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1. Introduction 
 
A central goal of the scientific endeavor is to explain phenomena. Scientists often attempt to 
explain a phenomenon by way of representing it in some manner—such as with mathematical 
equations, models, or theory—which allows for an explanation of the phenomenon under 
investigation. However, in developing scientific representations, scientists typically deploy 
simplifications and idealizations. As a result, scientific representations provide only partial, and 
often distorted, accounts of the phenomenon in question. Philosophers of science have 
analyzed the nature and function of how scientists construct representations, deploy 
idealizations, and provide explanations. As such, our aim in this special issue is to bring these 
three pillars of research into closer contact with the contributions to it focusing on three main 
themes. 
  

The first set of papers, Alan Baker (2021) and Marc Lange (2021), address mathematical 
explanations in science. Baker (2021), a proponent of mathematical Platonism, examines its 
capacity to evade the critique that the so-called Enhanced Indispensability Argument is circular. 
Lange (2021) examines distinctively mathematical explanations, arguing that neither Platonism 
nor representationalism are successful paths, and instead argues in favor of Aristotelian 
realism. A second theme emerging from the papers in this special issue is the impact that 
various conceptualizations of idealization have on our abilities to offer scientific explanations, 
to produce an analysis of what explanations are or should be, and to understand scientific 
representation. Peter Tan (2021) suggests amending inferentialist accounts of scientific 
representation to account for inconsistent idealizations. Michael Strevens (2021) advocates a 
view wherein the introduction of idealizations into a model is legitimate so long as it pertains to 
non-difference-making factors, arguing for a logical reading of the notion of difference-making. 
Natalia Carrillo and Tarja Knuuttila (2021) offer an alternative account to the idealization-as-
distortion view, emphasizing instead the holistic nature of idealization.  

 
Finally, contributions by Carrillo and Knuuttila (2021), Terzian (2021), Valente (2021), 

and Rodriguez (2021) illustrate how issues regarding idealization, representation, and 
explanation are applied to specific contexts and across various sciences. Carrillo and Knuuttila 
(2021) examine conceptions of idealization in the context of models of the nerve impulse. Giulia 
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Terzian (2021) extends the discussion of idealizations to the context of generative linguistics. 
Giovanni Valente (2021) examines how idealizations and evaluations of accurate representation 
impact capacities to explain phenomena in the context of statistical thermodynamics. Quentin 
Rodriguez (2021) examines the role of idealizations and analogies in various strategies to 
explain critical phenomena. 

 
In what follows, we offer a brief overview of important philosophical issues connected 

to representation, idealization, and explanation in science. We then provide short summaries of 
the eight papers in this special issue. 
 
2. Representation, Idealization, & Explanation 
 
2.1 Representation 
 
Science both makes use of and constructs objects that serve various representational purposes. 
Arguably, philosophers have predominantly focused on the question of how scientific models 
represent aspects of the world (see Frigg and Nguyen 2021 for an extended overview). In order 
to learn about the world, a scientist must often first find a way to describe or portray the object 
or system of interest. How a scientist chooses to represent a target system of interest can have 
important consequences for the scientific claims they are able to make, or kinds of explanations 
about the target system they can offer. 
 

A host of philosophical questions have been raised regarding the nature and functions 
of scientific representation, ranging from questions of the extent to which there is a special 
problem of scientific representation (Callender and Cohen 2006; Boesch 2017) to questions 
concerning the various kinds of representational vehicles such as mathematical, visual, or other 
(Knuuttila 2005; Vorms 2011). 
 

 That said, perhaps the most attention has been given to two general problems. The first 
concerns the issue of what turns something into a scientific representation of something else 
(Frigg and Nguyen 2017). The second relates to the well-established observation that the 
representational relation between a model and its target is not one of perfect mirroring; rather, 
scientific models provide only imperfect accounts of phenomena (Frigg and Nguyen 2017). 

 
A number of accounts have been proposed to answer how a model represents its target. 

