
There Is No Such Thing As

Miscomputation

Abstract

This paper will argue that there is no such thing as miscomputation,
contrary to the received view in philosophy of computation. There are
just hardware problems on the one hand and design errors on the other,
neither of which qualify as a distinct kind of computational errors. The
main upshot of this argument is that philosophical accounts of physical
computation should not be assessed on whether they can accommodate
miscomputation, but rather on whether they can make sense of the range
of different phenomenona that are commonly (and misleadingly) described
as miscomputations.

Introduction

There has been a recent renaissance in philosophical work on physical compu-
tation (see e.g. Piccinini 2007, 2015; Milkowski 2013; Fresco 2014), but rather
less has been written on the topic of miscomputation, i.e. the circumstance un-
der which some physical system still counts as performing a computation, but
somehow performs it in the wrong way. This is in spite of the fact that one of
the leading accounts of physical computation, Gualtiero Piccinini’s mechanistic
account, lists miscomputation as one of six key desiderata that any account of
physical computation must accommodate (2015: 13-14). Aside from Piccinini’s
own work, there have been articles published on (or relating to) miscomputa-
tion by Fresco & Primiero (2013), Dewhurst (2014), Floridi, Fresco, & Primiero
(2015), Petricek (2017), Tucker (2018), Primiero, Solheim, & Spring (2019), and
Colombo (forthcoming). In general each of these authors assume that there is
a distinctive category of computational errors, but here I will argue that this
is not the case, and that there is really no such thing as miscomputation as
such. Section 1 will review existing accounts of physical computation and mis-
computation, focusing primarily on mechanistic accounts. Section 2 will present
the argument(s) that there is no such thing as miscomputation, but rather just
various kinds of hardware malfunctions and design errors. Finally, section 3
will discuss the ramifications of this argument for existing accounts of physical
computation, and consider some future work that could be done on the topic
formerly known as miscomputation.

1



1 Physical computation and miscomputation

I am concerned here with physical computation, i.e. the question of what it
means to say that a physical system performs or implements an abstract com-
putation, and hence what it would mean to say that the same system somehow
fails to implement the right computation, or miscomputes (note that a failure
of this kind is distinct from simply failing to implement any computation at
all). Before we can discuss miscomputation specifically I must say a little about
physical computation in general, although a full treatment is beyond the scope
of this paper. At a first pass we can say that a physical system implements an
abstract computation if there is a mapping between the physical structure of the
system and the formal structure of the computation (Putnam 1960, cf. Godfrey-
Smith 2009). This is a notoriously weak definition, according to which almost
any physical system might implement almost any computation (Putnam 1988;
see Godfrey-Smith 2009 and Sprevak 2018 for discussions of this issue), and so
it is typically strengthened with additional constraints on the kinds of physical
system that qualify as computational. Examples include causal constraints (e.g.
Chalmers 1994), semantic constraints (e.g. Sprevak 2010), simplicity constraints
(e.g. Millhouse 2019), and pragmatic or perspectival constraints (e.g. Schweizer
2019), but I will focus here on a subclass of causal constraints offered by the
various mechanistic accounts of physical computation, and specifically Gualtiero
Piccinini’s version of this account (2007, 2015; see also Milkowski 2013, Fresco
2014). My argument against the very possibility of miscomputation will mostly
generalise to other accounts of physical computation, but I will note where it
does not, and consider some of these other possibilities in the final section.

According to the mechanistic account, a physical computer is a kind of mech-
anism whose function is to perform computations, understood as systematic
transformations between medium independent digits (2015: chapter 7).1 Dig-
its are (concrete, physically instantiated) components whose function is to be
recognised and systematically transformed (into other digits) by processors, and
are medium independent insofar as they are individuated only by those physical
properties that are relevant to this function. Processors are (concrete, physi-
cally instantiated) components whose function is to identify and systematically
transform digits according to a rule specified by the abstract computation that
the system is meant to implement (i.e. the program). Further computational
component-types include input and output components that transform exter-
nal stimuli into digits and vice versa, memory components that store strings
of digits, and so on. A computing mechanism will typically also include non-
computational components such as a power source, a cooling fan, and so on.
Crucially, the core components (digits and processors) must possess a suffi-
ciently stable causal structure to qualify as computational, thus constraining
the range of physical systems that will implement a computation (although
for further discussion of some concerns about this account, see e.g. Dewhurst

1Note that this is specifically an account of digital computation. Piccinini does also offer
related accounts of analog, generic, and sui generis neural computation, but for the sake of
simplicity I will focus here just on the digital case.

2



2018; Coelho Mollo 2018, 2019; Fresco & Milkowski 2019). Examples of possible
physical implementations of digits and processors includes voltage levels carried
on metallic wires that are systematically transformed by transistors that can
amplify or interrupt a voltage level (as in contemporary electronic computers);
similar devices but with vacuum tubes instead of transistors (as in earlier twen-
tieth century computers); toy marbles that can be physically directed around
a ‘circuit’; mechanical gears with different states, connected by rotating rods
(as in Babbage’s 19th century difference engine); and so on almost indefinitely.
What matters in each case is the functional relationship between the digit and
processor types, rather than their specific physical composition (at least be-
yond those aspects of their composition that are necessary for preserving the
functional relationship).

