
HOW COMPUTATION EXPLAINS

Andrew Richmond

ABSTRACT

I discuss the monumental shift in our understanding of the brain triggered by the
project of computational cognitive science: the use of tools, concepts, and strategies
from the computer sciences to investigate the brain. Philosophers have typically
understood this project, and the computational explanations it provides, to assume
that the brain is a computer, in a sense to be specified by the metaphysics of
computation. That metaphysics, by revealing what exactly we attribute to the
brain when we say it computes, is supposed to show how and why computational
explanations work, and in doing so to provide a philosophical foundation for them. In
contrast, I give an account of computational explanation that focuses on the resources
computational explanations bring to bear on the study of the brain. I argue that
computational explanations help cognitive scientists build perspicuous models that
capture precisely the kinds of causal structures they seek, and that no metaphysics of
computation is required to understand how they do this.

1 Introduction

Cognitive science gives computational explanations of behavior. From neuroscience in particular
we learn that the brain sees depth by computing the disparity between retinal images (Nityananda
and Read 2017), discriminates colors using cone-opponent computations (Thoreson and Dacey
2019), localizes sounds by computing inter-aural time differences (Grothe et al. 2010), and supports
reaching and grasping tasks by computing vector displacements (Shadmehr and Wise 2005). Cogni-
tive scientists also make general appeals to the computational capacity of neural channels (Gallistel
and King 2009), the computational architecture of the brain (Lake et al. 2017; Yamins and DiCarlo
2016), and the broad types of computation it can perform (Danks 2019).1

Perhaps this has all become commonplace enough to dull our critical instincts, but if we dwell
for a moment on this fact, this explosion of computational explanations over the past half-century,
some questions arise. What are these explanations? How do they work? What distinguishes them
from other kinds of explanation? And why have they been so successful? (Not just successful, but
so successful that it is hard to imagine cognitive science without them.) In its simplest form, the
question is: how and why do computational explanations work?

1Discussions of the computational approach in general (as opposed to specific computational explanations) are also
common (Cao 2019; Chirimuuta 2019; Fodor 1975; Gallistel and King 2009; Hardcastle 1996; Pylyshyn 1984, 1993).



How Computation Explains

The received view is that computational explanations work because the brain is a computer. The
brain supports depth perception, e.g., by literally computing retinal disparity. If you accept this
view, you will want to know what exactly it means — what it is to be a computer, and why so many
successful explanations latch onto this property of the brain. So your inquiry has the form of a
traditional metaphysical question. What is a computer? What features make something a computer?
What criteria must something satisfy to be a computer? Call this the Metaphysical Approach to
computational explanation.2

Note that the Metaphysical Approach doesn’t want a theory of computation like the one Turing
gave. That was a theory of computable functions, i.e. functions for which there exist effective
methods or algorithms, and the nature of those algorithms. These functions and algorithms are
formal, abstract things. But in the metaphysics of computation, we’re not concerned with formal
systems themselves. We want to know what it takes for a physical system to compute, i.e. to
implement one of those formal systems. There are algorithms for addition, and then there are the
cash registers that implement them. The question here is about the cash registers (and other physical
systems): what does it take for a hunk of metal and plastic to implement an addition algorithm?
What makes the cash register a computer, and what makes it the specific computer it is?

So, the Metaphysical Approach wants to identify the features of the brain that make it a computer,
and that therefore make computational explanations of it appropriate and successful. But a satisfying
metaphysics of computation is hard to come by. And when accounts of computation are unsatisfying,
or when someone’s metaphysics of computation suggests that any old rock (Putnam 1991), pail
of water (Lycan 1981), or brick wall (Searle 1992) computes, one is liable to hear some familiar
refrains. The brain isn’t a computer; that’s “just a metaphor.” Or debates about what computation is
and whether the brain satisfies that definition are “just semantics.” A recent paper by Richards and
Lillicrap (2022) exemplifies both frustrated responses: they argue that when we say the brain is a
computer we either mean it’s somehow like a laptop, which is just a metaphor (and not a very useful
one), or we mean it implements a universal Turing machine, which is literally true but uninformative,
reflecting only a stipulation about how we use the phrase “is a computer.”

But even if the brain-as-computer-metaphor is a metaphor, it isn’t just a metaphor — it’s one
of the most successful explanatory approaches in recent science. That needs explaining, and “it’s
just a metaphor” is hardle even a start. And even if they are semantic in nature, debates over what
computation is aren’t just semantics. As I’ve described, they are part of a broader project that
aims to show how and why computational explanation works. “That’s just how we use the word”
is barely a first step in that project. We can dismiss the semantic debates if we like — in fact, I
do. But unlike my fellow travelers, I take it that I’m not just setting aside those debates. I’m also
taking up a burden: to explain the success of computational explanation in some other way. This
paper is my attempt to discharge that burden. I think all the resources I need can be found in less
controversial domains than the metaphysics of computation: I will appeal only to the kind of things
computational notions allow us to do as we investigate and especially model the brain.

I’ll illustrate the metaphysics of computation by introducing the triviality problem in section 2.
In section 3 I’ll turn away from the metaphysics of computation, and instead treat computational

2For representative examples, see Chalmers (2011); Shagrir (2022); Piccinini (2015). Things are no different if one
thinks that computational explanations work because the brain computes, but is not a computer. The questions that arise
are perfectly analogous (What is it to be a computer compute?), and the distinction won’t be important for my purposes.

2



How Computation Explains

explanation as an example of the more general phenomenon of domain transfer: the use of tools,
strategies, or concepts in a novel domain, or for a purpose they weren’t originally developed for —
like when companies apply NASA’s failure-detection strategies to ad campaigns rather than rocket
components (Edsel 2016), or when teachers use techniques from game design to make their courses
more engaging (Miller 2014). I’ll give an account of computational explanation that appeals only to
the resources it introduces into cognitive science, and show that the metaphysics of computation,
whatever it may be, is irrelevant to this account: as far as computational explanation is concerned,
there might as well be no such thing as a computer. Call this the Pragmatic Approach. I’ll develop
the Pragmatic Approach in response to some objections in section 4, and conclude in section 5
with some final considerations that support it against the Metaphysical Approach. This will not
just set the stage for further development of the Pragmatic Approach, but also clarify the terms
of engagement with the Metaphysical Approach — the kind of argument for a metaphysics of
computation that could, in principle, be compelling.

2 Triviality

In the examples I began with, the brain is not merely modeled computationally, like the weather
often is (Ham et al. 2019). Weather models predict the future behavior of the weather, but often
not the internal processes that bring it about. Genuine computational explanations, at least as they
figure into cognitive science, do more than predict behavior. They are process models. They are
supposed to explain a subject’s capacities by telling us about the processes in the subject’s brain
that bring them about.3 And, according to the Metaphysical Approach, computational explanations
tell us that the brain brings those capacities about by computing, or by being a computer.

The burden is to say what exactly this means. What is it to be a computer? What criteria
do we apply to tell whether something is computing, or what it is computing? The main hurdle
for philosophers answering these questions is the triviality problem. Many seemingly plausible
answers to these questions end up counting too many systems as computers, and counting any given
system as computing too many things. And on the Metaphysical Approach, this spells disaster for
computational explanation. This section will describe the triviality problem in more detail, as a way
of illustrating the Metaphysical Approach and its differences from the Pragmatic Approach.

It is standard to introduce triviality using the simple mapping account of computation (Egan
2014), according to which a system implements a computation if its states mirror the stages of the
computation, i.e. if there is a mapping between the stages of the computation and the system’s
states. On this account your calculator computes addition because when you punch “5” and then
“7”, the display shows you “12,” and in doing so it has transitioned from states that map to the
numbers 5 and 7 to a state (the output) that maps to the number 12. To compute some more detailed
algorithm, a system must only transition between physical states in a way that preserves a mapping
to the algorithm’s more numerous stages. We can set aside some niceties of definition and say that
a system performs a computation just whenever its physical dynamics map to the dynamics of the
computation.

3This is not the only use to which computational models are put. They can be more than predictive models, but still
less than process models. E.g., they can specify the optimal functioning of a system (Sánchez n.d.), or explain why it is
the way it is (Chirimuuta 2014). The point is well taken, but these uses of computational explanation are not my target
here.

