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Abstract The interpretation and justification of Earman’s symmetry princi-
ples (stating that any spacetime symmetry should be a dynamical symmetry
and vice-versa) are controversial. This is directly connected to the question of
how certain structures in physical theories acquire a spatio-temporal character.
In this paper I address these issues from a perspective (arguably functionalist)
that relates the classical discussion about the measurement and geometrical
determination of space with a characterization of the notion of dynamical sym-
metry in which its application to subsystems that act as measuring devices
plays an essential role. I argue that in order to reformulate and justify Ear-
man’s principles, and to provide a general account of the chronogeometrical
character of some structures, the existence of a coordination between two no-
tions of congruence, one mathematical and one dynamical, must be assumed
for the interpretation of physical theories. This coordination provides the basis
on which we can understand spacetime in physical theories as the codification
(representation) of certain features of the access ideal observers have to expe-
rience.

1 Introduction

Many recent discussions of spatio-temporality in physical theories consider
the idea of spacetime not being ontologically fundamental. Moreover, some
recent proposals take a functionalist perspective and regard structures as
spatio-temporal in virtue of them playing certain roles in our physical theories.
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These are often appealed to when considering questions about the emergence
of spacetime and are also referred to in discussions on the interpretation of
symmetries.1 If spacetime is as spacetime does, as the functionalist mantra
is sometimes put,2 the question is: What does spacetime do? Or to be more
explicit: What roles do spatio-temporal notions play in our physical theorizing
and what consequences can we extract from those roles for specific questions
regarding the status of spacetime symmetries, in particular, and the inter-
pretation of spacetime theories in general? Different answers to this central
question are possible, with Knox’ inertial frame functionalism probably being
the most commonly discussed, and there seems to be a general feeling that
there is no single function that is apt to be used to identify spacetime gener-
ally.3 In this paper, I defend a particular answer to this central question which
is linked to a general strategy that allows us to dispel some problems that
have worried philosophers of physics for the last few decades: those related to
the origin of the relation between spacetime and dynamical symmetries.

Functionalism can be seen as a way of framing one of the most important
questions in the interpretation of physical theories: the question about the con-
ditions/criteria for certain (mathematical) structures to be considered spatio-
temporal. This, ultimately, in a more ontological fashion is the question about
how space and time are represented in physics. A general (natural) scheme
adopted to tackle the problem consists of thinking that the relation must
come from some common element present both in how the metric of space-
time (and any other spatio-temporal structures) is determined and in some
general conditions for the formulation of the laws that describe the dynamics.
A traditional answer has to do with noting the fact that the chrono-geometry
of the metric of spacetime is determined through the operations of measur-
ing physical/dynamical systems like rods and clocks. This hint (as Weatherall
notes [40]) is also the original inspiration for the so-called dynamical approach
to relativity.

The general perspective I have just alluded to, which embraces an interpre-
tive core according to which determination of the metric (the chronogeometri-
cal significance of the metric) is dynamical, seems to have become obscured at
times in recent debates. Nonetheless, it is always there, lurking in the wings.
Take, for instance, the recent debate concerning the two primary perspectives
on the relation between spacetime and dynamics in relativity theory: the ge-
ometrical approach (GA) and the dynamical approach (DA). Although some
efforts have been made to play down the differences in this dispute ([40], [29]),
it is often understood in an extremely stylized and highly formalistic fash-
ion. In such interpretations of the dispute, the GA is seen as assuming that

1 For a general introduction to the different contexts of spacetime functionalism see [9]. In
that same volume, different authors engage with spacetime functionalism in relativity and
quantum gravity.

2 See [22].
3 See [20] and [21] for the original proposal; [31] for a critical appraisal; [3] also offers

a criticism of Knox’ kind of functionalism and defends the idea that spacetime should be
treated as a cluster concept.
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some structures are primitively spatio-temporal and that they somehow con-
strain the dynamics, while the DA takes certain features of the dynamical
laws to be primitive and it is these that eventually define some structures as
being spatio-temporal. Undoubtedly, in any reasonable understanding of the
two perspectives, in the characterization of their different starting positions,
a common reference to the role of rods and clocks must be acknowledged.
But despite the fact that this common ground can be seen as containing the
seeds of their mutual relation, the discussion tends to forget this dimension.
An example of this, different from the aprioristic version of the GA I have just
given is the defence of the DA that takes the coincidence of the symmetries
of all the matter laws as a brute fact (a ‘miracle’) and considers their relation
to spacetime symmetries to be analytical or definitional.4 What happens in
both cases, it can be argued, is that certain relevant features of spacetime
and dynamics are first separated from their physical origin and then a ques-
tion about how one of them explains or can be reduced to the other is posed.
We encounter this together with a tendency to frame the discussion only in
terms of the formal structures of theories without explicitly considering how
such structures, according to some assumed interpretation of the theory, are
supposed to come into contact with actual experience.

Let me focus on why I think that the DA, even if correctly embracing
the dynamical origin of spacetime structures in physical theories, falls short
of providing a fully satisfactory account of the relation between spacetime
chronogeometry and dynamics. Put simply, I maintain that the declared aim
of the DA,“to account for the chronogeometry of metric structure. . . ” ([8], p.
9), cannot be achieved within a version of the approach in which the coinci-
dence of the spacetime symmetries and the dynamical symmetries of a theory
is taken to be analytical or definitional. This analytical version of the DA5 may
be a simplification that does not do justice to a more sophisticated version,
but it does indicate that we need some account of how, starting from the as-
sumption of certain symmetries of the dynamical laws, we arrive at spacetime
symmetries. This is usually completed in the DA by appealing to the strong
equivalence principle (SEP), which imposes the condition that the local sym-
metries of matter laws must be such and such, together with a functionalist
perspective (in particular, inertial frame functionalism) that would identify
some features of certain structures—those that determine the local inertial
frames—with spacetime.

