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Abstract

Scientists investigating the thermal properties of black holes rely heav-
ily on theoretical and non-empirical tools, such as mathematical deriva-
tions, analogue experiments and thought experiments. Although the
use of mathematical derivations and analogue experiments in the con-
text of black hole physics has recently received a great deal of attention
among philosophers of science, the use of thought experiments in that
context has been almost completely neglected. In this paper, we will
start filling this gap by systematically analyzing the epistemic role of the
two thought experiments that gave birth to black hole thermodynamics,
namely Wheeler’s demon and Geroch’s engine. We will argue that the
two main epistemic functions of these thought experiments are to reveal
and resolve inconsistencies, in line with El Skaf’s (2021) approach to TEs.
We will, then, go beyond El Skaf’s approach by stressing an important
difference between the strategies employed to assess the reliability of each
epistemic function.

1 Introduction

Black hole thermodynamics (BHT) is a discipline that combines theoretical
statements coming from three main theories: quantum mechanics, general rel-
ativity and thermodynamics. Although BHT has attracted a great deal of at-
tention in the last decades, it still lacks direct empirical support, which is not
surprising, given that black holes are experimentally inaccessible, barely observ-
able and surely unmanipulable systems. In this context, thought experiments
(TEs) instead of empirical (real or laboratory) experiments have proved to be
one of the most important tools for getting novel insights about the thermal
properties of black holes. But to what extent can we trust the results coming
from TEs in BHT? And what are the limitations of the knowledge that can be
obtained on the basis of TEs?

1



Some physicists (e.g. Susskind 2008, Polchinski 2017) have stressed the im-
portance of TEs for bringing to light paradoxes between fundamental theories
in the context of black holes, and some philosophers of science have even sug-
gested that black hole TEs can give some theoretical support to the idea that
black holes have thermodynamic properties. Curiel (2014), for instance, says:
“Why assume a classical black hole has an entropy in the first place? The best
answer to this is implicit in the series of thought-experiments”. (p. 16) Sim-
ilarly, Wüthrich (2019) argues: “Gedanken experiments concerning the limits
of the amount of thermodynamic work that can or cannot be extracted from
black holes lend some support to the idea that black holes are thermodynamic
in nature.” (p. 221).

However, despite the essential role that TEs seem to play in BHT, there has
been surprisingly little philosophical work on this topic. In fact, neither philoso-
phers of science working on the epistemology of (scientific) TEs nor philosophers
of physics working on BHT have carried out a systematic analysis on the use
of TEs in BHT yet1. On the one hand, philosophers of science working on the
epistemology of TEs (e.g. Norton 1991, 1996, 2004, Brown 1991, Nersessian
1992, Bokulich 2001, Stuart 2018, El Skaf 2021) have mainly focused on case
studies taken from the history of physics, from Galileo to Einstein’s TEs. On
the other hand, most of the philosophical work around BHT has focused either
on the main calculations that give theoretical support to the idea that black
holes are thermodynamic objects (e.g. Dougherty and Callender 2016, Wallace
2018, 2019, Belot, Earman, and Ruetsche 1999 and Earman 2011, Gryb et al.
2021) or on the use of analogue experiments, which are real experiments per-
formed in systems different but analogous to black holes (e.g. Crowther et al.,
2021; Dardashti et al., 2017, 2019).

We believe that this lack of philosophical attention on the use of TEs in
BHT is unfortunate. First of all, because BHT illustrates, perhaps better than
any other discipline, the importance of TEs in ongoing physics and, in this
way, it makes an interesting case study for the philosophical analysis around
TEs in science. Second, because, by being beyond the reach of direct empirical
testing, BHT is an ideal arena to understand the importance of TEs when direct
empirical evidence is entirely lacking. In this paper, we will start filling this
existing gap by systematically analyzing the role of TEs in BHT. In particular,
we will argue that the two main epistemic functions of TEs in black hole physics
are to reveal and resolve inconsistencies, in line with what has been defended
by El Skaf (2021). We will, then, go beyond El Skaf’s approach by stressing an
important difference between the strategies employed to assess the reliability of
each epistemic function.

This paper is organized as follows. In Section 2, we will introduce Wheeler’s
TE and Geroch’s engine TE. We will argue that Wheeler’s TE reveals a tension
between general relativity’s no-hair theorem and the second law of thermody-
namics, and we will then explain how Bekenstein (1972) attempts to resolve

1An exception is the paper by Weinstein (2021), which focuses on the use TEs in black
hole physics, but rather from a historical point of view.
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this tension by formulating the Generalised Second Law (GSL). We will, then,
introduce Geroch’s TE and argue that it reveals an inconsistency between other
statements of general relativity associated with the existence of an event horizon
and both the second law of thermodynamics and GSL. In the same section, we
will discuss different proposals suggested in the literature to solve this inconsis-
tency, including Bekenstein’s entropy bound (Bekenstein 1981) and Unruh and
Wald’s buoyancy effect (Unruh and Wald 1982). In Section 3, we will review the
philosophical literature on TEs with special focus on El Skaf (2021)’s account,
which stresses that the main functions of some TEs are to reveal and resolve
inconsistencies. In Section 4, we will re-evaluate Wheeler and Geroch TEs and
will argue that their main epistemic functions are to unveil well-hidden exter-
nal inconsistencies and to suggest possible ways to resolve them. Here, we will
extend El Skaf’s approach by pointing out that the justification of these two
epistemic functions substantially differ. After that, we will briefly discuss other
TEs used in black hole physics associated with the so-called “Information Loss
Paradox” and review some of the proposed resolutions. Finally, in Section 4.4,
we will discuss other theoretical tools that may play a role in the acceptance or
rejection of a given resolution, such as analogue experiments and mathematical
derivations.

2 TEs in Black Hole Physics: Wheeler and Ge-
roch

TEs are widely used in investigating BHT. As we have already noted, this is
unsurprising, given the nature of their object of inquiry. In this section, we will
introduce the TEs that initiated the field of BHT, namely Wheeler’s TE and
Geroch’s Engine TE. This will serve as a starting point for a more profound
analysis around these TEs, which will be carried out in Section 4.

2.1 Wheeler’s Demon and the Generalized Second Law

In a paper of 1980, Jacob Bekenstein recounts a discussion he had with John
Wheeler while writing his doctoral dissertation (Bekenstein 1980, p. 24). Dur-
ing this discussion, Wheeler suggested to Bekenstein to consider the following
situation: Two cups of tea at different temperatures are brought into thermal
contact. After a while they will equilibrate into a common temperature. One
should, then, imagine that a black hole is passing in front of them and that one
throws the two cups into it (see Figure 1). What happens then? A few months
later, Bekenstein came up with an answer in his celebrated paper “Black Holes
and the Second Law” (Bekenstein 1972), which is one of the papers that gave
birth to the field of BHT. In this paper, he reformulates Wheeler’s TE in the
following way:

Let an observer drop or lower a package of entropy into a black hole;
the entropy of the exterior world decreases. Furthermore, from an
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exterior observer’s point of view a black hole in equilibrium has only
three degrees of freedom: mass, charge and angular momentum [...].
Thus, once the black hole has settled down to equilibrium, there is no
way for the observer to determine its interior entropy. Therefore, he
cannot exclude the possibility that the total entropy of the universe
may have decreased in the process. It is in this sense that the second
law appears to be transcended. (Bekenstein 1972, p. 737)

One can see that instead of bringing two cups of tea together and then throw-
ing them into a black hole, Bekenstein simply imagined that an observer drops
a “package of entropy into a black hole”. Furthermore, in the description of
this experimental set-up, or what we call here “scenario”, he explicitly includes
a theoretical statement of general relativity (GR) known under the name of
“no-hair theorem”, which states that black holes are uniquely characterized by
three free parameters: mass, angular momentum, and the electric charge.2 This
means that, according to the no-hair theorem of GR, black holes are extremely
simple objects, so simple that an external observer will not be able to distin-
guish between black holes made from disparate kinds of matter, if they have
the same mass, charge and angular momentum (Ruffini and Wheeler 1971). A
consequence of this is that an external observer will not be able to measure
or observe any other property of a system that is “thrown” into a black hole,
including the entropy of a cup of tea. With that in mind, we can understand the
difficulty raised by Wheeler’s TE: Once the package of entropy is thrown into a
black hole, the no-hair theorem states that one cannot rule out the possibility
that the total entropy of the universe may have decreased in the process. This
is so, because an outside observer can no longer determine its inner entropy.

