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I explain that background freedom in quantum gravity automatically leads to a dissociation of
the quantum state into states having a classical 3d-space. That is, interference is not completely
well-defined for states with different 3d-space geometries, even if their linear combination is.

The dissociation into 3d-space geometries still allows for interference at small scales, but pre-
cludes it at macro scales. It grants the possibility of classical-looking macroscopic objects, including
measuring devices. Counting the 3d-space geometries automatically gives the Born rule.

But the wavefunction collapse turns out to be even more ad-hoc. Fortunately, the dissociation
entails a kind of absolute decoherence, making the wavefunction collapse unnecessary. This naturally
leads to a new version of the many-worlds interpretation, while solving its major problems:

1) the classical-3d-space states form an absolute preferred basis,
2) at any time, the resulting micro-branches look like classical worlds, with objects in the 3d-space,
3) the 3d-space geometries converge at the Big-Bang, favoring macro-branching towards the future,
4) macro-branches stop interfering, even though micro-branches can interfere,
5) the wavefunctional becomes real by absorbing the complex phases in the global U(1) gauge,
6) the ontology is a state vector uniquely dissociable into many gauged 3d-space states, each of

them counting as a world by having local beables (the 3d-space geometry and the classical fields),
7) the density of the classical-3d-space states automatically obeys the Born rule.

Keywords: Everett’s many-worlds interpretation; Born rule; quantum gravity; background-independence;
many-spacetimes interpretation.

I. INTRODUCTION

I show that background free approaches to quantum
gravity prevent most quantum state vectors from having
physically meaningful superpositions. Interference effects
require a way to relate the positions in space among dif-
ferent state vectors, but background freedom limits this
possibility. Linear combinations exist mathematically,
but interference effects are suppressed in most situations.

This leads to a new explanation of the emergence of
classicality at the macro level, and to a natural deriva-
tion of the Born rule by counting states with definite
classical 3d-space. The resulting approach to understand
quantum mechanics works less naturally with the wave-
function collapse, but very well with the many-worlds
interpretation, solving some of its main problems.

In Sec. §II I sketch the generic features of wavefunc-
tional formulations of background-free quantum gravity.
This leads to the notion of classical 3d-space states, hav-
ing a definite classical 3d-space (or other structure as-
sumed to be more fundamental than the 3d manifold).

In Sec. §III I explain how background freedom makes
the state vector dissociate into classical 3d-space states,
by limiting their ability to interfere.

In Sec. §IV I show how counting the 3d-space states
into which the state vector dissociates gives the Born
rule. Each 3d-space state either is absent from the wave-
functional, or it appears in it with equal amplitude but
varying density (see Fig. 2). The density can be made
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FIG. 1. Wavefunctional dissociation due to quantum-
gravitational background freedom. The micro-states (in
green) are 3d-space states. They are very similar at the Big-
Bang, then background freedom makes them dissociate and
form a branching structure like in the many-worlds interpre-
tation. The dissociation is reversible at micro scales, allowing
interference, but it becomes irreversible when it manifests at
macro scales. The branching structure (in yellow) corresponds
to the macro-states (in blue). Counting the 3d-space states
for each macro-state or branch gives the Born rule.

real, by absorbing the complex phases into the gauge of
the classical fields defining the 3d-space states.

In Sec. §V I argue that the 3d-space states approach
works less well with the collapse postulate, but it works
naturally with the many-worlds interpretation, resulting
in a version of it named here the many-spacetimes inter-
pretation of quantum mechanics.

In Sec. §VI I explain how the many-spacetimes inter-
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pretation solves or improves some of the main problems
of the many-worlds interpretation (Fig. 1), such as the
existence of a preferred basis, the emergence of quasi-
classical macro worlds, the existence of familiar, classical-
looking objects in the 3d-space, the time-asymmetry of
the branching structure, probabilities by counting states,
the appearance of complex numbers in quantum mechan-
ics, and the ontology, including the local beables, which
justify counting each 3d-space state as a world.

Sec. §VII concludes the article with a discussion.

II. 3D-SPACE STATES IN QUANTUM
GRAVITY

A. Classical 3d-space states

We do not have yet a final theory of quantum gravity,
and even less so one that includes the other fields. But I
will assume that such a theory is possible.

Many of the various currently known approaches to
quantum gravity admit wavefunctional formulations.

The Wheeler-de Witt equation

ĤΨ = 0 (1)

involves a wavefunctional Ψ = Ψ[γab] on the space
Riem(Σ) of all possible Riemannian geometries (Σ, γab),
where γab is the intrinsic metric tensor on a three-
dimensional manifold Σ, which is a spacelike 3d-slice of
the spacetime manifoldM = Σ×R. Equation (1) was ob-
tained [18] by quantizing the Hamiltonian formulation of
classical general relativity by Arnowitt, Deser, and Mis-
ner (ADM) [3].

The quantization replaces the classical 3d metric γab
and its conjugate momentum πcd

γ by operators,γ̂ab(x)Ψ[γab] = γab(x)Ψ[γab],

π̂cd
γ (x)Ψ[γab] =

ℏ
i

δΨ[γab]

δγcd(x)
,

(2)

subject to the canonical commutation relations{[
γ̂ab(x), π̂

cd
γ (y)

]
= iℏδc(aδ

d
b)(x,y),

[γ̂ab(x), γ̂cd(y)] =
[
π̂ab
γ (x), π̂cd

γ (y)
]
= 0,

(3)

where x,y ∈ Σ and δ/δγcd(x) is the functional derivative.
The Wheeler-de Witt equation is a constraint equa-

tion, not an evolution equation, despite de Witt initially
calling it the Einstein-Schrödinger equation. It is com-
plemented by three other constraint equations that factor
out the space diffeomorphisms. The wavefunctional Ψ is
a timeless solution. A proposal to decode a dynamical
solution, made by Page and Wootters [38], consists of in-
terpreting it as a quantum system |ψ(τ)⟩ entangled with
a clock |τ⟩, Ψ =

