borel measures on Polish spaces, while the c.a. cases concern rather
outré situations like those of uncountably many coin tosses, whereas the
more common case of Borel measures on Polish spaces have proper scoring
rules.

In any case, why are these theorems bad news for accuracy-theoretic anal-
yses?

First, there is some reason to think that scoring rules should be strictly
proper and not just proper. It is plausible that any probability function
could be the credence assignment of some rational agent given some col-
lection of evidence7 and hence is rationally acceptable under some circum-
stances. But it is also plausible that once one has a rational probability
assignment, it is irrational by one’s lights to evidencelessly switch to a dif-
ferent assignment. But if one’s expected score for switching would be no
worse than one’s expected score for one’s current credences, it would not
be irrational to switch. Hence, we have reason to accept strict propriety if
an accuracy-theoretic framework is to be plausible, and yet in our infinite
finitely-additive case we cannot have strict propriety.

Second, Pruss has shown (after translating from his accuracy setting) in
the finite case that if a continuous proper scoring rule on probabilities has the
property that Ers(r) <∞ for all r, but fails to satisfy Eps(p) < Eps(q) for
some probabilities p and q, then s(p) and s(q) are identical (the condition

7This privileges probability functions over other credence assignments, but in a defensi-
ble way: it is highly controversial whether a non-probabilistic credence could be rational,
but much more reasonable to think that any probabilistic one could be. Though, ad-
mittedly, it is somewhat controversial to think that a merely f.a. probability could be a
rational assignment.
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that Ers(r) < ∞ is a kind of anti-pessimism condition: no probabilistic
credence is such that by its own lights it is maximally inaccurate), and
suggested [18] that this yields an argument for strict propriety: a scoring
rule should be “sufficiently ‘sensitive’” to assign different scores to different
probabilistic forecasts. Pruss’s result adapts readily to the infinite setting
for an appropriate sense of continuity (see Proposition 9 in the Appendix
for details), both in f.a. and c.a. cases. Assuming propriety and continuity
are reasonable conditions (and some kind of continuity assumption is needed
for domination theorems of the sort used for accuracy-based arguments for
probabilism [17]), it follows that we have an argument for strict propriety
on the probabilities.

Moreover, Pruss’s argument is particularly plausible in the case where
p and q are mutually singular in the sense that there is an event A such
that p(A) = 1 and q(A) = 0. For then by the lights of p, the probability
distribution q should intuitively be really terrible as compared to p, because
it assigns probability zero to what by the lights of p is certain. Thus we
would expect to have Eps(p) < Eps(q) at least for mutually singular p and
q. But assuming continuity and propriety, Propositions 6 and 7 shows that
we cannot have this strict inequality for all mutually singular p and q, since
any two distinct extreme probabilities are mutually singular.

Third, a very plausible condition on a score s, a condition much weaker
than strict propriety, is what we might call the mutual singularity weak
improvement condition (mswic): if we have probabilities p and q and an
event A such that p(A) = 1 and q(A) = 0, then s(p)(ω) is better (i.e.,
smaller in our inaccuracy scoring case) than s(q)(ω) for some ω ∈ A. It
immediately follows from mswic that different extreme probabilities must
get different scores, which is impossible in the infinite cases covered by the
Propositions.

The Propositions also show that in the relevant cases we cannot give an
accuracy-based argument for Bayesian conditionalization, unlike in the c.a.
Borel-measure on Polish space case. For suppose s is any score. Let p and q
be different extreme probabilities that get the same score everywhere. Let E
be an event such that p(E) = 1 and q(E) = 0 (for any two different extreme
probabilities there is such an event). Let r be the probability defined by
r(A) = (p(A) + q(A))/2. Then r(E) = 1/2 > 0. Moreover, r(A | E) = p(A)
and r(A | Ec) = q(A). The Bayesian update strategy then is to move from r
to p or q respectively depending on whether E or Ec occurs. Let’s say that
the “anti-Bayesian” update strategy is to move from r to q or p respectively
depending on whether E or Ec occurs—i.e., it is to conditionalize on Ec if
E is observed and on E if Ec is observed! But since p and q have the same
score, no matter whether we use Bayesian or anti-Bayesian update, and no
matter whether we observe E or Ec, we get the same score. There is thus no
accuracy based reason to prefer the Bayesian strategy to the anti-Bayesian
one.
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This argument should should make us suspicious of scoring rules as a tool
for studying inaccuracy in general in infinite cases. For regardless whether
one thinks Bayesian update is rationally required, few things in epistemology
are as clear as the superiority of the Bayesian to the anti -Bayesian strategy.
But let us put these suspicions aside for a moment, and now consider the
prospects for an argument for f.a. probabilism based on quasi-strictly proper
scoring rules.

3.3. Quasi-strictly proper scoring rules. We saw that no scoring rule
is f.a. strictly proper on all the credences. There are, however, f.a. quasi-
strictly proper scoring rules on all the credences. For instance, we have the
following trivial scoring rule:

Triv(c)(ω) =

{
0 c ∈ Pf

1 otherwise.

(If we prefer, we can have a fairly trivial `∞(PΩ)-continuous quasi-strictly
proper scoring rule by applying Proposition 2 with P = Pf , s(p) being the
constant function equal to zero everywhere for p ∈ Pf , c0 any member of
C − Pf , and f0 being the constant function equal to one everywhere.)

Nielsen [11] has shown that any f.a. quasi-strictly proper scoring rule s
that is continuous on Pf with respect to the product topology satisfies the
strict domination property that for any credence c outside Pf , there is a
credence p ∈ Pf that strictly s-dominates c.

Now an argument for probabilism on the basis of strict domination with
respect to a scoring rule like Triv is singularly uncompelling. Any non-
member of Pf is Triv-dominated by any member of Pf simply because we
have stipulated that the score of a non-member of Pf is everywhere 1 and
that of a member of Pf is everywhere 0. This is simply ad hoc. What we
want for a compelling argument for probabilism are scoring rules that aren’t
ad hoc. It is, of course, difficult to say rigorously what makes a scoring rule
ad hoc.