2The No-Hair Theorem comes from a remarkable series of results, collectively known under
the name of “no-hair theorem.”
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Figure 1 Illustration of Weehler’s original TE. In this experiment, it is
imagined that two cups of tea are dropped into a black hole

For Bekenstein (1972, 1980), Wheeler’s TE tries to show that the second law
can be “transcended”, which means for him that it loses its predictive power or,
in other words, that it is observationally meaningless. However, a closer look at
Weehler’s TE revails that it does not directly lead to the “transcendence” of the
second law, but instead that it unveils a tension between some of the theoretical
statements that are used to describe the experimental scenario. More precisely,
this TE reveals an inconsistency between Wheeler’s no-hair theorem and the
second law of thermodynamics, which states that the entropy of an isolated
system cannot decrease. Bekenstein himself seems to recognize this, when he
says:

[A]s a graduate student of Wheeler’s at Princeton I found “black
holes have no hair” distressing for a reason he brought home to me
in a 1971 conversation. The principle, he argued, allows a wicked
creature – call it Wheeler’s demon – to commit the perfect crime
against the second law of thermodynamics” (Bekenstein 1980, p.24).

Despite this comment, Bekenstein at the time did not see the inconsistency
revealed by the TE as a challenge for the validity of the no-hair theorem, but
only for the second law. We will come back to the analysis of this inconsistency
in Section 4.

Let us now look at how Bekenstein proposes to save the second law. His idea
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was ingenious and simple: In 1972, Bekenstein (1972) proposed to generalise the
second law of thermodynamics, so as to include the entropy of a black hole. More
precisely, he proposes that the sum of the change of the black hole entropy dSBH

and the common entropy outside the black hole dSM must never decrease or, in
his own words, that “common entropy plus black-hole entropy never decreases”
(Bekenstein 1972, p. 738). Formally, this can be written as follows:

dStotal = dSBH + dSM ≥ 0, (1)

which is now known as the Generalized Second Law of Thermodynamics (GSL).
Bekenstein (1972) defined the entropy of the black hole as proportional to

the surface area A of the event horizon of the black hole:

SBH =
ηkA

L2
p

, (2)

where Lp is the Planck length: (ℏG/c3)1/2, k is Boltzmann’s constant, and η
is a constant number of order unity. The choice of the area of a black hole as
a measure of its entropy is motivated by Christodoulou (1970) and Hawking’s
area theorem (Hawking 1971), which states that the area A of a black hole never
decreases:

dA ≥ 0. (3)

In fact, for Bekenstein, the area appeared “to be the only one of [the black
hole] properties having this entropylike behavior which is so essential if the
second law as we have stated it is to hold when entropy goes down a black
hole.” (Bekenstein 1972, p. 104).

Note that the black hole entropy (eq. 2) links a thermodynamic quantity
(entropy) with a gravitational one (surface area). Furthermore, it also estab-
lishes an important connection with quantum mechanics, since this link breaks
down in the classical limit ℏ → 0 (Bekenstein 1980). This means that Beken-
stein’s definition of black hole entropy establishes a deep relation between three
main theories: thermodynamics, general relativity and quantum mechanics.

2.2 Geroch’s Engine and the Entropy Bound

We have seen that Bekenstein’s strategy to exorcise Weehler’s demon was to
ascribe entropy to black holes. In his 1972 paper, he also discusses another TE
that was supposed to show that the second law of thermodynamics may be not
only “transcended” but manifestly violated. He describes this TE as follows:

A method for violating the second law has been proposed by GE-
ROCH: By means of a string one slowly lowers a body of rest mass
m and nonzero temperature toward a Schwarzschild black hole of
mass M . By the time the body nears the horizon, its energy as
measured from infinity, E = m(1−2M/r)

1
2 , is nearly zero; the body

has already done work m on the agent which lowers the string. At
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this point the body is allowed to radiate into the black hole until
its rest mass is m−∆m. Finally, by expending work m−∆m, one
hauls the body back up.

The net result: a quantity of heat ∆m has been completely con-
verted into work. Furthermore, since the addition of the radiation
to the black hole takes place at a point where (1 − 2M/r)

1
2 ≈ 0,

the mass of the black hole is unchanged. Thus the black hole ap-
pears to be unchanged after the process. This implies a violation
of the second law: “One may not transform heat entirely into work
without compensating changes taking place in the surroundings.”
(Bekenstein 1972, p.373)

Figure 2 Illustration of Geroch’s TE. In this experiment, it is imagined that a
box with entropy S is slowly lowered towards the event horizon
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In order to understand how this TE works, we need to understand some
details and assumptions underlying the scenario of the TE. This TE was men-
tioned by Geroch in a colloquium at Princeton in December 1971, which was
attended by Bekenstein. In this TE (from now on “Geroch’s TE”), Geroch
asked the audience to consider a heat engine that uses a Schwarzschild black
hole as an energy sink (Figure 2). Knowing that the Schwarzschild metric is:

ds2 = (1− 2Rg

r
)c2dt2 − dr2

1− 2Rg

r

− r2(dθ2sin2ϕ2), (4)

where Rg is the gravitational radius, defined as:

Rg =
GM

c2
, (5)

and M is the mass of the black hole, the experiment consist of the following
steps:3

1. We fill a box (red box in Figure 2) with heat radiation of energy E =
m(1− 2M/r)1/2, temperature T and entropy S. We assume that the box
and the rope have no weight. We also assume that the box has perfectly
reflecting walls.

2. We slowly winched the box towards the horizon of the Schwarzschild black
hole, so that r → 2Rg.

3. Since the total energy of the radiation consists of the heat energy and
gravitational energy, as the box descends, the negative gravitational en-
ergy grows, thus paying for the positive energy being given to the reser-
voir. Eventually, the gravitational energy cancels the positive heat en-
ergy, so that the total energy E of the body as measured from infinity
is nearly zero. In fact, since r → 2Rg, it follows from equation (5) that
E = m(1− 2M/r)1/2 goes to zero.

4. We then open the red box and allow radiation to escape to the black hole
until its rest mass is m−∆m.

5. The box can be pulled up back at expense of m−∆m, which means that
the quantity ∆m can be completely converted into work.

Since the energy goes to zero, the mass of the black hole must thus remain
unchanged in the process, which suggests that the black hole may end up in the
same state it began.