3



How Computation Explains

This is intuitive. Ask a computer scientist what makes something a computer and they’ll likely
give you the mapping account. But it has a problem: mappings are cheap. Virtually every system
maps to virtually every algorithm or computation, given a suitable ‘carving up’ of the system in
question. For instance, if we want a rock to compute the addition function, we need only decide
which instances of addition we’d like it to perform in a span of time. If we’d like it to have just
now computed the addition function for inputs 5 and 7, we take the past three seconds of the rock’s
existence and map its state at each second to one of the numbers: it transitioned from state-at-second-
1 (mapped to 5) and state-at-second-2 (mapped to 7) to state-at-second-3 (mapped to 12).4 There is
nothing special about the rock. This is true of every object that has been in at least three states over
the past three seconds. And it’s not limited to simple computations. If we want the rock to compute
the addition function using, say, the same algorithm your calculator does, we map its physical
states over a span of time to the stages of the algorithm your calculator follows.5 According to the
simple mapping account, this would show that the rock computes addition just as your calculator
does. This is treated more rigorously by Putnam (1991) and Chalmers (2011), but the upshot is
simple: mapping relations are too numerous to constitute a metaphysics of computation, because
they make it too easy for a physical system to be a computer. And that saps or renders mysterious
the explanatory force of computation in at least two ways. I’ll dwell on them for a moment, because
they nicely illustrate the contrast between the Metaphysical Approach and my own.

First, much debate in cognitive science is over which computations the brain performs.6 It is
because the brain performs cone-opponent computations and not simple cone summations that it
supports the kind of color vision it does (Jacobs 2014). If it performed both computations, the
connection between both models and their explananda would be severed: cone-opponent models
couldn’t make a prediction about color vision that cone-summation models didn’t also make, and
vice versa, because each would have to allow that the brain also performed the other model’s
computations. It is because the brain performs certain computations and not others that those
computations explain its capacities. Consider also the discovery of the brain’s computational
properties, which the mapping account renders far easier (just find a mapping — as easy to do with
the brain as with a rock) than the history of cognitive science would suggest.

And second, consider systems other than the brain. Even if we find sufficiently narrow criteria so
that the brain computes only a limited set of functions or algorithms, it is a problem if too many other
things also compute them. If it turns out that a rock implements an addition algorithm, then your
brain’s implementing that same algorithm could not explain its arithmetical performance, because
that algorithm can be implemented without supporting arithmetic. Performing a computation needn’t
be sufficient for addition — other background features may be involved. But if those background
features are computational (e.g., the computations the brain performs to use the outputs of the
arithmetic module), the same problem arises: the rock will have them too, on the simple mapping
view. And if the background features are not computational, then non-computational properties do

4Repeating states — e.g., if the rock’s next calculation includes a 5 as well — are handled by disjunctions, so it is
state-at-second-1-or-4 that gets mapped to the number 5.

5And of course if we carve up the rock’s states more finely, we can map it to complex computational structures like
whole Turing machines or neural networks.

6We might say the brain is performing every computation, but only some are explanatorily relevant. But this just
pushes the question back a step: we have to say what makes a computation explanatorily relevant, and that framing
doesn’t seem to offer any additional traction on the issue at hand.

4



How Computation Explains

all the work making the difference between a system capable of arithmetic and a system incapable
of it; computation is irrelevant, and again we’ve undermined its explanatory role.

The problem, then, is that rather than illuminating computational explanation, or providing it
with philosophical foundations, the mapping account appears to undermine computational expla-
nation and make its success mysterious. If we’re approaching computational explanation through
the metaphysics of computation, these problems have to be solved by an appropriately narrow
definition of computation: one that limits which systems implement which computations, in a way
that preserves the scientific role of the notion of computation. E.g., we might consider the causal
view (Chalmers 1996), which requires an algorithm to map to a certain kind of causal structure
in a system. Other attempts have grounded computation in not just the causal but the teleological
(Milkowski 2013; Piccinini 2015) or representational (Peacocke 1994; Shagrir 2018) properties of
computing systems.7

It hardly needs to be said that these views are all controversial. It is debatable whether the causal
view alone solves our problem. Scheutz (2012) and Shagrir (2001) argue that the causal view still
allows a problematic proliferation of computations, and Egan (2012) argues convincingly that even
if it is safe from triviality, Chalmers’ definition of computation is not suitable for the use cognitive
scientists put the notion to.8 And teleological properties — properties to do with something’s
function or purpose — incur severe explanatory debts themselves, so it’s not clear they put the
metaphysics of computation on better footing (cf. Dewhurst 2018).9 Of course there are similar, if
less severe challenges for most views of representation as well (e.g., see Egan 2019).10 I note these
issues not as an argument against the causal, representational, or teleological views of computation,
but only to make clear the problem that the Metaphysical Approach revolves around: defining
physical computation so as to include all the right systems and exclude all the wrong ones. This
is supposed, on the Metaphysical Approach, to be the first step in explaining how computational
explanation works.

What is distinctive about the Pragmatic Approach is that the triviality problem and all of the
resulting puzzles will be irrelevant to it. The main desideratum for the Pragmatic Approach is
the same as for the Metaphysical Approach: to explain how and why computational explanation
works. But the Pragmatic Approach does not achieve this via the metaphysics of computation
— instead, it looks to the goals computational explanation serves and how it serves them. If this
approach successfully explains computational explanation, it will have shown that the metaphysics
of computation is unnecessary: a careful look at how computational notions work, and what they do
for cognitive scientific explanations, is enough. This is what I’ll try to show in the next section.

7It is worth noting that these views are generally elaborations of the mapping account. They accept the necessity of
a mapping, but add other conditions that must be satisfied for a physical system to compute. This is also a plausible
reading of Egan’s own version of the mapping account, where the additional conditions have to do with features of our
explanatory context (Egan, in conversation). In that case my own view will be consistent with the mapping account, and
in fact the two will fit nicely together.

8The causal view also appears unable to account for the apparent environmental individuation of computational
processes (Shagrir 2001; Richmond n.d.a; Shea 2013).

9See Chalmers (2011, 334) and Sprevak (2019, 177), on the need for computation to be grounded in well-understood
notions.

10Doubly so for the most popular view of representation, which grounds it in teleological properties (e.g., Neander
2017). But representation can still be part of the story, and Richmond (n.d.b) shows how the Pragmatic Approach can
preserve much of what is most important about the representational view.

5



How Computation Explains

3 Domain transfer and a pragmatic approach to computational explanation

The goal of this section is to build an account of computational explanation in the space between two
extremes. First, the account shouldn’t pull us into debates about the metaphysics of computation, or
about whether the brain really is a computer. But, second, it should explain the ubiquity and success
of explanations that conceive of the brain in computational terms — it should say more than “it’s
just a metaphor.”

3.1 Making room for the pragmatic approach

First, let me reiterate something from the previous section. I distinguished between merely predictive
computational models and genuine computational explanations. One way of making this distinction
more precise is to say that computational explanations give process models of their target systems
— models of the processes that generate their behavior. Simon and Newell expressed this early on:

We do not say that we understand the magic [trick] because we can predict that
a rabbit will emerge from the hat when the magician reaches into it. We want to
know how it was done — how the rabbit got there. Programs like LT [the authors’
“Logic Theorist”] are explanations of human problem-solving behavior only to the
extent that the processes they use to discover solutions are the same as the human
processes.11 (Simon and Newell 1973, 147, my italics)

So there is the distinction between merely predictive models, like computational models of the
weather, and process models, which detail the processes a system undergoes to generate its outputs.
But process models are not necessarily models that attribute, to their target systems, membership
in a special category. Consider models of physical bodies expressed in calculus equations. These
models can be more than predictive — they can model the processes that bodies go through to
generate their dynamics or final positions. But though the model is couched in calculus, the system
it models need not be a calculizer, or meet some criteria for membership in that category. We don’t
think the model unveils any inherent calculus-properties of the system. Thinking that way about
computational process models in particular would be a sharp divergence from our treatment of most
scientific modeling. For an even starker example, consider models of fluid dynamics applied to
traffic jams (Sun et al. 2011) or epidemiological models of disinformation (Kucharski 2016). These
models don’t require or assume that traffic literally is a fluid, or that disinformation is, by some
criteria, a virus.

