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Quantum states containing records of incompatible outcomes of quantum measurements are valid
states in the tensor product Hilbert space. Since they contain false records, they conflict with
the Born rule and with our observations. I show that excluding them requires a fine-tuning to a
zero-measure subspace of the Hilbert space that seems “conspiratorial”, in the sense that

� it depends on future events, in particular of future choices of the measurement settings,
� it depends on the evolution law (normally thought to be independent of the initial conditions),
� it violates statistical independence (even in interpretations that satisfy it in the context of Bell’s

theorem, like standard quantum mechanics, pilot-wave theories, collapse theories, many-worlds etc.).
Even the innocent assumption that there are measuring devices requires this kind of fine tuning.
These results are independent of the interpretation of quantum mechanics.
To explain away this apparent fine-tuning, I propose that an yet unknown law or superselection

rule may restrict the full tensor product Hilbert space to this very special subspace.
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I. INTRODUCTION

Quantum mechanics, like other theories, is formulated
from a God’s-eye perspective. But, as parts of the world
we observe, we are limited to a worm’s-eye perspective. If
in the present time we would be part of a random state of
the universe, this would most likely contain incompatible
records, from which we would never be able to guess the
laws of quantum mechanics, in particular the Born rule.

An example of such a state is one containing n records
of repeated spin measurement of the same silver atom, so
that the n records of the outcomes are random values ± 1

2 ,
and not the same value repeated n times. This state is a
valid state in the tensor product Hilbert space. But the
records it contains could not come from actual repeated
quantum measurements. We never observe such states.

The simple fact that we exist and could discover quan-
tum mechanics indicates that the physical law is user-
friendly enough to allow our memories to form and be
reliable, to reflect the evolution of our universe so that
we can guess its laws, including the Born rule. We are led
to a “the universe does not mislead us” metaprinciple:

Metaprinciple NMU (Non-Misleading Universe). The
records of the experimental results and the memories of
the observers reflect the actual history of the universe.

Without this, science and even life would be impossi-
ble. But Metaprinciple NMU, as we shall see, requires
severe restrictions of the possible states. We will see that
this fine-tuning contradicts several of our most cherished
common sense beliefs. The first belief is:

Belief 1 (Universality). Quantum mechanics, including
the Born rule and the results of quantum experiments,
respect Metaprinciple NMU for all initial conditions.

Another belief is that of Statistical Independence (SI).
We assume that there are enough degrees of freedom so

that any two systems separated in space can be put in
independent and statistically uncorrelated states.

Definition 1. Two events A and B are statistically in-
dependent if Pr{AB} = Pr{A}Pr{B} ([13] p. 10). In
particular, if each of two statistically independent events
A and B are possible (Pr{A} > 0 and Pr{B} > 0), they
are possible together (Pr{AB} > 0). Therefore, if SI is
true for the events that two subsystems are in particular
states, the following should be true as well:

Belief 2 (Subsystems Independence). Let A and B be
two subsystems with no common parts. If A can possibly
be in the state α and B can possibly be in the state β,
the combined system can possibly be in the state α⊗ β.

Belief 2 is the core reason why we take as Hilbert space
of a composite system the tensor product of the Hilbert
spaces of each of the systems. I will show that this, and
consequently SI, is contradicted, although Bell’s weaker
assumption of SI is not contradicted (see Answer 3).
It makes sense to think that no “Laplace demon” know-

ing the evolution law and the future histories is needed
to determine what initial conditions ensure Metaprinci-
ple NMU. This can be stated as the following beliefs:

Belief 3 (No Input From Future). Initial conditions are
independent of future events in the history, in particular
of future choices of the measurement settings.

Belief 4 (No Input From Evolution Law). Initial condi-
tions are independent of the evolution law of the system.

Another belief that will be contradicted is

Belief 5 (For-Granted Memory). In the standard tensor
product Hilbert space formulation of quantum mechan-
ics, past events leave reliable records in the present state
without requiring conspiratorial fine-tuning.