Furthermore, as stated in step 5, Geroch’s TE was used to show that a black
hole can run a Carnot cycle with a hundred percent efficiency. A consequence
of this is that the temperature of the black hole TBH must be zero. In fact, the
Carnot efficiency η of the heat engine is:

3Unless specified otherwise, we set G = c = k = ℏ = 1.
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η ≤ (1− TBH

TRa
), (6)

where TRa is the temperature of the radiation coming from the box and TBH is
the temperature of the black hole. If all the energy is converted into work, then
it follows that the efficiency is 1 and, consequently, TBH = 0. Geroch, in fact,
used this argument to stress that black holes are systems at zero temperature
(Weinstein 2021; Wald 2020). However, if black holes were in fact systems at
zero temperature, this would imply not only a violation of the second law, but
also of GSL, because this law assigns a finite non-zero entropy to the black hole,
which, according to the first law of black hole thermodynamics, also requires
attributing a finite non-zero temperature to black holes (we will come back to
the analysis of this inconsistency in Section 4).4

According to Wald (2020), Bekenstein was concerned about these results,
precisely because they appeared to contradict GSL.

It seems clear that Bekenstein must have immediately realized that
assigning an absolute zero physical temperature to a black hole
would lead to severe consistency problems with black hole thermo-
dynamics. In particular, Geroch’s suggestion of lowering a box of
matter containing entropy all the way to the horizon of a black hole
could certainly be used to violate any proposal for a generalized sec-
ond law, since, in this process, entropy would be lost, but the black
hole would end up in the same state in which it began. (Wald 2020,
p. 6)

Hawking’s (1974) prediction that black holes emit radiation with tempera-
ture T = κ/2π, that is, proportional to its surface gravity κ, gave important
support to BHT, but the problem raised by Geroch’s TE remained (Wald 2020).
Indeed, if one could lower a box arbitrarily close to the horizon, the entropy of
the box could still escape to the black hole without increasing the black hole
area. This would be in contradiction with GSL, because the entropy in the
exterior of the black hole would decrease without an increase in the entropy
of the black hole, dSBH = 0, which is associated with its area. This means:
dStotal = dSM < 0.

The latter motivated Bekenstein to find a resolution for the TE that salvaged
GSL. He had the intuition that in order to violate GSL by lowering a box towards
a black hole, the box would have to be extremely close to the horizon before
dropping radiation in and he doubted that this was physically possible (Wald
2020). In his 1981, he proposes a resolution that became known as “Bekenstein
bound”5:

4The general form of the first law of black hole thermodynamics takes the form: δM =
k
2π

δSBH + δJ + ..., where “...” denote possible additional contributions coming from long
range matter field and SBH = A/4 (see Wald 2001 for details).

5The basic idea of a physical bound was already present in earlier papers (e.g. Bekenstein
1973, 1974)
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In fact, black-hole physics yields a specific form for the upper bound
on S/E for systems with negligible self-gravity. According to the
generalized second law of thermodynamics, the sum of the thermal
entropy outside a black hole and the black hole entropy (1/4 of the
horizon’s surface area) should never decrease. Now, it has long being
known that when a stationary hole absorbs a body with negligible
self-gravity, energy E and effective radius R (...), the hole’s surface
area must increase by at least 8πER. Since one can arrange the
absorption process so that this minimal increase can be attained,
the second law will be violated unless the body’s entropy (what
disappears from the hole’s exterior) cannot exceed 2πER. Thus we
obtain the bound on S/E to weakly gravitating bodies (Bekenstein
1981, p. 288).

The basic idea was, then, to impose a physical bound that cannot be exceed
by the box or any other physical system. The Bekenstein bound is:

S/E ≤ 2πR, (7)

where S is the entropy, E is the energy, and R is the effective (or “circumscrib-
ing”) radius of the body, when the radiation is dropped into the black hole.
This bound is derived from an equation that determines the mass increase of
the black hole when radiation is dropped into it (see Bekenstein 1981 for de-
tails). Bekenstein, then, stresses that if S does not exceed 2πER, then GSL
would not be violated. However, in the following subsection, we will discuss
some objections to this resolution.

2.3 Other Resolutions of Geroch’s TE

As Robert Wald (2020) recalls it, he and Bill Unruh were unhappy with Beken-
stein 1981’s resolution of Geroch’s TE for two main reasons: (i) The bound
didn’t appear to be sufficiently general and robust to avoid a violation of the
generalized second law. In fact, they point out that if one uses, for instance, a
rectangular box instead of a square box, it would be necessary for the quantity
“R” in the bound to be the shortest dimension of the box, whereas the argu-
ments in favor of the bound took R to be the largest dimension. They also point
out that if one imagines increasing the number of species n of massless particles
in nature, then one could make the S/E ratio arbitrarily large for a given R,
thus violating Bekenstein bound (Unruh and Wald 1982). (ii) They also thought
that the consistency of black hole thermodynamics should not depend on some
property of matter that would not otherwise be needed for the consistency of
thermodynamics. In other words, they took Bekenstein’s solution to be ad hoc.

Motivated by these concerns, Unruh and Wald (1982) came up with a dif-
ferent resolution of Geroch’s TE that can be summarized as follows. They first
noted that quantum effects, like Hawking radiation, are very small for large
black holes, but they become important for quasi-stationary bodies near the
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horizon, such as the case of a box of energy E and entropy S being slowly low-
ered towards the horizon. In fact, they showed that these bodies would undergo
an enormous acceleration and therefore feel the effects of the quantum “thermal
atmosphere” surrounding the black hole. They then argued that the tempera-
ture gradient in this thermal atmosphere will produce a pressure gradient and,
therefore, a buoyancy force on the box, which becomes infinitely large in the
limit as the box is lowered towards the horizon. The result is that this buoyancy
force will prevent Geroch’s box from reaching the horizon. In fact, the optimal
place from which to drop a box of matter into the black hole will no longer be
the horizon but rather the “floating point” of the box, which corresponds to
the point in which the weight of the box is equal to the weight of the displaced
thermal atmosphere. Finally, they showed that the minimum area increase of
the black hole when dropping the matter into it from the floating point is no
longer zero, but the amount just sufficient to prevent a violation of GSL.

However, the discussion did not end there. In a series of papers, Bekenstein
(e.g. 1983, 1994, 1999) criticized Unruh and Wald’s resolution, by pointing out
potential deficiencies in their analysis. In 1994, for instance, he showed that
under certain assumptions concerning the size of the box and the location of
the floating point, the buoyancy force of the thermal atmosphere can be shown
to be zero, which means that this resolution cannot assure the validity of GSL
for all cases. In 1999, Bekenstein showed that under other conditions, the box
size at the floating point can be smaller than the typical wavelengths in the
thermal atmosphere, which can likely decrease the magnitude of the buoyancy
force. Unruh and Wald responded to these and other criticisms in a series of
papers (Unruh and Wald 1983, Pelath and Wald 1999). However, they never
reached a consensus and the question of whether the appeal to the buoyancy
force is the best strategy to resolve the contradictions posed by Geroch’s TE
remained open (Page 2020, Wald 2020).6

More recently, some physicists have suggested an alternative entropy bound,
namely: S ≤ A/4, which is associated to the “holographic principle” that
roughly states that the physics in every spatial region can be described in terms
of the degrees of freedom associated with the boundary of the region (’t Hooft
1988, Susskind 1995). This bound has the advantage that it does not make
reference to E and so it avoids problems associated with defining E in curved
spacetime. However, like Bekenstein’s bound, it may fail for physically reason-
able systems (Wald 2001). We will come back to the discussion on the robustness
of the proposed resolutions in Section 4.2.

3 On the Epistemology of TEs in the History of
Science

In the two case studies examined in Section 2, it appears that physicists have
arrived at important results in BHT by reasoning through TEs. In fact, in-

6Jacob Bekenstein passed away in August 2015.
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stead of conducting direct empirical (real world or laboratory) experiments,
which could potentially provide new empirical data, physicists have based their
discussion on merely imagined experimental set-ups. For empirically minded
philosophers of science, this is extremely puzzling, since it appears that scien-
tists have gained some new insight about the physical world, in this case about
black holes, without conducting any direct empirical experiment.