Piccinini gives a list of six desiderata that he thinks any account of physical
computation ought to be able to fulfil, including that it “should explain how
it’s possible for a physical system to miscompute [...] because miscomputation,
or more informally, making computational mistakes, plays an important role
in computer science and its applications” (2015: 14). I will return to the role
played by miscomputation in computer science in section 3, focusing for now
on Piccinini’s own account of miscomputation. He defines miscomputation as
cases where a system “fails to follow every step of the procedure it’s supposed
to follow all the way until producing the correct output” (ibid.), or more for-
mally, “system M miscomputes just in case M is computing function f on input
i, f(i) = o1, M outputs o2, and o2 6= o1” (2015: 13), i.e. any case where a
computing system outputs something other than that which was specified by
the function it implements. His account is able to explain miscomputation due
to its functional nature: if what it means for a physical system to perform
a computation is to be a mechanism whose components have the function of
performing that computation, then those components could also malfunction,
resulting in a miscomputation (ibid : 122). An example of this kind of miscom-
putation is a hardware malfunction where e.g. a (physical) logic gate that is
supposed to perform AND instead performs NAND, meaning that the digits are
processed incorrectly relative to the rule specified by the (abstract) computa-
tion that is supposed to be implemented. Piccinini also allows for other kinds
of miscomputation, including those resulting from incorrect design, implemen-
tation, or usage (ibid : 149-50). Here he is presenting a taxonomy that he first
introduced in Piccinini (2007), which was then discussed by Fresco & Prim-
iero (2013), and applied again to the mechanistic account by Dewhurst (2014).
Floridi, Fresco, & Primiero (2015) further develop the taxonomy of miscompu-
tation presented by Fresco & Primiero (2013) to include software malfunctions,
Petricek (2017) specifically discusses programming errors, and Primiero, Sol-
heim, & Spring (2019) provide an additional analysis of malware classification.
Tucker (2018) develops Piccinini’s functional approach to miscomputation by
distinguishing between a system’s proper function and its actual function, and
Colombo (forthcoming) applies the notion of miscomputation to computational
psychiatry. I will return to each of these issues as they arise naturally in the
rest of the paper.

3



2 There is no such thing as miscomputation

In the previous section I introduced the taxonomy of miscomputations developed
by Piccinini (2007, 2015), Fresco & Primiero (2013), and Dewhurst (2014). Let
us now examine that taxonomy in more detail. Piccinini (2015: 149-50) lists five
notions of miscomputation, each relating to a different perspective from which
we might evaluate the performance of a computational system:

1. Miscomputations relative to the designer’s intentions, i.e. when a com-
puter is designed badly in the first place, such that it computes something
other than what the designer intended.

2. Miscomputations relative to the designer’s blueprint, i.e. when a correctly
specified design is built incorrectly, such that it computes something other
than the original designer intended and the blueprint specified.

3. Miscomputations relative to what was actually built, i.e. when a cor-
rectly designed and built computer undergoes a physical malfunction that
prevents it from computing correctly.

4. Miscomputations due to incorrect programming, i.e. when a computer is
designed, built, and (physically) functions correctly, but is programmed
badly such that it computes something other than what the programmer
intended.

5. Miscomputations due to incorrect usage, i.e. when a computer is designed,
built, and programmed correctly, and functions adequately, but is used
incorrectly by the end user, such that it does not compute what they
intended it to.

Let us briefly consider an illustrative example of each kind of putative mis-
computation. A type-1 miscomputation could occur when the design specifica-
tion for a new computer indicates that some component ought to perform AND,
but the actual wiring diagram specifies a component that would perform NAND.
If this computer were built (correctly) according to this specification, it would
‘miscompute’ relative to the original designers intention. A type-2 miscomputa-
tion could occur if the original specification correctly described a component for
perfoming AND, but due to errors in the manufacturing process the component
that was actually built instead performed NAND. A type-3 miscomputation
could occur if the component was both correctly specified and correctly built,
but then overheated during operation, causing the wiring to melt in such a way
that it now performs NAND instead of AND (as opposed to melting in such a
way that it simply no longer computes, which would not constitute a miscompu-
tation). A type-4 miscomputation could occur if the whole system was designed
and built correctly, and didn’t overheat, but then was programmed with badly
written code that does not do what the programmer intended (due to a missing
bracket, say). Finally, a type-5 miscomputation could occur if everything func-
tioned correctly right up until the end user who, misunderstanding the interface

4



of the device, entered what they thought was a multiplication and instead got
the result for division – from the perspective of this user, the device might ap-
pear to be miscomputing. Each of these types qualifies as a performance failure
from a certain perspective, but it is not clear that we should count all (or any)
of them as genuine cases of miscomputation.