∫
R |τ⟩|ψ(τ)⟩dτ . This, and other pro-

posals, were assessed critically in [25, 29]. According to
Page and Wootters, we can consider that the state of

the universe at the time t is represented by the vector
Ψ(t) := |t⟩|ψ(t)⟩.
In the following we will assume the existence of a quan-

tum theory of gravity based on time-dependent states.
Ashtekar’s Hamiltonian formulation of classical general

relativity [4] is similar to ADM, except that instead of γ
and πγ , its variables are an su(2) connection, whose con-
jugate variable is a densitized frame field on Σ. At the
classical level the ADM formalism and the Ashtekar vari-
ables are equivalent. When quantized, the resulting op-
erators satisfy commutation relations similar to (3) [27].
Its quantization was interpreted by Rovelli and Smolin
in terms of loop variables [45].
We do not know with certainty that spacetime is con-

tinuous. Various approaches to quantum gravity are dis-
crete, being based in general on structures that can be
represented as graphs or hypergraphs that may have at-
tached numbers at their vertices and (hyper-)edges. For
example, in the causal sets approach [50], the vertices
of the graph represent events from spacetime, and ori-
ented edges join pairs of events in causal relation, in the
sense that the first event is in the past lightcone of the
second one. The Regge calculus [44] is based on trian-
gulations of spacetime into 4-simplices further approxi-
mated as flat. Distances are attached to the edges, and
the spacetime curvature is concentrated at 2-faces, and
expressed in terms of deficit angles etc. The causal dy-
namical triangulation approach is similar, but with fixed-
length edges [30]. Loop quantum gravity can be formu-
lated in terms of spin networks and spin foams. Spin net-
works are graphs with the edges labeled by half-integer
numbers corresponding to irreducible representations of
su(2) [5, 39, 46]. Two spin networks at different times
are joined by a spin foam, a hypergraph used in the path
integral formulation of loop quantum gravity.
All these graph or hypergraph structures are

background-independent. They can also be seen as equiv-
alence classes of (hyper)graphs embedded in the 3d-space
Σ or in the spacetime M , where two such embedded
structures are equivalent if they can be related by a dif-
feomorphism of the background manifold.
Many of these discrete approaches use Feynman’s path

integral quantization, but at the end a complex coefficient
is associated to each classical basis state, so it is likely
that a wavefunctional representation always exists.
I will assume that quantum gravity can be described

by a theory admitting a wavefunctional representation.
Let CS be the set of classical 3d-space configurations.

These may be the diffeomorphism equivalence classes
of Riemannian geometries (Σ, γ), or more fundamental
structures approximated by such geometries at low ener-
gies. For example, if quantum gravity is one of the dis-
crete theories whose classical configurations are labeled
(hyper)graphs, these will be the elements of CS .
While much of the following works well with both con-

tinuous and discrete spacetimes, we will see that contin-
uous spacetimes have some advantages.
I will assume that there is a Schrödinger formulation
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of quantum gravity in terms of wavefunctionals over CS

endowed with a measure µS on CS . We assume that
problems like the nonexistence of an infinite-dimensional
Lebesgue measure are solved or avoided. The states of
the universe are represented by unit vectors Ψ in the
Hilbert space HS spanned by states |γ⟩, where γ ∈ CS

stands for (Σ, γab) or the (hyper-)graph structure if the
underlying quantum gravity theory is based on such a
structure, and Ψ[γ] := ⟨γ|Ψ⟩, with the Hermitian scalar
product

⟨Ψ|Ψ′⟩ :=
∫
CS

Ψ∗[γ]Ψ′[γ]DµS [γ]. (4)

For matter quantum fields I will assume, like in the
quantum field theory on the Minkowski spacetime, that
there is a formulation in terms of wavefunctionals on the
classical configuration space of classical fields on Σ. The
classical fields include bosonic fields, which commute,
and fermionic fields, which are expressed using Grass-
mann numbers because they anticommute at equal times,
see e.g. [23, 26]. Any other variables needed to specify
how the 3d geometries integrate into 4d manifolds, for
example the shift and lapse variables, will be included as
well in the configuration space of classical fields. If the
3d-space is a (hyper)graph γ ∈ CS , I assume that mat-
ter can be described, in principle, by attaching various
quantities or other structures to the elements of γ.

Although ultimately the quantum field equations are
those to be obeyed, each classical matter field has to be
connected to the underlying classical 3d-space γ. To ex-
press this dependence, I will denote classical matter fields
by ϕγ . In quantum field theory on flat space the Fock ba-
sis consists of linear combinations of classical states |ϕ⟩,
where ϕ is a classical field on the 3d-space R3 [23]. Let us
assume, for each fixed γ ∈ CS , the choice of such a basis
(|ϕγ⟩)ϕγ∈C

γ
M
, where the elements of Cγ

M label the basis
in a way dependent on γ. Note that the matter basis
(|ϕγ⟩)ϕγ∈C

γ
M

cannot be chosen independently of γ ∈ CS .
Let us summarize all of the above into the following

Assumption 1. The complete state of the universe is
represented by a wavefunctional on a configuration space

C :=
⋃

γ∈CS

{γ} × C
γ
M , (5)

endowed with the measure µ[γ, ϕγ ] = µS [γ]µ
γ
M [ϕγ ],

where µγ
M [ϕγ ] is the measure on C

γ
M for each γ. Let the

Hilbert space of such wavefunctionals be H ∼= HS ⊗HM ,
with the Hermitian scalar product

⟨Ψ|Ψ′⟩ :=
∫
C

Ψ∗[γ, ϕγ ]Ψ
′[γ, ϕγ ]Dµ[γ, ϕγ ], (6)

where Ψ[γ, ϕγ ] = ⟨γ, ϕγ |Ψ⟩.

B. Macro-states and ontic micro-states

Macro-states correspond to equivalence classes of
micro-states. Since different macro-states are distin-

guishable, there is a set of commuting projectors (P̂α)α∈A

on H, so that [P̂α, P̂β ] = 0 for any α ̸= β ∈ A, and⊕
α∈AP̂αH = H. Any macro-state is represented by a

subspace of the form P̂αH. We call quasi-classical the

states belonging to macro-states P̂αH.

Since all projectors P̂α commute, there are bases of

H consisting of common eigenvectors of (P̂α)α∈A. Since
both γ and ϕγ are classical, it makes sense to assume that

the states |γ, ϕγ⟩ are quasi-classical, i.e. |γ, ϕγ⟩ ∈ P̂αH
for some α.

Assumption 2. The basis (|γ, ϕγ⟩)(γ,ϕγ)∈C consists of
quasi-classical states, i.e. for any |γ, ϕγ⟩ there is an α ∈ A

so that |γ, ϕγ⟩ ∈ P̂αH.

The existence of a basis of quasi-classical states is guar-
anteed by the existence of the macro-projectors. As-
sumption 2 specifies that such a basis can consist of states
with classical 3d-geometry and classical matter fields.

Definition 1. States of the form |γ, ϕγ⟩ will be called
3d-space states, and also ontic states for reasons that will
be explained later.

We expect that a 3d-space state immediately evolves
into a linear combination of 3d-space states. Dissociation
and reassociation happen continuously. However, at the
macro level, the state may remain quasi-classical under
unitary evolution for finite time intervals. This accounts
for the fact that macroscopic systems do not evolve all
the time into linear combinations of macro-states like the
Schrödinger cat, although it allows unitary evolution to
lead to such linear combinations during quantum mea-
surements.