But in any case, an argument for probabilism on the basis of merely
quasi-strictly proper scoring rules is uncompelling. Quasi-strict propriety
treats non-probability credences from the outset as second-class citizens, by
requiring that Eps(p) < Eps(c) whenever p is a probability and c is not, but
only requiring a non-strict inequality when both are probabilities (with c still
distinct from p). It is unimpressive that a scoring rule chosen to satisfy a
condition that disadvantages non-probability credences, and which does not
satisfy a similar strictness condition in the case of probability credences, can
be used to yield the conclusion that non-probability credences are rationally
inferior.

Moreover, consider the intuitive idea that a scoring rule should yield the
judgment that any rationally acceptable credence would make it irrational
to evidencelessly switch credences. This idea yields strict propriety. To
make it yield only quasi-strict propriety, one would need to make an ad hoc
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restriction that it only applies in cases where one is considering switching
to a non-probability credence, but there is no reason—unless perhaps one
already accepts probabilism—to make that restriction. And Pruss’s [18]
earlier discussed argument for strict propriety as it stands only yields strict
propriety as restricted to the probabilities. Quasi-strict propriety, thus,
seems to be unmotivated once one drops strict propriety.

For purposes of an argument for probabilism, we might try to replace the
unachievable strict propriety condition with propriety conjoined with some
intuitively compelling conditions that suffice for a domination argument for
probabilism but do not bake-in an ad hoc preference for probabilities over
non-probabilities in the way quasi-strict propriety does. Two candidates for
such conditions would be additivity and strict truth-directedness. However,
by Proposition 3 we know that no additive score yields an accuracy argument
for f.a. or c.a. probabilism in infinite cases, since additive scores fail in general
to distinguish probabilities (in either sense) from non-probabilities, while
Proposition 4 showed that there are no strictly truth-directed scoring rules
on an infinite space.

It is also worth noting that Nielsen’s domination theorem involves a sec-
ond kind of unjustified distinguishing of non-probabilistic credences. Nielsen
assumes the scoring rule is continuous on Pf with respect to the product
topology on [0, 1]PΩ. But while continuity is a plausible condition on an
epistemic utility or scoring rule, requiring a scoring rule’s continuity on Pf

without requiring continuity on all of C is difficult to justify. But it follows
from Proposition 1 that no scoring rule that is continuous with respect to
the product topology on C is either f.a. or c.a. quasi-strictly proper.

4. Two potential ways out of cardinality problems

4.1. Countable opinion sets. Some of our results are based on cardinality
considerations. For instance, it is because there are more finitely additive
probabilities than scores that there is no f.a. strictly proper scoring rule
for infinite Ω (Corollary 1), because PΩ is uncountable that there are no
quasi-strictly additive scoring rules for countably infinite Ω (Proposition 3),
etc. But if we restrict ourselves to f.a. probability functions defined over a
countable algebra of events there is much more hope. For instance, if F is
a countably infinite algebra of events, then we can define a weighted Brier
inaccuracy score by enumerating F = {F1, F2, . . . } and letting

B(p)(ω) = −
∞∑
n=1

2−n(1Fn(ω)− p(Fn))2.

This will be additive, obviously strictly truth-directed and proper since it’s a
weighted sum of Brier scores. Moreover, it is elementary to verify that if we
let Bn(p)(ω) = (1Fn(ω)− p(Fn))2, then EpBn(p) ≤ EpBn(c) with equality if
and only if p(Fn) = c(Fn) (cf. the proof of Proposition 5 in the Appendix).
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Using Kelley’s [9] domination results, one can then run an argument for f.a.
probabilism on F .

However, the denial of probabilism is simply the claim that there is at
least one rationally acceptable non-probabilistic credence. Nor need the
denier of probabilism hold that there is such a credence on every algebra of
events, just that there is one on some algebra of events. If the arguments
for probabilism succeed in the finite case, we already know that it is not
rational to have a non-probabilistic credence on a finite algebra F of subsets
of Ω. (Normally that is argued in the case where Ω itself is finite, but the
arguments trivially extend to the case where Ω is infinite but F is finite.)
And presumably everyone agrees that probabilism is the correct view for
probabilities defined on the algebra {∅,Ω}. If we are going to extend the
arguments for probabilism to infinite cases, we should extend them to all of
them—including ones where F = PΩ—or at least all the ones on spaces
whose cardinality is small enough for them to come up in practice (in science,
one rarely if ever deals with spaces of cardinality greater than that of the
continuum).

It is also worth noting that in classical probability theory, any c.a. prob-
ability function is required to be defined on a σ-algebra, and any infinite
σ-algebra is well known to be automatically uncountable.

One may respond that it is not possible for human-like epistemic agents
to have a credence assigned to an uncountable set of events, and hence that
we only need to establish probabilism for countable sets of events. Now if
assigning a credence to a set of events involves having some mental credence
value stored separately for each event, then the finitude of ours minds does
rule out having a credence assigned to an uncountable set of events—but it
also rules out credences being assigned to a countably infinite set of events,
and hence there is little point to extending probabilism beyond finite cases
if our concern is with human-like agents.

But even in finite cases it is unrealistic to think of credence assignments
as involving separate mental credence values for each event. For instance, as
soon as I hear of a fair lottery with tickets numbered 1, 2, 3, ..., 20, I assign
credence 1/20 to each ticket winning. But I do not think through each of the
twenty atomic outcomes and gain a separate mental property corresponding
to that outcome’s having credence 1/20. Rather, I endorse some sort of rule
like “Each one gets 1/20.” And I certainly do not have a separate mental
state for each of the 220 events on the space, but I do endorse a rule like
“Each event A gets probability |A|/20.” And if it suffices for the assigning
of a credence that one endorse some rule, then it is quite possible to assign
a probability to an uncountable set of events. For instance, in an infinite
lottery with tickets numbered 1, 2, 3, ..., I can by a single rule assign the
probabilistic credence

∑
n∈A 2−n to each of the uncountably many events A

in P{1, 2, 3, ...}. And I can assign a non-probabilistic credence by having a
rule that where the above rule holds except when A = {2, 3}, in which case
the credence is 1/3 instead.
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Thus, likely, we not only want probabilism in finite cases, but also in
infinite cases, including cases where the set of events is the powerset of a
countably infinite set as in some of the cases in this paper. But the accuracy
arguments fail for such cases.