In the philosophy of science literature, philosophers have tried to explain
such “epistemic magic” (Norton, 2004), by focusing on other TEs, mostly from
the history of science, such as Galileo’s falling bodies TE (Gendler 1998; El
Skaf 2018; Palmieri 2005) and several TEs suggested by Einstein (El Skaf 2021;
Norton 1991). In this section, we will briefly review this literature with special
focus on a recent account defended by El Skaf (2021), which, as we will argue
in Section 4, can help us identify and understand the most important epistemic
functions of TEs in BHT.

3.1 What Can We Learn From TEs and How?

In the discussion around TEs, philosophers of science have tried to answer the
following two interrelated questions. The first is what kind of new insight do
TEs provide. In other words, what is their epistemic function. The second is how
can TEs lead to this identified new insight, and that without any new empirical
data. Unsurprisingly, philosophers of science have given different answers to the
first question. For instance, Norton (e.g. 1991, 1996, 2004) has argued that TEs
can always be reconstructed as deductive or inductive arguments. This means
that the new insight that TEs provide depends on the type of argument that
can be reconstructed on the basis of a TE. If the argument constructed from a
TE is deductive, the TE would just serve to rearrange our existing knowledge
without adding new content to our web of beliefs. If the argument is inductive,
the TE could generalize our knowledge, in the same way as inductive arguments
do.

Brown (1991) has defended a different approach. In contrast to Norton, he
does not identify TEs with arguments and provides a detailed taxonomy of the
different types of TEs, which are associated with different epistemic functions of
TEs, such as constructive, conjectural and “platonic”. The most interesting type
are platonic TEs, which, according to Brown, can provide us with a priori access
to the laws of nature, and this without any new empirical data.7 In contrast to
Brown, Bokulich (2001) has defended that TEs test the non-empirical virtues of
our theories, such as consistency and explanatory power. More recently, Stuart
(2018) has argued that TEs provide us with understanding, not knowledge.

The second question, namely how can TEs generate new insight without any
new empirical data, has attracted much attention in philosophy. For instance,
in Norton’s view (1991, 1996, 2004), TEs are just arguments and, therefore,
the conclusion obtained on the basis of TEs is justified in the same way as

7Brown identifies Galileo’s falling bodies and EPR as instances of platonic TEs (see Brown
1991 for more details and El Skaf 2018, 2021 for criticism).
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the conclusion of inductive or deductive arguments. In addition, Norton (1991)
contends that the particular experimental details of the imagined experimental
arrangement are irrelevant and, thus, eliminable from the final reconstructed
argument. This has been called “Norton’s Elimination Thesis” (see Gendler
1998; Brendel 2018; El Skaf 2021).

Contrary to Norton, defenders of the so-called “mental model” account of
TEs (e.g. Nersessian 1992, 2007; Mǐsčević 1992) have criticized the idea that
TEs are just arguments and they have rejected the view that the justificatory
power of TEs can be reduced to the logical structure of their propositional con-
tent, and that the experimental details are irrelevant and eliminable. Instead,
these accounts, albeit different on their definition of what a mental model is,
share the idea that the imagined experimental arrangement of a TE is an essen-
tial vehicle that enables us to construct and reason on non-propositional mental
models. Nersessian (1992, 2007), for instance, argues that it is the representa-
tion relation (usually a structural similarity) between the imagined system and
the real world phenomena what does the justificatory work. According to this
view, we acquire new knowledge about the real world target system by mentally
modelling a structural analogue of that system and not by mentally reasoning
through a set of logically related propositions.

In the following section, we will focus on a different account on thought
experiments, which has been recently proposed by El Skaf (2021). This account
explicitly addresses the two questions mentioned above and, as we will argue in
section 4, provides a useful framework for identifying and understanding some
important epistemic functions of TEs in BHT.

3.2 TEs that Reveal and Resolve Inconsistencies

In his account on TEs, El Skaf (2021) argues, contra Norton, that TEs should
not be identified with arguments, even though they may contain important
pieces of argumentation. In addition, he contends that the imagined experi-
mental arrangements are not eliminable. To the contrary, they are crucial for
the epistemic functions of TEs. Contra Brown, he argues that the constructive
conclusion of a TE should not be understood as an inference of new a priori
laws, but rather as a resolution of an inconsistency revealed by a TE, which
has conjectural character. Contrary to mental model accounts, he remains plu-
ralist as to the cognitive processes called upon when reasoning through a TE.
For him, the cognitive processes can be propositional and non-propositional (El
Skaf 2021, pp 6133-6135). However, the most important aspect of El Skaf’s
approach is that the principal functions of an important class of TEs are to
“reveal” and “resolve” inconsistencies. Although most accounts of TEs in the
literature would agree that some TEs reveal and resolve inconsistencies, El Skaf’s
account is centered around these functions and it offers a systematic analysis
of the type of inconsistency revealed by a TE and the conjectural character of
its possible resolutions.8 More precisely, El Skaf (2021) identifies the following

8We do not exclude in this paper that some TEs could have different functions than that
of revealing and resolving inconsistencies, we are merely concentrating here on TEs that do
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structure in the case studies that he considers (these include Galileo’s falling
bodies, Maxwell’s demon, Einstein’s photon-boxes):

• Step 1: Target Theoretical Question(s) Scientists identify a target
question(s) and use a TE to answer it(them).

• Step 2: Scenario They imagine a particular scenario, which contains
a more or less well-described hypothetical or counterfactual experimental
arrangement. The scenario of a TE is mainly composed of the following
elements:

1. Theoretical/empirical statements

2. Hypothetical or counterfactual experimental arrangement, involving
objects and things that happen to (or are performed by) them.

3. Idealizations and abstractions

• Step 3: Unfolding of the Scenario They “unfold” the scenario, which
basically means that they apply the theoretical statements involved in the
experimental set-up to describe and trace the execution of the experimen-
tal arrangement.

• Step 4: Output of the Unfolding (OU) If the unfolding of the scenario
is correctly done, they obtain a proposition as an output. 9

• Step 5: Inconsistency revealed The interpretation of the OU can
reveal a real or apparent (external) inconsistency.

• Step 6: Inconsistency Resolved The scientist offers a way out of the
inconsistency revealed in Step 5 in the form of a conjecture, which is a
hypothesis to be further explored and tested by future theoretical devel-
opments and, ideally, empirical confirmation.

The details of this structure are not important for our purposes, but there
are three aspects of this account that will be crucial for our analysis of the
epistemic role of TEs in BHT, which will be carried out in Section 4.