C. 3d-space states are fundamental

Just because physicists first discovered classical
physics, and later quantum theory, and formulated the
latter by quantizing the former, it does not mean that
quantum theory requires classical physics to exist. The
universe is what it is, and it is fundamentally quantum.
However, the Hilbert space is too symmetric as it is,

and without the existence of preferred structures that
break its symmetry, there would be no relation between
Hilbert space vectors and physical reality, nor between
Hermitian operators and physical observables. Physical
properties cannot simply emerge from the abstract state
vector, even if the Hamiltonian is known, because if they
would, infinitely many entities with the very same prop-
erties, but able to represent completely different physical
realities, would emerge as well [60, 64]. Therefore, the ba-
sis (|γ, ϕγ⟩)(γ,ϕγ)∈C is special among the others, because
of its physical meaning. This justifies

Assumption 3. The 3d-space states are fundamental,
in the sense that, by their physical meaning, they are
special among the other states represented by H.
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As explained earlier, the states γ are not necessarily
Riemannian geometries, they can be other structures ap-
proximated at low energies by such geometries. What is
important is that they have a special physical meaning,
in the same sense in which, in nonrelativistic quantum
mechanics, the position operators and their eigenvectors
have a special physical meaning compared to other oper-
ators or vectors in the Hilbert space. Similar considera-
tions hold for the matter fields.

III. DISSOCIATION INTO 3D-SPACE STATES

A. Background freedom

To construct the configuration space C, we eliminated
the unphysical degrees of freedom due to diffeomorphisms
and global gauge transformations. For example, two met-
ric tensor fields on Σ may look different, but a coordinate
transformation, which corresponds to a diffeomorphism
of Σ, may be able to map them into one another, show-
ing that they are isometric. For this reason, we took
as classical states the equivalence classes of metrics on
Σ under diffeomorphisms. Matter fields also have to be
background-free, but we assume this as usually, by fixing
a gauge.

Similarly if the 3d-space is a discrete structure like the
ones that can be represented by graphs or hypergraphs
from §II A, we took the configuration space consisting of
such structures based on their internal relations, not as
particular embeddings in a 3d manifold. But let us state
this explicitly, since it will be central in the article:

Assumption 4. Our theory is background-free.

The case for background freedom was made for exam-
ple by Smolin [49]. General relativity already shows that
the structures have to be relational: we use coordinates,
but they are not absolute, they are just ways to assign
numbers to points in space or spacetime. The hole argu-
ment [37, 51] shows that taking the points of the under-
lying manifold as having an independent reality from the
intrinsic relations introduced by the metric tensor leads
to indeterminacy.

This is why many of the approaches to quantum grav-
ity seem to require background freedom, or even have it
built-in. This is true for the formulation based on the
Wheeler-de Witt equation (1), the discrete approaches
based on (hyper)graphs discussed earlier, like causal sets,
Regge calculus, causal dynamical triangulations, loop
quantum gravity etc. For a discussion of background in-
dependence in string theory see Witten [73].

B. Background freedom and dissociation

In general, we make no difference between the concepts
of linear combination and superposition, except maybe

that a linear combination is understood as the mathe-
matical expression of a superposition, which is a physical
concept related to the position in the 3d-space and phe-
nomena like interference. And they usually coincide.

In nonrelativistic quantum mechanics, any two wave-
functions can be superposed in the 3d-space, because
the underlying geometry is the same, and the reference
frames are the same. In the wavefunctional formulation
of quantum field theory, the local information about the
wavefunctional of a scalar field is obtained by using lo-
cal operators at x ∈ Σ = R3, definable in function of
the operators φ̂(x) and π̂φ(x) (to be rigorous, one uses
operator-valued distributions, applied to a sequence of
test functions that converge uniformly to the Dirac dis-
tribution δx).

In background-dependent theories of quantum gravity
we can define local operators in a similar way, in function
of the operators γ̂(x) and π̂γ(x), and φ̂α(x) and π̂φα(x)
for each matter field φα, where α stands for the spin and
the internal degrees of freedom.

But in background-free quantum gravity local opera-
tions on the 3d-space, and therefore superpositions, do
not make sense for all states, even if the linear combina-
tions are always defined. If the theory is background-
free, a difference appears when we apply local opera-

tors to linear combinations. Any local operator Â(x)
depends on x, but background freedom prevents for ex-
ample matching points from Σ for |γ, ϕγ⟩ to points from
Σ for |γ′, ϕ′γ′⟩, because in general γ ̸= γ′. The situation
is even more visible in background-free theories where
(Σ, γ) is replaced by a labeled (hyper)graph, because in
this case correspondences between the vertices of differ-
ent (hyper)graphs are not even possible in general.

A correspondence between the points of Σ for |γ, ϕγ⟩
and those of Σ for |γ′, ϕ′γ′⟩ requires (Σ, γ) and (Σ, γ′) to
be isometric. Sometimes such a correspondence exists
only between some open regions of Σ. So the dissocia-
tion is not always ensured, and we will see that this is
essential. We arrived at the following:

Key observation 1. Background freedom implies the
dissociation of the wavefunctional into 3d-space states,
because local operators and superpositions are not com-
pletely well-defined in the absence of a common back-
ground.

The dissociation is not necessarily complete, and vari-
ous cases are captured in the following definition.

Definition 2. Two state vectors |γ⟩|ΨM ⟩ and |γ′⟩|Ψ′
M ⟩

are locally associable if there exist two open subsets
U,U ′ ⊆ Σ and an isometry between (U, γ) and (U ′, γ′).
In case that U = U ′ = Σ, they are globally associable.

Two state vectors are dissociated if they are not glob-
ally associable. They are partially dissociated if they are
locally but not globally associable. They are completely
dissociated if they are neither locally nor globally asso-
ciable.
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In the discrete case, in Definition 2, (local) isometries
are replaced by (local) isomorphisms between the labeled
(hyper)graphs γ and γ′.

It is possible for the 3d-space states to reassociate, at
least partially. This allows quantum interference to exist
at micro scales. This is the key to understanding why
our quantum world looks quantum at small scales, and
classical at macro scales.

It is interesting to compare dissociation induced by
background freedom with Penrose’s gravitational deco-
herence. According to Penrose [41], “I envisage that
nature feels uncomfortable about ‘linearly superposing’
space-time geometries which differ significantly from one
another and, instead, prefers to settle for (i.e. to ‘reduce’
to) essentially just one of the geometries involved.” Then,
he proposes that this requires a nonlinear collapse due to
the gravitational entropy. Later he justifies the collapse
by invoking the existence of different time parameters for
the superposed spacetimes [42].

By contrast, the dissociation induced by background
freedom proposed in this article is simply due to the
absence of a correspondence between the points in dif-
ferent 3d-spaces in the absence of common coordinates,
without postulating any change of the Schrödinger wave-
functional equation. A similar proposal may be possible
for 4d-spacetimes instead of 3d-spaces, but for simplicity,
and because most known approaches to quantum gravity
are Hamiltonian, and also because it is expected that 3d-
space states evolve into linear combinations of 3d-space
states, I will not analyze this option here.