4.2. Beyond extended real values. What underlies the proof of Corol-
lary 1 is the observation that there are more f.a. probability functions on
PΩ than possible extended real-valued scores on Ω when Ω is infinite. The
approach just considered circumvented this by constricting the set of proba-
bility functions by considering only functions defined on a countable algebra
of events. A complementary approach is to enrich the set of possible scores
by replacing real numbers with a real closed field of larger cardinality, say a
large field of hyperreals.

At this point, I cannot definitely rule out the possibility of an accuracy-
based argument for probabilism based on hyperreal scores. However, two
technical difficulties would need to be overcome.

First, some kind of continuity assumption is known [17] to be needed to
prove strict domination theorems for a finite Ω. But it is not clear what
kind of analogue to continuity we would have for hyperreal-valued scores.

Second, the concept of propriety depends on expected values of the score
with respect to a probability. On a finite space, there is no difficulty defining
an expected value of a hyperreal score—one just does a finite weighted aver-
age. But we do not know how to compute the expected value of a hyperreal
score with respect to a standard probability measure. Even the concept of
measurability of scores, essential when the probabilities are defined on an
algebra smaller than PΩ, is problematic.

It is worth noting that if one can make sense of expectations of hyperreal
valued scores and define a strictly proper score, then the standard expected
inaccuracy argument for Bayesian update will work, as it does not require
any continuity.

But while hyperreals have often been invoked by formal epistemologists,
there is another approach that may be a better fit here and that does yield
an argument for Bayesian update: scores whose values are nets.

Let A be a directed set: a set with a partial preorder E and such that for
any a, b ∈ A there is a c with a E c and b E c. A net in a set X is a function
from a directed set to X. Let XA be the set of A-nets in X, i.e., functions
from A to X. We define the transitive relations ≺· and � on [−∞,∞]A as
follows: x ≺· y if and only if there is an a ∈ A such that for all b D a we
have x(a) < y(a) and x � y if and only if there is an a ∈ A such that for all
b D a we have x(a) ≤ y(a). Note that x ≺· y is in general a stronger claim
than the conjunction x � y and y 6� x.

Suppose Ω has an algebra F . Given a function f : Ω → [M,∞]A, say
that f is F-measurable if and only if ω 7→ f(ω)(a) is F-measurable for any
fixed a ∈ A. For a f.a. probability p, define Epf to be the net such that
(Epf)(a) is the expectation of ω 7→ f(ω)(a) (which function will sometimes
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also be written f(·)(a)) for any fixed a ∈ A. An A-net-valued scoring rule
s is then a function from a set D of credences on F to [M,∞]A. If P is a
subset of the f.a. probabilities on F , the scoring rule is P-proper provided
that Eps(p) � Eps(c) for any p ∈ P and any c ∈ D. The propriety is strict
provided that we can replace � with ≺· whenever p 6= c.

We do not know what we can say about probabilism and domination
in this setting given finite additivity. Given countable additivity, we had
counterexamples to domination results for real-valued scores, and these of
course apply just as much in this setting, since real numbers can be identified
with A-nets in the reals for any singleton A.

However, we can say that a strictly proper net-valued scoring rule yields
an expected inaccuracy argument for the optimality of Bayesian update. In
the setting of Section 2.5, given the Bayesian update strategy where the
credence goes to pi on Fi and the non-Bayesian update where the credence
goes to ci on Fi, let I = {i : pi 6= ci} be the nonempty set of indices for
which the non-Bayesian update deviates from Bayesian update. For each
i ∈ I, there is an ai ∈ A such that

Epi(s(pi)(·)(b)) < Epi(s(ci)(·)(b))
whenever b D ai, and of course for i /∈ I, we have equality for all b. Because
A is a directed set and I is finite, there is an a ∈ A such that a D ai for all
i /∈ I. Then for any b D a, we have:

Ep

(
n∑
i=1

1Fis(ci)(·)(b)

)
=

n∑
i=1

p(Fi)Epi(s(ci)(·)(b))

>
n∑
i=1

p(Fi)Epi(s(pi)(·)(b)) = Ep

(
n∑
i=1

1Fis(pi)(·)(b)

)
,

because we have strict inequality for any an i ∈ I and equality for the other
indices. It follows that

Ep

(
n∑
i=1

1Fis(pi)

)
≺· Ep

(
n∑
i=1

1Fis(ci)

)
,

and hence the expected value of the net-valued inaccuracy for Bayesian
update beats that for the non-Bayesian update for any strictly proper net-
valued score s.

And there will always be a strictly proper net-valued score. Let A be the
set of all finite subalgebras of F ordered by inclusion. For any G ∈ A, define
the normalized Brier score:

b(c)(ω)(G) = − 1

|G|
∑
A∈G

(1A(ω)− c(A))2.

Then b(c)(ω) is a member of [−1, 0]A, and b is a strictly proper net-valued
scoring rule. Propriety follows from the propriety of Brier scores. To demon-
strate strict propriety, note that if p is a probability and c is a credence, and
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p 6= c, then the Ep expectation of ω 7→ b(p)(ω)(G) is strictly less than that
of ω 7→ b(c)(ω)(G) as long as G contains at least one set A on which p and
c disagree, by the strict propriety of Brier scores. Hence we will have a
strict inequality as long as G ⊇ H where H = {∅,Ω, A,Ac}, and so we have
Epb(p) ≺· Epb(c).8

There is also a weaker version of strict propriety in the net-valued case
where instead of the relation ≺·, we use the weaker relation ≺ where x ≺ y
if and only if x � y but not y � x. Then x ≺ y just in case x � y and for
any a ∈ A there is a b D a such that x(b) < y(b). The above argument for
strict propriety generalizes to yield a ≺-inequality for expected inaccuracies
if we assume ≺-inequality in our definition of scoring rules.