These are just examples of domain transfer: tools, concepts, or strategies that were developed for
one purpose or domain are being applied to another. Hospital teams have borrowed strategies from
Formula 1 pit crews and dance choreographers to hand off patients from surgery to the ICU (Sower
et al. 2008). They are not performing a ballet, and their patients are not assumed to meet the criteria
for the category FERRARI or MCLAREN. Nor do we need a metaphysics of race-cars to understand
how and why the hospitals’ strategies work. All we need is to understand how the tools from one
domain work, and why they work in another. And, at the risk of belaboring the point, these questions

11Marr (1982, 23) expresses a similar sentiment. Also see Fodor (1968), Kriegeskorte and Douglas (2018), Sun
(2008), and Nancy Dice in Bailer-Jones (2002) on computational models as process models.

6



How Computation Explains

need not be answered by saying that the elements of the two domains share a status as viruses,
fluids, or race-cars.12 So it is premature to say, as Chalmers does, that “[w]e cannot justify the
foundational role of computation [in cognitive science] without first answering the question: What
are the conditions under which a physical system implements a given computation?” (Chalmers
2011, 325). We’ll know whether we need to answer that question only once we understand what
we’re doing when we give computational explanations, and how this approach serves cognitive
science. If the approach works like a typical domain transfer, the project Chalmers describes is
unnecessary. In section 3.2 I’ll argue that computational explanation does work like a typical domain
transfer.

3.2 How computational explanation serves cognitive science

Cognitive science wants to explain the cognitive capacities of complex systems like biological
organisms: the capacity to detect and distinguish between stimuli, to decide on a course of action, to
navigate spatial and social environments, and so on.13 These are capacities to produce appropriate
behavior in a range of environments and given a range of inputs. And cognitive science, since the
rejection of behaviorism, aims to explain these capacities by appeal to the internal causal structure
of the system in question. It is this structure that mediates the system’s behavior; it is this structure
that determines its solutions to the problems it faces; and it is this structure in terms of which we
understand that behavior and those solutions.14

These goals call for a description, at an appropriate level of detail, of the brain’s causal organi-
zation and processes, along with conceptual resources to explain behavior under that description.
This means we need, at least:

(A) A language or formalism with which to describe the causal structures in the brain that
support cognitive capacities.

(B) Conceptual resources with which to form questions, hypotheses, and explanations regarding
those causal structures and the way they support cognitive capacities.

(C) Heuristics and background knowledge that make it efficient to form and work with these
hypotheses and explanations.

The need for expressive languages and formalisms, as in (A), is widely discussed. See Lazebnik
(2004), e.g., on the importance of a good formalism in biology for making predictions, framing

12They must share something for the domain transfer to be successful — something about the two domains must
explain why the same tools can be used in both cases. The point is that it would be silly to think this something was their
status as race-cars, rather than that pit crews working on a car do so with certain goals and under certain constraints,
and that the goals and constraints for the hospital team are comparable in some respect.

13The following also holds for less traditionally “cognitive” capacities, like emotion regulation.
14A caveat: we do not want the most detailed or accurate model of that causal structure. We want a model that

coarse-grains, idealizes, and is occasionally outright wrong, wherever those features are theoretically fruitful. We model
a calculator with an addition-function, not an addition-except-where-the-calculator-errs function. So in the case of
computational explanation, like causal modeling in general, accuracy with respect to causal structure is just one goal,
tempered by others. I’ll set this aside for now, but see Richmond (n.d.b) for some detail about how representational
thinking supports this idealization and coarse-graining.

7



How Computation Explains

hypotheses, revealing important features of the target system and making them salient, and providing
unity to the field. But it is already implicit in this that not just any language, even a highly descriptive
one, will do, and (B) is required to ensure that our formalisms are appropriate to our subject matter
— together with our conceptual resources, they should facilitate theoretically useful descriptions of
the causal structures we seek (Lazebnik 2004). Cognitive science does not just need a language to
describe the brain, but also to state its explananda and to frame relevant questions and hypotheses
about those explananda. A formalism borrowed from particle physics might do a good job of
describing the structure of the brain in many respects, but it would likely be difficult or impossible,
within that formalism, to state explananda having to do with (say) an organism’s capacity to
memorize strings of words, or to frame hypotheses about the aspects of the brain’s causal structure
that allowed it to (say) reason deductively. A formalism that failed in these respects would need
to be either abandoned or supplemented with conceptual resources that allowed it to do this work.
These two desiderata, (A) and (B), will play the largest role in my discussion. (C), although it
is an important part of any research program, is more nebulous. Among other things, (C) points
out that the descriptions, predictions, explanations, and models that (A) and (B) allow us to give
should be cognitively tractable for scientists, facilitate further investigation, have well-understood
or clear properties, and the like. Together, what (A)–(C) would give us is a set of tools with which
we can describe the causal structures in the brain that bring about its behavior and support its
cognitive capacities (from A), understand those structures in relation to our explananda and form
relevant questions and hypotheses about them (from B), and work efficiently on those questions
and hypotheses (from C).15 (In addition to these desiderata, it is also crucial that our formalisms
and conceptual resources make it possible to test our theories. But this is essentially the problem of
giving them empirical content, and I’ll treat that in section 4.)

My claim is that computational notions provide a set of formalisms and conceptual resources
satisfying (A)–(C), and as such they contribute to the goals of cognitive science by providing
resources to explain how the internal structure of a system brings about its cognitive capacities.
Since they do this well, they facilitate good explanations. And since those explanations hinge on
fruitful and relevant descriptions of causal structures — not on the subsumption of a target system
under the definition of computer or computes — then we need not worry about that definition and
whether the brain satisfies it, any more than we worry about the definitions of calculizer, virus,
fluid, or race-car in the earlier examples. The task, then, is to see how (A)–(C) are satisfied by
computational notions and formalisms.

I’ll start by focusing on formalisms. We need a formalism in which to capture the kinds of causal
structures cognitive scientists seek — causal structures that explain cognitive capacities. There is no
unique formalism appropriate to this task, and, for that matter, it is unclear how formalisms should
be individuated. In particular, what counts as a computational formalism is not straightforward, and
seems to depend on how tools from computer science are exported into new domains (Smith 1999).
The formalism of Turing machines is used in computational explanations, as are the formalisms
of finite state automata and combinatorial state automata, the formalisms involved in describing
perceptrons and artificial neural networks, on through more generic forms of description like wiring
diagrams (e.g. Sejnowski et al. 1988), arithmetical operations (e.g. Devalois and Devalois 1993),

15I’m not claiming this is all that a formalism and its associated conceptual resources should do for a field of science.
But (A)–(C) alone will serve to display much of the way computational explanations function and the reasons they
succeed.

8



How Computation Explains

calculus equations (e.g. Shadmehr and Wise 2005), and statistical functions (e.g., when a neuron is
described as computing a Laplacian of Gaussian function, Egan 1999, 192).16 So I won’t rigorously
define “computational formalism.” Instead I will lean on the way the notion of computation is used
in cognitive science, and I’ll allow that whatever, for cognitive scientists, counts as a computational
description, is a computational description. The task is to see what those descriptions have in
common that makes them suited to achieving the goals I’ve outlined.