In Sec. §II I show that Metaprinciple NMU contradicts
these beliefs. This may seem objectionable, so in Sec.
§III I discuss possible questions and implications.
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II. THE PROOF

Theorem 1. To ensure Metaprinciple NMU for the
Born rule, the initial states have to belong to a zero-
measure subspace of the Hilbert space, in a way that con-
tradicts Beliefs 1, 2, 3, 4, and 5.

Proof. Consider a closed quantum system which includes
observed systems, measuring devices, and observers.
This may be the entire universe. Its states are repre-
sented by unit vectors in a separable Hilbert space H,
and evolve governed by the Schrödinger equation with

the Hamiltonian Ĥ. In terms of the unitary evolution

operator Ût,t0 := e−
i
ℏ (t−t0)Ĥ between the times t0 and t,

the evolution of an initial state vector Ψ(t0) ∈ H at t0 is

Ψ(t) = Ût,t0Ψ(t0). (1)

Suppose that our system contains a system to be ob-
served S, with Hilbert space HS of finite dimension
dimHS = n <∞, and a measuring device whose pointer
is represented in the Hilbert space HMA

of dimension
n + 1. Then H = HS ⊗ HMA

⊗ HE, where HE rep-
resents everything else, including the other parts of the

measuring device. Let Â be a Hermitian operator on
HS representing the observable of interest, with eigen-

basis
(
ψA
1 , . . . , ψ

A
n

)
. Let ẐA be the pointer observable,

with eigenbasis
(
ζA0 , ζ

A
1 , . . . , ζ

A
n

)
, where ζA0 represents the

“ready” state of the pointer. We assume that the observ-
able and the pointer have nondegenerate spectra, and the
measurement is ideal. We work in the interaction picture,
which allows us to treat the observed system as station-
ary, and the pointer states as stationary before and after

the measurement. Let the measurement of Â take place
between t0 and t1 > t0, leading to the superposition

Ψ(t1) = Ût1,t0ψ⊗ζA0 ⊗ . . . =
∑
j

⟨ψA
j |ψ⟩ψA

j ⊗ζAj ⊗ . . . (2)

To resolve the superposition from eq. (2) into definite
outcomes, one usually invokes projection, objective col-
lapse, decoherence into branches, additional hidden vari-
ables etc. The results from this article apply to all these
options. The Born rule states that the probability that
at t1 the pointer is in the state ζAj is |⟨ψA

j |ψ⟩|2.
Consider a second measurement, of an observable B̂

of the system S, with eigenbasis
(
ψB
1 , . . . , ψ

B
n

)
. Let the

pointer observable of the second apparatus be ẐB, with
eigenbasis

(
ζB0 , ζ

B
1 , . . . , ζ

B
n

)
, where ζB0 is the “ready” state.

The total Hilbert space is H = HS ⊗HMA
⊗HMB

⊗HE.

The measurement of B̂ takes place after the first mea-
surement, between t1 and t2 > t1. It leads to

Ψ(t2) = Ût2,t1Ût1,t0ψ ⊗ ζA0 ⊗ ζB0 ⊗ . . .

= Ût2,t1

∑
j

⟨ψA
j |ψ⟩ψA

j ⊗ ζAj ⊗ ζB0 ⊗ . . .

=
∑
j,k

⟨ψA
j |ψ⟩⟨ψB

k |ψA
j ⟩ψB

k ⊗ ζAj ⊗ ζBk ⊗ . . .

(3)

The probability that at t2 the first pointer state is ζAj
and the second pointer state is ζBk is |⟨ψA

j |ψ⟩⟨ψB
k |ψA

j ⟩|2.
This vanishes if Â = B̂ and j ̸= k, and we obtain

Observation 1. The Born rule forbids orthogonal re-

sults for repeated measurements, e.g. if Â = B̂, the states
ψB
k ⊗ ζAj ⊗ ζBk ⊗ . . . with j ̸= k are forbidden at t2.