Fresco & Primiero draw a further useful distinction between “errors of func-
tioning” and “errors of design” (2013: start of section 2), inspired by a similar
distinction originally made by Turing (1950: 449). Errors of functioning, or
what we might call ‘operational malfunctions’, occur when the system as it was
actually built fails to function correctly, i.e. a physical component malfunctions
in some way that affects the computational procedure. Piccinini’s type-3 mis-
computation is a clear case of operational malfunction, but all of the others
seem to be of the latter type, which we might call ‘design errors’. If a system
is designed incorrectly (type-1), such that it cannot perform the function that
it was intended for, then this is not a problem with the operation of the system
itself, but rather a mistake on behalf of its designer. Similarly, if the initial
design is good, but a token system is manufactured incorrectly (type-2), then
this is not a case of the system itself malfunctioning, but rather a mistake on
behalf of its proximal designer (the agent or system that manufactured it). A
programming error (type-4) is also not a case of operational malfunction, as the
physical system itself performs perfectly fine, it was just given bad instructions
(at least relative to the programmer’s intentions – for the system itself there is
no sense in which the instructions can be good or bad). Finally, errors on behalf
of the user (type-5) are clearly not operational malfunctions, as the system it-
self (both hardware and software) performs perfectly fine. In fact, it is not even
clear that incorrect usage should be considered as a kind of design error either,
but for the purpose of this analysis I will stretch the definition of ‘designer’ to
include the end user of a computational system (who indeed might sometimes
also be a programmer).

Piccinini suggests that we should consider all five of these notions to be
types of miscomputation, even if only one of them (type-3) is the result of a
malfunction of the computing mechanism itself (2015: 149-50). I will now argue
that in fact none of them should be considered to be types of miscomputation,
at least in a strict sense of miscomputation. To see a little more clearly what
I have in mind by this strict sense of miscomputation, and why it might be
beneficial to adopt it, I must first say a little more about malfunctions in gen-
eral. A (functional) mechanism is usually understood to malfunction only if it
fails to perform its function for ‘internal’ reasons, i.e. due to problems with
its own constitutive structure, rather than with external circumstances that are
‘outside of its control’, so to speak (see e.g. Millikan 2013: 40; cf. Garson 2019:
127). This is meant to rule out cases where a mechanism such as the heart is
working perfectly fine in terms of its intrinsic structure, but fails to perform its
function of pumping blood around the body due to being in the wrong environ-
ment (outside of the body, perhaps), or due to being in an environment that
is itself malfunctioning (due to a ruptured or blocked artery). In neither case
should we say that the heart itself is malfunctioning, even if we might want to

5



say that the broader mechanism within which it is (meant to be) embedded,
i.e. the cardiovascular system, is indeed malfunctioning. Analogously, a com-
putational malfunction, or miscomputation, can only take place due to an error
internal to the computing mechanism itself, ruling out external errors due to
e.g. its designer, programmer, or end user. But as we shall see in section 2.2,
the function of computing is defined in such a way that changing the intrinsic
structure of a computing mechanism will only ever change what it is meant to
compute (provided that it is capable of computing at all), rather than causing
it to miscompute. Therefore there is no such thing as miscomputation in this
strict sense.

The definition of miscomputation introduced above is (self-admittedly) rather
strict indeed, and before moving on I will say a little more to justify why we
should prefer it to some looser definition, such as one according to which a sys-
tem’s failure to compute what a designer or programmer intends it to qualifies
as a miscomputation. My main concern here has to do with laying the blame
in the right place, which can also play a heuristic role in identifying where best
to intervene when it comes to fixing a malfunctioning system (cf. Garson 2019:
114). If we simply refer to all of types 1-5 as miscomputations, then, without
further disambiguation, it will remain unclear whether any given miscomputa-
tion ought to be resolved by intervening mechanically into the system itself,
providing the user with better instructions, or rewriting the program that the
system is meant to implement. Even restricting the term ‘miscomputation’ to
type-3 errors is somewhat misleading, as in these cases the error is not really
with the system qua computation, but rather with the physical hardware behav-
ing in an unexpected or unintended way. To talk of miscomputations, without
further specifying what is meant, is therefore relatively uninformative, and the
requirement to give some further specification in each case removes the value of
a general category of ‘miscomputation’, as these five types of error do not really
have much in common. So we would do better to replace the term ‘miscompu-
tation’ with several more specific categories of computational error – or so I will
now argue.

2.1 Design errors are not miscomputations

Fresco & Primiero “argue that a computational system can only make an error
of functioning (i.e. an operational malfunction)” (2013: section 1, emphasis in
original), which would presumably mean that design errors are not miscompu-
tations. However, they also have a somewhat broader conception of operational
malfunctions than that which I introduced above, including certain kinds of soft-
ware errors (Piccinini’s type-4 miscomputations). So why shouldn’t we consider
design errors, including programming errors (cf. Petricek 2017) and software
malfunctions, to be kinds of miscomputations?