Further research is needed to determine whether either of the definitions
of strict propriety yields a plausible condition on net-valued scoring rules,
and whether the corresponding inequality for expected inaccuracies yields a
serious problem for the rationality of non-Bayesian update.

5. Conclusions

In the countably additive case on a countably infinite space, we have a
strictly proper scoring rule that is continuous in a reasonable topology on
the space of all credences, but that does not support any domination result,
and hence does not yield an argument for probabilism. The same is true
in the case of the Borel σ-algebra on any Polish space (metric space with
countable dense subset).

One might hope to gain an argument for probabilism by adding further
intuitively plausible conditions on the scoring rule, but we do not at present
know what condition might do the job. Two conditions from the literature
fail to help. Additivity does not do the job, at least for countably infinite
Ω, as for any additive scoring rule there will be a probability and a non-
probability (in either sense of probability) that get the same score, and strict
truth-directedness does not help as on an infinite space there is no strictly
truth-directed scoring rule defined on the powerset of the sample space.

A standard accuracy argument for Bayesian update runs just as well in
the countably additive infinite case as in finite cases when there is a strictly
proper scoring rule, and as we saw, in some natural cases there is such a
scoring rule. That said, there isn’t a strictly proper scoring rule in every
case: for instance, there is a σ-algebra representing continuum-many coin
flips where there is no strictly proper scoring rule.

In the finitely additive case, there are no strictly proper scoring rules when
the probabilities are defined on the powerset, or when they are defined on
the Borel sets of a Polish space. Nielsen [10] has proved an interesting domi-
nation result for quasi-strictly proper scoring rules, but requiring quasi-strict
propriety stacks the deck against non-probabilistic credences and hence is

8It is worth noting that we can generate a hyperreal scoring rule by using an ultra-
product construction with respect to an ultrafilter on A and the above construction.
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dialectically inadequate in an argument for probabilism. Moreover, there
does not appear to be a good argument for quasi-strict propriety that isn’t
also an argument for strict propriety. We might try to run an argument
for probabilism using non-strict propriety and some additional conditions,
but we do not at present know what additional conditions might do the job
here—neither additivity nor strict truth-directedness does.

Furthermore, the non-strictly proper scoring rules that exist in the finitely
additive case with the probabilities defined on the powerset, and in the
uncountably many coin flips case, not only do not support an accuracy
argument for Bayesian update, but every such scoring rule has the unhappy
feature that in some cases it will assign exactly the same score to a Bayesian
update as to an anti-Bayesian update (where one conditionalizes on the
complement of the evidence).

If we are willing to restrict to credences defined over countable opinion
sets and work with finitely additive probabilities, we can get an argument
for finitely additive probabilism based on results of Kelley [9]. However,
such a restriction is a serious one and allows the anti-probabilist a way out
in infinite cases.

There is a need for future research concerning scoring rules with values
that are not extended real numbers. The current state of the art does not
appear sufficient to evaluate this possibility for hyperreal values. We can,
however, define strict propriety for scoring rules whose values are nets of real
numbers, and such strictly proper scoring rules will always exist and yield
an expected inaccuracy argument for Bayesian update. We do not know
what happens for domination for net-valued scoring rules.9

Appendix: Proofs

Proof of Proposition 1. To obtain a contradiction, suppose that s is con-
tinuous at a fixed p ∈ P. For x ∈ [M,∞) and n > 0, let Bn(x) =
(x − 1/n, x + 1/n) and let Bn(∞) = (max(M,n),∞]. Then Bn(x) is a
neighborhood of x and

⋂
nBn(x) = {x}. Let

Vω,n = {s′ ∈ [M,∞]Ω : s′(ω) ∈ Bn(s(p)(ω))}.
This is a neighborhood of s(p) in in the product topology on [M,∞]Ω. Note
that ⋂

(ω,n)∈Ω×N

Vω,n = {s(p)}.

For a finite subset F of PΩ, a credence c and an r > 0, let

B(c, F, r) = {c′ ∈ C : ∀A ∈ F (|c(A)− c′(A)| < r)}.
The collection of the B(c, F, r) forms a neighborhood basis for C with the
product topology.

9I would like to thank [anonymized] for much extended correspondence on these topics
and [anonymized] for help with cardinal exponentiation. I am grateful to two anonymous
readers whose comments have helped improve the clarity of the text and arguments.
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Since s is continuous at p ∈ P, for each (ω, n) ∈ Ω× N, using the Axiom
of Choice, select a finite Fω,n ⊆ PΩ and an rω,n > 0 such that if Wω,n =
B(p, Fω,n, rω,n), then s[Wω,n] ⊆ Vω,n. Observe that:

s

 ⋂
(ω,n)∈Ω×N

Wω,n

 ⊆ ⋂
(ω,n)∈Ω×N

s[Wω,n] ⊆
⋂

(ω,n)∈Ω×N

Vω,n = {s(p)}.

Since s is P-distinguishing, nothing in C − P can have the same score as
p. Hence, W =

⋂
ω,nWω,n must be a subset of P ⊆ Pf . But we shall see

this is impossible. For let F =
⋃
ω,n Fω,n. This is a union of |Ω × N| = |Ω|

many finite sets and hence |F | ≤ |Ω| (here we used the Axiom of Choice
twice). Thus by Cantor’s Theorem, |F | < |PΩ| and since F is a subset of
PΩ, it must be a proper subset of it. Now, p ∈ W , and any credence c
such that c(A) = p(A) for all A ∈ F will be a member of each of the Wω,n

and hence of W . Fix any B /∈ F . Let c be any credence function such that
c(A) = p(A) for all A ∈ F , but such that c(B) is chosen so as to be different
from 1 − c(Ω − B) (if Ω − B is in F , we have no choice as to the value of
c(Ω−B), and if Ω−B /∈ F , we can let c(Ω−B) be whatever we like). Then
c is not finitely additive, but is in W , a contradiction. �

We now show that Sph∗ from Section 2 is strictly proper. Suppose first
that p and q are probabilities. Restricted to the probabilities, Sph∗ is just
the spherical scoring rule, which is well-known to be strictly proper [6, Sec-
tion 4.1], but a proof is given for completeness. We have:

Ep Sph∗(q) = −‖p̂q̂‖1
‖q̂‖2

and

Ep Sph∗(p) = −
∑

n p̂
2
n

‖p̂‖2
= −‖p̂‖

2
2

‖p̂‖2
= −‖p̂‖2.