First, this account requires us to explicitly identify the theoretical statements
that are grouped together in a TE (step 2) and to analyze their role in describing
the execution of an imagined experimental arrangement (step 3). Indeed, it is
mainly the application of different theoretical statements (step 3) what provides
us with a result (OU) in the imagined TE. More precisely, given that it is
a thought, and not an empirical, experiment, the OU is mainly obtained by
applying different theoretical statements to a given experimental set-up and
following their consequences through. Importantly, according to El Skaf (2021),
the experimental set-up is not eliminable, contrary to what Norton suggests.

reveal and resolve inconsistencies.
9It is important to distinguish the result of such unfolding, the OU, from the conclusions

of the TE (i.e. steps 5 and 6 respectively). This is sometimes conflated in the literature on
TEs.
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The second aspect is also related to the non-eliminability of the experimental
details. Following Krimsky (1973), El Skaf (2021) distinguishes between internal
and external inconsistencies. He, then, argues that the main aim of TEs is to
reveal external ones. Briefly, the difference between these two kinds of inconsis-
tencies is the following. A set of theoretical statements is said to be “internally
inconsistent”, if we can derive a contradiction by simply grouping these generally
formulated statements together, without the need to apply them to a particular
set-up. For instance, it could be argued that we get an internal inconsistency if
we group together generally formulated theoretical statements from Newtonian
mechanics, such as those allowing for instantaneous action at a distance, and
theoretical statements from relativity theory, such as those allowing only for
local action. On the other hand, a set of theoretical statements is said to be
“externally inconsistent” when they do not contradict each other directly or at
least in appearance, but a contradiction is manifested when they are applied to
a particular set-up. For instance, when we group together Einstein’s locality
and separability principles with statements coming from quantum mechanics,
no contradiction seems to follow. However, if these statements are confronted
in a scenario such as Einstein’s imagined experimental set-up (e.g. EPR and
proto-EPR photon-box), an inconsistency between locality/separability and the
completeness of quantum mechanics will be revealed.10 One of the main func-
tions, then, of the scenario of a TE is to provide an adequate hypothetical
or counterfactual experimental set-up in which different theoretical statements,
coming sometimes from disparate theories, can be grouped together and be con-
fronted. We will argue in Section 4 that the case of BHT makes particularly
salient that the role of many TEs is to reveal external inconsistencies. This is
so, as we will argue, because BHT essentially groups and confronts statements
coming from different theories, such as general relativity, quantum mechanics
and thermodynamics, which were initially used to describe different domains
and different length scales.

Finally, and more importantly, this structure clearly distinguishes between
two main conclusions that can be obtained by means of a TE, that is, the
revelation and the resolution of an inconsistency (steps 5 and 6). According
to El Skaf (2021), each of these conclusions has its own epistemic force and
merits. He points out that while the revelation of an inconsistency is “the
most robust conclusion”, because it clearly indicates that there is something
in our theoretical web of beliefs that must be changed, the resolution of an
inconsistency has conjectural character and it is best interpreted as guiding
future research programs.

In the next section, we will see that the distinction between these two epis-
temic roles of TEs is particularly important in the case of BHT. In fact, we
will go beyond El Skaf’s (2021) approach by arguing that also the reasons to
trust the revelation and the resolution of an inconsistency substantially differ.
More precisely, we will argue that black hole TEs provide us with a hypothet-
ical or counterfactual situation in which the domain of disparate theories that

10See Bokulich 2001 and El Skaf 2021 for a philosophical discussion around these TEs.
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normally describe different length scales can be unified. The revelation of an
inconsistency in such a scenario should be, then, taken as conclusive knowledge,
provided that the TE is “successful”11. Moreover, since we are arguing that
the revelation of an inconsistency should be interpreted as conclusive knowl-
edge, this means that performing a direct empirical experiment with a similar
set-up would not necessarily improve our knowledge of the alleged inconsistency
between theoretical statements. In contrast, we will argue that the resolution
of an inconsistency should be interpreted as conjectural and not as conclusive
knowledge. El Skaf (2021) suggests that in order to provide evidence for a cer-
tain resolution, one should go beyond the TE. However, he does not suggest any
potential ways of providing evidence for a certain resolution in cases in which
direct empirical evidence is absent. Focusing on the case of BHT, as we will
see next, will encourage us to consider alternative theoretical and non-empirical
ways of providing evidence in such cases. In particular, we will suggest that
robustness tests, theoretical arguments (such as direct calculations), and even
analogue experiments could be potentially used to provide evidence in favor of
a particular resolution in cases in which direct empirical evidence is lacking.

4 Thought Experiments in Black Hole Thermo-
dynamics

We have seen that the philosophical debate on the epistemology of TEs has
mainly focused on examples from the history of science instead of examples
from ongoing physics. In this Section, we aim to expand this literature by
analyzing the epistemic roles of the two TEs introduced in Section 2, as well as
other TEs in BHT. We will conclude that the most important roles of black hole
TEs are to unveil inconsistencies between different theoretical statements and
to suggest possible ways of resolving them. We will, then, stress the conjectural
character of the possible resolutions and discuss different empirical and non-
empirical tools that can potentially provide evidence in favor of the plausibility
of a given resolution.

4.1 Reinterpreting Wheeler’s Thought Experiment

In Section 3, we explained that according to El Skaf (2021), the most important
functions of many TEs are to reveal and resolve inconsistencies. A careful
examination of Wheeler’s TE shows that its main functions are precisely those.
In fact, as we noted in Section 2, Wheeler’s TE reveals an inconsistency between
(i) the no-hair theorem of classical general relativity and (ii) the second law
of thermodynamics. This inconsistency, and the assumption that the no-hair
theorem is true, motivated Bekenstein to propose a resolution. This resolution
consisted of modifying the second law of thermodynamics and introducing a

11There are different ways in which a TE may not be successful, for instance, if the theoret-
ical statements are not correctly applied or the idealisations are not justified. We will come
back to this in the discussion of Wheeler and Geroch’s TEs carried out in Section 4.
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generalized second law, which attributed an entropy to black holes that was
proportional to the surface area (eq. 2). As Raphael Bousso nicely puts it:
“the no-hair theorem poses a paradox, to which the area theorem suggests a
resolution.” (Bousso 2002, p. 830). Moreover, the following analysis of this TE
shows that it nicely satisfies the structure associated to an important class of
TEs, which we described in section 3.2:

• Step 1: Target Theoretical Question(s) Wheeler wanted to test the
compatibility of thermodynamics and general relativity in the context of
black holes.

• Step 2: Scenario He considered a counterfactual situation, recreated
later by Bekenstein in 1972, in which two cups of tea were thrown into
a black hole (Figure 1). This includes several auxiliary assumptions and
idealizations, such as the stationarity of the black hole.

• Step 3: Unfolding of the Scenario Wheeler and Bekenstein later “un-
folded” the scenario, which means that they applied certain theoretical
statements, such as the no-hair theorem and the second law of thermody-
namics to the set-up described in Figure 1.

• Step 4: The OU They obtained the following outcome: the total entropy
of the universe may have decreased in the process.

• Step 5: Inconsistency revealed They interpreted the OU as a “tran-
scendence” of the second law of thermodynamics.

• Step 6: Inconsistency resolved The second law was modified (gen-
eralized), so as to include the entropy of black holes. More precisely, it
was reformulated as “common entropy plus black-hole entropy never de-
creases.” (Bekenstein 1972)

Following Krimsky (1973)’s distinction between internal and external incon-
sistencies that we explained in Section 3, the character of the inconsistency
revealed between the no-hair theorem and the second law should be rather in-
terpreted as external. In fact, nothing at first sight seems to link the general
relativity’s no-hair theorem and the second law of thermodynamics. The first
is a statement about the degrees of freedom of a black hole, whereas the second
is a statement about the change in the entropy of an isolated system left to
spontaneous evolution. It was rather Wheeler’s TE what provided us with a
counterfactual scenario, in which it was possible to confront these statements
from general relativity and thermodynamics. In other words, Wheeler’s scenario
helped us unify the domains of these different theoretical statements, so that
we could test their mutual consistency. Once this scenario was constructed, a
logical inconsistency was conclusively revealed.