This is problematic for different reasons. Weatherall ([40]) mentions the
difficulty of arriving at a formulation of the SEP that would allow us to iden-
tify which are the relevant symmetries of the equations, and also the question
of whether this is sufficient for us to recover spacetime as we understand it.
In any case, what the DA seems to be lacking is an elucidation—not some
postulation—of the connection between the dynamical symmetries (again,

4 For a defence of the ‘miracles’ view, see [30], [28], [29]; for a critical perspective on it:
[36], [40].

5 Myrvold [25] provides an explicit defence of this perspective, while [2], [21], [30] can also
be taken as partially endorsing such a view. See [36] for a critical take on this.
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which symmetries?) and what we call spacetime symmetries. This problem
also affects Knox’ functionalist extension of the DA: if you define spacetime
by the role that structures play in determining local inertial frames, and as-
sume a version of SEP that declares that locally the symmetries of the laws
of matter coincide with those of the metric thus determining local inertial
frames, then you entrust all the functionalist work to SEP. But then you
certainly have a problem: you are assuming that the notion of dynamical sym-
metry can be defined uncontroversially without any previous determination of
spatio-temporal structures and that you can then define spacetime symmetries
from those dynamical symmetries. This might be all right if an independent
account of dynamical symmetry is provided. But what may well actually be
going on in such approaches, is that the notion of spacetime in sneaked in
through the back door via some implicit reference to rods and clocks. What
is needed is an explicit connection between the notion of rods and clocks and
dynamical symmetry. The use of such ellipsis must stop at some point!

We need then criteria to identify which dynamical symmetries define space-
time ones. My general (functionalist) perspective is based on the following: it
is precisely because some structures play the role of codifying the ways in
which we (ideal observers) gain access to empirical content, which is implicit
in using certain systems to probe spacetime, that we identify some dynamical
symmetries as spacetime symmetries and therefore some structures as spatio-
temporal.6

What this initial take assumes is that the spatio-temporal character of some
structures in a physical theory is derived from the fact that we can interpret
them as encoding the structural (formal) characteristics of the way observers
gain access to the empirical world. However, the approach that I adopt in this
paper can be read in a more down-to-earth way. I will demonstrate that some
features in the characterization of (systems that act as) measuring devices are
such that they can be (and have been) naturally interpreted as being spatio-
temporal. This being the case, it is not too far removed to take a general
characterization of measuring devices as a putative abstract representation
of an ideal observer, and then to see the spacetime role as the codification
of some general features of idealized observers. Wherever one starts, the key
point of my analysis is the connection between certain general features of the
behaviour of measuring devices and some structures that can be taken to be
part of the formal determination of spacetime.

So, the plan for the rest of this paper is as follows. In Section 2, I present
a general overview of the framework of my proposal. Then I introduce the
so-called problem of space (Section 3) and the discussion of the interpretation

6 This can be read as a functionalist extension of the DA, in line with what [21] proposes.
But apart from the question regarding its functionalist character, in order to give a definite
answer to the question regarding the relation between the two types of symmetries, the DA
must provide an account that goes beyond the general claim that spacetime symmetries
are dynamical. Be that as it may, the aim of this paper is not to develop a spacetime
functionalism alternative to Knox’ version (I leave that for a different paper) but to offer a
precise strategy that enables us to justify the relation between spacetime symmetries and
dynamical symmetries.
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of dynamical symmetries in which the treatment of subsystems plays a cen-
tral role (Section 4). After that I bring the two discussions together to offer a
justification of Earman’s principles (Section 5), including (Section 5.1) a dis-
cussion of the consequences that this understanding of those principles has for
the interpretation of SR and its differences with Lorentz’ theory. I finish with
some conclusions (Section 6).

2 Spacetime symmetries, dynamical symmetries and observers

What is the origin of the relation between spacetime symmetries and the sym-
metries of dynamical laws? If one rejects the possibility of it being a simple
definitional relation, and in the previous section I have provided reasons to do
so, then this question is in need of an answer. In this paper I propose one. A
simple way to state the underlying general motivation for my response is the
following: the justification for such a relation is connected to how, according to
a given interpretation, a physical theory is taken to represent ideal observers.
However, an explicit representation of observers is nowhere to be found in
spacetime theories, so it might initially seem to be a dubious strategy to refer
to one in order to justify the relation between two, in principle, uncontroversial
features of the theory: its spacetime and dynamical symmetries. Perhaps the
claim I support can be understood in these less contentious terms: certain ele-
ments in the formulation of spacetime theories, in particular those that allow
us to interpret some structures as spatio-temporal and some symmetries as
dynamical in a physically relevant way, can be understood as traces of the im-
plicit representation of ideal observers. Spacetime, then, from this perspective,
will be identified with certain structures that can be interpreted as playing the
role of codifying formal features of the access observers have to experience.7

The expected benefits of this approach are that, understood in this manner,
we have a natural justification for the relation between spacetime and dynam-
ical symmetries. Precisely the extent to which this is a faithful presentation
of things can only be decided after an explication of such a relation has been
given in detail.