IV. PROBABILITIES FROM COUNTING
3D-SPACE STATES

A. Taking dissociation seriously

Every vector |Ψ⟩ from H has the form

|Ψ⟩ =
∫
C

cγ,ϕγ
|γ, ϕγ⟩Dµ[γ, ϕγ ], (7)

where cγ,ϕγ = Ψ[γ, ϕγ ] = ⟨γ, ϕγ |Ψ⟩, γ ∈ CS , and |ϕγ⟩
belongs to the basis (|ϕγ⟩)ϕγ∈C

γ
M

which may depend on
the 3d-geometry γ.
We may be tempted to simply proclaim the Born rule,

asserting that the probability density is

P [γ, ϕγ ] = |cγ,ϕγ
|2. (8)

But let us resist this for a while, and explore the con-
sequences of the dissociation. If we explore the conse-
quences of a physical principle, we should do it in its own
terms, and if the result contradicts the observations, we
should drop the starting principle. So let us byte the
bullet and see where the idea of dissociation leads. We
will see that it leads to the Born rule, but in a natural
way, not by fiat. The dissociation into 3d-space states
suggests the following principle:

Principle 1. Each 3d-space state is either not present
in |Ψ(t)⟩, or it is present once (i.e. it cannot be “half-
present”, even if eq. (7) may suggest this possibility).

This “either-or” is vague at this point, but it will be
clarified later in this Section. At any rate, it may seem
to contradict everything we know. However, we will get
quantum theory back, with the familiar complex num-
bers, which will receive a geometric meaning in terms
of a global gauge, and, since C is continuous, with the
Born rule as we know it, but resulting from counting the
3d-space states.

B. Making the wavefunctional real

Background freedom implies that the quantum state
dissociates automatically into 3d-space states, but since
the coefficients cγ,ϕγ

from eq. (7) are complex numbers,
we need to understand their meaning.
First, while |γ, ϕγ⟩ is an ontic state, which may even

be classical if ϕγ is a classical field, cγ,ϕγ
|γ, ϕγ⟩ is not.

Let us for the moment ignore γ, and consider that ϕγ is
a scalar field. In general, c|ϕγ⟩ ≠ |cϕγ⟩. Even if c ∈ R, if
c ̸= 1, |cϕγ⟩ represents a classical field cϕγ different from
ϕγ , so |cϕγ⟩ and |ϕγ⟩ are orthogonal.
But if ϕγ represents the electromagnetic potential and

θ ∈ R, eiθϕγ represents a global gauge transformation
of ϕγ . The classical fields ϕγ and eiθϕγ are physically
equivalent. The state vectors |ϕγ⟩ and eiθ|ϕγ⟩ are distinct
vectors, but they represent the same physical state. This
suggests the following interpretation:

Key observation 2. If the matter fields admit an U(1)
gauge symmetry, for any θ ∈ R,

eiθ|γ, ϕγ⟩ = |γ, eiθϕγ⟩. (9)

This accounts for the fact that the physical equivalence
of the classical fields ϕγ and eiθϕγ corresponds to the
physical equivalence of the state vectors |ϕγ⟩ and eiθ|ϕγ⟩.

This works for fields that admit an U(1) symmetry,
like charged fields, gauge potentials, and spinor fields.

Let us express the complex coefficients cγ,ϕγ
from eq.

(7) in the polar form

cγ,ϕγ
= r[γ, ϕγ ]e

iθ[γ,ϕγ ], (10)

with r[γ, ϕγ ] ≥ 0. Then, eq. (7) becomes

|Ψ⟩ =
∫
C

r[γ, ϕγ ]|γ, eiθ[γ,ϕγ ]ϕγ⟩Dµ[γ, ϕγ ], (11)

We see that, whenever a physical classical field con-
tributes to |Ψ⟩, it contributes only once, with a uniquely
determined gauge eiθ[γ,ϕγ ] and real coefficient r[γ, ϕγ ]. As
|Ψ⟩ evolves in time, the gauge and r[γ, ϕγ ] can change.
It remains to explain the relation between r[γ, ϕγ ] and

the probability density of ontic states, in accord with
Principle 1.
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C. Emergence of the Born rule

Now that we have seen that gauge freedom allows the
coefficients in the linear combination of 3d-space states
to be real numbers, let us see what their meaning is and
how it relates to probabilities.

I will assume that the configuration space C is continu-
ous. This likely requires that Σ is a 3d manifold. I show
that, under this assumption, the Born rule emerges by
counting the 3d-space states. A more general derivation
can be found in [62].

Let us choose all fields ϕγ so that θ[γ, ϕγ ] = 0 in eq.
(10). We denote for simplicity ξ := (γ, ϕγ).
First, we notice that a state vector of the form |Ψ⟩ =

1√
n

∑n
k=1 |ξk⟩, where (|ξk⟩)k∈{1,...,n} are distinct basis

vectors, leads to the Born rule. If P̂α is a macro projec-

tor and nα basis vectors composing |Ψ⟩ belong to P̂αH,

then ⟨Ψ|P̂α|Ψ⟩ = nα/n. Therefore, the Born rule simply
coincides with the usual counting rule “probability is the
ratio of the number of favorable outcomes to the total
number of possible outcomes”. But only a small subset
of the possible state vectors have this form, so this idea
fails if the basis is discrete.

However, this idea works in the continuous case, since
the basis vectors can be distributed with nonuniform den-
sity. More precisely, if r[ξ] := r[γ, ϕγ ] from eq. (11) is
µ-measurable, we can define a new measure

Dµ̃[ξ] := r[ξ]Dµ[ξ], (12)

and obtain

|Ψ⟩ =
∫
C

|ξ⟩Dµ̃[ξ]. (13)

That’s all. The role of the new measure is just to show
that the states satisfy Principle 1, it does not change the
original measure, it only expresses it differently, so that
the probabilities become apparent.

At first sight, one may think eq. (13) cannot represent
a normalized vector, so let us verify that it does:

⟨Ψ|Ψ⟩ =
(∫

C

⟨ξ|Dµ̃[ξ]
)(∫

C

|ξ′⟩Dµ̃[ξ′]
)

=

∫
C

(∫
C

⟨ξ|ξ′⟩Dµ̃[ξ′]
)

Dµ̃[ξ]

=

∫
C

(∫
C

⟨ξ|ξ′⟩r[ξ′]Dµ[ξ′]
)

Dµ̃[ξ]

=

∫
C

r[ξ]Dµ̃[ξ] =

∫
C

r2[ξ]Dµ[ξ] = 1.