It is important to point out, however, that we are assuming here that the
scenario was adequately constructed and appropriately unfolded. In fact, it is
possible in principle to “block” the inconsistency revealed by a TE, for example,
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by showing that the theoretical statements are not adequately applied or that
the idealizations are not justified. In this case, for instance, it is assumed
that black holes are stationary, which means that they are “in equilibrium”.
This is an idealization, which is required to formulate the laws of BHT and to
characterize black holes in terms of a small number of parameters. One may
question the legitimacy of this idealization, but there are some reasons to think
that this idealization may be appropriately justified. (Heusler 1996, Wald 2001)

According to Bekenstein (1972), the apparent inconsistency between the no-
hair theorem and the second law cried for a resolution. He says: entropy is
“necessitated by [Wheeler’s TE]. Without it the second law is definitely tran-
scended. With black-hole entropy the second law becomes a well-defined state-
ment susceptible to verification by an exterior observer.” (Bekenstein 1972, p.
738) As we mentioned in Section 2.1, Bekenstein suggested, then, to generalize
the second law by attributing entropy to black holes, a quantity that was propor-
tional to its area. However, we should note that nothing in the TE, or in any TE
for that matters, forces us to accept a specific resolution. In this particular case,
nothing in Wheeler’s TE logically forces us to modify or generalize the second
law, so as to include the entropy of the black hole. In fact, Bekenstein’s pro-
posal initially appeared to be largely speculative and physically implausible.12

Indeed, the attribution of an entropy to black holes was for many physicists
counterintuitive, since it appeared to relate a mathematical theorem in differ-
ential geometry, namely the area theorem, with a statistical law, namely the
second law of thermodynamics (Wald 2001). Furthermore, for some scientists,
the apparent tension between the no-hair theorem of general relativity and the
second law of thermodynamics did not even required a resolution. Wald (2019),
for instance, says:

My own view at the time was that the second law of thermodynam-
ics is a statistical law, not a fundamental law, so its “transcendence”
would be more palatable than the transcendence of an apparently
fundamental law like baryon conservation. Thus, I was quite com-
fortable with the transcendence of the second law of thermodynam-
ics. But Wheeler did not feel this way. (Wald 2020, p. 5)

The above shows that other resolutions for Wheeler’s TE were possible in
principle. The most straightforward one would have been simply to bit the bullet
and accept that the second law was transcended, which appears to correspond
to Wald’s initial attitude towards this problem at the beginning of the 1970’s.
Another reason to be suspicious about Bekenstein’s resolution was the belief
that black holes were systems at absolute zero temperature, which was also

12Almeida (2021), for instance, suggests that Bekenstein’s resolution of Wheeler’s TE may
have been inspired by Brillouin’s resolution of Maxwell’s demon, a well known series of TEs in
physics. More precisely, in 1950, Leon Brillouin proposed a resolution of Maxwell’s TE based
on information theory. According to Almeida, this inspired Bekenstein to address Wheeler’s
TE, which Bekenstein named “Wheeler’s demon”, in a similar way. (See Earman and Norton
1998,1999, Norton 2005, 2013, El Skaf 2017, for a philosophical analysis of Maxwellian demons
TEs).
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supposed to be a consequence of Geroch’s TE (see Section 4.2). As Wald (2020)
puts it:

However, at the time, I felt that this was an utterly ridiculous project
to work on. First, as already mentioned, I was not troubled by
the apparent transcendence of the second law of thermodynamics.
Second, the analogy between the second law and the area theorem
seemed extremely artificial; it seemed quite unnatural to me to try
to marry a statistical law with a mathematical theorem. But, most
importantly, in the absence of a fully developed quantum theory of
gravity, what could one possibly show and/or how could one possibly
argue for the validity of any highly speculative ideas on black hole
entropy that one might propose? (p. 5)

An important question is, then, what convinced Wald and an important part
of the scientific community working in BHT that Bekenstein’s resolution was the
correct solution of Wheeler’s TE. A careful examination of the discussion around
possible resolutions of Wheeler’s TE shows that it was principally Hawking’s
prediction that black holes emit radiation with temperature proportional to
the surface gravity what convinced them about the plausibility of Bekenstein’s
resolution. Wald (2020) makes this explicit, when he says:

Then, a miracle occurred! In 1974, Hawking calculated particle cre-
ation effects for a body that collapses to a black hole, and he made
the amazing discovery that a distant observer will see a steady, ther-
mal distribution of particles emerge at a temperature T = k/2π. So,
a black hole truly has a nonzero physical temperature proportional
to its surface gravity! Black hole thermodynamics now appeared
to be entirely consistent. In particular, if one placed a black hole
in a radiation bath of temperature Tbathk/2π the black hole radi-
ation would dominate over absorption, and the generalized second
law would hold. The entropy SBH = A/4 could now be interpreted
as the physical entropy of the black hole – with the unknown con-
stant in Bekenstein’s original proposal now fixed by the value of the
Hawking temperature. Bekenstein was right! (p. 7)

It is important to point out, however, that Hawking’s prediction was not
the result of an empirical observation, but rather of what appeared to be an
unimpeachable mathematical derivation. The analysis of Geroch’s TE in the
next sections will reveal that apart from mathematical derivations, robustness
tests (the possibility to replicate the experiment under different conditions)
and analogue experiments may also play a role in the acceptance of a given
resolution.

4.2 Understanding the Role of Geroch’s Engine in BHT

Let us now return to Geroch’s engine TE. In this TE, we are grouping together
statements from classical general relativity, thermodynamics, and quantum me-
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chanics. We explained that, classically, if we lower the box close to the horizon
before dropping the radiation in, one could recover all of the energy that was
originally in the box as “work” (Figure 2). Since no energy would be delivered
to the black hole, the first law of black hole thermodynamics implies that the
black hole area A would not increase. However, this is in contradiction with
Bekenstein’s formulation of GSL, which associates the entropy of a black hole
with the area (eq. 2). Furthermore, since in Geroch’s TE, it is possible in
principle to convert heat into work with 100% efficiency, this implies that the
physical temperature of a black hole is absolute zero. This is in contradiction
with the assignment of finite non-zero temperature to the black hole, as required
by the first law of black hole thermodynamics, if one assigns a finite non-zero
entropy to the black hole (details in Wald 2001). In sum, it seems that the main
function of Geroch’s TE is to reveal a contradiction between the properties of
the horizon according to classical general relativity (such zero energy and zero
temperature) and both the first and the generalized second law of black hole
thermodynamics as well as to suggest possible ways of resolving them. Fur-
thermore, like Wheeler’s TE, we see that Geroch’s TE also has the structure
associated with TEs that we described in Section 3.2:

• Step 1: Target Theoretical Question(s) Geroch probably wanted to
test the compatibility between thermodynamics and general relativity in
the context of black holes.

• Step 2: Scenario He considered a counterfactual situation, in which
one lowers a box filled with radiation of high entropy matter all the way
to the horizon of the black hole before dropping the radiation in (Figure
2). This situation involves several auxiliary assumptions and idealizations,
such as the stationarity of the black hole and the stationarity of the entire
spacetime.

• Step 3: Unfolding of the Scenario Geroch “unfolded” the scenario,
which means that he applied certain theoretical statements, such as the
properties of the horizon according to classical general relativity and the
laws of black hole thermodynamics.

• Step 4: The OU He concluded that in that particular scenario, all of
the “heat” of the matter could be converted to “work” in the laboratory
from which one did the lowering.