What the formalisms above have mostly in common is that they invoke the devices built by
computer engineers (e.g., wiring diagrams), the programs designed by computer programmers (e.g.,
neural networks), or the mathematical structures investigated in computer science (e.g., Turing
machines and finite state automata). In using these formalisms, cognitive science describes the
brain in terms borrowed from the science, engineering, or programming of computers, broadly
construed. I’ll condense this by saying it uses formalisms borrowed from the computing disciplines.
These formalisms — call them the computational formalisms — are computational explanation’s
answer to (A). The conceptual resources that allow computational explanation to meet (B) and (C)
are the ones attendant on the relevant formalisms, or that are otherwise drawn from the computing
disciplines.17

The case to be made is that these formalisms and conceptual resources serve (A)–(C) well: that
describing and conceptualizing the brain using them serves cognitive science’s broader goals. So I
will turn now to some of the ways that computational formalisms and their attendant conceptual
resources serve those goals. One important feature of computational formalisms is their facility
with functional abstraction. Functional abstraction highlights an aspect of a system component,
usually described mathematically, that captures its contribution to the system’s behavior at a higher
level of abstraction. A paradigmatic example is naming high electron flow in a wire “1”, and low
electron flow “0” (Hillis 1998, 18-19). Any variation in the electron flow within either “1”-signals
or “0”-signals disappears, along with the gradient between “1”- and “0”-signals, and all the wire’s
other features. In fact, the wire itself disappears. All that remains is the distinction we’ve selected as
significant for our purposes — a distinction between 1 and 0. Because we’ve chosen a description
of the wire under which it behaves predictably (we know the circumstances that will put the wire in
a 1-state and the circumstances that will put it in a 0-state), we can exploit that distinction to build
more complex functions like logic gates.18

There is no need to belabor the utility of functional abstraction for engineering, but it is important
that it offers benefits in the reverse-engineering of the brain as well, particularly in a computational
context. The saltatory action potential, e.g., lends itself well to a characterization in terms of 1s
and 0s; this was an explicit motivation for von Neumann’s (1958) and McCulloch and Pitts’ (1943)
treatment of the brain in computational terms.

The story is now, of course, much more complicated. We don’t treat neurons as logic gates
but as (something at least as complex as) non-linear functions of weighted sums of inputs. But

16And to the extent that artificial intelligence informs cognitive science, its developments will introduce new and
unpredictable computational formalisms (Kriegeskorte and Douglas 2018). The concept of computation, as it figures
into cognitive science, is ‘open-textured’ (Waismann 1968) in at least this respect.

17I’ll return, in the next section, to borderline cases that may not be captured by my definition, like the arithmetical
operations mentioned above.

18The examples here are simplistic for the sake of explanation. Functional abstraction is most commonly discussed
in more demanding contexts, e.g. abstraction methods for managing complex databases.

9



How Computation Explains

it is still a major goal of cognitive science to “decompose cognition into functional components,”
and to discover how the brain’s activity at an “elementary” or neural level can be characterized so
as to compose those functions (Kriegeskorte and Douglas 2018). And to do this we need a way
of abstracting from the complex causal profile of neurons (or ensembles of them, or brain areas)
to well-understood mathematical functions. To be clear, functional abstraction is an unavoidable
feature of the mathematical description of any physical system. The question is which mathematical
formalisms to use. And what better formalisms than the ones for which we understand the impli-
cations most relevant to us? We know a great deal about the processes defined by computational
formalisms: how fast they are, how many steps they take (if they are step-wise processes), how they
scale to different inputs, how efficient they can be at what cost to accuracy, what they can do with
and without recurrent steps, and so on (e.g. Kriegeskorte and Douglas 2018, Box 3), and these are
many of the same questions we have about the brain. So computational formalisms give us a toolkit
for functional abstraction that is particularly well-suited to the questions we have about the brain.

Computational formalisms and the conceptual frameworks they bring with them also lend
themselves to descriptions in terms of algorithms and hierarchies. Algorithms are functions strung
together into (formally computable) sequences. They provide a clear and intuitive way of connecting
a system’s inputs to its outputs by describing the steps taken by the system in transforming inputs
to outputs. That kind of description is precisely what cognitive scientists seek, as I suggested
above: a description of the internal causal sequences that bring about cognitive capacities, the
latter understood in terms of responses (or outputs) to environmental conditions and stimuli (or
inputs). E.g., color-processing in early vision is modeled as an algorithm first summing responses
from different types of cone, then weighting those sums, then adding and subtracting the weighted
values, and eventually plotting the results in a three-dimensional space (Devalois and Devalois 1993;
Mancuso et al. 2010). That is a description, in terms of an algorithm, of the way the brain turns a
retinal input into a behavioral (or phenomenal) output.

Hierarchies are processes that operate at more than one level of abstraction. One kind of
hierarchical description is just an important kind of algorithmic description. Neural network
models show us how a process can derive more and more abstract or high-level features of an
input, e.g. an image, through a series of functions that finds its low-level features like lines and
shapes, then intermediate-level features, and eventually high-level ones like object types (e.g. dog
or cat). This was also an explicit goal of earlier, classical computational modeling (Marr 2010).
In computational neuroscience, this kind of hierarchical algorithmic description is essential to
understanding how the brain makes categorizations, and especially how it proceeds from sensory
stimulation to sophisticated high-level categorizations and behavior based on them. Computational
frameworks drawn from neural networks (and, earlier on, other sources in the computing disciplines,
Marr 2010) have helped illuminate the relevant brain processes by providing useful and increasingly
accurate models of them (Richards et al. 2019).

Another kind of hierarchical description is compositional, rather than algorithmic. A com-
positional hierarchy is not a series of functions deriving higher- and higher-level features, but a
hierarchy where a small set of simple functions compose more and more complex ones. E.g.,
the processes involved in different capacities may rely, at a lower level of their hierarchies, on
a small “set of standard (canonical) neural computations: combined and repeated across brain
regions and modalities to apply similar operations to different problems” (Carandini 2012) (see also

10



How Computation Explains

Carandini and Heeger 2012). An understanding of this sort of hierarchy does a number of things
for cognitive science. Understanding the simplest neural functions guides anatomical investigation
into basic units and circuits and makes salient certain aspects of their causal structure (Carandini
and Heeger 2012). Without the simplicity and structure given by hierarchical thinking, it would
be prohibitively difficult to connect cognitive neuroscience to basic physiology and anatomy, or
generally to lower levels of brain organization. An understanding of how low-level brain structures
compose high-level ones also benefits modeling, since it reveals relevant and practical levels of
description, particularly when the goal is (as is common) to model how high-level behavior results
from low-level organization (Yamins and DiCarlo 2016). For all these purposes, the benefits of
computational formalisms are clear: their hierarchical properties are relatively well-understood;
many computational formalisms are developed precisely for their ability to compose complex
functions from less complex ones, especially a small set of less complex ones (particularly relevant
when we consider canonical computations as above); and they are developed to create and make
intelligible complex relationships at different levels of detail and abstraction.

The importance of hierarchical and algorithmic explanation, and the way computational for-
malisms accommodate them, is the last point I’ll raise in support of computational formalisms
being a good solution to (A). Moving on to (B), the assimilation of one system under the conceptual
scheme developed for another system is a widespread and natural part of science (Dunbar 2002;
Nersessian 2002), and conceptual schemes from the computing disciplines have been particularly
useful ones in which to assimilate the brain. In fact, the discussion so far has already shown that
computational formalisms and the conceptual frameworks attendant on them are well-suited to
frame explananda to do with cognitive capacities, and to pose questions and hypotheses about the
processes that bring them about. E.g., I discussed the way neural networks provide frameworks for
thinking about how the brain’s causal structure supports the derivation of object categories from
lower-level features of a stimulus. But it is worth noting a few more cases. E.g., considerations of
algorithmic complexity — an important concept in computer science — drive discussions about the
appropriateness of Bayesian models of the brain (Kwisthout and van Rooij 2020). Considerations of
computational efficiency — important in computer science and computer engineering — drove early
debates in cognitive neuroscience (McClelland et al. 1986), and considerations of “computational
cost” drive current discussions of navigation and route planning (Daniel et al. 2015). It is because
we think of the brain in computational terms that we investigate its canonical operations, as above.
It is because we understand the properties of recurrent connections in neural networks that we look
for recurrent connections among neurons (Richards et al. 2019). The search for the brain’s learning
rules and functional architecture is spurred and supported by thinking of it in terms explicitly
borrowed from the study of neural networks (Richards et al. 2019). It’s clear that assimilation into
the conceptual schemes of the computing disciplines provides many concrete benefits for generating
hypotheses, and for understanding our causal models of the brain in relation to their explananda.
If this seems to belabor the obvious, recall that the take-away is not that it is useful to think of
the brain as a computer — that is obvious. The take-away is that we can make sense of this fact
without claiming that the brain is a computer, and without entering into vexed questions about
what exactly that means. All we need is to understand how computational formalisms are used
to describe causal structures, and why they are so useful for this task, given cognitive science’s
particular goals, constraints, and explananda. That’s what I’ve described above, with no need for

11



How Computation Explains

metaphysical commitments; in their place I have appealed only to scientifically common-place
considerations about explanatory goals and the tools with which we pursue them.