Let me advance the general features to be developed in the rest of the paper.
As mentioned above, there is a venerable approach to the nature of spacetime
in physical theories that links its determination to the standard operation
of rods and clocks. In general, one can say that the empirical determination
of physical chronogeometry will always involve some procedures governed by
certain dynamics and therefore constrained by some principles. On the other
hand, we also have physical principles that are implicit in the codification of
some specific processes through which it is assumed that empirical content is

7 I am sure it will not escape the reader that this general approach has many precedents
in the history of philosophy and its spirit can be linked to (neo-)Kantian approaches to
spacetime. Without wanting to deny these links, I think that it is important to evaluate
the merits of the specific proposal I defend in this paper without recourse to its historical
connections. Such an evaluation should depend only on how the proposal deals with the
question of the relations between spacetime and dynamical symmetries.
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acquired or, in other words, in the descriptions of measuring apparatus. And
finally, we may consider that this characterization also imposes constraints on
the dynamics of matter, as described by the theory. So, the basic assumption
here is that the dynamics of these two processes (determination of physical
geometry and the empirical content that is evidence for a theory) can be taken
to be the same if we interpret certain features of the theories as somehow cod-
ifying the role of idealized observers. From here, I will argue, we can derive
a relation between spacetime symmetries and dynamical symmetries. It must
be clear that this is not a version of the GA view in which geometry is taken
to explain dynamics, but neither does it involve a reduction of spacetime sym-
metries to dynamical symmetries. Geometry, in this approach, is dynamically
constructed, but at the same time it is recognized that this construction in-
volves some principles which contain or imply general restrictions on matter
dynamics. The existence of these constraints on the formulation of dynamics
is a consequence of interpreting the constructions as being derived from the
physical description of measuring devices (which might be interpreted as part
of the codification of the empirical receptivity of idealized observers).

The key notion that technically bridges the two types of symmetries is
that of congruence, which originated in geometry and has been ever-present
in the debates about the true geometry of physical space motivated initially
by the discovery of non-Euclidean geometries and then later by the eruption
of relativity theory. I will argue that the same transformations (motions) that
are part of the definition of the notion of congruence, and therefore can be
interpreted as spacetime symmetries, from the point of view of the description
of the dynamics of subsystems are symmetry transformations with features
that make them ideal for the formulation of a dynamical notion of congruence.
In particular, these transformations are unobservable from the interior of the
subsystem but detectable because they change some quantities that encode
relations between subsystems. Through the use of some technical machinery
introduced by David Wallace,8 this will become the basis for establishing the
connection between spacetime symmetries and symmetries of the dynamics
in physical theories (my main claim). It will also allow us to make the limits
and conditions of such a relation explicit, and to tackle such a relation in the
context of particular theories (a claim that would involve correcting some ideas
about how to interpret the situation in some paradigmatic cases).

Through developing the details of this schematic presentation, I will also
bring together two much discussed themes in spacetime theories. One is the
determination of physical geometry that I have already mentioned, the so-
called problem of space (PoS). The other is the observability of dynamical
symmetries.

8 This framework for the treatment of issues related to the interpretation of symmetries
is developed by David Wallace in [37], [38].
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3 The problem of space: the Helmholtz–Lie–Weyl theorem.

The question concerning which geometrical structures are suitable to be used
to describe physical space and what justification can be given for this is gen-
erally referred in the literature as the problem of space (PoS). Even if it is
obvious that formulated in this way the question only fully makes sense af-
ter the discovery of non-Euclidean geometries, much of the reflection that has
occurred during the search for responses has its roots in the Kantian anal-
ysis of space and time as forms of intuition. Irrespective of whether Kant
was aware of the challenge that the new geometries posed, his analysis of
the notions of space and time has been highly influential in the different for-
mulations of the PoS due to the fact that he placed the question of how to
give an account of the physical/empirical validity of geometry centre stage.
Furthermore, we must distinguish two stages in the history of the discussion:
the classical pre-relativistic era, mainly carried out by mathematicians like
Riemann, Helmholtz, Lie and Poincaré; and the relativistic stage, formulated
mainly by Hermann Weyl.

There are a fair number of presentations of the history of the PoS in the
literature.9 My intention is not to repeat the story; although we will need a
brief account to be able to focus on some aspects of the problem that I think
are essential for my discussion and that perhaps have not been sufficiently
stressed to date.

Even if Riemann can be considered the initiator of the classical formulation
of the PoS, I will take some features of Helmholtz’ approach as a reference to
understand the dynamical dimension of the problem. The basic question that
Helmholtz was trying to answer is: How can the geometry of physical space
be determined? His answer is based on the idea that the measure of spatial
geometry requires a notion of congruence for physical bodies and this, in turn,
is made possible by the condition of free mobility of bodies. The notion of free
mobility, as it is generally recognized, plays a central role in Helmholtz’ concep-
tualization of the PoS. From this condition, Helmholtz claimed to derive the
notion that the geometries that are able to represent physical space are those of
constant curvature (although he originally excluded the Lobachevskian geom-
etry). This result was rigorously derived later, through applying group theory,
by Sophus Lie.10

The mathematical derivation of the conditions that the geometries (the
metric) of physical spaces must satisfy if one assumes free mobility is one
side of the problem. In fact, this comprises the purely mathematical part of
the question: starting from a notion of congruence, which must be specified
through the formulation of a number of axioms, one extracts the consequences
for the geometries that are compatible with it. This part is what Lie perfects.
But, one can argue, this makes up only half of the problem, at least as it seems
to be understood by Helmholtz and, more importantly, if one wants to fully

9 See [12], [33], [34] as some examples of recent philosophical approaches to this historical
discussion.
10 See [33] for an summary of Lie’s contribution.
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answer the question of the physical validity of geometry. So, in this case, one
must also ask about the consequences of the attribution of a certain spatial
(and temporal) geometry for the formulation of dynamical laws. To tackle this,
it is necessary to reflect on the status of free mobility as a physical condition,
in addition to the derivation of the formal restrictions on the metric.