Among the most prominent approaches are the structuralist conception according to which a 
model is a representation of its target in virtue of some sort of morphism holding between the 
two (see, e.g., Bartels 2006; van Fraassen 2008; Bueno and French 2011; French 2014). In 
addition, the similarity conception holds that a scientific model represents a target if the model 
and target are similar in relevant respects and degrees, given a certain purpose (Giere 1988, 
2010; Godfrey-Smith 2006; Mäki 2009; Weisberg 2013). The inferentialist conception maintains 
that the representational relation between a model and its target is established on the basis of 
the former having an inferential capacity with respect to the latter (Suárez 2004; Khalifa et a. 
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2022). Several other accounts exist, many of which include at least some features of those 
mentioned above (see, e.g., Hughes 1997; Knuuttila 2011; Frigg and Nguyen 2020). 
 

All these accounts, either explicitly or implicitly, maintain that scientific representations 
are never a mirror image of what they represent. While some conceptions, such as the 
structuralist and similarity ones, seem to be built on the premise that for a model to represent 
its target, a model must always at least partially capture some aspect of its target, the 
inferentialist and several other conceptions disentangle the question of representation from 
the accuracy of representation altogether, maintaining that an account of representation is 
fleshed out purely by the inferential capacity or by some other feature, respectively. Indeed, 
several authors (e.g., Suárez 2010; Shech 2015; Frigg and Nguyen 2017) have argued against 
rival accounts such as the similarity and structuralist conceptions on the grounds that these 
accounts fail to draw a distinction between the concepts of representation and accurate 
representation. 
 

Most of the accounts discussed above are undergoing various modifications (and new 
accounts are constantly being developed), suggesting that the investigation into the nature and 
functions of scientific representation is an active area of philosophical research. Finally, such 
developments have implications for other important debates such as those about idealization 
and explanation. 
 
2.2 Idealization 
 
Many systems and natural phenomena are far too complex to study or represent in their 
entirety. There are numerous strategies that scientists utilize when attempting to represent a 
target system, one of which is idealization. Unfortunately, there is no agreed upon 
characterization of idealization. For example, Robert Batterman (2007) states that idealization 
“is a means for focusing on exactly those features that are constitutive of the regularity—those 
features that we see repeated at different times and in different places” (270). Margaret 
Morrison (2015) says that idealization “involves a process of approximation whereby the 
system can become less idealized by adding correction factors ...” (20). Angela Potochnick 
(2017) claims that idealizations “are assumptions made without regard for whether they are 
true, generally with the full knowledge that they are false” (2). 
 
         Following Elay Shech (2018; Forthcoming), it is useful to distinguish between idealization 
broadly construed, which refers to anything that could reasonably and intuitively be called an 
idealization (perhaps) because it fails to meet some veridicality or accuracy condition, and 
idealization narrowly construed, which refers to the various specific characterizations (such as 
the ones above) offered by philosophers with a certain aim in mind. An idealization narrowly 
construed may then be differentiated from similar notions such as abstraction, approximation, 
fiction, metaphor, thought experiment, and so on. Many, philosophers will appeal to an 
example of an idealization broadly construed in order to argue for a preferred notion of 
idealization narrowly construed (e.g., as in Carrillo & Knuuttila 2021), or else favor a narrow 
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construal such as the distinction between idealization and abstraction in order to solve a 
particular problem (e.g., as in Rodrigues 2021). 
 
An example of well-received narrow construal is associated with the suggestion from John 
Norton that we distinguish between an “approximation” and an “idealization” as follows: 
 

An approximation is an inexact description of a target system. It is propositional. 
An idealization is a real or fictitious system, distinct from the target system, some of 
whose properties provide an inexact description of some aspects of the target system. 
(Norton 2012, 209) 

 
For instance, consider a body of unit mass falling in a weakly resisting medium. For gravitational 
constant 𝑔 and friction coefficient 𝑘, its speed 𝑣 at time 𝑡 is given by: !"

!#
= 𝑔 − 𝑘𝑣. Falling from 

rest, its speed as a function of time is given by the Taylor expansion series: 
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𝑔
𝑘
(1 − 𝑒$%#) = 𝑔𝑡 −

𝑔𝑘𝑡2
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+
𝑔𝑘2𝑡3

6
−⋯ 

 
The first term in the series expansion, 𝑣(𝑡) = 𝑔𝑡, is a good approximation (i.e., an inexact 
description) of the fall for small 𝑘	and at early times. 𝑣(𝑡) = 𝑔𝑡 is also the exact velocity of a 
fictitious idealized system with the same mass falling under gravity in a vacuum. We can 
promote our approximation to an idealization by introducing novel reference to said system.  
 