Dewhurst (2014) previously offered an argument to this effect, focusing on
the mechanistic account of computation introduced above. He argued that we
should not assess the behaviour of a computing mechanism relative to the de-
signer’s intentions, but rather relative to their actual design, as implemented in

6



the token system that we are analysing. This is because a computing mecha-
nism is simply a system that transforms strings of digits according to the rules
that it is given (i.e., that which is specified by its structure), without any un-
derstanding of either those rules or the semantic content of the digits. So a
(physically) functioning computing mechanism provided with a program to run
cannot fail to correctly implement that program, even if the end result is not
what the programmer intended. For this reason I do not think that we should
consider programming errors of any kind to be miscomputations, at least in the
strict sense of computation captured by the mechanistic account.

Other kinds of design error, like user errors or errors in the physical manu-
facture of the system, are also not miscomputations in the strict sense defined
above. Mistakes made by the end user of a computing mechanism, e.g. by
issuing meaningless or misunderstood (by the user) commands, are clearly not
cases of the system itself miscomputing. This might also include documenta-
tion errors, such that the user does not know how to use the system properly
(this might not strictly be the users ‘fault’, but the end result is the same – a
bad command is issued to a perfectly well-functioning system). Manufacturing
errors might qualify as malfunctions of some kind, but these cannot be com-
putational malfunctions (of the end product): either the token system that is
the result of the faulty manufacturing process does not function as a computing
mechanism at all, or else it does function as one, but not in the way that the
designer intended. The latter case is similar to programming errors, insofar as
the system will continue to compute something, and do so ‘correctly’ relative
to its actual physical structure, even if this is different to how the designer
originally envisioned it. Such an outcome might depend on malfunctions in the
manufacturing process, but once this process is complete, the system thereby
created cannot be blamed for these malfunctions. If it functions as a computing
mechanism at all it simply computes according to the rules that it was given,
i.e. those that are implicit in its actual physical structure.2

Software malfunctions, as discussed by Floridi, Fresco, & Primiero (2015),
are also typically a kind of design error. Some apparent software malfunctions
might be due to physical limitations, such as a logic gate functioning incorrectly
or a memory component failing in some way, but it is debatable whether these
really qualify as software malfunctions, rather than physical malfunctions that
affect the software (ibid : 18 of preprint). In any case, I will deal with the ques-
tion of physical (‘operational’) malfunctions in the next section. Other software
malfunctions might be due to badly written code (missing brackets, mistyped
variables, infinite loops), but as Floridi, Fresco, & Primiero themselves admit,
malfunctions of this kind “are simply design errors for which only the designer
can be deemed responsible” (ibid). A computing mechanism can only do the
best with what it is given; a badly programmed system might do something
that we don’t want it to, but it would not be at fault for doing so, and hence
there would be no miscomputation.

2Note that the identity of these rules might itself be ambiguous (cf. Sprevak 2010, Dewhurst
2018), but this is a distinct kind of issue that is not directly related to miscomputation.

7



Design errors of all kinds, including mistakes in the original specification of
the computing mechanism, faulty manufacturing, bad or misguided program-
ming, and erroneous usage, do not qualify as miscomputations, as the mistake
in each case is attributable to something other than the computing mechanism
itself (i.e. the machine’s designer, manufacturer, programmer, or end user).

2.2 Operational malfunctions are not miscomputations

Towards the end of their analysis of miscomputation, Fresco & Primiero sug-
gest, somewhat allusively, that what they call operational malfunctions might
not be strictly computational either: “the cause of the miscomputation is often
the physical substrate that is contingent to the computational process itself”
(2013: final paragraph, emphasis added). If the physical substrate is contingent
to the computations being performed, then it doesn’t seem like operational mal-
functions are an essentially computational phenomenon. Turing seemed to hold
a similar view, writing that (abstract) computational machines (i.e. idealised
Turing machines) are “By definition [...] incapable of errors of functioning”
(1950: 449). Now, admittedly Turing was discussing abstract computations at
this point, and we are concerned here with concrete (physical) computations. So
should we say that a physical malfunction that causes a computing mechanism
to produce the wrong result is (strictly speaking) a miscomputation?

The answer to this second question should also be “no”, but to see why we
need to think a little more about what (physical) computations are, and what it
might mean for them to fail to operate correctly. According to the mechanistic
account (introduced in section 1), a physical computation is just the transfor-
mation of some medium-independent vehicles (‘digits’) according to a rule. The
rule itself is specified by the physical structure of the system (in the simplest
case, by the structure of a single processing component such as an AND-gate),
and, crucially, none of the components of the system themselves ‘understand’
the rule. It is by this simple conjuring trick that physical computation is able to
produce seemingly semantic transformations from merely syntactic (or causal)
processes – or as Haugeland memorably put it, “If you take care of the syntax,
then the semantics will take care of itself” (1985: 106). An important conse-
quence of this, though, is that a computational component does not “follow
a rule” in the sense of an agent choosing to obey it, but rather just responds
causally to the physical structure of the system of which it is a part. With
this in mind, let us return to the question of miscomputation and operational
malfunction.