Observation 2. However, a priori, all unit vectors in H
are possible initial conditions at the initial time ti < t0
of the universe, including, for any j and k, the vectors

Ψj,k(ti) := Û†
t2,tiψ

B
k ⊗ ζAj ⊗ ζBk ⊗ . . . (4)

Moreover, the uniform probability distribution on the
projective Hilbert space gives equal probabilities to all
possible states Ψj,k(ti) at any time ti, but the Born rule
gives a totally different probability.

Refutation 1 (of Belief 1). This part of the analysis de-
pends on the approach to resolve the superposition into
definite outcomes. We consider first unitary approaches
based on decoherence (like the consistent histories ap-
proach [17] and the many-worlds interpretation (MWI)
[12]). From Observation 1, initial states Ψj,k(ti) with

Â = B̂ and j ̸= k are forbidden, because they evolve
into forbidden states at t2. Such states would contradict
Metaprinciple NMU. Moreover, all initial states that are
not orthogonal on all forbidden states of the form Ψj,k(ti)
are also forbidden, because the nonvanishing component
Ψj,k(ti) leads to a forbidden branch with nonzero am-
plitude. Therefore, the states that are not forbidden as
initial states have to be orthogonal on all initial states
that would lead to forbidden states at any time. This
is a Hilbert space H0, and it is strictly included in the
Hilbert space of all possible initial states. Therefore,
µH

(
P
(
H0

))
= 0, where µH is the invariant measure of

the total projective Hilbert space P
(
H
)
.

For the pilot-wave theory [6] and variations, the wave-
function also never collapses, but it is completed with
“hidden variables”, e.g. point-particles with definite po-
sitions, that resolve the superposition. The initial con-
ditions of the wavefunction are constrained exactly as in
the MWI case. In addition, it is believed that to ensure
the Born rule, the probability distribution of the “hidden
variables” has to satisfy it at ti (the “quantum equilib-
rium hypothesis”), this ensuring it at any other time [16].
This means even more fine-tuning compared to MWI.

In standard quantum mechanics (SQM), the superpo-
sition is resolved by invoking the Projection Postulate.
This happens when the observation causes a macroscopic
effect, usually by changing the pointer of the measuring

device. Let
(
P̂α

)
α
be a set of mutually orthogonal projec-

tors that correspond to the macro states, so that
∑

α P̂α

is the identity operator ÎH on H. In our case, these pro-
jectors are determined by the eigenstates of the pointer

observables, so they are ÎHS
⊗ |ζAj ⟩⟨ζAj | ⊗ |ζBk ⟩⟨ζBk | ⊗ ÎHE

.
The Projection Postulate makes it possible that, for

any state at t2, there are many possible initial states
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that can lead to it by unitary evolution alternated with
projections. Let us verify that any forbidden state at
t2 can be obtained like this. Suppose that the state
vector is projected at a time t from Ψ1 to Ψ2. Since
|⟨Ψ2|Ψ1⟩|2 = |⟨Ψ1|Ψ2⟩|2, the probability that Ψ1 projects
to Ψ2 in forward time evolution equals the probabil-
ity that Ψ2 projects to Ψ1 in backward time evolution.
This implies that, if we propagate a forbidden state at t2
back in time to ti “unprojecting” whenever is needed, we
should find a set of initial states at ti that can evolve for-
ward in time (with projections) into the forbidden state
at t2. All these initial states should therefore be forbid-
den. Since any initial state that is not orthogonal to all
of them has components that can evolve into the forbid-
den state, these should be forbidden as well. This, again,
constrains the possible initial states to a zero-measure
subspace H0 orthogonal to all initial states that could
evolve into forbidden states at any future time.

In collapse theories [14, 15], spontaneous localization
is not defined in terms of projectors, but by multiplying
the wavefunction with a Gaussian function centered at a
random point in the configuration space. This happens
at random times. Gaussian functions do not form an or-
thonormal basis, but they partition the identity, so the
possible histories with collapses at the same moments of
time also add up to the identity, and we can apply similar
reasoning as in the SQM case, obtaining the same conclu-
sion. Moreover, when the wavefunction is multiplied by a
Gaussian, the result has tails, and decoherence is required
to prevent those tails from interfering, because otherwise
the collapse makes the state jump to a too different state,
so similar constraints as in MWI are required.