To finish with a familiar point about (C), computational explanation makes it possible, and
relatively easy, to build models. Compare Kriegeskorte and Douglas (2018): “only synthesis in a
computer simulation can reveal what the interaction of the proposed component mechanisms [of
some theory] actually entails and whether it can account for the cognitive function in question.” It is
a common refrain in the history of cognitive science that computational models make hypotheses
clear and specific, and they do this partly by making them buildable using our current technology
(e.g. Churchland and Grush 1999; Pylyshyn 1984; Samuels 2019; Sejnowski et al. 1988). To grasp
the significance of this one need only imagine a theory of the visual cortex as a convolutional neural
network, but imagine it proposed 50 years ago. The benefits this theory has because of current
computing technology (to do with prediction, ease of understanding, the availability of proofs of
concept, our familiarity with the model and an intuitive understanding of what it says about its
target system, etc.) are the benefits I’m claiming computational models have in general because of
their buildability, and because of the familiarity we therefore have with them.

That’s all I’ll say about (A)–(C). To summarize, computational explanations, by drawing
formalisms and conceptual resources from the computing disciplines, support cognitive science by
providing: explanatorily relevant functional abstractions of the brain’s causal structure; descriptions
of that causal structure in the fruitful terms of algorithms and hierarchies; tight connections between
our descriptions of the brain’s causal structure and cognitive science’s questions about that causal
structure; relevant and fruitful ways of framing answers or hypotheses concerning those questions;
and, more generally, explanations of how the brain supports cognition that are natural, powerful,
and sensitive to our specific interests in cognition and our existing knowledge of the brain. And
it does all of this with relative efficiency by drawing on well-understood/understandable, well-
established, and deeply-ingrained conceptual frameworks. There is more to be said about the details
here, but it is a benefit of the discussion so far that it relies only on uncontroversial features of
computational formalisms and concepts. It is not that on a certain tendentious way of thinking
about computation we can do without a metaphysics of computation. To make progress on our
questions about computational explanation, and to do so without entering into the metaphysics of
computation, we need only appeal to the features of computation that we are all aware of.

The goal was to sketch a view of how computational explanation works and why it is so
successful in cognitive science. The view, more succinctly, is this: computational explanation works
by using computational formalisms and the conceptual resources attendant on them to construct
process models that capture the causal structures in the brain that bring about its cognitive capacities.
If this is what computational explanation does, it requires no assumption that the brain is a computer,
much less a theory about what it is to be a computer. This account reveals, at a general level,
how computational explanation works, and also why it is so successful: it serves the purposes
of cognitive science exceptionally well. The account also shows us what makes computational
explanation distinctive as a mode of explanation — not the subsumption of the brain under a special
definition or category, but the powerful suite of tools, resources, and concepts it draws on to serve
the particular purposes of cognitive science.

12



How Computation Explains

4 Objections

The bulk of the Pragmatic Approach is on the table. In this section I’ll consider some objections,
focusing on ones that will let me sharpen the approach a little further. To bring out the most pressing
worry, let’s start by returning to a version of the triviality problem.

4.1 Empirical content: another triviality problem?

The triviality problem can’t arise in its original guise: it attacked the definition of ‘computer,’ or the
criteria for membership in the category COMPUTER, which are not involved in my view. But it might
be resuscitated along the following lines: I’ve described computational explanation as a certain
kind of modeling practice, but I haven’t said how to tell what a given computational explanation
concretely says about its target system. That is, I haven’t yet placed any constraints on the empirical
content of computational explanations. And if there are no constraints on the empirical content of a
model, then why can’t we interpret it as saying whatever we like? Why can’t I give a computational
process model of a rock as performing addition, and say that the model is correct as long as the rock
runs through time-slices that correspond to the stages of the model’s addition algorithm? This was a
long way to come, just to end up back at the original problem.

But the problem is only apparent. Computational explanations say something about the causal
structure of their target systems, and two constraints ensure that what they say about this structure
is non-arbitrary. First, this version of the triviality problem is a special case of a more general
problem: in virtue of what does any model say what it says about the system it says it about? I don’t
propose to answer this question here, but on the view I’ve defended, the question of the content of
a computational explanation is just an instance of this more general question of model reference
(Frigg and Nguyen 2018; Frigg and Hartmann 2018). And we can be sure that it is not arbitrary
what scientific models in general (and therefore computational explanations in particular) say about
their target systems. Whatever your account of scientific models, you have to explain their empirical
content somehow, and there is no reason that computational explanation in particular would be
excluded by whatever account you adopt. Note also that the problem of model reference is not
generally solved by criteria for a target system’s membership in a particular category. The revision
of the triviality problem I’m considering would apply equally well to models of the solar system
constructed in calculus equations, and the problem of why those models say what they say about
their target systems is not solved by criteria for being a calculizer. Likewise for models of traffic
from fluid dynamics, models of disinformation from virology, and so on. So the problem of model
reference is no argument against the Pragmatic Approach. If you think models can have non-trivial
empirical content, there is no special reason to worry about computational explanations.19

The first constraint, then, is the general theory of model reference — whatever we say about that
will apply to and constrain the content of computational models. The second constraint comes from
existing scientific knowledge. The goal of a computational explanation is to describe the causal
structure that brings about a system’s capacities. Not just any empirical content is appropriate for

19Others have made similar points. Matthews and Dresner (2017) argue that triviality arguments about computation
have the same structure as triviality arguments about any attribution of numerical properties to physical systems, and
so cannot hold. The advantage of the Pragmatic Approach is that it says something positive about computational
explanations and their success, and shows what exactly is wrong with the triviality problem: it challenges computational
explanation only under the Metaphysical Approach, which is — I’ve suggested — mistaken.

13



How Computation Explains

this task. If a neuroscientist held that her model of memory was confirmed by connectome data
because that data revealed that the brain had just some mapping to her model, she would be laughed
out of the lab meeting. But many more specific mappings would also be dismissed. What counts as
an appropriate mapping of model to brain (appropriate empirical content) depends on background
neuroscientific knowledge about (e.g.) which aspects of brain activity are involved in the tasks she’s
modeling, which components of the brain are causally efficacious in the right ways, and so on. To
explain a memory task, she might propose that synaptic weights correspond to certain terms in
her computational model. This would be appropriate if synaptic weights were causally implicated
in memory in the required way, but it would be inappropriate if Gallistel and King (2009) were
right that synaptic weights cannot bear significant responsibility for memory. Empirical constraints
on model interpretation are familiar to cognitive science — e.g., see discussions of “mappable”
models (Yamins and DiCarlo 2016) or “explanatory mechanisms” in model building (Blohm et al.
2020). For more concrete examples, consider debates over whether neural spike rates or timings are
causally efficacious in the brain, and which should be the target of our models (Brette 2015). Or see
debates about modeling population activity vs modeling individual neurons and their connections
(Barack and Krakauer 2021). The empirical content of computational models is partly constrained
by the diverse empirical considerations that constrain the empirical content of all models, as we
should expect.

4.2 Applying computational explanations

There seem to be circumstances where computational explanations are appropriate, and ones where
they aren’t. It might be objected that because I’ve set aside the category COMPUTER, I can’t
say which systems should receive computational explanations (computers) and which shouldn’t
(non-computers).

So, why is it not always acceptable to use computational explanations, regardless of one’s target
system or explananda? In one sense, it is! We should have no qualms with someone to whom
computational formalisms and conceptual resources derived from the computing disciplines are
helpful for explaining (say) planetary systems or the weather, because accommodating this does
not require a revisionary metaphysics according to which planetary systems and weather patterns
are computers. We should note, however, that computational explanations are in fact not helpful in
most cases, at least to us in our current context. As I’ve described computational explanation, it
introduces a particular set of resources that are useful for a particular set of goals, in a particular
scientific context, given particular constraints imposed by our target systems and the nature of our
inquiry. There is no reason to expect this set of tools to be useful for just any purpose, in just
any context, with just any constraints. We should perhaps expect computational explanation to
be particularly successful for systems that have undergone a design process (including design by
selection) to create a structure that efficiently generates appropriate outputs from inputs, because
it is from disciplines creating and studying that kind of system that computational explanation
draws most of its resources. But I won’t pursue this here. The point is that although there is no
reason to bar it a priori, many systems are unlikely to receive a successful or fruitful computational
explanation.