The Cauchy-Schwarz inequality says that ‖p̂q̂‖1 ≤ ‖p̂‖2‖q̂‖2, with equality if
and only if one of p̂ and q̂ is a scalar multiple of the other. For probabilities
p and q, the latter condition is met only if p = q. Thus:

Ep Sph∗(q) ≥ −‖p̂‖2‖q̂‖2
‖q̂‖2

= −‖p̂‖2 = Ep Sph∗(p),

with equality only when p = q.
Now suppose c /∈ Pc and p ∈ Pc. We need to show that Ep Sph∗(p) <

Ep Sph∗(c). Now

‖ Sph∗(c)‖22 =

∞∑
n=0

1

(2(n+ 1))2
=

π

24
,
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because of the Euler series formula
∑∞

n=1 n
−2 = π/6. By Cauchy-Schwarz

again and as (π/24)1/2 < 1,

−Ep Sph∗(c) =
∞∑
n=0

p̂(n)Sph∗(c)(n)

≤ ‖Sph∗(c)‖2‖p̂‖2 < ‖p̂‖2 = −Ep Sph∗(p),

and so Ep Sph∗(p) < Ep Sph∗(c).
Now for u ∈ `1(Ω), let

‖u‖∗ = sup
A∈PΩ

∣∣∣∣∣∑
ω∈Ω

u(ω)

∣∣∣∣∣ .
Two norms ‖ · ‖A and ‖ · ‖B on a vector space are said to be equivalent
if there is a positive real constant c such that for every u in the space
‖u‖A ≤ c‖u‖B and ‖u‖B ≤ c‖u‖A. Credences are members of `∞(PΩ),
the space of bounded real-valued functions on PΩ with norm given by the
supremum of the absolute value.

Lemma 1. The function ‖ · ‖∗ on `1(Ω) is a vector space norm such that
‖u‖∗ ≤ ‖u‖1 ≤ 2‖u‖∗ for all u. Moreover, for any p ∈ Pc, we have ‖p̂‖∗ =
‖p‖`∞(PΩ).

Proof. That ‖ · ‖∗ is a vector space norm is easy to check using the triangle
inequality and the fact that supx(f(x) + g(x)) ≤ supx f(x) + supx g(x).

Furthermore,

‖u‖∗ = sup
A∈PΩ

∣∣∣∣∣∑
ω∈A

u(ω)

∣∣∣∣∣ ≤ sup
A∈PΩ

∑
ω∈A
|u(ω)| =

∑
ω∈Ω

|u(ω)| = ‖u‖1.

Next, given u ∈ `1(Ω), let B = {ω : u(ω) ≥ 0} and C = Ω−B. Then

‖u‖1 =
∑
ω∈B

u(ω)−
∑
ω∈C

u(ω) =

∣∣∣∣∣∑
ω∈B

u(ω)

∣∣∣∣∣+

∣∣∣∣∣∑
ω∈C

u(ω)

∣∣∣∣∣
≤ 2 max

A∈{B,C}

∣∣∣∣∣∑
ω∈A

u(ω)

∣∣∣∣∣ ≤ 2‖u‖∗.

Finally, if p ∈ Pc:

‖p‖`∞(PΩ) = sup
A⊆Ω

p(A) = sup
A⊆Ω

∣∣∣∣∣∑
ω∈A

p̂(ω)

∣∣∣∣∣ = ‖p̂‖∗.

�

Our observations related to the continuity of Sph∗ on Pc in Section 2.1
together with Lemma 1 yield:

Lemma 2. The scoring rule Sph∗ is continuous on Pc in the `∞(PΩ)
topology with respect to the Pc-weak topology on [M,∞]Ω.
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To prove Proposition 2 we need one more crucial result.

Lemma 3. The sets Pc and Pf are closed subsets of `∞(PΩ).

Proof of Lemma 3. We need to show that every member u of `∞(PΩ) −
Pc has a neighborhood that doesn’t intersect Pc and every member u of
`∞(PΩ)− Pf has a neighborhood that doesn’t intersect Pf .

If u /∈ C, then there is an A ⊆ Ω such that u(A) < 0 or u(A) > 1. Then

‖u− p‖`∞(PΩ) ≥ |u(A)− p(A)|
for any p ∈ Pf . Moreover, we have p(A) ∈ [0, 1], so if u(A) < 0, the right
hand side is at least −u(A) and if u(A) > 1, the right hand side is at least
u(A) − 1. In the former case, a ball of radius −u(A) around u does not
intersect Pf and in the latter, one of radius u(A)− 1 does not intersect Pf .

Next suppose that u ∈ C−Pf . Since we’ve assumed credences take values
between 0 and 1, there are two possible ways for u not to be a f.a. probability:
either the total probability or the finite additivity axiom fails for u.

If the total probability axiom fails, then u(Ω) < 1. But for any p ∈ Pf we
have p(Ω) = 1, so ‖u− p‖`∞(PΩ) ≥ |p(Ω)− u(Ω)| = 1− u(Ω), and so a ball
of radius 1− u(Ω) around u does not intersect Pf .

Suppose now that finite additivity fails, so u(A ∪ B) 6= u(A) + u(B) for
some disjoint A and B. Let ε = |u(A)+u(B)−u(A∪B)| > 0. Suppose that
p ∈ Pf . I will show that ‖u− p‖`∞(PΩ) ≥ ε/3 for any p ∈ Pf , from which it
follows that a ball of radius ε/3 around u does not intersect Pf . To obtain
a contradiction, suppose ‖u − p‖`∞(PΩ) < ε/3. Then |u(D) − p(D)| < ε/3
for every event D. Thus,

ε = |u(A) + u(B)− u(A ∪B)| < 3(ε/3) + |p(A) + p(B)− p(A ∪B)| = ε,

where the inequality follows from the triangle inequality and the last equality
from the finite additivity of p. And that’s a contradiction.