We find the first seeds of this kind of reflection in [16]. There, Helmholtz’
discussion about how the axioms of physical geometry are based on the notion
of congruence, presupposes the possibility of moving solids without deforma-
tion. At the end of these considerations, he explicitly refers to the question of
the mechanical principles that must be conjoined to the geometrical propo-
sitions in order for them to be more than mere definitions without empirical
validity. He eloquently adds that without presuming such mechanical princi-
ples, the answer to the question regarding the geometry of physical space hides
the presumption of a pre-established harmony between form and reality.11

Let me reformulate the core of Helmholtz’ position. This can be done in the
following way: in order to claim that the geometry of space is such and such,
some mechanical principles are necessarily involved and these are involved in
the functioning of the systems through which we gain empirical access to the
geometry. In Helmholtz’ case, the relevant physical systems are rigid bodies
and the principles concern the independence of the mechanical properties of
bodies and their interactions under certain physical operations (translations,
rotations and so forth). The reason for this choice is that these are the systems
that are involved in the empirical determination of spatial geometry. To go
beyond these specific systems, we need to deepen and generalize the principle.

It is evident that Helmholtz’ particular formulation of the PoS, linked to
the notion of the free mobility of rigid bodies conceived as a procedure that
measures spatial geometry, cannot withstand the progression to a relativistic
context. To have a general scheme that is applicable to physical theories in
this new scenario, two generalizations would be needed: the problem would
need to be formulated in a way that can be interpreted as referring to mea-
surements of spacetime metric; and it would need to be detached from the
narrow, finite notion of a rigid body in a way that extends its validity to the
infinitesimal domain. Weyl addresses this task in his development of a purely
infinitesimal geometry around 1920. Although his reformulation of the PoS
passes through different stages,12 it seems clear that he understands that his
approach is partly a generalization of the Helmholtz–Lie strategy that is now
compatible with the theory of general relativity. In a stylized manner, we can
present its main points as follows. The fundamental question that guides the
enquiry is how to justify the notion that the metric which describes spacetime
has a certain general form; in particular, the Pythagorean form. The strategy
adopted to arrive at an answer consists of starting from a notion analogous to
the congruence by free mobility in the Helmholtz–Lie problem, which is given
by the definition of infinitesimal congruences at each point and for displace-

11 [16], p. 17.
12 See [34] for an account of this.
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ments between infinitesimally close points.13 Weyl realizes that it is necessary
to define the congruence of displacements by introducing a metric connection
that sets the standard of comparison between close points. The conditions
that define such an infinitesimal notion of congruence are expressed in two
postulates, named by Weyl the Principle of Freedom and the Principle of Co-
herence. The former can be understood as a principle of free mobility at each
point, while the latter expresses the condition of compatibility between the
metric connection and the affine connection. Finally, Weyl is able to prove a
result which constrains the form of the metric. Glossing over many difficulties
and subtleties, we can say that he arrives at the result (see [33]) that a metric
satisfying the conditions of infinitesimal congruence,for which the metric con-
nection uniquely determines the affine connection, has the form of a Weylian
metric (a Riemmannian metric of fixed signature plus a metric connection)
with Pithagorean line element.

We have here a general formal scheme that connects a mathematical notion
of congruence with certain restrictions on the metric, which furthermore can be
formulated in terms of a group of symmetry transformations. In a sense, these
symmetry transformations can be interpreted as providing the definition of a
notion of congruence through the specification of a mathematical group. (The
reference to the infinitesimal structure in the case of Weyl’s characterization
introduces some problematic features that must be treated separately.) Now,
in order for this metric to be considered a property of physical space(time),
we should be able to interpret the congruence transformations as motions of
physical systems which—despite the fact that in idealized form they are defined
merely by the mathematical notion of congruence—insofar as they are taken
as valid surveyors of the spacetime metric, must be governed by dynamical
laws that satisfy certain constraints. This perspective thus has two questions
at its core which must be answered in order to say something specific about
spacetime and its relation to dynamics: Which chronogeometrical structure is
determined by the assumptions of the idealized systems; and what constraints
does such an idealization impose on the dynamics of the systems?

The first question, the mathematical part, is answered in the classical prob-
lem of space by Helmholtz and Lie through the proofs that free mobility, math-
ematically defined in a certain way, constrains the metric in such a way that it
has to be of constant curvature. And for the infinitesimal case, it is answered
by Weyl’s generalization.

The second, dynamical part is more conspicuous in the problem of the
physical validity of geometry. That it must always be taken into account is
revealed by this simple fact: without it, we only have the definition of a math-
ematical structure with no claim concerning its physical relevance. Only by
assuming that there are physical systems that fit the mathematical axioms,
is this applicability endorsed. But the question that is rarely brought to the
fore concerns the consequences that this has for the formulation of dynamics.