Therefore, in all cases, the Born rule constrains the
initial conditions to a zero-measure subspace H0 of H,
and Belief 1 (Universality) is contradicted.

Remark 1. In all cases, the allowed initial states are con-
strained to a zero-measure Hilbert subspace H0 of H.
Moreover, to protect the Born rule at arbitrary times in
the future, the constraints of the initial conditions have
to be valid at all times.

Remark 2. For the allowed future states to satisfy the
Born rule, in addition to restricting the initial state to
H0, its probability distribution on H0 should be fine-
tuned as well. For example, in MWI, the probabilities
of initial states Ψj,k1(ti) and Ψj,k2(ti) should be in the
right ratio given by the Born rule for ψB

k1
⊗ ζAj ⊗ ζBk1

⊗
. . . and ψB

k2
⊗ ζAj ⊗ ζBk2

⊗ . . . at t2. In SQM or collapse
interpretations, there will be many initial states that lead
at t2 to the states ζAj ⊗ ζBk1

⊗ . . . and ζAj ⊗ ζBk2
⊗ . . ., so

the probabilities of these initial states should add up to
the proper probabilities given by the Born rule.

Refutation 2 (of Belief 2). Consider now a factorization
H = H1⊗H2, obtained by dividing the total system into
a subsystem S1 and the rest of the world, S2. The tensor
product basis cannot have all its elements in H0, because
then H would be included in H0. Therefore, there are
tensor product states that are not allowed, contrary to

Belief 2. Interestingly, even if S1 consists of a single par-
ticle, the Subsystem Independence is violated. This also
contradicts Statistical Independence from Definition 1.

Refutation 3 (of Belief 3). Forbidden initial states are de-
termined indirectly as precisely those states that can lead
to states forbidden by future measurements. Therefore,
the allowed states depend on input from the future.

Refutation 4 (of Belief 4). Different Hamiltonian opera-

tors Ĥ can evolve different initial states to the forbidden
states, cf. eq. (4). Therefore, the zero-measure subspace
H0 of H depends on the evolution law.

Refutation 5 (of Belief 5). From Observation 1, there are
states that contain unreliable records. To avoid them, we
have seen that fine-tuning is needed.

This concludes the proof of Theorem 1.

Corollary 1. The state of any subsystem S is not com-
pletely independent of the state of the rest of the universe,
in the sense that there are forbidden states of the form
ψ ⊗ ε, where ψ is the state of S and ε is the state of the
rest of the universe. Therefore, the tensor product Hilbert
space containst too many states.

Proof. See Refutation 2 (of Belief 2).

III. DISCUSSION

Theorem 1 and Corollary 1 are in tension not only with
common sense beliefs, but also with some of our assump-
tions about quantum mechanics. Therefore, even though
I proved them mathematically, I will provide additional
explanations and address possible objections.

Question 1. Why, in all known examples, standard
quantum mechanics works without fine-tuning?

Answer 1. Usual scenarios of quantum experiments
make assumptions that implicitly fine-tune the system:
(a) measuring devices already exist, despite their con-

struction being complicated, necessitating precision tech-
nology, and requiring the knowledge of the Hamiltonian,
in order to function as desired,
(b) before measurements, the measuring devices are in

the “ready” states, like ζA0 and ζB0 in eq. (2) and eq. (3),
(c) the observed systems and measuring devices are

initially in separable states, like ψ ⊗ ζA0 in eq. (2).
All examples, in all interpretations of quantum me-

chanics, assume (a), (b), and (c), but this requires fine-
tuning. Even MWI requires that branching is time-
symmetric, which constrains the initial conditions to en-
sure (a). Assumption (a) requires the initial conditions to
depend on the Hamiltonian. Linear combinations satisfy-
ing (b) and (c) are valid, but they form a strict subspace
of the full tensor product Hilbert space H.