14



How Computation Explains

4.3 Having abandoned computation, what makes an explanation computational?

As I’ve characterized it, only a special class of explanations count as computational ones. Where
formalisms and conceptual resources drawn from the computing disciplines are used to meet
explanatory needs like (A)–(C), you have a computational explanation. Otherwise you don’t.
But we might wonder whether this definition is sufficient. Consider, e.g., computer models of
evolutionary processes that assume a sort of optimality to natural selection, and posit algorithms to
achieve it. Say we have such a model, for which (B) and (C) are met to a large degree by conceptual
resources from computing disciplines, but not to the same degree as in a typical computational
model of (say) visual processing. In that case we should be happy to say the explanation is closer to
a computational explanation, or more of a computational explanation, or is a more paradigmatic
computational explanation. There is no reason to expect computational explanation to be a binary
category. Since it is defined by the use of tools from the computing disciplines, those tools and
those disciplines being fuzzily defined themselves, we should expect a fuzzy spectrum rather than
strict criteria for counting as a computational explanation. This does not make it any harder to
understand computational explanations or the source of their explanatory significance. That source
was not their belonging to some strictly-defined category, it was their use of certain resources to
meet particular needs. Some of those resources can be present — and therefore relevant to the
explanations’ force — while others are not, or are only to limited degrees.

I can now address an issue I postponed earlier. Some of the computational explanations I’ve
mentioned, e.g. the ones to do with color vision, don’t use formalisms drawn from computing
disciplines. They use arithmetic. A certain set of retinal ganglion cells are described as computing
S – (L + M), where the letters refer to the responses of different cone types. These explanations
do, however, conceptualize the retina as following algorithms, one of the computational conceptual
resources I pointed out above. And they may draw on knowledge from the computing disciplines,
e.g., to do with the efficiency of different algorithms, the use of population-coding, data compression,
and information-processing more generally (e.g., see Jameson et al. 2020, passim). To the extent that
this terminology and its associated conceptual resources contribute to the our efforts to build process
models of color vision, we have a case of computational explanation. There are more and less
computational ways of describing color vision, and some may only weakly count as computational
explanation. But there is no reason to demand that they count as full-blooded computational
explanations when we have a good explanation of their function and success that doesn’t require it.

I’ll pause here to note a caveat. Though I raised these issues as questions of the definition of
“computational explanation” I did not set out to explain what computational explanation is. I set
out to explain how and why computational explanation works. To see how something works, you
usually don’t need to know what it is to be that thing. If you doubt this, try asking your mechanic
for a rigorous definition of “engine,” or a metaphysics of that category. So the above is intended to
clarify the scope of my account and how it handles less paradigmatic cases — not to sharply define
the category COMPUTATIONAL EXPLANATION. By way of illustration, consider Cisek’s (1999)
argument that cognition is non-computational because it consists largely of control processes that
are not well-captured by classical computational thinking. On the Pragmatic Approach this does not
raise a question of whether cognition is really computational or not, nor, to the present point, the a
question of whether the resources of control theory are really a part of computational explanation
or not. Instead, it raises the question of whether certain useful resources are neglected in cognitive

15



How Computation Explains

science, what work they could be put to, and how to introduce them to do that work. There is just
no need to define computational explanation so as to include or exclude explanations drawing on
control theory. There is, instead, a need to investigate control theory and its potential usefulness in
cognitive science, and to introduce it where it will be helpful. That project is ongoing (Richards
and Lillicrap 2022), but has nothing to do with the metaphysics of computation or the definition of
“computational explanation.”

4.4 Metaphysical appendices

One final concern before I conclude. Consider a possible rejoinder to the Pragmatic Approach. You
might try holding on to a metaphysics of computation while retaining the benefits of the Pragmatic
Approach by giving the above account, and simply adding an appendix that says: whatever systems
receive legitimate computational explanations according to the Pragmatic Approach are thereby
computers. This lets us classify the brain as a computer without requiring our metaphysics to do
any heavy lifting. Note that this approach — the Metaphysical Appendix Approach — accepts that
the metaphysics of computation are irrelevant to understanding computational explanation. The
proponent of this view just has some other reason to want a metaphysics of computation. (Maybe
it’s the kind of concept that just can’t fail to correspond to a property, even if the use of the concept
relies not at all on that property.) So they have accepted my main conclusion: if you want to
understand how and why computational explanation works, you have no need for a metaphysics
of computation. But then it’s hard to think of a context in which the metaphysical appendix will
play an important role, except perhaps if we’re listing and describing all the properties our world
contains — but recall that this list is, by hypothesis, irrelevant to science and the philosophy of
science. Not that I have any problem with this variety of stamp collecting, but it has no role in
answering the kind of questions I’ve taken up here.

And note: harmless though they may seem, appendices are liable to burst, and an approach that
insists on a metaphysical appendix leaves itself open to complications. The resulting metaphysics
of computation would be “stancey” and observer-relative. It is likely to be graded and fuzzy as well,
given the discussion in section 4.3. These are not good objections, because on the Metaphysical
Appendix Approach there is no reason to require a metaphysics of computation to be objective,
observer-independent, etc. Perhaps a metaphysics that is relied upon in science should be all of
those things, but one that exists only as an appendix for some other purpose cannot be held to these
standards unless those other purposes demand it. But these objections, misguided as they are, bring
with them a dialectical context — the context of the question, “what is it to be a computer,” where
they can be confused with good objections, or even grounds for rejection, and lead to the kind of
debate we see between, e.g., Richards and Lillicrap (2022) and Brette (2022).

5 Conclusion

Let me summarize. Computational explanation in cognitive science works by using formalisms
drawn from the computing disciplines, and the conceptual resources attendant on them, to construct
process models that capture the causal structures in the brain that bring about cognitive capacities.
It is successful as a general strategy because it serves the needs of cognitive science, and it is
successful in specific instances, like any modeling practice or strategy, when it accurately describes

16



How Computation Explains

the causal structures that bring about the behavior or capacity under investigation, and in a way
that meets the various standards we have for scientific models and explanations. On the view
I’ve described, there are limits on which computational explanations appropriately apply to which
systems, preserving the explanatory significance of computation. Questions remain about the kinds
of formalism computational thinking introduces, or should introduce, into cognitive science. But
these questions should be answered along the lines of the Pragmatic Approach: not through the
metaphysics of computation, but by a careful look at the resources that the explanations of interest
involve and the goals they are intended to serve.

So far I’ve merely built up the Pragmatic Approach, letting the sense it makes of computational
explanation stand as evidence for it. And I’m content to have simply gotten this approach on the table,
ready for further discussion and refinement. It makes a sharp contrast to conventional approaches
(e.g. Piccinini 2015; Shagrir 2022; Richards and Lillicrap 2022; Brette 2022) — a contrast that
illuminates the assumptions of those approaches and (I’ve argued) their mistaken focus. But in the
introduction I promised you a further argument against the Metaphysical Approach. That argument
is this: if there is a working account that does without the metaphysics of computation, then to justify
an account that accepts such a metaphysics, you would need a reason to think that metaphysics is
necessary. The necessity of this metaphysics is rarely argued for, but the Metaphysical Approach
posits and focuses on an entity — a kind, property, or category: COMPUTATION. An argument for
this approach must specify some desiderata that the Pragmatic Approach doesn’t achieve, but that
the Metaphysical Approach does. Or it must give some other reason we should expect this property
to exist, and to be relevant to cognitive science. Otherwise the Metaphysical Approach posits and
spends time investigating the property for no apparent gain — it is explanatorily redundant and
contributes nothing to our understanding of scientific explanation.