13 [33], [12] provide very competent discussions of Weyl’s position as developed at different
stages but concentrating especially on the mature presentation delivered in his Barcelona
lectures ([41]).
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Helmholtz suggests, rightly I think, that these consequences can be formu-
lated in terms of some symmetry principles that the dynamics must satisfy.
Nonetheless, this demands a precise formulation. My intention is to provide
this through the ensuing discussion of the notion of dynamical symmetry as
applied to subsystems.

4 Dynamical symmetries and subsystems

A central aspect of the present approach to the issue of the relation between
spacetime symmetries and dynamical symmetries is how, in a given theory, the
procedures through which we acquire empirical content (that confirms/refutes
the theory) are reflected. I assume that every physical theory, even if it does not
have the resources to model measuring devices explicitly, must at least include
some features whose interpretation can be linked to measuring procedures
performed by ideal observers. This seems unavoidable when the models of a
physical theory are taken to represent parts of the world that we experience.
So, I must now turn to the question of how these measuring procedures are
encoded in features of the formalism of the theory and what consequences this
has for its symmetries.

As my starting point, I take a basic, minimal characterization of measuring
as a physical process in which two different subsystems interact, with the result
that the final state of one of them—the measuring device—can be taken as pro-
viding information on the state of the other—the target system—just before
the measuring took place.14 As I hope to show, from this extremely schematic
characterization it is already possible to extract some general consequences for
the definition of dynamical symmetries and their relation to spacetime sym-
metries for a theory whose interpretation incorporates such minimal modelling
of measuring devices.

In order to do this, I must delve into the discussion about whether quan-
tities that are variant under symmetry transformations are observable. A per-
spective on this issue developed by David Wallace that takes the role played
by subsystems as central, will prove essential. In a series of works,15 Wallace
emphasizes that the answer to questions concerning the observability of sym-
metries are always linked to how the symmetry transformations behave when
interpreted as being applied to subsystems. He develops a powerful frame-
work to tackle the main problems in the interpretation of symmetries. I fully
agree with this perspective. Wallace argues that the preponderance given to
the behaviour of subsystems for the interpretation of symmetries stems from
the usual treatment that physicist afford them. Moreover, I would add that
the special role that subsystems play in the characterization of measuring de-

14 I borrow this characterization from [37]. There might be questions about whether this
characterization is fully general and includes measuring processes in quantum mechanics. If
it is not and does not, then it would restrict us to the classical context. But this in itself is
not bad insofar as we are able to state the limits of its application clearly.
15 [37], [38], [39].
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vices explains why the notions of symmetries that matter most in physics are
connected to their interpretation in terms of the behaviour of subsystems.

So we have a general strategy to tackle some of the main issues concerning
the interpretation of symmetries which, starting from a general formal char-
acterization of the notion of dynamical symmetry (basically, a transformation
that takes solutions to solutions), complements this sparse definition, which by
itself seems unable to provide answers to questions about the representational
capacity or the observability of symmetries, with the idea that such issues must
be interpreted in the context of the application of symmetries to subsystems.
In particular, in order to decide whether certain quantities that are variant
under symmetry transformations (and therefore usually considered to be un-
observable) are observable, one must look at how the symmetry extends from
its application to a given subsystem to the interaction between that subsys-
tem and its environment. Only in cases in which a symmetry transformation
of a given subsystem is also a symmetry of the composition subsystem-plus-
environment (and it is, using Wallace’ terminology, extendible), can some vari-
ant quantities be observed despite the ‘common wisdom’ that only invariant
quantities are observable.16 Let me sketch Wallace’ argument, as it introduces
some elements that are extremely fruitful with regard to the relation between
the characterization of measuring devices and judgements about the dynamical
symmetries of a theory.

Wallace starts from the aforementioned notion of dynamical symmetry and
assumes a physical description of a measuring device: a system that has a ready
state that is independent of the target system and which, after interacting
with it, ends up in a state that is a function of the pre-measurement state of
that target system ([37], pp. 8-9). From this, it follows that a measurement
that is internal to the system cannot detect whether a dynamical symmetry
transformation has been performed. This is proof of what Wallace calls the
Unobservability Thesis. Now, the interesting question is what happens to the
measurements of quantities for systems that can be considered as external to
the subsystem in which the measuring device is placed (that is, measurements
external to the subsystem). This involves considering the device itself as a
subsystem interacting with a target system that can vary independently of it.
Wallace introduces the the following notation to express the combined state
of the two subsystems: (O, g;O′, g′), where O and O′ are orbits of equivalent
states under symmetry transformations of the target and measuring systems,
respectively.17 If the symmetry is extendible and global, it is possible to define
the invariant quantity: g′−1g. Now, assuming that the primed system is a
measuring device as characterized above, and in particular that it meets the

16 For the discussion on how to solve the puzzle of observability of variant quantities, apart
from the cited work of Wallace, see [32], [11].
17 This notation needs some clarification. We are assuming that we can define a state
space S for each system. Dynamical symmetries can be defined as transformations such that
gx(t) is a solution of the equations of motions iff x(t) is a solution. These transformations
form a group and an orbit will be the equivalence class of states connected by symmetry
transformations. By specifying an orbit and an element of the symmetry group, we can
therefore identify the state of the system. See [37], p. 6.
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condition of having a dynamics that is independent of the target system, then
we can fix the quantity g′ and realize that, because g′−1g covaries with g, it is
possible to measure g. So, this amounts to an account of how a quantity that is
variant under a dynamical symmetry transformation can be measured, if we are
ready to interpret it as a relational quantity expressing some kind of target–
device relation. The synopsis of this argumentation is that, for subsystem-
global symmetries,18 globally variant quantities are observable via measuring
devices outside the system, but such observations can always be reinterpreted
as observations of an invariant relation between system and measuring device
(at least, this is so in the context of the theories that Wallace considers).