(14)

Since r[ξ] is µ-measurable, the measure µ̃ is absolutely
continuous with respect to µ.

Now, consider a macro projector P̂α so that the macro-

state P̂αH is the closure of a subspace spanned by
(|ξ⟩)ξ∈Cα

, where Cα is µ-measurable. Then, from As-
sumption 2, all 3d-space states are quasi-classical, and

from eq. (13) we get

⟨Ψ|P̂α|Ψ⟩ =
∫
Cα

|ξ⟩Dµ̃[ξ], (15)

just like the Born rule says. Therefore, state counting
gives the Born rule, in accord to Principle 1 (Fig. 2).

Note that it is not necessary to prove the Born rule for
individual particles or subsystems, it is sufficient to prove
it for macro-branches or macro-projectors, and micro-
branch counting per macro-branch gives the Born rule.

A. Constant density, varying amplitude

B. Constant amplitude, varying density
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FIG. 2. The Born rule from counting 3d-space states.
A. The usual interpretation of a wavefunction as a linear com-
bination of basis state vectors of different norms.
B. The interpretation of the wavefunction in terms of constant
norm basis state vectors, but with inhomogeneous density.

Therefore, the numbers from eq. (11) have a direct
meaning: Principle 1 combined with the gauge freedom
allows the interpretation of the states |Ψ⟩ as consisting
of 3d-space states that are either present or not. We
obtained the Born rule from counting 3d-space states.

Key observation 3. If C is continuous, any state vector
|Ψ⟩ ∈ H consists of mutually orthogonal 3d-space states
whose density is |Ψ[γ, ϕγ ]|Dµ[γ, ϕγ ]. Then, for the macro-

projectors (P̂α)α∈A, the Born rule results by 3d-space
states counting based on the density.

Remark 1. Note that the derivation of the Born rule
from this Section is not limited to the case when the
basis states are 3d-space states [62]. What is important
is that the basis is continuous, and that the basis vec-
tors belong to macro-states. In quantum field theory in
the Schrödinger wavefunctional representation, one can
use the classical field configurations to obtain the ba-
sis. In nonrelativistic quantum mechanics, one can use
the classical positions of the n particles, which are repre-
sented by points in the configuration space R3n, and this
is consistent with the fact that ultimately every quantum
measurement translates to a position measurement. But
the 3d-space states have the advantage of dissociating in
a natural way, and of including gravity. Moreover, the
3d-space states are the only ones consisting of local be-
ables, which are γ and ϕγ (see Sec. §VIG). This justifies
counting these states to get the Born rule.
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V. COLLAPSE POSTULATE OR
MANY-WORLDS?

Let us see how dissociation into 3d-space states works
with quantum measurements, and whether it works bet-
ter by assuming the collapse postulate or with the many-
worlds interpretation.

A measuring device is a quantum system in a quasi-
classical state. When interacting with the observed sys-
tem, assumed to be microscopic in the sense that it is
not directly observable, the combined system evolves into
a linear combination of macroscopically distinct states.
Each of these states contains the observed system in a
different state, and the pointer of the measuring device
indicating that state. So the Schrödinger equation pre-
dicts that two or more stories describing the measure-
ment are simultaneously true. But we never observe such
linear combinations: after the measurement, the pointer
state is always in a definite macro-state.

QM Problem 1. Why do all linear combinations appear
to be possible at micro-scales, but not at macro-scale?

To resolve this problem, in standard quantum me-
chanics one invokes the collapse postulate [69], which
simply states that quantum measurements suspend the
Schrödinger evolution, so that from the linear combina-
tion we keep only the term that corresponds to one of
the possible pointer states, removing the others.

In doing this, standard quantum mechanics assumes,
without explaining it, the pre-existence of measuring de-
vices in quasi-classical states. But, since most quantum
states are linear combinations of quasi-classical states, we
have the following problem:

QM Problem 2. Why is the measuring device already
in a quasi-classical state?

The collapse postulate purports to solve QM Problem
1 by assuming implicitly that QM Problem 2 is already
solved. But both problems can be solved simultaneously,
by extending the collapse postulate to apply not only to
measurements, but whenever a quantum system becomes
a linear combination of states that belong to distinct
macro-states. Then, when any quantum system is no
longer quasi-classical, the collapse postulate is triggered
and only one of the macroscopic possibilities remains [59].

But, because of the collapse postulate, the Schrödinger
equation is considered valid in some situations, but it is
suspended in other situations.

There seems to be a double standard here. On one
hand, linear combinations and entangled states appear
and evolve in parallel as long as no observation is made,
and the experiments are consistent with this. On the
other hand, if we measure them, since we do not observe
more parallel sets of outcomes simultaneously, we allow
only one of the stories, and censor the other one, by ap-
pealing to the collapse postulate.

We can try to use the 3d-space states approach to solve
QM Problems 1 and 2 at once, by reformulating the col-
lapse postulate in the following way:

Tentative Postulate 1 (Alternative Collapse Postu-
late). During the evolution of the system, the 3d-space
states may become irreversibly dissociated into two or
more sets of 3d-space states, determined by the macro
projectors. Let us call these sets macro-branches. When
this happens, only one of the macro-branches remains,
and the others disappear. The probability is given by
counting the ratio between the 3d-space states in the re-
maining macro-branch to the total number of 3d-space
states before the collapse.

This Tentative Postulate seems to provide a basis to
explain macro systems, including measuring devices. If
so, it can solve both QM Problems 1 and 2 at once.
But dissociation and reassociation happen all the time.

Reassociation allows interference effects, but when disso-
ciation is irreversible, these effects are suppressed auto-
matically. Therefore, the collapse is still arbitrary, there
is still no clear rule when it should be invoked. When
no measurement is made, multiple 3d-space states are al-
lowed to coexist, dissociate and associate in interference
patterns in the wavefunctional. But when a measurement
is made, only some of the 3d-space states seem to remain.
Some linear combinations of 3d-space states seem to be
“more equal” than others. Dissociation makes this ar-
bitrariness more evident, because the micro-branching is
well-defined by the geometry compared with the usual su-
perpositions, yet the 3d-space states are kept or removed
as it is more convenient.

Remark 2. If we assume collapse and try to explain the
Born rule by counting 3d-space states as in Sec. §IV,
we will have to accept that the wavefunction consists of
many micro-states that exist simultaneously, and part of
them are eliminated by every collapse. But this would
make quantum mechanics with the collapse postulate
a strange version of the many-worlds interpretation, in
which some of the micro-branches are removed with ev-
ery collapse, and others are kept. Moreover, those that
are kept have to belong to the same macro-state, one
cannot just keep 3d-space states from different macro-
states.

These remarks immediately prompt the following:

Key observation 4. Tentative Postulate 1 is unneces-
sary, because once the dissociation becomes irreversible,
the macro-branches evolve independently and no longer
interfere, and no 3d-space states from different macro-
branches associate again.