There is one class of operational malfunction that we can dismiss immedi-
ately, those that render the system incapable of performing any computations
at all. If the system overheats and catches fire, or if the power source stops
working, then the system has not miscomputed, it is simply no longer comput-
ing. This much should hopefully be uncontroversial. The more difficult cases
are those where the system still computes, i.e. we provide it with an input and
it provides us with an output, but, due to a physical (operational) malfunction,
it does not provide us with the ‘correct’ output (that which we would expect to

8



receive, were we able to verify the abstract computation by some other means).
A simple case like this might be one where the physical sensitivity of a voltage
gate has changed, such that where it once computed AND it now computes OR
(and even a simple case like this could of course have serious consequences for
the more complex operations within which it is embedded).

This might seem prima facie like a clear case of miscomputation due to op-
erational malfunction: the component was meant to compute AND, but (due
to a change in its physical structure) it instead computed OR. One might say
that its function was to compute AND, and its failure to do so qualifies as a
malfunction. For the sake of argument I will accept this, but I do not think
that the fact a computational component is malfunctioning necessitates that it
is also miscomputing. Instead, the malfunction has transformed the computa-
tional identity of the component, by adjusting its physical structure such that it
now performs a distinct computation. Recall that the function of a computing
mechanism is to transform digits according to a rule, and that all it means for a
computational component to follow a rule is for it to respond (according to its
own physical structure) to the physical structure of the system of which it is a
part. Our malfunctioning AND-gate has done precisely this – it receives a pair
of voltage levels as inputs and, depending on whether the sum of those voltages
is above a certain threshold, it produces another voltage level as output. So it
is still following the rule embodied in its physical structure, and thus computing
correctly, it’s just that this structure has changed. That change itself might
very well qualify as a malfunction, such that we can say that the AND-gate
is a malfunctioning component, but I don’t think that we should say that it
is miscomputing. This is because the component, qua computation, has done
nothing wrong; it is just doing what its (new) physical structure instructs it to
(cf. Rapaport 2019: sec. 2).

Here one might be tempted to say that we should give priority to the rule
that the component was originally designed to follow, such that it miscom-
putes if it does not follow that rule, rather than the new rule embodied by its
(post-malfunction) physical structure. This would be to adopt something like
a type-token distinction for computational components, and say that a token
component miscomputes if it fails to follow the rule dictated by its type (which
is fixed when it is first designed or built, rather than by its current physical
state). This is a common move in the literature on malfunctions, but it will
have some strange consequences if extended to miscomputation. Most notably,
the computational identity of a component will come to depend on (spatially
and temporally) distal facts about its manufacture and design, rather than prox-
imal facts about its physical structure, i.e. what it can actually compute. While
(relative to its design) the AND-gate discussed above might be malfunctioning,
it also seems to be computing OR just fine, and could be used for this new
purpose by someone entirely ignorant about its origins or (original) purpose.
To say that it is miscomputing, then, would be to obfuscate its current capacity
to compute OR, and to confuse the intended function of a component with the
computational function that it actually now performs.

There are some obvious objections and replies to this argument that I will

9



turn to in the next section, but for now I just want to summarise where we have
got to. We saw that there are two main classes of (putative) miscomputations,
those due to design errors of some kind, and those due to operational malfunc-
tions. The former do not qualify as miscomputations because the fault lies out-
side of the system, whether that be with the system’s designer, its manufacturer,
its programmer, or its end user. The latter do not qualify as miscomputations
because they either prevent the system from performing any computations at
all (in the case of a total breakdown), or else they change the rule that the
system is meant to follow (embodied in its physical structure) such that while
it computes something different from what it was originally designed to, it does
not miscompute. Therefore there is no such thing as miscomputation.

3 The topic formerly known as miscomputation

In this final section I will attempt to address a number of outstanding issues,
possible objections, and further applications of the arguments developed in the
previous two sections. Even if there is no such thing as miscomputation, we must
still say something about cases where people (philosophers, cognitive scientists,
and computer scientists) talk as though there was, in order to make sense of
both our existing concept(s) of computation and actual scientific practice. It
is worth emphasising, though, that the account presented here is not intended
to be revisionary: rather than attempting to stipulate how researchers should
talk about computation, I think this account can actually help us to explicate
how researchers currently do talk about computation. So I am not advocating
a general ban on the term ‘miscomputation’, but instead suggesting that we
should exercise some caution in how it is understood and what it implies. (Or
to put it another way, while there is strictly no such a thing as miscomputation,
it might still make sense to use the term in an informal or colloquial sense,
provided that it does not lead to any misunderstanding.)

3.1 Two objections

In the previous section I argued that an operational malfunction that changes
the physical structure of a processing component, such that it now carries out a
different computation, should not be classified as a miscomputation. Given that
I deny that anything could count as a miscomputation, it seems like an obvious
response would be to push back here, and argue that we should count at least
this kind of operational malfunction as a miscomputation. After all, these are
malfunctions that straightforwardly cause a component to compute something
other than what it was designed for, so why not just call them miscomputations?
I agree that this is an intuitive thought, and that it might be a relatively harm-
less way of using the term miscomputation, but I still think that it implies a
misunderstanding about the nature of physical computation: to compute is just
to follow a rule, but the rule that a computing mechanism follows is not that
which was intended by its designer (to which it has no access), but rather that

10



which is embodied in its physical structure. Ideally that structure will conform
to its designer’s intentions, but when it does not (whether due to poor design or
later malfunction) the system itself cannot be blamed for following the ‘wrong’
rule. What has gone wrong here is not anything computational, but rather the
initial specification of the rule itself (as embodied in the system’s structure). So
to call an operational malfunction a miscomputation is misleading, because the
system is computing (according to the rule that it was given) just fine.