My intention now, as preparation for the next section, is to reverse Wal-
lace’ argument: instead of starting by assuming a given dynamics with a cer-
tain type of symmetry, as Wallace’ does for the case of Newtonian particle
mechanics, I will explore what can be inferred about the relation between the
internal dynamics of a subsystem that acts as a measuring device and the
dynamics of target systems measured by it, if one starts from just the general
characterization of a device that measures some quantities of external target
systems.

5 Earman’s principles

Famously, Earman [14] explicitly expresses two heuristic principles for the for-
mulation of theories of motion declaring the equality of spacetime symmetries
and dynamical symmetries. My aim in this section, through making use of
the analysis in the two previous sections, is to address the question of the
foundation of Earman’s principles and, in general, to discuss the possibility of
formulating principles that relate spacetime symmetries and dynamical sym-
metries. This must necessarily involve a discussion of the motivation behind
the definitions of the symmetries that the principles interrelate. In particular,
because it is usually taken for granted, I am especially interested in discussing
the notion of spacetime symmetry.

First, we need to consider what kind of principles Earman’s principles are.
For this we must make explicit what definitions of symmetry they presuppose.
Let me start with the notion of spacetime symmetry. Earman’s discussion as-
sumes that a formulation of a physical theory (a theory of motion) incorporates
the identification of certain structures as spatio-temporal. If this is the case,
then we can define spacetime symmetries as transformations that leave these
structures invariant. From this posit, Earman’s principles are understood as
providing criteria to establish which formulations of a given theory are prefer-
able in virtue of their not containing spacetime structures whose symmetries
do not coincide with the dynamical symmetries. Dynamical symmetries, on the
other hand, are defined in the standard way (see the previous section). This

18 A subsystem-global symmetry group for two interacting systems, in Wallace’ terminol-
ogy, is a symmetry group whose action is a symmetry of each subsystem and for which the
combined action is a symmetry of the combined system.
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is consistent with Earman’s understanding of the principles as heuristic: one
begins with some posit on what the spacetime symmetries—implicitly encoded
in a given interpretation of a theory—are and attempts to refine it by recourse
to the principles. To avoid circularity, though, the justification of the principles
must be independent of the definition of what a spacetime symmetry is. This is
why Earman stresses that these are not principles of meaning (they are not an-
alytical) and he invokes some epistemic considerations, allegedly related to the
general notion of spacetime, to try to provide a justification for the principles.
I think that the two central ideas in Earman’s discussion of the principles are
right: that the principles should not be taken as analytical and that their force
derives from the connection between the notion of spacetime and its epistemic
role in physical theories. Nonetheless, keeping the nominal definition of the
notion of spacetime symmetries (i.e., as symmetries of spacetime structures),
it is easy to fall into one of two interpretive traps (that excessively burden the
discussion). The first consists of taking the nominal definition as substantive
and thinking that what the justification of the principles would determine is
that the dynamics is adapted to spacetime structures that are not dynamically
determined. The second, partly motivated by dissatisfaction with the first, is
to think that dynamics, transparently and without presupposing any further
epistemic input, dictates what the spacetime symmetries are. To avoid these
extremes, it is advisable to note from the beginning that in the determination
of which structures are spatio-temporal, and therefore what spacetime sym-
metries are, epistemic considerations of a dynamical character must be taken
into account. This is why I propose to make it explicit from the start that
in the determination/definition of spacetime symmetries, general conditions
that can be interpreted as proceeding from the characterization of measuring
devices are essential, and the precise sense in which they are. These are the
epistemic considerations of a dynamical character that might also be taken as
providing content for a definition of the notion of spacetime symmetry that
goes beyond the nominal definition.

Let me try to make all of this more precise. The connection between the
determination of geometry and dynamical conditions was at the centre of the
responses to the PoS. The link, in those frameworks, was provided by coordi-
nating a notion of congruence (finite, in the Helmholtz–Lie classical response;
infinitesimal, in Weyl’s version) with some transformations that are taken to
be the correlate of the motions of physical systems that would measure physi-
cal geometry, expressed as the condition of free mobility and its translation to
the relativistic context. The general assumption here is that a determination of
physical geometry is always going to be through the identification of certain
transformations that can be interpreted as defining a notion of congruence
(some kind of relation of equivalence for physical systems that meet certain
criteria that permits us to interpret them as congruences). These transforma-
tions of congruence are the natural candidates for providing the definition of
spacetime symmetries. So far, they are the transformations that can be used
to define a geometry, in line with Klein’s Erlangen programme, from the struc-
tures which are invariant under them. The connection to (physical) spacetime,
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in the PoS approaches, comes from assuming that such transformations can
represent physical motions of systems that measure the geometry of space. In
the case of the classical solution to the PoS, the physical interpretation of the
notion of congruence is given by the notion of free mobility of rigid bodies,
which is then associated with the group of transformations that are permissible
according to the mathematical notion of congruence. In other words, we have a
mathematical notion, congruence, that provides a sense of correspondence for
mathematical objects, and its physical counterpart given by the idea of rigid
body. This allows us to determine a group of transformations as those respect-
ing certain internal relations, and from then to determine, a least partially,
the geometry of space.