So, far we have shown that any u /∈ Pf has a neighborhood that doesn’t
intersect Pf , and hence doesn’t intersect Pc. In particular, we’ve shown that
Pf is closed.

Finally, suppose that u ∈ Pf − Pc so that we can show that there is
a neighborhood of u that doesn’t intersect Pc. Finite but not countable
additivity must hold for u. Thus we have disjoint Ai such that

ε =

∣∣∣∣∣u
( ∞⋃
i=1

Ai

)
−
∞∑
i=1

u(Ai)

∣∣∣∣∣ > 0.

But we have:
∞∑
i=1

u(Ai) = lim
n→∞

n∑
i=1

u(Ai) = lim
n→∞

u

(
n⋃
i=1

Ai

)
by finite additivity. Thus:

ε =

∣∣∣∣∣u
( ∞⋃
i=1

Ai

)
− lim
n→∞

u

(
n⋃
i=1

Ai

)∣∣∣∣∣ .
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To obtain a contradiction, suppose ‖u − p‖`∞(PΩ) < ε/2 for some p ∈ Pc.
Then |u(D) − p(D)| < ε/3 for any D and hence by the triangle inequality
again:

ε ≤

∣∣∣∣∣p
( ∞⋃
i=1

Ai

)
− lim
n→∞

p

(
n⋃
i=1

Ai

)∣∣∣∣∣+ 2ε/3 = 2ε/3,

by the countable additivity of p, and contradicting the positivity of ε. Hence,
again, a ball of radius ε/3 around u does not intersect Pc, and our proof of
the closedness of Pc is complete. �

Proof of Proposition 2. By the Dugundji extension theorem [4, Theo-
rem 4.1], together with the closedness (Lemma 3) and convexity of P, and
the local convexity of P-weak topology, there is an `∞(PΩ)-continuous
function ψ : C → P whose restriction to P is the identity function.

Define s1(c) = s(ψ(c)). Since this agrees with s on P and has the same
range as s while s is proper, this is a proper scoring rule on C.

Now, let δ(c) = infp∈P ‖c − p‖`∞(PΩ) be the distance from c to P. By
the triangle inequality, this is a continuous function, and since P is closed
(Lemma 3), δ(c0) > 0 for our c0 ∈ C −P. Let φ(c) = max(1, δ(c)/δ(c0)) and
define

s̄(c)(ω) = φ(c)f0(ω) + (1− φ(c))s1(c)(ω)

for any credence c. Note that s, s1 and s̄ all agree on P (since φ(p) = 0 for
p ∈ P). Then if c /∈ P, we have φ(c) > 0 and so for any p ∈ P:

Eps̄(c) = φ(c)Epf0 + (1− φ(c))Eps1(c)

> φ(c)Eps(p) + (1− φ(c))Eps1(c)

≥ φ(c)Eps(p) + (1− φ(c))Eps1(p)

= φ(c)Eps1(p) + (1− φ(c))Eps1(p)

= Eps1(p) = Eps̄(p)

by our assumption on f0 and the propriety of s1. Hence Ep is P-strictly
proper. Moreover, it is continuous because δ is continuous. And φ(c0) = 1
so s̄(c0) = f0. �

For the proof of Proposition 3, we will need the following.

Lemma 4. Assume the Axiom of Choice. Let p and q be any f.a. probabil-
ities on PΩ where κ = |Ω| is infinite. If p and q differ on any event, they
differ on 2κ events.

Proof. Suppose A is such that p(A) 6= q(A). Either A or its complement
Ac has cardinality κ, and if p and q differ on A, they differ on Ac by finite
additivity. Thus, replacing A with Ac if necessary, assume |Ac| = κ. Let
F = {B ⊆ Ac : p(B) = q(B)}. If |F | < 2κ, then |P(Ac) − F | = 2κ (here
we use Choice and the fact that |P(Ac)| = 2κ), and so there are 2κ many
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events on which p and q differ. Thus suppose |F | = 2κ. But then any B ∈ F
is disjoint from A and so we have

p(A ∪B) = p(A) + p(B) = p(A) + q(B) 6= q(A) + q(B) = q(A ∪B)

and so p and q differ on the event A ∪B, and there are 2κ such events. �

Proof of Proposition 3. Fix p ∈ Pc such that p({ω}) > 0 for all ω ∈ Ω. If we
have quasi-strict propriety, then Ep(s(p)) < Ep(s(c)) for any non-probability
c, and hence ∞ > Ep(s(p)) =

∑
ω p({ω})s(p). Since p is non-zero on every

singleton, it follows that s(p)(ω) <∞ for every ω. Since (inaccuracy) scores
cannot equal −∞, we must have s(p)(ω) finite for every ω.

Now, a sum of uncountably many non-zero values is either undefined or
infinite. Thus for any fixed ω, the summand sA(p(A), 1A(ω)) is zero except
for at most countably many A ∈PΩ. Let

Np = {A ∈PΩ : ∃ω ∈ Ω(sA(p(A), ω) 6= 0)}.

Let κ = |Ω|. Then Np is the union of κ sets, each of which is countable, and
κ is infinite, so |Np| ≤ ℵ0 × κ ≤ κ × κ = κ, where we used the Axiom of
Choice in both inequalities.

Let q be any c.a. probability other than p such that q({ω}) > 0 for
all ω. Let N = Np ∪ Nq. Then for any A /∈ N and ω ∈ Ω, we have
sA(p, 1A(ω)) = 0 = sA(q, 1A(ω)) and |N | ≤ κ, as κ is infinite.