If, in our example, Â = B̂ and j ̸= k, the state Ψ2(t2) =
ψB
k ⊗ ζAj ⊗ ζBk ⊗ . . . cannot be reached from the state

Ψ1(t1) = ψA
j ⊗ζAj ⊗ζB0 ⊗ . . .. This means that the pointer
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state ζAj contained in Ψ2(t2) is an invalid record, since in
the histories leading to Ψ2(t2) there is no measurement

of Â in which the observed system was found at t1 in the
state ψA

j and the pointer in the corresponding state ζAj .
Therefore, Ψ2(t2) is forbidden simply because the state
at t1 was assumed to be Ψ1(t1).
Even if we are not aware of this, we usually take for

granted records at different times. But all that is avail-
able to us are the present time records of past events.
From these records or memories, we infer laws and make
predictions about future times, and experiments confirm
them. And this is possible because the invalid records are
already forbidden by the constraints of the initial condi-
tions implicit in the assumptions (a), (b), and (c).

Question 2. We know since Boltzmann that the en-
tropy increases because the universe was long time ago
in a low-entropy state, which means the initial conditions
were severely constrained. And there are reasons to be-
lieve that this is sufficient to explain the reliability of the
records. Then, what does Theorem 1 bring new?

Answer 2. Theorem 1 shows that this is not enough,
and the initial conditions also had to be conspiratorial.

Let us return to our example, and the discussion from
Answer 1. Consider an observer at t2 who knows the re-
sult of the first measurement but does not know yet the
result of the second measurement. That observer will ap-
ply the Born rule and conclude that the state cannot be
Ψ2(t2). But how can the observer exclude the possibility
that the state is Ψ2(t2)? Even if it contains an invalid
pointer state and an observer with an invalid memory,
Ψ2(t2) is a valid state. Excluding such a “Boltzmann’s
brain”-like situation is equivalent to excluding the initial
conditions that could lead to it. To avoid invalid memo-
ries or pointer states, the same conspiratorial initial con-
ditions from Theorem 1 are required. So if the observer
can be sure at t2 that the state at t1 was Ψ1(t1), it is
because the initial fine-tuning took care of this. And this
fine-tuning is not trivial, as one expects it to be in order
to ensure the Second Law of Thermodynamics, because
of Theorem 1.

Example 1 (EPR). The Einstein-Podolsky-Rosen (EPR)
experiment [11] is a particular case of the example from
the proof. At t1, the preparation results in a singlet
state of two entangled spin 1/2 particles, with total spin

0. The preparation was done by taking as Â an observ-
able that has the singlet state among its eigenstates. At
t2, Alice measures the spin of the first particle along a
direction a, and Bob, in a different place, measures the

spin of the second particle along a direction b. Let Ŝa
and Ŝb be the two spin observables. Since the two mea-
surements are performed on different particles, they com-

mute,
[
Ŝa ⊗ Î2, Î2 ⊗ Ŝb

]
= 0, and can be seen as a single

measurement of the observable B̂ = Ŝa ⊗ Ŝb performed
on the pair of particles. If a = b, the forbidden outcomes
are those resulting in parallel spins. But the states con-
taining pointer states that correspond to these results

are valid states. So the initial conditions that can lead
to these states have to be forbidden, which means that
SI from Definition 1 has to be violated.

Question 3. Does Corollary 1 refute Bell’s Statistical
Independence assumption he used in his proof that any
interpretation of quantum mechanics in which measure-
ments have definite outcomes have to be nonlocal [3, 5]?

Answer 3. If, in Definition 1, Pr{B} > 0, SI is equiva-
lent to Pr{A|B} = Pr{A}, the form that appears in Bell’s
theorem [5]. But Bell’s SI refers to the independence of
the observed system from the measurement settings, and
it is not refuted by Corollary 1. Corollary 1 allows the
observed system to be in any state ψ ∈ H1, provided that
the rest of the world ε is restricted to a strict subset of its
Hilbert space H2. In Bell’s SI, the only considered states
ε ∈ H2 are those containing Alice and Bob’s measur-
ing devices. This is why Corollary 1 does not contradict
Bell’s SI, while still contradicting the stronger one from
Definition 1. The EPR experiment fits perfectly in the
situation from Answer 1, as seen in Example 1.