In any case, I want to stress that these approaches provide a framework
within which to formulate the connection between geometry and dynamics.
Note that the general strategy can be taken, independently of the specific re-
sults that it renders, to consist of providing the mathematical characterization
of a certain notion of congruence through a group of transformations, which
will be interpreted as defining a geometry. If one starts with a prior notion of
congruence (equality of lengths for vectors, for instance), this determines the
group of transformations. But we could also think, inversely, of the group as
defining congruence. This perspective might be especially relevant when we
leave the context of pure mathematics. In this case, we might think that a
notion of mathematical congruence will be justified insofar as it represents a
certain concept of equivalence for physical systems that is relevant in some
specific way. Whatever that notion of equivalence may be, by generalizing the
lessons from the PoS we can see that it is its eventual association with a group
of transformations (if they can be interpreted—using Weyl’s terminology—as
allowing congruence transfers) that will provide the connection with the ge-
ometry of spacetime. This points to the desired link between spacetime sym-
metries and dynamical symmetries, as I will next elaborate, but coming from
the opposite direction.

Let us now consider the treatment of measuring devices as subsystems
interacting with other subsystems. Generally, we can take them to be measur-
ing empirical quantities that can be used to confirm/refute a given dynamical
theory. The quantities themselves need not be spatio-temporal, but the as-
sumption is that, in order for them to have empirical relevance (some authors
call this empirical salience), the measuring must provide some kind of para-
metric marking of the events in such a way that the measured relations can be
taken as data to test the theory. It seems difficult to see how this assumption
could be avoided (which does not mean that it is being assumed that the rela-
tions are determined). Perhaps a less loaded assumption about the functioning
of certain subsystems as devices would just be that the measurement contents
must be coordinated in such a way that relations between the events can be
expressed, and some of them sanctioned, as being derived from the dynamics.

In any case, initially bracketing the question about the degree of commit-
ment that one is ready to make to the minimal structure of events needed to
formulate a dynamical theory, measuring devices can be taken to be physical
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systems that can be characterized as subsystems that interact with other sub-
systems. Since we will be interested in the description of dynamical symmetries
as they apply to different subsystems, we can use the framework discussed in
the previous section. The dynamics of subsystems acting as measuring de-
vices can be represented in a configuration space with coordinates capable of
encoding the dynamics of target systems (whether this is the same subsys-
tem device or other subsystems). Borrowing Wallace’ notation that I previ-
ously introduced, we can represent the combined target system–device state
as (O, g;O′, g′). The state of the measuring device after the measurement will
be a function of the state of the target device before measuring, meaning that
it covaries with the state of the target system. As discussed before,19 the Un-
observability Thesis implies, assuming that the device is a physical system
capable of encoding the state of the target, that internally the recording is not
capable of distinguishing whether a transformation which is a symmetry of the
dynamics of the device has taken place. Now, the device must interact with
external target systems in order for us to be able to interpret the quantities
measured as relevant for the testing of the dynamics of those systems. Some of
these quantities, even if observable, might be variant under some of the sym-
metries of the dynamics of the device when only applied to the target or device
systems: quantities that can be interpreted as relational (encoding information
about the target–device relation). Using the previous notation, the quantities
represented by g′−1g would be invariant under symmetry transformations (if
they are symmetries of the combined system) but could be interpreted, as-
suming that the change in the device is undetectable (therefore taking g′ as
fixed), as detecting transformations of the target system. From a perspective
that is internal to the device some quantity that encodes the relation between
the device and an external target system does change. Thus, the record of the
states before and after the transformation will be interpreted as two states of
the target permitted by its dynamics. However, these same transformations
could, in principle, be interpreted as (relative) ‘motions’ of the device subsys-
tem for which nothing changes internally while its relation to other subsystems
varies.20

This is the conceptual basis that connects certain dynamical symmetries
with the notion of congruence: they share some formal characteristics (being
defined by a group of transformations that are not observable via the change

19 Wallace (2020, p.10).
20 One might wonder to what extent being able to detect these type of quantities is nec-
essary for the characterization of measuring devices. Behind this is the idea of measuring
devices being able to capture empirical contents that can be used as evidence to test the
theory, together with the idea of dynamics establishing relations between contents that ob-
servers like us can experience. This is clearly not sufficient to prove the necessity of this
characterization of devices and much more work needs to be done to stablish this kind of
connection, but my view is that such a characterization is part of the way in which we define
empirical content. Provisionally, we can say the following: insofar as part of the characteri-
zation of measuring devices is the possibility of capturing such quantities, as argued below,
certain dynamical symmetries with the specified features when applied to subsystems will
be, as argued below, spacetime symmetries.
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in quantities measured internally, but nonetheless making sense of the claim
that the transformation has taken place because some quantities that encode
external relations have changed). From establishing this connection, the next
step is to say something about the relation between the symmetries of the
dynamics of the device and the dynamics of target systems. For this, we just
need to recover the following result: in order for these quantities to be observ-
able externally, the symmetries of the subsystem device must be extendible
and, using Wallace’ terminology, subsystem-global: the same group must be a
symmetry group of the different interacting subsystems. This means that the
dynamics of target systems must have the same symmetries as the dynamics
of the subsystem device.