By Lemma 4, p and q differ on 2κ events. Since |N | ≤ κ < 2κ, by
the pigeonhole principle choose a C /∈ N for which p(C) 6= q(C). Let
c(A) = p(A) if A 6= C and c(C) = q(C). Then finite additivity is violated
by c:

c(C) + c(Cc) = q(C) + p(Cc) = q(C) + 1− p(C) 6= q(C) + 1− q(C) = 1.

But

s(c)(ω) =
∑
A∈PΩ

sA(c(A), 1A(ω)) =
∑
A∈PΩ

sA(p(A), 1A(ω)) = s(p)(ω),

for all ω, since c(A) = p(A) except when A = C, in which case
sA(c(A), 1A(ω)) = sA(q(A), 1A(ω)) = 0 = sA(p(A), 1A(ω)) since C /∈ N .
Therefore, s(c) = s(p) everywhere, and hence we cannot have Eps(c) >
Eps(p) as would be necessary for either f.a. or c.a. quasi-propriety since c is
not a f.a. probability. �

To prove Proposition 4, we need the following improvement on Cantor’s
Theorem, whose proof was essentially given to me by my colleague [name].

Lemma 5. If X is a set, then there is no function f : PX → X such that
f(A) 6= f(B) whenever A ⊂ B.

Proof. Suppose we have such a function f . Let ON be the class of ordinals.
Define F : ON → X by transfinite induction: F (0) = f(∅) and F (α) =
f({F (β) : β < α}) whenever α is a successor or limit ordinal.
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I prove by transfinite induction that F is one-to-one on α for any ordinal
α. This is trivially true for α = 0.

Suppose F is one-to-one on β for all β < α. If α is a limit ordinal, then
it immediately follows that F is one-to-one on α as well.

If α = β + 1 for some ordinal β, I claim that it is one-to-one as well. For
given that F is one-to-one on β, the only possible failure of injectivity would
be if F (β) = F (γ) for some γ < β. Suppose that happens. Let

Hδ = {F (ε) : ε < δ}.
Note that F (β) = f(Hβ) and F (γ) = f(Hγ). Furthermore, Hγ ⊂ Hβ since F
is one-to-one on β. Thus, F (γ) = f(Hγ) 6= f(Hβ) = F (β), a contradiction.

So, by transfinite induction, F is one-to-one on ON , and hence embeds
ON in the set X, which is impossible by Burali-Forti. �

Proof of Proposition 4. Let s be a strictly truth-directed scoring rule defined
for all extreme credences. Fix ω0 ∈ Ω. Given a subset U of PΩ, let cU be
the extreme credence function that is correct at all and only the members of
U . Thus, cU (A) is 1 if both ω0 ∈ A and A ∈ U or both ω0 /∈ A and A /∈ U ,
and is 0 otherwise. Note that if U ⊂ V , then cV is strictly truer at ω0 than
cU , and hence s(cU )(ω0) > s(cV )(ω0). Let h(U) = s(cU )(ω0). Thus, h is a
function from PPΩ to [M,∞] such that h(A) 6= h(B) whenever A ⊂ B.
But if Ω is infinite, then by the Axiom of Countable Choice, ℵ0 ≤ |Ω|, and
|[M,∞]| = 2ℵ0 ≤ |PΩ|, and so there is a one-to-one function g from [M,∞]
to PΩ. Letting f = g ◦ h and X = PΩ, we get a function whose existence
contradicts Lemma 5. �

For the proof of Proposition 5, we need this easy fact.

Lemma 6. Assume the Axiom of Countable Choice. If F is an infinite
σ-algebra on Ω, then there is countably infinite partition of Ω by non-empty
members of F .

Proof. Let F0 = F and Ω0 = Ω. Given an infinite σ-algebra Fn on Ωn, I
claim there is a a non-empty member Ωn+1 of Fn such that Fn ∩P(Ωn −
Ωn+1) is infinite. To see this, given the infinitude of Fn, let B be any member
of Fn such that neither B nor Ωn−B is empty. Then every member of Fn is
the union of a member of Fn∩PB and a member of Fn∩P(Ωn−B). Hence
at least one of these two sets is infinite. If Fn ∩PB is infinite, let Ωn+1 =
Ωn−B, and otherwise let Ωn+1 = B. Let Fn+1 = Fn∩P(Ωn−Ωn+1). Note
that getting such a sequence of Fn and Ωn requires the Axiom of Countable
Choice since the choice of B was not determinate.

Let An = Ωn−1 − Ωn for n ≥ 1. Then A1, A2, ... are non-empty pairwise
disjoint members of F . If their union is Ω, we are done, and otherwise just
add Ω−

⋃∞
n=1 Ωn to the sequence. �

Sketch of Proof of Proposition 5. Let A1, A2, . . . be a countably infinite par-
tition of Ω by members of F by Lemma 6. Let B1, B2, . . . be an algebra that
σ-generates F (we assumed F is countably generated, and then the algebra
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generated by the generating set will also be countable). Let Cmn = Am∩Bn.
Given an event A, let

bA(p)(ω) = −(1A(ω)− p(A))2

be the A-Brier score of a (c.a.) probability p. It is elementary to check that

EpbA(q) = −p(A)(1− q(A))2 − (1− p(A))(q(A))2 ≥ EpbA(p)

with equality if and only if p(A) = q(A). In particular, bA is a proper score.
Next, define

b(p) =
∞∑
m=1

∞∑
n=1

2−m−nbCmn(p)

The scoring rule b is continuous on Pc(F) in our topology. It is proper being
the sum of proper scoring rules.

Moreover, b is strictly proper on the probabilities. For suppose that p and
q are probabilities that are not identical.

I now claim that p and q differ on Bn for some n. For suppose p and q
are equal on all the Bn. Now {B1, B2, . . . } is an algebra that σ-generates F .
If c.a. probabilities agree on U1 ⊆ U2 ⊆ . . . , they agree on the union, and
similarly if they agree on U1 ⊇ U2 ⊇ . . . , they agree on the intersection. Let
G be the sets on which p and q agree. This is thus a monotone class that
contains {B1, B2, . . . }, and hence by the Monotone Class Theorem, F ⊆ G,
and hence they agree on F , a contradiction.