I have focused here on mechanistic accounts of computation, but there is an-
other (fairly popular) class of semantic accounts, according to which the analysis
of miscomputation might look quite different. While there has not actually been
much work done on miscomputation by defenders of the semantic account, we
can try and reconstruct what they might say. According to this account, physi-
cal computation is necessarily semantic; in addition to possessing the right kind
of causal structure (as per the mechanistic account), a computational system
must also represent something, and to compute is to manipulate representational
vehicles according to a rule (see Sprevak 2010 for a basic overview). While there
are many other points on which mechanistic and semantic accounts disagree (see
e.g. Piccinini 2008, Dewhurst 2018, Shagrir 2018), this does not actually change
things too much when it comes to our analysis of miscomputation. I think it
is clear that semantic accounts should still deny that design errors are a kind
of miscomputation, for all the reasons that I discussed in section 1. The same
goes for operational malfunctions, except that there is a certain kind of malfunc-
tion that might qualify as miscomputation according to the semantic account,
namely misrepresentations (cf. Neander 1995). If computation is representa-
tional, then (at least some) misrepresentations might plausibly be understood
as miscomputations, especially those caused by operational malfunctions. For
example, if an operational malfunction causes a computational state to misrep-
resent some feature of its environment, and as a result of this it produces an
erroneous output, then according to the semantic account this might qualify
as a miscomputation. However, there are also downsides to this approach, as
Piccinini points out: a system might compute perfectly fine over states that we
interpret as misrepresentations, or it might ‘miscompute’ over perfectly good
representational states, so there does seem to be some benefit to keeping these
two concepts logically independent (2015: 48). I will leave a full analysis of rep-
resentational miscomputations for a proponent of the semantic account, but I
mention this possibility here for the sake of fairness. If, like Piccinini, one thinks
that allowing for the possibility of miscomputation ought to be included in the
list of desiderata for our theory of physical computation, and furthermore one
thinks that the notion of misrepresention provides some insight into the notion
of miscomputation, then this might even be a reason to favour the semantic
account over the mechanistic account.

3.2 Applications and further issues

I have focused so far (at least implicitly) on artificial computers, i.e. like the one
that I am typing on now, but it would also be interesting to consider the ques-

11



tion of miscomputation in natural computational systems, such as (potentially)
the human brain. A full analysis of this question will have to wait for future
work, but I would like to briefly comment on one particularly interesting aspect
of it, which is the putative role played by miscomputations in computational
psychiatry. Colombo (forthcoming) has recently argued that there are several
different notions of miscomputation at play in computational psychiatry, and
that a semantic account of computation is required to account for all of them.
I will not respond directly to that argument here, but I instead want to suggest
a different way to think about ‘miscomputation’ in computational psychiatry,
building on Garson’s (2019) work on mental disorders and malfunctions.

Garson argues that rather than being malfunctions as such, many cases of
mental disorder might instead be better understood as “developmental mis-
matches”, i.e. cases where a perfectly well-functioning system has just been
placed into the wrong environment (2019: 176-8). He gives the example of how
a child who has developed aggressive behavioural tendencies in order to cope
with an abusive environment might later be removed from that environment and
diagnosed with a conduct disorder (ibid : 179). In their initial environment this
behaviour was adaptive, but once it has become ingrained and they are removed
from that environment it becomes maladaptive. Design errors, in the context
of computational psychiatry, look very much like developmental mismatches:
the computational system (in this case, the brain) has been designed or pro-
grammed for one purpose (whether intentionally or by accident), but is then
placed in an environment where this behaviour is maladaptive. These are nei-
ther cases of malfunction nor miscomputation: the system performs perfectly
adequately, qua computation, but this performance does not match its novel
context (some of the cases that Colombo considers, such as differences in the
magnitude of prediction error signalling in healthy controls and schizophrenic
patients, might also be explained in this way). Operational malfunctions, on
the other hand, look more like traditional ‘physical’ diseases, which might cause
the symptoms associated with mental disorders, but should not be understood
as miscomputations (for the reasons I discussed in section 2.2). So the neu-
rodegenerative process that is thought to cause Alzheimer’s disease might be
an operational malfunction that changes how the brain performs computations,
but it is not itself a miscomputation, nor does it produce any. The distinction
between operational malfunctions and design errors maps neatly on to Garson’s
loose distinction between physical diseases (often, but not always, understood as
malfunctions) and mental disorders (often, but not always, understood in terms
of developmental mismatches), and can help us to make sense of the role played
by what might previously have been called ‘miscomputations’ in computational
psychiatry.