• Step 5: Inconsistency revealed Bekenstein (1972) interpreted the OU
as if, in this particular scenario, it was possible to run a Carnot cycle
with 100% efficiency, which was in contradiction with the second law of
thermodynamics. Furthermore, since no energy would be delivered to the
black hole, and the first law of black hole thermodynamics implies that
the black hole area A would not increase, he later (1973) interpreted this
result as contradicting his GSL, which associates the entropy of a black
hole with the area.
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• Step 6: Inconsistency resolved Bekenstein (1981) imposes a physical
bound (nowadays known as “Bekenstein bound”) that cannot be exceeded
by the box or any other physical system. Other alternative resolutions
have also been suggested, most notably by Unruh and Wald (1982, 1983).

As in the case of Wheeler’s TE, the scenario helps us conceive a hypothetical
situation in which we unify the domain of theories that were usually used to
describe disparate domains, such as thermodynamics, classical general relativity
and also quantum mechanics. Applying theoretical statements to this scenario
(unfolding the scenario) reveals a logical contradiction between statements of
general relativity and black hole thermodynamics, which was well hidden before
running the TE. Like the case of Wheeler’s TE, if we assume that the experiment
is successful, that is, if we assume that the theoretical statements are adequately
applied and the idealizations are justified, we should interpret the revelation of
this inconsistency as conclusive knowledge. It is important to point out, however,
that it is always possible to “block” the inconsistency by challenging some of the
assumptions made in the scenario. For instance, an assumption that has been
matter of controversy is the stationarity of the entire spacetime. The assumption
of stationarity of the black hole and stationarity of the entire spacetime appears
to be essential to relate changes in quantities defined at the horizon (like the
area) to changes of quantities defined at infinity (like the mass and the angular
momentum). However, one would expect that the equilibrium behavior of a
black hole would require only a form of local stationarity at the horizon, which
would allow one to formulate the first law of black hole thermodynamics in
terms of local definitions of quantities like mass and angular momentum at the
horizon (Wald 2001). The latter motivated Lewandowski (2000) to replace the
stationarity assumption by the notion of an isolated horizon, which does not
require the entire spacetime to be stationary.

In contrast to the revelation of an inconsistency by means of Geroch’s TE,
resolving this inconsistency has an intrinsic conjectural character. Indeed, the
fact that there is still no consensus with respect to the best resolution of Geroch’s
TE makes the speculative character of potential resolutions particularly clear.
In contrast to Wheeler’s TE, there has been no resolution of Geroch’s TE that
has been widely accepted by the scientific community working on black holes.
We believe that one of the reasons for this is that mathematical derivations do
not favour one resolution over the others. For instance, Hawking’s derivation
supported Bekenstein’s insight that the temperature associated to black holes
corresponded to a truly a physical temperature, but it did not solve the paradox
revealed by Geroch’s TE. More to the point, if one could lower the box arbitrarily
close to the horizon, one could still get rid of the entropy without increasing
the area. In this case, Hawking’s prediction that black holes radiate would not
help, since for arbitrarily large black holes, quantum effects and the Hawking
temperature would be arbitrarily small (Wald 2020).

Since mathematical derivations have not offered a compelling and rebuttal
argument supporting a particular resolution of Geroch’s TE yet, robustness
arguments have played a central role in the discussion. We take robustness
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tests as repetitions of the TE under slightly different circumstances, for instance,
changing the shape of the box in Geroch’s TE. Our analysis in Section 2 shows
that robustness tests have been used from both sides, that is, from Bekenstein’s
side as well as Unruh and Wald’s side to invalidate alternative resolutions. As
we explained in Section 2.3, Wald and Unruh (1982, 1983) presented different
counterexamples of Bekenstein bound that would challenge the robustness and
generality of Bekenstein’s resolution. As Page (2005) puts it:

Perhaps the main difficulty is how to give precise definitions for the
system and for its S, E and R (Bekenstein 1982). For various choices
of those definitions, one could easily come up with counterexamples
to the conjecture. (Page 2005, p. 12)

Similarly, Bekenstein (1983, 1994, 1999) tried to invalidate Unruh andWald’s
(1982) results by pointing out situations in which the appeal to a bouyancy force
would not suffice to prevent a violation of GSL. Although counterarguments have
been given, the discussion remains open until now (Wald 2001, 2020, Pelath and
Wald 1999).

Apart from robustness tests, another tool that could possible help supporting
a particular resolution when direct empirical experiments are not available is the
use of analogical reasoning and, in particular, so called “analogue experiments”.
We will briefly discuss the role of analogue experiments in BHT in Section 4.4.

4.3 Other TEs in Black Hole Physics: From the Informa-
tion Loss Paradox to Firewalls

So far, and for simplicity, we have focused on two TEs in BHT. There are,
however, several TEs that have occupied an important role in BHT. Perhaps
the most important one is Hawking TE. This TE has been sometimes referred to
as the “mother of all thought experiments, one that still keeps physicists awake
at night” and “perhaps Dr. Hawking’s most profound gift to physics” (Carroll,
2018).

We do not have the space to analyze this TE in detail here, but a short
analysis will suggest that it fulfils the same epistemic roles as Wheeler and
Geroch TEs. Put simply, Hawking TE consists of imagining throwing a bit of
information, such as a book, a computer, even an elementary particle, into a
black hole.13 We then ask what would happen to the information contained in
the thrown object, especially after the complete evaporation of the black hole,
which according to Hawking (1974) would occur in a finite time. The answer to
this question leads to a paradox, called in the literature “The Information Loss
Paradox”.

The Information Loss Paradox can be described in more detail as follows.
On the one hand, according to classical general relativity, the matter responsi-
ble for the formation of a black hole propagates into a singularity lying within

13This TE was implicitly formulated in Hawking 1976, but reconstructed in this way by
Susskind 2008, among others.
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the deep interior of the black hole, where gravity is so intense that nothing can
escape it. On the other hand, the semiclassical framework – which is a hy-
brid approach used by Hawking that considers quantum field theory on curved
spacetime – predicted that quantum correlations between the exterior and the
interior continuously build up as the black hole evaporates. In fact, these cor-
relations played a crucial role in the derivation of Hawking radiation. Since the
matter that falls into a black hole could possess quantum correlations with mat-
ter that remains outside of the black hole, it is difficult to conceive how these
correlations could be restored during the process of black hole evaporation in a
way that is consistent with general relativity. So, either there is a mechanism
that restores the correlations during the late stages of the evaporation process,
which may contradict one of the main principles of general relativity, or, by the
time the black hole has evaporated completely, an initial pure state would have
evolved into a mixed state, that is, information would have been lost. The latter
is commonly said to be in conflict with quantum mechanics.14 Hawking (1976)
concluded from this TE that information has been lost, thus challenging some
of the fundamental principles of quantum mechanics:

The conclusion of this paper is that gravitation introduces a new
level of uncertainty or randomness into physics over and above the
uncertainty usually associated with quantum mechanics. Einstein
was very unhappy about the unpredictability of quantum mechanics
because he felt that “God does not play dice.” However, the results
given here indicate that “God not only plays dice, He sometimes
throws the dice where they cannot be seen.” (Hawking 1976, p.
13-14)

However, Hawking’s conclusion was not the only possible resolution of the
Information Loss Paradox. Different resolutions have been proposed such as
Maldacena’s “AdS/CFT” duality (Maldacena 1999), the holographic principle
(’t Hooft 1988, Susskind 1995), and Susskind complementarity (Susskind and
Thorlacius, 1993; Stephens et al. 1994). Some of these resolutions seem to
favour general relativity, whereas others are more conservative towards quantum
mechanics. As Susskind (2008) nicely puts it in his popular book The Black Hole
War :