Since Bn is in turn partitioned into C1n, C2n, ..., it follows that p and q
differ on Cmn for some m. Thus by the propriety of bCmn and the condition
for equality in the propriety inequality for A-Brier scores, we have Epb(p) <
Epb(q) as desired.

Now, define

s1(c)(ω) =

−
∑∞
n=1 1An (ω)c(An)

(
∑∞
n=1(c(An))2)

1/2 if c ∈ Pc(F)

−
∑∞

n=1
1An (ω)
2(n+1) otherwise.

Given a probability p ∈ Pc(F), let φ(p) be the unique c.a. probability on PN
such that φ(p)({n}) = p(An+1). Note that φ is a continuous function from
Pc(F) to Pc(PN) with respect to the `∞ topologies. Extend φ to all of C(F)
by letting φ(c) = d0 for all c ∈ C(F)\Pc(F) and any fixed non-probability
credence d0 on PN. Then it is easy to verify that:

Eqs1(c) = Eφ(q) Sph∗(φ(c)).

The Pc(F)-weak continuity and quasi-strict propriety of s1 then follow from
those of Sph∗ (we do not get strict propriety, because φ is not one-to-one
on the c.a. probabilities, though we do get quasi-strictness because it maps
probabilities to probabilities and non-probabilities to non-probabilities).

Fix some non-probability c0 in C(F). Let f0 = s1(c0). Note that
Eps1(p) < Epf0 for all c.a. probabilities p.



28 ALEXANDER R. PRUSS

Let s2(p) = b(p) + s1(p) for a probability p. This is the sum of a strictly
proper and a proper scoring rule on Pc(F), so it is strictly proper there. It
is continuous and uniformly bounded. Using Proposition 2, extend s2 to a
continuous strictly proper scoring rule on all of C(F) with s2(c0) = f0. It
remains to check that we do not have even non-strict domination. To that
end, choose ωn ∈ An (this uses the Axiom of Countable Choice). Observe
that

∞∑
n=1

f0(ωn) = −
∞∑
n=1

1

2(n+ 1)
= −∞

but
∞∑
n=1

s1(p)(ωn) = −
∞∑
n=1

p(An)

(
∑∞

n=1(p(An))2)1/2
> −∞

for any probability p by countable additivity. Moreover,

∞∑
n=1

b(p)(ωn) ≥ −
∞∑
n=1

2−n > −∞,

since b(p)(ω) ∈ [−2n, 0] for ω ∈ An. It follows that f0 cannot be even
non-strictly dominated by b(p) + s1(p) for any probability p. �

Proof of Proposition 6. Say that a function f depends only on the coordi-
nates in C ⊆ κ if for any ω and ω′, if ω(x) = ω′(x) whenever x ∈ C, then
f(ω) = f(ω′).

Let Q be the set of all intervals (a, b) with a and b rational numbers. If f is
a real-valued measurable function on Ω and I ∈ Q, then the preimage f−1[I]
is a member of F , and hence depends only on countably many coordinates.
Suppose that f−1[I] depends only on the coordinates in a countable set CI
(use the Axiom of Choice to choose CI), then let C be the union of CI as
I ranges over Q. Then C is a countable set and f−1[I] depends only on
the coordinates in C for any such interval with rational number endpoints.
Since f(x) = y if and only if x is a member of f−1[I] for all I ∈ Q such that
y ∈ I, it follows that f depends only on the coordinates in C.

For any countable subset C of κ, the number of measurable functions that
depend only on the coordinates in C is the number of measurable functions
on {0, 1}ω, with respect to the product σ-algebra, and that is just c, since
this product σ-algebra is countably generated. There are at most κα subsets
of κ with cardinality α and so at most κω countable subsets of κ (here we
use the Axiom of Choice twice). Thus, again using the Axiom of Choice,
there are at most κω×c = κω measurable functions on {0, 1}κ, and given the
assumption that 2κ > κω, and the fact that there 2κ extreme probabilities
concentrated at singletons, the proof is complete. �

Finally, if Q is a convex subset of a vector space, say that a topology
on Q is line segment compatible provided that for any x and y in Q, the
function t 7→ (1 − t)x + ty from [0, 1] to Q is continuous in that topology.



ACCURACY, PROBABILISM AND BAYESIAN UPDATE IN INFINITE DOMAINS 29

Any topology on Pf which is derived from embedding in a topological vector
space of real-valued functions on F is line segment compatible.

Proposition 9. Let Ω be any non-empty set. Suppose P is either Pf or Pc

and has a line segment compatible topology. Let s be a proper scoring rule
on P such that p 7→ s(p)(ω) is continuous for every fixed ω ∈ Ω. Then if
Eps(p) = Eps(q) and both Eps(p) and Eqs(q) are finite, we have s(p) = s(q)
everywhere on Ω.

Proof. Fix ω ∈ Ω. Let uω be the probability measure such that uω({ω}) = 1.
Let pt = (1− t)p+ tuω for t ∈ [0, 1]. Then:

(1− t)Eps(p) + tEuωs(q) = (1− t)Eps(q) + tEuωs(q)

= Epts(q)

≥ Epts(pt)
= (1− t)Eps(pt) + tEuωs(pt)

≥ (1− t)Eps(p) + tEuωs(pt),

where the first equality follows from the assumed equality in the statement of
the proposition and the two inequalities follow from propriety. Since Eps(p)
is finite, it follows that

Euωs(q) ≥ Euωs(pt)
for all t ∈ (0, 1]. Since Euωf = f(ω) for any f , taking the limit as t → 0+,
it follows by continuity and line segment compatibility that

s(q)(ω) = Euωs(q) ≥ Euωs(p) = s(p)(ω).

We have thus shown that if p and q are such that Eps(p) = Eps(q), then
s(q) ≥ s(p) everywhere. It follows that Eqs(q) ≥ Eqs(p) and by propriety
that Eqs(q) = Eqs(p). Applying what we have just proved with p and q
swapped, we conclude that s(p) ≥ s(q) everywhere, and hence that s(p) =
s(q) everywhere. �
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