Primiero, Solheim, & Spring (2019) describe malware (i.e., malicious soft-
ware such as computer viruses) as a kind of miscomputation induced by a tar-
geted attack. The taxonomy and analysis they provide is helpful, and provides
some practical recommendations, but following my arguments in the previous
section I think it is clear that malware does not cause miscomputations as such,
but rather modifies the behaviour of a computational system in some way that

12



is not desirable to its designer or user. The system itself either continues to
compute perfectly fine (in the case of malware that hijacks or otherwise infects
a system) or simply ceases to compute (in the case of malware that shuts it down
entirely), but it does not miscompute. There is a further question of whether
we should even think of malware as inducing (non-computational) malfunctions
in the target computer, i.e. by rewriting the instructions (rules) embodied by
its physical structure (see section 2.2). Here an analogy with biological viruses
might be helpful: relative to the host system, a (biological or computational)
virus certainly induces a malfunction, but relative to the virus itself (or its de-
signer), the system functions perfectly well, by serving to reproduce the virus.
So in many cases there may not be a clear answer to the question of whether
malware induces a malfunction, let alone a miscomputation.

Finally, I want to briefly discuss a useful distinction introduced by Tucker’s
(2019) assessment of miscomputation, between a mechanism’s proper and ac-
tual functions. He is a realist about miscomputation, but he defines it in terms
of norms that are individuated widely (i.e. with reference to selection history
or designer intentions), whereas he defines computational behaviour in narrow
terms (i.e., just in terms of the physical structure of the system). Widely in-
dividuated norms fix the proper function of a computing mechanism (what it’s
supposed to do) while narrowly individuated behaviour fixes its actual func-
tion (what it actually does), and, for Tucker, a miscomputation occurs when
these two functions are misaligned. This could be because of either design er-
ror (the system was programmed badly) or operational malfunction (it doesn’t
work properly). I am willing to allow that mismatches of this kind explain
what we usually call miscomputations, but I would argue that we should re-
strict strict talk of computation to what Tucker calls ‘actual’ functions, with
the consequence that there are also, strictly speaking, no miscomputations.

If computational identity is determined by proper functions in Tucker’s wide
sense, then some kinds of design error might also end up counting as miscompu-
tations, because the designer’s original intentions could be taken to determine
what the system ‘ought’ to compute. For example, type-2 (manufacturing) er-
rors could count as miscomputations if we fix computational identity relative to
the designer’s original blueprint. The problem with this approach, however, will
be deciding which and whose intentions ought to count for fixing computational
identity, especially in cases where these intentions come apart (with downstream
consequences for what will count as a miscomputation). If the designer in the
previous example had intended for the system to be built one way, but provided
a bad blueprint such that the actually constructed does not function ‘correctly’,
is this a type-2 miscomputation due to a bad manufacturing process relative to
their original intentions, or a type-1 miscomputation due to their poor speci-
fication of the blueprint? Or consider another example, focusing on the other
end of the taxonomy: if an end-user struggles to use a complicated program
and receives error messages, is this a type-5 miscomputation due to their failure
to use the system properly, or a type-4 miscomputation to the program being
written in a way that makes it hard to use properly? If this were just a one-
off case it might seem obvious that we should go with the first option, but if

13



enough users experienced similar problems then we might be more tempted to
lay the blame on the programmers (and indeed, such complaints might trigger
a product recall or update to fix the ‘error’).It would be better, I suggest, to
restrict computational identity to the actual functions specified by the physical
structure of the system, and treat each of these putative cases of miscomputa-
tion as distinct kinds of problems with distinct kinds of solutions, the variety of
which continuing to refer to all of them as ‘miscomputations’ would obfuscate.

If there is no such thing as miscomputation, then what ought we to say about
the inclusion of miscomputation in Piccinini’s list of desiderata for an account
of physical computation? I think he is correct to say that we need to make
sense of the kinds of thing people (including computer scientists, computational
neuroscientists, etc.) say when they believe that a computational process has
‘gone wrong’ in some sense, but I don’t think that we need any specific notion
of miscomputation in order to do this – and in fact, relying on such a notion
might hold us back in some cases. The taxonomy provided by Fresco & Primiero
(2013) makes it clear that there many different ways in which a computational
process can ‘go wrong’ that don’t really have much in common with one another
at all. Our diagnosis of, and solution to, a programming error is going to be very
different to that which is appropriate for a manufacturing defect or operational
malfunction. Each case calls for a different kind of analysis and response, and so
referring to them all under the broad category ‘miscomputation’ is misleading
at best. Of course, one could choose to use the term to refer to just one of
these cases (probably operational malfunctions), but for the reasons I have ar-
gued for here, I think even this limited usage could have confusing implications,
and so it is better that we avoid it in favour of more precise language. Where
miscomputation talk is used in a formal setting (e.g. computer science or com-
putational psychiatry) it ought to be replaced with more precise terminology
relating to each putative type of miscomputation, or at least it should be made
very clear what specifically is meant by ‘miscomputation’ in each case. In fact,
I think this is a less controversial point in these disciplines than the likes of Pic-
cinini or Colombo assume it to be, and so I take my conclusion here to be less
in contradiction with current scientific practice, and more a gentle encourage-
ment towards conceptual hygiene. On the philosophical side, this would mean
that we could drop the requirement to accommodate miscomputation from the
list of desiderata for an account of physical computation, potentially making it
somewhat easier to come up with such an account.