         Additionally, there are also no accepted taxonomies of idealizations. Instead, various 
categorization schemes have been suggested (e.g., McMullin 1985; Nowak 2000; Shaffer 2012). 
For example, one recent well-received taxonomy is due to Weisberg (2013, ch. 6), who holds 
that the activities and justification associated with idealization give rise to three kinds of 
idealizations: Galilean idealizations, minimalist idealizations, and multiple-model idealizations. 
Briefly, Galilean idealizations simplify the treatment of a target system and render them 
computationally tractable. Minimalist idealizations expose the key factors that make a 
difference to the occurrence and character of a phenomenon of interest. Multiple-model 
idealizations are related but possibly incompatible models with different epistemic or 
pragmatic goals such as affording representations that are predictively precise, accurate or 
realistic, general in scope, simple, and so on (see Shech Forthcoming for further discussion and 
references). 
 
2.3 Explanation 
 
One of the fundamental goals of science is to provide explanations for natural or social 
phenomena. Broadly conceived, a scientific explanation attempts to provide an account of 
phenomena or objects of interest to scientists through a variety of means, such as natural laws 
or mechanisms, often aimed at describing the relationships between causes and effects or 
providing explanans for an explanandum. Various philosophical accounts of what constitutes a 
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scientific explanation include the Deductive-Nomological (DN) model (Hempel 1965), statistical 
relevance model (Salmon 1971), causal mechanical model (Salmon 1984, 1997), and the 
unificationist account (Kitcher 1989), as well as more pragmatic approaches such as those 
offered by Peter Achinstein (1983), Woodward’s counterfactual manipulationist account (2005), 
and  Bas van Fraassen’s constructive empiricism (1980) (see Woodward & Ross 2021 for a 
survey overview).  
 

With respect to accounts of explanation, an emerging line of argument has related to 
drawing distinctions between causal and non-causal forms of explanation. While some accounts 
of scientific explanation place emphasis on causation, some philosophers argue there are also 
non-causal explanations that derive their explanatory power by other means than identifying 
causes or mechanisms (Lange 2016; Reutlinger 2017). Others still (such as Anderson 2018) 
consider ways in which causal and non-causal explanations might actually be complementary. 
Relatedly, some philosophers emphasize the importance of a related kind of explanation that 
occurs in science, namely mathematical explanations, which often reference mathematical 
facts as part of the explanans. For example, as discussed by Lange (2013), if trying to explain 
why someone could not divide 23 strawberries evenly among three people (without cutting a 
strawberry), the explanation involves an appeal to the mathematical fact that 15 is not evenly 
divisible by 2.  
 

Connected to this is a more general theme regarding the role that mathematics plays in 
offering scientific explanations, either as part of explanans or as part of mathematical 
representations (see Mancosu 2018 for a survey overview). For instance, Morrison (2000) 
argues that mathematical structures “often supply little or no theoretical explanation of the 
physical dynamics of the unified theory” (4). Batterman (2002) on the other hand discusses 
what he calls asymptotic explanations, scientific explanations which heavily rely on limiting 
procedures and rigorous mathematical results. Morrison (2015) ultimately argues that the 
explanatory role of mathematics may be related to challenges connected to idealizations and 
representations (given representation and idealizations are often expressed via mathematics in 
science). Christopher Pincock (2012) also discusses how mathematics contributes to the success 
of our best scientific representations. Finally, cases of mathematical explanations might entail 
commitments to mathematical objects. Work in this special issue by Baker (2021) and Lange 
(2021) attempts to bridge these spaces.  