Therefore, since once dissociation becomes irreversible
at macro scales the macro-branches no longer reassociate
anyway, the 3d-space states approach works more natu-
rally with the many-worlds interpretation (MWI) rather
than with the wavefunction collapse.
The key idea of MWI is to take the Schrödinger equa-

tion seriously, without introducing any ad-hoc rule that
applies only to macro scales. This implies that all pos-
sible components of the total wavefunction continue to
exist after the measurement, but thanks to decoherence,
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they no longer “see” each other. The linearity of the
Schrödinger equation allows the macroscopically distinct
states that result from a quantum measurement by uni-
tary evolution to be independent, but in addition, they
no longer interfere. The wavefunction is branching so
that the different branches occupy different regions in
the configuration space. Interference is suppressed be-
cause the copy of any measuring device in one branch is
unable to detect anything from another branch, so the
branches no longer “know” about one another. And the
branches become macroscopically distinct, in the sense
that they correspond to projections of the state vector

on different macro-states P̂α1H, . . . , P̂αnH.
Decoherence into macro-branches seems to explain the

existence of measuring devices and solve the measure-
ment problem without violating the Schrödinger equation
by invoking an ad-hoc wavefunction collapse.

There are several problems that are not solved, at least
not in a way that does not require a complete reinter-
pretation of well-established concepts like probabilities.
They will be discussed in Sec. §VI, where I will propose
that these problems are solved, or at least alleviated, by
the dissociation into 3d-space states, which provides an
absolute form of decoherence.

VI. THE MANY-SPACETIMES
INTERPRETATION

We think that we are forced to suspend the Schrödinger
equation as a result of measurements, because we observe
only one of the stories that the Schrödinger equation de-
scribes as taking place in parallel. But could we observe
more than one of these stories at once? The Schrödinger
equation predicts that even the observers would be “mul-
tiplied”, each of its instances participates in one of the
stories and not in the others, of which they are oblivious.
And the laws of physics are the same in each of these
stories.

Everett noticed the perfect symmetry of the situation,
and saw no reason to favor the story in which one gets
an outcome against the competing stories. He proposed
to trust the Schrödinger equation and accept that all
stories continue to happen independently, once they are
separated [19, 20]. Schrödinger himself proposed earlier
something that he worried may “seem lunatic” along the
same lines [7, 17, 48].

The result of Everett’s realization is the many-worlds
interpretation (MWI) of quantum mechanics. But there
are still open questions in MWI. Various proposals were
made to solve them, and some researchers think they are
solved. Others think that they cannot be solved and even
that MWI does not deserve to be taken seriously.

In this Section I argue that the 3d-space states ap-
proach solves some of these problems, or provides a more
natural way to solve them. This leads to a variant of the
many-worlds interpretation, which may be called “the
many-3d-space states interpretation”, but I will call it

the many-spacetimes interpretation (MSTI).

A. Preferred basis: 3d-space states

Let us start with a problem whose solution is the key
to solving other problems.

MWI Problem 1 (Preferred basis). In what basis does
the branching take place, so that the worlds appear clas-
sical at the macro level?

Presumably, in MWI this is solved by decoherence [31].
However, there has to be more to the preferred basis than
that it simply “emerges”. Otherwise, if a preferred basis
emerges, either for the entire universe, or for a subsystem,
infinitely many others emerge [60].
In nonrelativistic MWI, it is expected that the pre-

ferred basis is related to the positions in the configura-
tion space. This would explain why branches no longer
interfere – it is because they no longer overlap in the
configuration space.
The MSTI answer is based on the form of “absolute

decoherence” provided by the dissociation into 3d-space
states enforced by background freedom:

MSTI Answer 1 (Preferred basis). The dissociation
of the state vector automatically selects as the preferred
basis the ontic 3d-space states basis.

B. Objects in 3d-space

Another problem is that the wavefunction is not de-
fined on the 3d-space, but on the much larger config-
uration space. This disturbed Schrödinger [6], Lorentz
([43], p. 44), Einstein [21, 24], Heisenberg, Bohm [12]
etc. This is true for the wavefunction of any state vector
in the total Hilbert space.

MWI Problem 2 (Objects in 3d-space). Given that the
wavefunction is defined on the high-dimensional config-
uration space, how do familiar, classical-looking objects
localized in space emerge from the wavefunction?

The wavefunction, being an element of a representation
of the Galilei or the Poincaré group [72], is intrinsically
associated to space or spacetime. Therefore, properly an-
alyzed, it satisfies all expectations of standard geometric
objects in space or spacetime [61]. Moreover, if one is
not happy with this and wants the wavefunction to be
expressed as classical-like fields in space or spacetime,
this is also possible, albeit in an inaesthetic way that at
least serves as a proof of concept [58].
But even if the wavefunction is, in the sense of group

theory or as fields, an object in space, in general it does
not look like the familiar, classical-looking objects we see.
Decoherence might lead to branches that look like fa-

miliar, classical-looking objects localized in space. Wal-
lace [71] thinks that the branches form patterns in the
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sense of Dennett [15], but are these patterns classical-
looking enough?

Let us start with a simple atom, consisting of n elec-
trons, n protons, and n′ ≈ n neutrons. Each of the nu-
cleons consist of three quarks, but the things are more
complicated, since there is a practically infinite number
of virtual quarks and gluons involved, and the interac-
tions between nucleons involve exchange of mesons. But,
due to the quarks’ large masses compared to the elec-
tron mass, and to their confinement, the nucleus of the
atom can be very well localized in space. Let us consider
an atom in a state that is a solution of the stationary
Schrödinger equation. On configuration space, the com-
ponents of the wavefunction, each being an eigenfunction
of the particle number operator with integer eigenvalue
k, are very well localized around a point (x, y, z)k. The
electrons are spread on a wider region than the nucleus
particles, with an amplitude that vanishes very quickly
as we move away from (x, y, z)k. But they are still very
peaked around (x, y, z)k. Since the solution is stationary,
the atom is very well localized. Its position (x, y, z) de-
couples from the other quantum numbers, so it behaves
like a one-particle wavefunction with many “internal” de-
grees of freedom defining a “rigid object”.

This picture can form the basis for describing molecules
and larger objects as localized objects in the 3d-space.
The wavefunction, even without decoherence, is a super-
position of products of such bound states and free particle
states. Decoherence is expected to decompose the wave-
function into branches that look quasi-classically in this
way (Problem 3), and nothing else is needed.

Maudlin [32–34] and Norsen [36] think that Problem
2 is not solved, and that it is hard to solve it even if
Problems 1 and 3 would be. They contrast this with
the pilot-wave theory (PWT) [11], which includes, along
with the wavefunction, point-particles at definite po-
sitions in space, and with the Ghirardi-Rimini-Weber
(GRW) interpretation [22], where the wavefunction col-
lapses around definite points of the configuration space,
thereby appearing classical.