Question 4. Does Theorem 1 imply superdeterminism?

Answer 4. Theorem 1 does not refute nonlocal or
multiple-outcome interpretations. However, if SI is a rea-
son to reject superdeterministic approaches, Corollary
1 shows that all interpretations are guilty of the same.
There is though a difference of degree between violating
the SI from Definition 1 and violating Bell’s SI.

Question 5. Isn’t conspiratorial fine-tuning of initial
conditions unscientific [2, 8, 19, 22] (although not ev-
erybody think so [18])? By fine-tuning you can make the
theory predict anything. According to Maudlin: “If we
fail to make this sort of statistical independence assump-
tion, empirical science can no longer be done at all.”
Bell wrote ([4], p. 244): “In such ’superdeterministic’

theories the apparent free will of experimenters, and any
other apparent randomness, would be illusory. Perhaps
such a theory could be both locally causal and in agree-
ment with quantum mechanical predictions. However I
do not expect to see a serious theory of this kind.”

Answer 5. Now we have a theorem showing that quan-
tum mechanics itself requires conspiratorial fine-tuning,
violating SI (Definition 1) but not Bell’s SI (Answer 3).
One cannot do science without the possibility to trust

the records of the past experiments and our own memory.
And this, as we have seen, requires conspiratorial fine-
tuning. Does this mean that we can no longer do science?
There are proposals that try to save locality by sacri-

ficing Bell’s SI [1, 9, 10, 20, 26]. Other proposals even
try to save locality but also to maintain unitary evolution
with a single world, i.e. without branching, and without
collapse or “hidden variables” [21, 24, 25]. These ap-
proaches require very special initial conditions [23]. But,
as Theorem 1 shows, so does quantum mechanics in all
interpretations, and it also violates SI from Definition 1.
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However, it is unfair to say that you can predict ev-
erything by fine-tuning, because unitary evolution with a
single world approaches could so far only reproduce very
simple quantum experiments. In addition, as explained
in [21] and [24], these approaches make very strict predic-
tions, for example, that the conservation laws hold even
if their violation is allowed by SQM [7, 24] and other
interpretations, including in the branches in MWI.

Question 6. In an infinitely large universe or in a mul-
tiverse, with an eternal history, this apparent fine-tuning
happens with necessity somewhere or sometime. Since
intelligent living beings like us need reliable memories to
exist and survive, they can only exist in such a region. Is
this not enough to explain away the fine-tuning?

Answer 6. If we would be in such a region where it just
happened that the Metaprinciple NMU was respected up
to a time t1, it would be much more likely that after
t1 NMU will be violated than not. Subsystems able to
record events, like measuring devices in the “ready” state,
are a limited resource. But then, we should observe al-
ready that the Born rule wears off and the world becomes
flooded by unreliable records, becoming more and more
inconsistent, like a dream. Also, by an indexical argu-
ment, it would be much likely that we find ourselves in a
region where NMU is violated.

Question 7. Do you have another explanation?

Answer 7. Maybe there is an unknown law that restricts
the possible states to H0. Since subsystems are not inde-
pendent (Corollary 1), the tensor product Hilbert space
is too large, and should be replaced by its subspace H0.
Since the restrictions do not depend on time (Remark 1),
H0 should be an invariant subspace under unitary evo-
lution. This justifies the hypothesis that there is an yet
unknown law that specifies what kind of states are al-
lowed. This may be a superselection rule, similar to the
superselection rules that forbid superpositions of systems
with different electric charges or different spins [27]. If
such a law or superselection rule exists for H0, it could
explain the conspiratorial behavior without fine-tuning.
But such a law would have to encode the dependence of

H0 on the Hamiltonian and the macro projectors
(
P̂α

)
α
.
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