 
3. Contributions 
 
The enhanced indispensability argument (EIA) for mathematical Platonism states that we ought 
to believe in the existence of mathematical objects since this follows from two premises: (1) we 
ought to believe in the existence of entities that play an indispensable explanatory role in our 
best scientific theory: call this (IBE) since (1) is grounded in inference to the best explanation; 
and (2) mathematical objects play an indispensable explanatory role in science: call this (MES) 
for mathematical explanations in science. EIA essentially leverages scientific realist’s 
endorsement of IBE in order to extend ontological commitment to abstracta via the 
identification of bona fide MES. However, various scholars have objected that EIA is circular 
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since the explanandum in ostensible cases of MES is itself identified using mathematical 
concepts. As Baker (2021) notes in his contribution to the special collection, the circularity 
charge gets at the “heart of the nature of” MES since “it raises the question of whether there 
can be explanations that make essential use of mathematics and yet have explananda that are 
genuinely non-mathematical” (157). Ultimately, Baker defends Platonism from the circularity 
charge and in doing so identifies the type of ostensible MES that can non-circularly power EIAs. 
He claims that in considering instances with a range of properties that correspond to some 
concrete-physical pattern (to be explained), where each instance can be described non-
mathematically, then non-circular MES are available if a mathematical theory can help explain 
why some mathematical property holds and said mathematical property helps explains why the 
patterns (manifested by said instances) holds. 
  
 An alternative to the type of mathematical Platonism endorsed by Baker (2021) is a kind 
of representationalism or indexing account endorsed by various nominalist, where we use 
mathematical terns to refer to physical properties. Interestingly, in his contribution to the 
special issue, Lange (2021) notes that both representationalists and Platonists tend to account 
for the applicability of mathematics to science in the same manner: “Where 
representationalism invokes morphisms between mathematical formalisms (or fictions) and 
aspects of the physical world, platonism invokes morphisms between mathematical abstracta 
and aspects of the physical world” (45). Assuming that mathematical explanations are akin to 
explanations by constraint, Lange then argues that such similarity renders both 
representationalism and Platonism incapable of accounting for how mathematical facts play a 
role in mathematical explanations of physical phenomena, what he calls “distinctively 
mathematical explanations.” The basic idea is that mathematical facts cannot play the role of 
constraining and thereby explaining physical facts if they solely refer to physical or abstract 
properties, that is, “when there is no causal, nomological, constitutive, or similar connection 
between” the mathematical and physical facts.  He suggests instead adopting “Aristotelian 
realism”—where mathematics refer to real mathematical properties possessed by physical 
systems—as one possible view by which mathematical facts can function as explainers in 
distinctively mathematical explanations. 
 

Tan (2021) addresses the issue of what it takes for some apparatus to count as a 
scientific representation of a given system. According to the inferentialist account, the 
representational relation between a model and its target is constituted by the model’s 
inferential capacity; or, put otherwise, it is the fact that cognitive agents can make use of a 
model by drawing surrogative inferences is what constitutes the model’s representational 
status. However, as Tan argues, a serious problem (which he refers to as the problem of 
inconsistent idealizations) arises for the inferentialist account. The challenge amounts to the 
following: because many scientific models are internally inconsistent, following the rules of 
classical logic one may infer anything. Since anything can be inferred from a contradiction, and 
since what is constitutive of representation is that it is inferential, a model that is inconsistent 
may represent just about everything. Therefore, inferentialism about scientific representation 
must be amended. Tan then considers several possible options that may appear attractive for 
the inferetialists before deeming each unsatisfactory. As an alternative, he proposes his own 
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solution to the issue. First, Tan draws an analogy with computer games, claiming that internally 
inconsistent scientific representations are akin to games with exploitable glitches: the explosive 
inferences much like the glitches are “allowed,” but they violate the intended function of the 
model and the game, respectively. Second, while the intended function of any model is to 
provide information about the world, exploiting some features of logic to generate explosive 
inferences is not a part of that function. Finally, any usage of the model that violates the 
intended function cannot be considered as constitutive of a representational relation. Thus, 
inferentialism need not succumb to the challenge from inconsistently idealized models, 
provided that the inferentialist position is amended in the suggested way. 