Their arguments can be seen as relying on the idea
that the primitive ontologies of the GRW interpretation –
the mass density ontology (GRWm) but especially Bell’s
flash ontology (GRWf) [10] – and PWT are very simi-
lar to the classical ones. This similarity also seems to
help solving the other problems of the PWT and GRW
interpretations. But for these interpretations to work,
the wavefunction governing the motion of the particles
in PWT and the probability of the spontaneous local-
ization in the GRW interpretation has to be itself well
localized around the points of the configuration space, so
the MWI Problem 2 applies to these interpretations as
well. The description of the atom given above is needed
by these interpretations as much as it is needed by MWI.

But an important lesson that can be learned from their
arguments is that classical physics is clearer, and so any
interpretation of quantum mechanics that is closer to
classical physics has an important advantage.

This suggests the following heuristic rule

Rule of Thumb 1. If a solution is considered to work
without problems in classical physics, and if it can be
applied to an interpretation of quantum mechanics, it
should also be considered to work without problems in
that interpretation of quantum mechanics.

We can see that the MSTI Answer 1 already aligns
MWI to this Rule of Thumb, except for the multiplicity of
the worlds, which is not present in the classical theories.
It is therefore desirable to have a solution of Problem 2

along the Rule of Thumb 1 as in the PWT and GRW in-
terpretations, but without adding more structure. Back-
ground freedom automatically makes this possible.
The representation from [58] is too dependent on non-

relativistic quantum mechanics, even if it works for
the Fock space of quantum field theory too. In the
case of quantum gravity, it works only if the theory is
background-dependent.
But the wavefunctional formulation allows for a sim-

pler and more adequate answer:

Remark 3. On each 3d-space (Σ, γ), since |Ψ⟩γ :=
⟨γ|Ψ⟩ =

∫
C

γ
M
cϕγ |ϕγ⟩DµM [ϕγ ], it automatically consists

of many classical fields ϕγ ∈ C
γ
M , each of them having

attached a complex number cϕγ
. But since in the polar

form cϕγr[ϕγ ]e
iθ[ϕγ ] the factor eiθ[ϕγ ] allows us to replace

ϕγ with its gauge transformed eiθ[ϕγ ]ϕγ (§IVB), and since
r[ϕγ ] is just a density factor (§IVC), what we have is
just a collection of independent classical fields. States
like those containing atoms, molecules, or larger quasi-
classical objects are linear combinations of this form, be-
cause the Fock space basis can be obtained from the
wavefunctional classical basis [23].

MSTI Answer 2 (Objects in space). The 3d-space
states consist of classical fields on the 3d-space. Lin-
ear combinations of such states form MWI worlds only if
their dissociation is not manifest at the macro level.

C. Macro world. Quasi-classicality as classicality

Another important problem is the following

MWI Problem 3 (Macro world). How does the
classical-looking macroscopic world emerge from the
wavefunction?

Often, Problem 3 is considered solved by decoherence
[28, 31, 74], which appeared in the first place to solve it.

Without denying the importance of decoherence, the
dissociation strengthens the idea by introducing an ab-
solute notion of decoherence, and solves the problem in
accord with the Rule of Thumb 1.

MSTI Answer 3 (Macro world). Each macro world cor-
responds to multiple ontic 3d-space states that belong to
the same macro-state, because they are not distinguish-
able at the macro level.
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Multiple 3d-space states can form macro states (As-
sumption 2). Since each 3d-space state is also quasi-
classical, and since they are not distinguished by the
macro projectors, they can account for the macro world.

D. Branching asymmetry from Big-Bang symmetry

Another problem is the following

MWI Problem 4 (Branching asymmetry). Why is the
branching happening only towards the future, and why
do the branches remain separated?

This is also often claimed to be solved by decoherence,
but since the Schrödinger equation is time-symmetric,
without very fine-tuned initial conditions of the universe,
decoherence would equally predict branching towards the
past.

In the standard framework of the many-worlds inter-
pretation, Wallace acknowledged this problem, analyzed
it, and concluded that the branching asymmetry corre-
lates with the thermodynamic arrow of time [71]. For
the importance of the thermodynamic arrow of time in
relation to branching asymmetry, but also for unfore-
seen complications, see [63]. But we do not have an ex-
planation for the thermodynamic arrow of time either,
although the second law of thermodynamics is a well-
established empirical fact.

The dissociation into 3d-space states allows us to make
some progress, by relating branching asymmetry with the
cosmological arrow of time. The cosmological arrow of
time points from the Big-Bang to the direction of time in
which the universe expands. The closer the state of the
universe is to the Big-Bang, the more homogeneous and
isotropic the universe is. Moreover, as the singularity is
approached, the 3d-space contracts.

A possible assumption about this is that it contracts
to a point, which is the singularity. This would be prob-
lematic, since if Σ is a point at t = 0, we will need to
explain how it evolves into a 3d manifold.

An alternative option is that the 3d-space components
of the metric tensor tend to 0 as t↘ 0, but the topology
of space does not contract to a point, it is still the 3d
manifold (Σ, γab(x) ≡ 0). By avoiding the assumption
that the topology derives from distance, we can obtain
equations for general relativity that continue to be valid
under more general conditions. For this we need an al-
ternative formulation of semi-Riemannian geometry and
Einstein’s general relativity, which is equivalent to these
ones outside the singularity, but well-defined and free of
infinities at the singularity. This was achieved and shown
to work in many situations in which non-singular semi-
Riemannian geometry is not defined [52, 54, 56]. More-
over, when it is valid at the Big-Bang, it automatically
satisfies Penrose’s Weyl curvature hypothesis, whose mo-
tivation was in the first place to connect the cosmological
and the thermodynamic arrows of time [40, 53].

Then, there is only one possible 3d-space state at the
Big-Bang singularity, and the conditions of singular gen-
eral relativity from [54] require also that the matter fields
are homogeneous in the 3d-space.
Of course, as t ↘ 0 the system may be

chaotic, as in the Mixmaster model [35] or the Belin-
ski–Khalatnikov–Lifshitz model [9]. Then, while at the
singularity there is still only one possible 3d-space state,
it can be approached in different ways as t ↘ 0. How-
ever, the limit γ → 0 forces the solutions to depend on
a small number of parameters as they converge to the
unique 3d-space (Σ, 0).
This severe constraint of the initial conditions for

(Σ, γab) implies that the branching structure of the wave-
functional is very asymmetric in time. This suggests a
possible reason why, at macro scales, branching happens
only towards the future.

MSTI Answer 4 (Branching asymmetry). Branching
happens only towards the future because at the Big-Bang
the 3d-space states have a very small number of degrees
of freedom and all converge to the same initial 3d-space
state γ = 0. The Weyl curvature also converges to 0 [53].