There is another way of coming at this point. To take the Metaphysical Approach is not only to
posit a certain property, computation; it is to understand cognitive science and scientists as committed
to the existence of that property, and to a specific understanding of that property. But these are
commitments that cognitive scientists don’t intend to, or appear to, make themselves.20 Take just
two examples of how mainstream cognitive scientists see their practice. Yamins and DiCarlo (2016)
understand their preferred type of computational explanation as a way of “formalizing knowledge
about the brain’s anatomical and functional connectivity” so as to explain its cognitive capacities —
not a metaphysical claim at all, and quite in line with the view I’ve defended here. And Richards
et al. (2019) take deep learning and the computational explanations associated with it to involve
the application of an explanatory/investigative “framework” involving specific types of models
and hypotheses, principles about the causal structure of the brain, and strategies that the history of
neural networks suggests for understanding complex systems. This is well-captured by the view
I’ve defended, but to hold on to the Metaphysical Approach we would have to impose on this area of

20And cognitive scientists who do seem to make that commitment are quick to fall back to a pragmatic approach when
issues like the triviality problem arise. A complication is that talk of what computation is may provide a useful framework
for thinking about one’s approach to computational models (thanks to Richard Lange and Rosa Cao for making this
point in conversation). Thinking about what computation is could be just a way of thinking about computational
models. I could hardly object to this if it really was just a methodological trick, rather than a substantive metaphysical
commitment. But I take it that this framing almost always does involve metaphysical commitments. Regardless,
if you can avoid those commitments, and see questions about the metaphysics of computation as a metaphysically
non-committal shortcut to questions about computational explanation, we should have nothing to disagree about.

17



How Computation Explains

cognitive science commitments that it does not appear to make and that offer no obvious advantages
over an approach that sticks more closely to scientific practice itself.

This is just one count on which the Pragmatic Approach is preferable to the Metaphysical
Approach, but it reflects a broader range of considerations of significance to philosophers of
cognitive science. To build the bridges between cognitive science and philosophy that most
philosophers desire, it will be important to avoid, as far as possible, foisting the assumptions and
definitions of one field onto the other. The Pragmatic Approach avoids at least one such foisting
that the Metaphysical Approach does not. And, in fact, my version of the Pragmatic Approach does
so by focusing on the context, practice, and function of computational explanation for cognitive
scientists — another necessity for the bridge-building that philosophers have their hearts set on.

To conclude, computation provides a powerful, and crucial, lens on the brain. Philosophers
of cognitive science, and many cognitive scientists themselves, have been duly impressed by the
computational lens, but have failed to see it as a lens, instead understanding computation as a
property of the brain itself. This is a natural enough mistake — a good lens is not perceived; it is
perceived through. But if we forget we’re looking through a lens, we will vastly misunderstand the
things we see through it. For that matter, thinkers of a certain sort are liable to leave the lens on,
turn to a chunk of rock, and shudder to discover that it has all the brain’s computational properties
too.21 When, instead, we understand computation as a lens, we begin to see what it does to its target,
what it occludes and makes salient, what it adds, what it blurs, what it brings into focus, and how, in
turn, it makes the brain intelligible as the organ of the mind.

References

Bailer-Jones, D. M. (2002), ‘Scientists’ thoughts on scientific models’, Perspectives on Science
10(3), 275–301.

Barack, D. and Krakauer, J. W. (2021), ‘Two Views on the Cognitive Brain’, Nature Reviews
Neuroscience 22, 359–371.

Blohm, G., Kording, K. P. and Schrater, P. R. (2020), ‘A how-to-model guide for neuroscience’,
eNeuro 7(1), 1–12.

Brette, R. (2015), ‘Philosophy of the spike: Rate-based vs. Spike-based theories of the brain’,
Frontiers in Systems Neuroscience 9(November), 1–14.

Brette, R. (2022), ‘Brains as Computers: Metaphor, Analogy, Theory or Fact?’, Frontiers in Ecology
and Evolution 10(April), 1–5.

Cao, R. (2019), Computational Explanations and Neural Coding, in M. Sprevak and M. Columbo,
eds, ‘The Routledge Handbook of the Computational Mind’, Routledge, pp. 283–296.

Carandini, M. (2012), ‘From circuits to behavior: a bridge too far?’, Nature Neuroscience 15(4), 507–
509.
URL: http://dx.doi.org/10.1038/nn.3043

Carandini, M. and Heeger, D. J. (2012), ‘Normalization as a canonical neural computation’, Nature
Reviews Neuroscience 13(1), 51–62.

21As in Chalmers (1996); Milkowski (2013); Piccinini (2015); Brette (2022), for just a few examples.

18



How Computation Explains

Chalmers, D. J. (1996), ‘Does a Rock Implement Every Finite-State Automaton?’, Synthese
108, 309–333.

Chalmers, D. J. (2011), ‘A Computational Foundation for the Study of Cognition’, Journal of
Cognitive Science 12, 323–357.

Chirimuuta, M. (2014), ‘Minimal models and canonical neural computations: the distinctness of
computational explanation in neuroscience’, Synthese 191(2), 127–153.

Chirimuuta, M. (2019), Charting the Heraclitean Brain: Perspectivism and Simplification in Models
of the Motor Cortex, in M. Massimi and C. D. McCoy, eds, ‘Charting the Heraclitean Brain’,
Routledge, pp. 141–159.

Churchland, P. S. and Grush, R. (1999), Computation and the Brain, in R. Wilson and F. C. Keil,
eds, ‘The MIT Encyclopedia of the Cognitive Sciences’, MIT Press, pp. 155–157.

Cisek, P. (1999), ‘Beyond the Computer Metaphor: Behaviour as Interaction’, Journal of conscious-
ness studies 6(11), 125–142.

Daniel, R., Schuck, N. W. and Niv, Y. (2015), ‘How to divide and conquer the world, one step
at a time’, Proceedings of the National Academy of Sciences of the United States of America
112(10), 2929–2930.

Danks, D. (2019), Probabilistic Models, in M. Sprevak and M. Colombo, eds, ‘The Routledge
Handbook of the Computational Mind’, Routledge, pp. 149–158.

Devalois, R. and Devalois, K. (1993), ‘A Multi-Stage Color Model’, Vision Research 33(8), 1053–
1065.

Dewhurst, J. (2018), ‘Individuation without Representation’, The British Journal for the Philosophy
of Science 69, 103–116.

Dunbar, K. N. (2002), Understanding the role of cognition in science: the Science as Category
framework, in P. Carruthers, S. Stich and M. Siegal, eds, ‘The Cognitive Basis of Science’,
Cambridge University Press, pp. 154–171.

Edsel, A. (2016), Breaking Failure, FT Press, New Jersey.

Egan, F. (1999), ‘In Defence of Narrow Mindedness’, Mind & Language 14(2), 177–194.

Egan, F. (2012), ‘Metaphysics and Computational Cognitive Science: Let’s Not Let the Tail Wag
the Dog’, Journal of Cognitive Science 13(1), 39–49.

Egan, F. (2014), ‘How to think about mental content’, Philosophical Studies 170, 115–135.

Egan, F. (2019), The nature and function of content in computational models, in M. Sprevak and
M. Colombo, eds, ‘The Routledge Handbook of the Computational Mind’, Routledge, pp. 247–
258.

Fodor, J. A. (1968), Psychological Explanation: An Introduction to the Philosophy of Psychology,
Random House.

Fodor, J. A. (1975), The Language of Thought, Harvard University Press.

Frigg, R. and Hartmann, S. (2018), ‘Models in Science’.

Frigg, R. and Nguyen, J. (2018), ‘Scientific Representation’.

Gallistel, C. R. and King, A. P. (2009), Memory and the Computational Brain, Wiley-Blackwell.

19



How Computation Explains

Grothe, B., Pecka, M. and McAlpine, D. (2010), ‘Mechanisms of sound localization in mammals’,
Physiological Reviews 90(3), 983–1012.

Ham, Y.-G., Kim, J.-H. and Luo, J.-J. (2019), ‘Deep learning for multi-year ENSO forecasts’,
Nature 573(7775), 568–572.
URL: http://dx.doi.org/10.1038/s41586-019-1559-7

Hardcastle, V. G. (1996), How to Build a Theory in Cognitive Science, SUNY Press.

Hillis, D. W. (1998), The Pattern on the Stone: The Simple Ideas that Make Computers Work, Basic
Books, New York.