 
Another puzzling question regarding the use of idealization concerns its role in making 

accurate predictions. In this context, key questions are what kinds of idealizations are safe to 
make? Do idealizations need to be made explicitly or are implicit idealizations safe as well? Do 
idealizations jeopardize the reliability of a model’s predictive power? Focusing on causal 
models, Strevens (2021) suggests that an idealization introduced into a model is safe, so long as 
it pertains to nondifferencemaking elements of the model. Crucially, Strevens considers two 
interpretations of the notion of differencemaking: one notion counterfactually driven and the 
other logically driven. While the counterfactual reading is rejected for exhibiting problems, the 
logical interpretation is championed. In particular, the logical approach to differencemaking is 
epistemically relativized in the following way: what makes a difference is indexed to an 
epistemic situation of the scientist, that is, what the scientist knows about a causal process. 
Based on such knowledge, the scientist then checks for what can be deleted from the model 
without affecting the prediction such as the occurrence of a phenomenon. Deletion here may, 
for example, take the form of keeping quiet on the presence of some causal factor, or making a 
description less specific by (for instance) replacing an exact value with a range of values. Finally, 
the information that has been removed may now be replaced by a misrepresentation (i.e., an 
idealization). For all this to work, however, the deletion, and thus also the misrepresentation, 
may only concern the non-differencemakers, whereas the differencemaking factors must be 
represented faithfully to maintain the models’ predictive potential. A consequence of such 
treatment of the safety of idealization with respect to the predictive power of a model is that 
predictive and explanatory criteria start resembling one another. Strevens concludes by arguing 
that the logical reading of the differencemaking notion grounds both prediction and 
explanation in the context of causal modeling. 
 
 In “Holistic Idealization: An Artifactual Standpoint,” Carrillo and Knuuttila (2021) argue 
for a position that does not make misrepresentation central for the analysis of idealization. The 
authors discuss two general approaches to understanding idealization. The first approach 
concerns deficiency accounts of idealization, according to which idealizations should in principle 
be corrected for (e.g., via de-idealization). Carrillo & Knuuttila suggest that this approach fails to 
account for the fact that sometimes idealizations are found to be epistemically useful without 
the need for them to be corrected. The second approach, benefit accounts of idealization, 
maintains that in many cases idealizations are necessary to facilitate explanation and 
understanding of phenomena. They point out that these accounts also rely on the premise that 
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models can be decomposed into individual modeling assumptions. As such, the authors point 
out that both approaches assume that idealization should be understood in terms of distortion. 
 
 In the process of arguing against the idealization-as-distortion view, Carrillo and 
Knuuttila offer an alternative: an artifactual account of idealization, which construes 
idealization in terms of implicit or explicit assumptions that simultaneously draw on many 
different resources in the process of model construction, often setting the stage for whole 
research programs. Such assumptions exhibit a holistic nature in that they represent the system 
of interest as being of a certain kind. Therefore, it is misguided to focus on analyzing 
idealization in terms of model-world comparisons and pondering which individual assumptions 
misrepresent and how. The authors illustrate these claims by analyzing two models of the nerve 
impulse. The Hodgkin-Huxley model represents the membrane as semipermeable, and by 
employing the idealization of constant capacitance it builds on previous models constrained by 
the choice to represent the cell as a resistor-capacitor circuit, thus constituting a whole 
research program. In contrast, the Heimburg-Jackson model represents the membrane as an 
elastic material undergoing phase transitions, rendering the phenomenon of the nerve impulse 
as a thermodynamically reversible phenomenon; thus it constitutes a different research 
program.  
 

Looking at a case in generative linguistics, Terzian (2021) broadens current philosophical 
discussions on idealization. A central question in the field of generative linguistics concerns how 
children acquire their native language given the time and input constraints. A long-held answer 
is the Principles and Parameters framework (P&P), which takes humans to be equipped with 
two types of linguistic resources: principles that are fixed and universal, and parametrized 
principles that take on either an “on” or “off” value. While P&P allows for explaining several 
phenomena, among others the observed homogeneity of language acquisition within and 
across linguistic communities, it fails as an actual explanation because it is inconsistent with the 
evolutionary account (i.e., the account of how a cognitive organ equipped to support language 
acquisition evolved, given the short time language has been around). Abandoning the P&P 
framework, as many have done, is valid so long one treats P&P as a would-be accurate, factive 
representation of its target. Terzian argues that P&P can and should be maintained provided it 
is re-interpreted in a certain way. Rather than comprising an ad hoc maneuver, Terzian presents 
reasons for justifying this move. First, Terzian identifies four idealizations characteristic of P&P. 
Second, he suggests that we re-conceive of P&P as a retrospective model. That is to say, rather 
than abandoning P&P, one may ascribe a different epistemic role to P&P by treating it as an 
idealized model of the target phenomenon. Given the level of idealization, Terzian proposes to 
view P&P as an instance of a (retrospective) toy model, serving as a vehicle of how-possibly 
understanding and explanation of the phenomenon of language acquisition. When viewed this 
way, the objection from the evolutionary account no longer poses problems since the P&P 
framework–interpreted along the sketched lines–is no longer treated as a would-be description 
of how-actually children acquire language. 
 