This answer is of course incomplete. We do not know
why the initial state had to be the Big-Bang, and it is not
even sure that there was a singularity, many researchers
think that quantum gravity will be able to remove it.
But singular general relativity suggests that singularities
are not necessarily ill-behaved, but they can even solve
notorious problems in quantum gravity [55, 57].

E. Probabilities from continuity

When a quantum measurement is made, the probabil-
ity to obtain a certain outcome is given by the Born rule
to be the square of the projection of the state vector.
Different outcomes may therefore have different proba-
bilities. However, in MWI, there is only one branch for
each of these outcomes. A direct counting argument im-
plies that all outcomes should be obtained with the same
probability, contrary to the Born rule. Everett proposed
that somehow the squared amplitude of the branch gives
the probability that the observer ends out being the ob-
server from that branch.

MWI Problem 5 (Probabilities). Why are the prob-
abilities proportional to the squared amplitudes of the
branches?

There are various proposed solutions, based on many-
minds [1], decision theory [16, 70], measure of existence
[65] etc. For a review see [68]. Proposals that some-
how the amplitude of a branch yields probability have
merits and led to interesting insights into the nature of
probability [71]. But if probabilities could be obtained in
the old-fashioned way, for example by branch counting
(Saunders advocates this [47]) or ideally as the ratio of
the number of favorable outcomes to the total number of
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possible outcomes, the result would be more palatable,
without necessarily contradicting other proposals.

The Rule of Thumb 1 suggests the desirability to solve
the problem by micro-state or micro-branch counting.
Fortunately, MSTI does just this:

MSTI Answer 5 (Probabilities). “Counting” 3d-space
states allowed to have an inhomogeneous density gives
probabilities proportional to the squared amplitudes.
Counting each 3d-space state is justified by the fact that
only those states have local beables, see §VIG.

This derivation of the Born rule is consistent with,
and provides a concrete realization of, Saunders’ branch
counting [47], Vaidman’s notion of measure of existence
[65], and maybe, but I am not sure, the Deutsch-Wallace
decision-theoretic argument [16, 70].

F. Real wavefunction

The Rule of Thumb 1 also suggests the following

MWI Problem 6 (Real-number-based probabilities).
It is true that the norm of the (complex) wavefunction
is real. But is there a deeper reason why we get real
probabilities?

MSTI suggests a solution according to the Rule of
Thumb 1 for this too:

MSTI Answer 6 (Real-number-based probabilities).
The wavefunction is real, and the complex phases only
represent a global U(1) gauge choice for the classical fields
in the 3d-space states.

G. Ontology: a real wavefunction

Another problem is that of ontology:

MWI Problem 7 (Ontology). What is the ontology of
MWI? What are the local beables?

Maudlin’s and Norsen’s arguments against the idea
that no other ontology is needed in addition to the wave-
function refer to local beables (in the 3d-space). How-
ever, a similar primitive ontology as for GRWm (see
§VIB) can work for MWI [2], by using as local beables
the mass or charge density, solution originally proposed
by Schrödinger to interpret the wavefunction. But it can
be argued that this adds new ontology besides the wave-
function, and that the same can be said if we take the
center of mass of the atoms as the local beables in MWI.

Some researchers consider that the abstract state vec-
tor and the Hamiltonian are sufficient to specify the on-
tology of MWI, and from it one can derive an essentially
unique 3d-space, the tensor product structure, the pre-
ferred basis, and all there is to be known about the uni-
verse [14]. This is impossible, because if any of these

structures can be derived from the state vector and the
Hamiltonian, infinitely many other physically distinct so-
lutions exist [60].
Other researchers consider that the wavefunction is

needed, in the sense that not only the state vector is
required, but also the 3d-space, and this is sufficient to
specify the complete ontology [66, 67].
Despite this, researchers like Maudlin [32–34] and

Norsen [36] consider that MWI does not have a primi-
tive ontology in terms of local beables.
But in every micro-world in MSTI there are local be-

ables, just like in classical physics.

MSTI Answer 7 (Ontology). The ontology is given by
the wavefunctional, which consists of and is dissociable
into 3d-space states (also named in Definition 1 ontic
states). Each ontic state consists of a 3d-space (Σ, γ), on
which classical fields ϕγ are defined, with a fixed gauge.
Each ontic state appears at most once in the composi-
tion of the wavefunctional, but ontic states can be dis-
tributed with a nonuniform density. The distribution
gives the real wavefunctional, and the gauge gives the
complex phase of each term in the wavefunctional. The
local beables are the classical fields ϕγ and γ defined on
the 3d manifold Σ, so they are defined only for 3d-space
states. Because the 3d-space states are the ones having
definite local beables, they correspond to (micro-)worlds.
This justifies counting them to obtain the probabilities.

Therefore, local beables exist, and the Rule of Thumb
1 was followed. What can be more classical than the
classical itself?

VII. DISCUSSION

It is uncommon to use the wavefunctional formulation
of quantum field theory in the interpretation of quantum
mechanics. For some reason, it is considered more natu-
ral to take nonrelativistic quantum mechanics as a bench-
mark for these interpretations. But the wavefunctional
formulation is natural too, if not even more natural, and
in any case it is more realistic.

Remark 4. When we perform a quantum measurement of
a smaller system, we never observe directly its state, only
the pointer state of the apparatus, which is macroscopic.
A measuring device is dedicated to a particular location
and type of quantum field (or subsystem in general), not
to a particular particle (or subsystem). The result of any
measurement translates into a change in the macro-state
of the universe. All these are described adequately by
the wavefunctional of the entire universe.

Wheeler and Everett considered MWI as the interpre-
tation of quantum mechanics that is suitable for quantum
gravity [8, 13]. According to DeWitt [18], p. 1141:

Everett’s view of the world is a very natural
one to adopt in the quantum theory of grav-
ity, where one is accustomed to speak without
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embarrassment of the ‘wave function of the
universe.’ It is possible that Everett’s view is
not only natural but essential.

Here, we have seen that background free quantum
gravity solves some foundational problems of quantum
mechanics, and especially of MWI. It even suggests a ver-
sion of MWI, which is MSTI, as the more natural inter-
pretation of quantum mechanics. The relation between
quantum gravity and MWI is therefore reciprocal.

Finally, I argued that MSTI solves some of the main
problems of standard quantum mechanics and MWI.

The strategy to make this interpretation more palat-
able was to highlight similarities with classical physics,
based on the Rule of Thumb 1. It turns out that, except
for the existence of a multiplicity of worlds, MSTI is a
more classical-like version of MWI, with respect to the
appearance of classicality, the existence of local beables,
the statistics, and even the understanding of the complex
numbers inherent to the theory.
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