Conclusion

I first reviewed some existing accounts of physical computation and miscomputa-
tion, focusing on the version of the mechanistic account developed by Gualtiero
Piccinini. I then argued that, according to this account, there can be no such
thing as miscomputation, as all putative cases of miscomputation are either
the result of design errors (for which the computing mechanism itself cannot be
blamed) or operational malfunctions (which are not strictly computational). Fi-

14



nally, I considered some possible objections and further implications, including
the idea that operational malfunctions should in fact qualify as miscomputa-
tions, an alternative semantic account of miscomputation, the role of miscom-
putation in computational psychiatry, the case of malware, and a recently pro-
posed distinction between proper and actual functions. In future work I would
like to extend these considerations to include some more general applications of
the argument that there is no such thing as miscomputation, such as to debates
about the neuroscience of free will, agency in artificial (and natural) systems,
and what it means for a computational system to follow a rule.

References

Chalmers, D. 1994. “On implementing a computation.” Minds and Machines,
4(4): 391-402.

Coelho Mollo, D. 2018. “Functional individuation, mechanistic implementa-
tion.” Synthese, 195(8): 3477-3497.

Coelho Mollo, D. 2019. “Are There Teleological Functions to Compute?” Phi-
losophy of Science, 86(3): 431-452.

Colombo, M. Forthcoming. “(Mis)computation in Computational Psychiatry.”
In Calzavarini Viola (eds), Neural Mechanisms. Springer.

Dewhurst, J. 2014. “Mechanistic Miscomputation.” Philosophy & Technology,
27(3): 495-498.

Dewhurst, J. 2018. “Individuation Without Representation.” The British Jour-
nal for the Philosophy of Science, 69(1):103–116.

Floridi, L., Fresco, N., & Primiero, G. 2015. “On Malfunctioning Software.”
Synthese, 192:1199–1220.

Fresco, N. 2014. Physical Computation and Cognitive Science. Springer Nether-
lands.

Fresco, N. & Mi lkowski, M. 2019. “Mechanistic Computational Individuation
without Biting the Bullet.” The British Journal for the Philosophy of Science,
online first.

Fresco, N. & Primiero, G. 2013. “Miscomputation.” Philosophy & Technology,
26(3):253-272.

Garson, J. 2019. What Biological Functions Are And Why They Matter. Cam-
bridge, CUP.

Godfrey Smith, P. 2009. “Triviality arguments against functionalism.” Philo-
sophical Studies, 145:273–295.

Haugeland, J. 1985. Artificial Intelligence: The Very Idea. Cambridge, MA:
MIT Press.

Milkowski, M. 2013. Explaining the Computational Mind. Cambridge, MA: MIT
Press.

15



Millhouse, T. 2019. “A Simplicity Criterion for Physical Computation.” The
British Journal for the Philosophy of Science, 70/1: 153-78.

Millikan, R.G. 2013. “Reply to Neander.” In Ryder, Kingsbury, Williford (eds.),
Millikan and Her Critics. Malden, MA: Wiley-Blackwell.

Neander, K. 1995. “Misrepresenting & malfunctioning.” Philosophical Studies,
79:109–141.

Petricek, T. 2017. “Miscomputation in software: Learning to live with errors.”
The Art, Science, and Engineering of Programming, 1.2: 14.

Piccinini, G. 2007. “Computing Mechanisms.” Philosophy of Science, 74(4):
501-526.

Piccinini, G. 2008. “Computation without representation.” Philosophical Stud-
ies, 137(2):205-241.

Piccinini, G. 2015. Physical Computation. Oxford: OUP.

Primiero, G., Solheim, F.J., & Spring, J.M. 2019. “On malfunction, mechanisms
and malware classification.” Philosophy & Technology, 32(2), 339-362.

Putnam, H. 1960. “Minds and Machines.” In Hood (ed.), Dimensions of Mind:
A Symposium, New York: Collier.

Putnam, H. 1988. Representation and Reality. Cambridge, MA: MIT Press.

Rapaport, W.J. 2019. “Syntax, Semantics, and Computer Programs.” Philoso-
phy & Technology, online first.

Schweizer, P. 2019. “Triviality Arguments Reconsidered.” Minds and Machines,
29(2):287-308.

Shagrir, O. 2018. “In defense of the semantic view of computation.” Synthese,
online first.

Sprevak, M. 2010. “Computation, individuation, and the received view on repre-
sentation.” Studies in History and Philosophy of Science Part A, 41(3):260-270.

Sprevak, M. 2018. “Triviality arguments about computational implementation.”
In Sprevak & Colombo (eds.), The Routledge Handbook of Philosophy of Com-
putation. Routledge.

Tucker, C. 2018. “How to Explain Miscomputation.” Philosophers’ Imprint,
18(24).

Turing, A. 1950. “Computing Machinery and Intelligence.” Mind, 49:433-460.

16