 The Second Law of thermodynamics is sometimes characterized as the claim that 
entropy never decreases in a closed system. But laws of superseded theories are idealizations 
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of sorts. The emergence of statistical mechanics had led us to expect that an analogous theory, 
statistical thermodynamics, more accurately represents and explains phenomena in the 
macroscopic realm such as equilibrium fluctuations and entropic behavior arising from time-
reversal invariant dynamics. Deduction of the laws of statistical thermodynamics from 
statistical mechanics thus accomplishes traditional Nagelian-Schaffner reduction. 
Unfortunately, a concrete candidate for statistical thermodynamics, which can be further 
reduced to statistical mechanics, has not been identified. In his contribution, Valente (2021) 
considers the prospect and limitations of a particular candidate theory for statistical 
thermodynamics, which is grounded in Einstein’s (1909, 1910) articles on statistical 
thermodynamics. Specifically, Einstein introduced a fluctuation law in order to provide a 
probabilistic account for thermodynamical equilibrium. Valente shows that, given qualification 
such as considering an isolated system with fixed energy, what he calls the ‘Problem of 
Equilibrium Fluctuations’ can be solved by re-defining statistical equilibrium so that a system 
can fluctuate in and out of equilibrium in agreement with Boltzmannian statistical mechanics. 
However, he argues that what he calls the ‘Problem of Irreversibility,’ which concerns 
explaining macroscopic irreversibility from a microscopic point of view, remains unsolved and 
thus impedes the Nagelian-Schaffner reduction of statistical thermodynamics to statistical 
mechanics. In particular, “even by weakening the Second Law and the Minus First Law of 
classical thermodynamics, one still runs into a conflict with the time-reversal invariance of the 
microscopic dynamics of statistical mechanics” (183). 
 

There are systems that are fundamentally distinct from one another and yet manifest 
salient commonalities via the universality of critical phenomena (CP), such as when fluids like 
oxygen, nitrogen, and neon, or even a ferromagnet, have order parameters that obey the same 
power law with the identical critical exponents. What explains the fact that such radically 
diverse systems manifest CP (i.e., the same critical exponents)? Typically, the standard scientific 
explanation concerns renormalization group RG) methods, where it is shown that under RG 
transformations Hamiltonians representing diverse physical systems all give rise to the same 
critical exponents (and thus are in the same universality class) as long as said Hamiltonians 
share certain symmetry and dimensionality properties. In various works (e.g. Batterman 2002 
and Batterman and Rice 2014), Batterman and co-authors have argued that RG explanations of 
CP involve an unrecognized and importantly novel explanatory structure. In contrast, some 
claim that RG explanations are paradigmatic examples of a “commonality strategy” that 
explains why diverse systems manifest the same behavior by identifying shared properties, viz., 
in our case Hamiltonian symmetry and dimensionality properties. In his paper, Rodriguez (2021) 
aims to clarify the similarities and lack thereof of RG explanations and typical commonality 
explanations such as those that arise in the ideal gas model and the harmonic oscillator. He 
argues that while the ideal gas model concerns constitutive-physical analogy and asymptotic 
reasoning, and the harmonic oscillator concerns abstraction and formal analogy, the case of CP 
concerns both constitutive-physical and formal analogy, where the latter is justified via RG 
methods. He holds that the “combination of these two explanatory strategies can account for 
the epistemic autonomy of CP universality from underlying microscopic representations” (235) 
and such epistemic autonomy partially supports Batterman’s novelty thesis. 
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