The Black Hole War was a genuine scientific controversy [...] Em-
inent theoretical physicists could not agree on which principles of
physics to trust and which to give up. Should they follow Hawking,
with his conservative views of space-time, or ’t Hooft and myself,
with our conservative views of Quantum Mechanics? Every point of
view seemed to lead only to paradox and contradiction. (Susskind
2008, p. 9)

14The are two reasons why it is claimed that the evolution of a pure state into a mixed state
is in conflict with quantum mechanics: i) Such evolution is incompatible with a fundamental
principle of quantum theory, which postulates a unitary time evolution of a state vector in
a Hilbert space, and ii) such evolution give rise to violations of causality/conservation of
energy/momentum (see Wald 2001 for details).
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More recently, Almheiri et al (2013) re-interpreted the information loss para-
dox as a contradiction between the following three statements: (i) Hawking
radiation is in a pure state, (ii) the information is lost, and (iii) the infalling
observer does not encounter anything unusual at the horizon. They point out
that the most conservative resolution is to give up (iii) and conclude that the in-
falling observer finds a “Firewall”, which means that it burns up at the horizon.
Although this resolution implies some elements of nonlocality, they show that
other alternatives may cause notable violations of the semiclassical framework.
More recent resolutions include extensions of Maldacena’s resolution appealing
to “AdS/CFT” duality (Almheiri 2018).

Interestingly, Joseph Polschinski, one of the proponents of the Firewalls res-
olution, in a talk entitled “Black Holes, Quantum Mechanics and Firewalls”
delivered in November 2013 at a Simons Symposium, explicitly emphasized the
role of TEs as useful tools for exposing incompleteness and inconsistencies and
analysed the information loss paradox as such.15 He says:

The theories of quantum mechanics and general relativity are each
very well tested and successful in their own regimes. Thought ex-
periments can expose inconsistencies. Black holes have proven to be
useful arenas for the confrontation quantum mechanics and general
relativity.

In sum, it appears that the principal role of Hawking TE and other TEs
taking place in the discussion around the Information Loss Paradox was pre-
cisely to unveil a paradox between crucial statements of quantum mechanics
and general relativity, which was well hidden behind the theories. As Susskind
(2008) puts it:

Theoretical physicists are struggling to gain a foothold in a strange
land. As in the past, thought experiments have brought to light
paradoxes and conflicts between fundamental principles. This book
is about an intellectual battle [with Hawking on the resolution of
the Information Loss Paradox] over a single thought experiment.
(Susskind 2008, p. 8)

Furthermore, a brief examination of the discussion that follows Hawking’s
insights shows the conjectural character of the debate, which remains open until
now. This is in tune with our analysis on Wheeler and Geroch’s TEs.

4.4 On the Use of Direct Calculations and Analogue Ex-
periments to Test Resolutions

We have previously argued that TEs can potentially lead to conclusive knowl-
edge with respect to the inconsistency between different theoretical statements.
However, we have also stressed that they are incapable of helping us test the

15Talk available at https://www.youtube.com/watch?v=424rxT˙bVlwt=635s
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validity of a proposed resolution to a given inconsistency. In fact, as we saw
it in the case of Wheeler’s demon, the TE was capable to convince the scien-
tific community that there was an inconsistency between statements of general
relativity and thermodynamics, when applied to a particular scenario, but it
was incapable of convincing the entire scientific community about a particular
resolution for this inconsistency. In fact, what finally convinced many physi-
cists about Bekenstein’s attribution of entropy to black holes was mainly the
consistency of this resolution with Hawking’s derivation. The latter suggests
that in absence of direct empirical evidence, mathematical derivations may play
important role in accepting particular resolutions, and, in this sense, can be
complementary to the use of TEs. For instance, Wallace (2018, 2019) argues,
in line with many physicists (e.g. Belgiorno et al. 2019), that the confidence of
the scientific community in BHT rests principally on independent calculations
performed with different premises and different approximations, which led to
the same results.

Another promising candidate for giving support to a particular resolution
in the absence of direct empirical evidence are analogue experiments, which
are material experiments performed not on the target system, but on a source
analogous system. In the past forty years, physicists have tried to give some
empirical support to the predictions of BHT, by reproducing the characteristics
of an event horizon in an analogous physical system, which is simple enough to
be run in the laboratory, such as condensed matter systems. This new research
program has been called “analogue gravity”16. There has been an important
discussion in the philosophy of science as to whether analogue experiments per-
formed in the context of analogue gravity can have confirmatory power and,
in particular, if they can provide us with evidence of the same kind as direct
experiments (e.g. Dardashti et al. 2017, 2019; Thébault 2019; Crowther et al.
2021). This is not the place to review this discussion in detail, but if one agrees
that analogue experiments can provide at least some empirical support for the
predictions of BHT, then one may also believe that they can play a role in the
acceptance of a given resolution. For instance, the argument that appeared to
have convinced both Unruh and Wald that a bouyancy force may arise close to
the horizon was that it became apparent that there would be a real buoyancy
effect associated to Unruh radiation, which was taken as an analog of Hawking
radiation. Page (2005) says:

[H]e [Wald] and Unruh independently rediscovered this mechanism
[bouyancy force] after realizing that the Unruh acceleration radiation
would make the buoyancy effect real. (Page 2005, p. 13)

Recently, real analogue experiments have been performed to test Unruh
effect with classical analogues (Blencowe and Wang 2020, Leonhardt et al.
2018).17 Additionally, many analogue experiments have relied on Maldacena’s

16For a review of the literature on analogue gravity see Barceló et al. 2005; Faccio et al.
2013; Belgiorno et al. 2019.

17See Gryb et al. (2021) for a discussion on the problems that may arise when we associate
Unruh effect with Hawking effect.

25



AdS/CFT duality (Bilić, et al. 2015; Dey, R. et al. 2016) and there have been
some attempts to test the Firewall resolution by considering fluid analogues
(Pontiggi 2015).

The extent to which analogue experiments can actually provide us with gen-
uine evidence for particular resolutions in BHT needs to be further investigated
and should probably be evaluated on a case-by-case basis. However, it suffices
for our purposes to have shown that the conjectural character of candidate res-
olutions invites us to consider alternative non-empirical or surrogative means,
especially in cases in which the phenomenon under investigation is beyond the
reach of direct experimentation, such as the case of black holes.

5 Conclusion

Polchinski concludes his 2013 lecture by saying:

Thought experiments with black holes have led to some surprising
discoveries: black hole bits, the holographic principle, Maldacena’s
duality. The latest thought experiment presents new challenges,
and we can hope that it will lead us to a more complete theory of
quantum gravity. (Polchinski, 2013)

We share Polchinski’s enthusiasm and we agree that the importance of TEs
in BHT should be acknowledged. However, we also believe that it is important
to specify the power and limits of TEs. We have argued throughout this paper
that the principal functions of TEs in BHT, like many other TEs from the
history of physics, is to reveal and resolve external inconsistencies. We stressed
that whereas the revelation of an inconsistency provides conclusive knowledge,
the resolution is only conjectural.

When one focuses on historical case studies, it is very difficult to see the
conjectural character of a given resolution, especially if the alternative resolu-
tions did not last long or were not pursued for a reason or another. In contrast,
analyzing the use of TEs in ongoing physics allows one to see, before the end of
the inquiry, the highly conjectural character of different resolutions. In addition,
we have seen that black holes are an ideal arena to understand the importance
of different empirical and non-empirical tools in the absence of direct empiri-
cal evidence. In particular, we have stressed that robustness tests, theoretical
arguments (such as direct calculations) and analogue experiments may play a
role in the acceptance or rejection of a given resolution, and so complement the
knowledge obtained on the basis of TEs.
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