Jacobs, G. H. (2014), ‘The discovery of spectral opponency in visual systems and its impact on
understanding the neurobiology of color vision’, Journal of the History of the Neurosciences
23(3), 287–314.

Jameson, K. A., Satalich, T. A., Joe, K. C., Bochko, V. A., Atilano, S. R. and Kenney, M. C. (2020),
Human Color Vision and Tetrachromacy, Cambridge University Press.

Kriegeskorte, N. and Douglas, P. K. (2018), ‘Cognitive computational neuroscience’, Nature
Neuroscience 21(9), 1148–1160.
URL: http://dx.doi.org/10.1038/s41593-018-0210-5

Kucharski, A. (2016), ‘Post-truth: Study epidemiology of fake news’, Nature 540(7634), 525.

Kwisthout, J. and van Rooij, I. (2020), ‘Computational Resource Demands of a Predictive Bayesian
Brain’, Computational Brain and Behavior 3(2), 174–188.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B. and Gershman, S. J. (2017), ‘Building machines that
learn and think like people’, Behavioral and Brain Sciences 40.

Lazebnik, Y. (2004), ‘Can a biologist fix a radio? Or, what I learned while studying apoptosis’,
Biochemistry (Moscow) 69(12), 1403–1406.

Lycan, W. G. (1981), ‘Form, Function, and Feel’, The Journal of Philosophy 78(1), 24–50.

Mancuso, K., Neitz, M., Hauswirth, W. W., Li, Q., Connor, T. B., Kuchenbecker, J. A., Mauck,
M. C. and Neitz, J. (2010), ‘Long-Term Results of Gene Therapy for Red-Green Color Blindness
in Monkeys’, Invest. Ophthalmol. Vis. Sci. 51(13), 6292.

Marr, D. (1982), Vision, W.H. Freeman and Company.

Marr, D. (2010), Vision, MIT Press.

Matthews, R. J. and Dresner, E. (2017), ‘Measurement and Computational Skepticism’, Nous
51(4), 832–854.

McClelland, J. L., Rumelhart, D. E. and Hinton, G. E. (1986), The Appeal of Parallel Distributed
Processing, in D. E. Rumelhart, J. L. McClelland and P. R. G. The, eds, ‘Parallel Distributed
Processing’, MIT Press, pp. 3–44.

McCulloch, W. S. and Pitts, W. (1943), ‘A logical calculus of the ideas immanent in nervous
activity’, The Bulletin of Mathematical Biophysics 5(4), 115–133.

Milkowski, M. (2013), Explaining the Computational Mind, MIT Press.

Miller, M. (2014), Minds Online: Teaching Effectively with Technology, Harvard University Press,
Cambridge MA.

20



How Computation Explains

Neander, K. (2017), A Mark of the Mental, MIT Press.

Nersessian, N. J. (2002), The cognitive basis of model-based reasoning in science, in P. Carruthers,
S. Stich and M. Siegal, eds, ‘The Cognitive Basis of Science’, Cambridge University Press,
pp. 133–153.

Neumann, J. v. (1958), The Computer and the Brain, Yale University Press.

Nityananda, V. and Read, J. C. (2017), ‘Stereopsis in animals: Evolution, function and mechanisms’,
Journal of Experimental Biology 220(14), 2502–2512.

Peacocke, C. (1994), ‘Content, Computation and Externalism’, Mind & Language 9(3), 303–335.

Piccinini, G. (2015), Physical Computation: A Mechanistic Account, Oxford University Press.

Putnam, H. (1991), Representation and Reality, MIT Press.

Pylyshyn, Z. W. (1984), Computation and Cognition, MIT Press.

Pylyshyn, Z. W. (1993), Computing in Cognitive Science, in M. I. Posner, ed., ‘Foundations of
Cognitive Science’, MIT Press, pp. 49–92.

Richards, B. A. and Lillicrap, T. P. (2022), ‘The Brain-Computer Metaphor Debate Is Useless: A
Matter of Semantics’, Frontiers in Computer Science 4(February), 1–8.

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., Clopath,
C., Costa, R. P., de Berker, A., Ganguli, S., Gillon, C. J., Hafner, D., Kepecs, A., Kriegeskorte,
N., Latham, P., Lindsay, G. W., Miller, K. D., Naud, R., Pack, C. C., Poirazi, P., Roelfsema,
P., Sacramento, J., Saxe, A., Scellier, B., Schapiro, A. C., Senn, W., Wayne, G., Yamins, D.,
Zenke, F., Zylberberg, J., Therien, D. and Kording, K. P. (2019), ‘A deep learning framework for
neuroscience’, Nature Neuroscience 22(11), 1761–1770.

Richmond, A. (n.d.a), ‘Computational Externalism’, Forthcoming .

Richmond, A. (n.d.b), ‘What is a Theory of Neural Representation For?’, Forthcoming .

Samuels, R. (2019), Classical Computational Models, in M. Sprevak and M. Colombo, eds, ‘The
Routledge Handbook of the Computational Mind’, Routledge, pp. 103–119.

Sánchez, V. G. (n.d.), ‘What Bayesian Angels have to do with Human Cognition’, Forthcoming .

Scheutz, M. (2012), ‘What it is not to Implement a Computation: A Critical Analysis of Chalmers’
Notion of Implementation’, Journal of Cognitive Science 13(1), 75–106.

Searle, J. R. (1992), The Rediscovery of Mind, MIT Press.

Sejnowski, T. J., Koch, C. and Churchland, P. S. (1988), ‘Computational Neuroscience’, Science
241(4871), 1299–1306.

Shadmehr, R. and Wise, S. (2005), The Computational Neurobiology of Reaching and Pointing,
MIT Press.

Shagrir, O. (2001), ‘Content, Computation and Externalism’, Mind 110(438), 369–400.

Shagrir, O. (2018), ‘In defense of the semantic view of computation’, Synthese (January).
URL: https://doi.org/10.1007/s11229-018-01921-z

Shagrir, O. (2022), The Nature of Physical Computation, Oxford University Press, New York.

Shea, N. (2013), ‘Naturalising Representational Content’, Philosophy Com 8(5), 496–509.

21



How Computation Explains

Simon, H. A. and Newell, A. (1973), ‘Human Problem Solving: The State of the Theory in 1970’,
American Psychologist 26(2), 145–159.

Smith, B. C. (1999), Computation, in R. A. Wilson and F. C. Keil, eds, ‘The MIT Encyclopedia of
the Cognitive Sciences’, MIT Press, pp. 153–155.

Sower, V. E., Duffy, J. A. and Kohers, G. (2008), ‘Ferrari’s Formula One Handovers and Handovers
From Surgery to Intensive Care’, The American Society for Quality (August), 1–5.
URL: www.asq.org

Sprevak, M. (2019), Triviality arguments about computational implementation, in ‘The Routledge
Handbook of the Computational Mind’, Routledge, pp. 175–191.

Sun, D., Lv, J. and Waller, S. T. (2011), ‘In-depth analysis of traffic congestion using computational
fluid dynamics (CFD) modeling method’, Journal of Modern Transportation 19(1), 58–67.

Sun, R. (2008), Introduction to Computational Cognitive Modeling, in R. Sun, ed., ‘The Cambridge
Handbook of Computational Psychology’, Cambridge University Press, pp. 3–20.

Thoreson, W. B. and Dacey, D. M. (2019), ‘Diverse Cell Types, Circuits, and Mechanisms For
Color Vision in The Vertebrate Retina’, Physiol Rev 99, 1527–1573.

Waismann, F. (1968), Verifiability, in R. Harré, ed., ‘How I see Philosophy’, Palgrave Macmillan,
chapter 2.

Yamins, D. L. and DiCarlo, J. J. (2016), ‘Using goal-driven deep learning models to understand
sensory cortex’, Nature Neuroscience 19(3), 356–365.

22


	Introduction
	Triviality
	Domain transfer and a pragmatic approach to computational explanation
	Making room for the pragmatic approach
	How computational explanation serves cognitive science

	Objections
	Empirical content: another triviality problem?
	Applying computational explanations
	Having abandoned computation, what makes an explanation computational?
	Metaphysical appendices

	Conclusion