Formally, the rationale for such a connection is given by the equivalence of
some structure in both cases: the existence of transformations with the struc-
ture of a group (which is given as part of the definition of congruence, and
eventually of geometry) and the identification of relevant invariances of the
dynamics. This is one way of expressing what has been done here: a mathe-
matical notion of congruence (which can be taken as defined through a group
of transformations) has been coordinated with a dynamical notion of congru-
ence. This latter is based on the idea of subsystems that can detect some
symmetry transformations that are internally unobservable but observable by
measuring quantities whose variation with the transformation is interpreted as
detecting change in some relation between the subsystems. The motivation for
the coordination between these notions comes from the idea that such trans-
formations for measuring devices share essential features with mathematical
congruence transformations; they provide a criterion of equivalence which is
somehow internal, together with a distinction between initial and final state
which is external. There is a class of dynamical symmetries that can accom-
plish this: those that can be interpreted as dynamical congruences and define
a subclass of dynamical symmetries.

We can define D-congruent symmetries as those dynamical symmetries
of the subsystems such that for a measuring device operating in them are
internally unobservable but observable through changes of invariant relational
quantities between the device and any other subsystem.

The general motivation behind this definition is that D-congruent symme-
tries can be interpreted as providing a dynamical counterpart of the notion
of congruence. Let us reflect on this. Congruence, originally, is a geometrical
notion referring to the equivalence of figures in space. The idea is that con-
gruent figures can be perfectly superposed when one is moved to the other’s
position. Helmholtz conceptualizes this through the notions of rigid body and
free mobility. In a simplified manner21 one can say that the geometrical notion
of congruence is defined by some procedure for determining the equivalence
between bodies at the same place and some rules for comparing distant bodies,
all of which determine certain transformations. Mathematically such transfor-

21 See for instance ([10], p. 123) for a recent presentation of Helmholtzian congruence
conditions.



What spacetime does: ideal observers and (Earman’s) symmetry principles 17

mations form a group. Alternatively, one can think of this characterization
as providing a procedure to determine certain intrinsic properties of the fig-
ures (length, angles...) and a group of transformations that keeps the intrinsic
properties invariant while changing the extrinsic relations to other figures. Nat-
urally, depending on what the procedure to determine the intrinsic property
is, the group of transformations found is going to be different and, one might
think, the fact that a certain group of transformations define a geometry is
dependent on having originally chosen properties that are, let us say, spatial
or geometrical.

The bold step taken here, inspired by Helmholtz’ treatment, consists on
abstractly focusing on the properties of the dynamics that the physical systems
that implement the notion of congruence must meet and, together with this,
generalizing by abstracting the initial geometrical features. The main leading
question can be posed in the following terms: What general conditions must
the symmetries of the dynamics meet in order to be at the base of a definition
of congruence? The leap is taken by thinking that any dynamical symmetry
that meets such conditions could be considered as able to support a defini-
tion of congruence. To put it differently, if we blindly started by looking at
the dynamics without a previous geometrical background, we could use those
properties to define a subset of dynamical symmetries that, eventually, might
be taken to define a congruence. The answer to the question, I claim, is found
in the features that certain dynamical symmetries when applied to subsys-
tem have. They define a group of transformations that are not detectable by
measuring devices detecting intrinsic quantities but can be detected by varia-
tions in some relational quantities between subsystems. Formally, they will be
congruences.22

It must be noted that this general scheme necessarily involves what can be
seen as conventional elements. These are linked to the fact that, by declaring
certain structures as spatio-temporal, an interpretation of a physical theory
incorporates a tacit decision as to the notion of dynamical symmetry that is
taken as relevant for a definition of congruence, from which spacetime geometry
follows. The minimal requirement, according to the previous discussion, is
linked to the existence of symmetry transformations which, when applied to
subsystems, are internally unobservable and externally detectable; but this
leaves some degree of freedom.

At this point, it is important to stress a couple of things. The first is that
there might be further requirements that are needed to coordinate the dynam-
ical notion of congruence with a geometrical one, but it seems unlikely that
we could formulate them in general without using concepts that are already
chronogeometrical (more on this at the end, when I discuss why this linking

22 I have not provided a full proof of this claim in this paper. To do so, one should start
by deciding which kind of quantities our devices should detect (vectorial, for instance) and
show that in order to observe relational quantities of that type, the group must be one that
defines a congruence. I leave the full discussion for another paper.
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of spacetime to formal properties of receptivity23 is a (the best) functionalist
perspective on spacetime). Here I have specified the minimal structure that
is behind the connection between spacetime and dynamics in a theory, inten-
tionally eluding any mention of plainly phenomenological notions.

The second remark has to do explicitly with the nature of the convention
involved here. This can be seen from two complementary perspectives. From
the geometrical point of view, it involves taking some physical systems as
suitable for the implementation of a notion of geometrical congruence; from
the perspective of the dynamics, it means assuming, in cases in which a full
dynamical description of the measuring devices is inviable, that the laws gov-
erning the dynamics of the devices have certain symmetries. These two aspects
are derived from the original conventional dimension involved in the coordina-
tion of a notion of dynamical symmetry and a geometrical congruence. This
could also be expressed in a slightly different way: through its coordination
to a notion of mathematical congruence, we are using a notion of dynamical
congruence to define spacetime symmetries. In this sense, this approach is at
the base of an eventual dynamical definition of spacetime symmetry, which is
the principal motivation of the DA.

5.1 Limitations of the applicability of the principles

Earman’s principles can be, and usually are, taken as heuristic principles con-
cerning the formulation of spacetime theories that recommend the equality of
spacetime symmetries and dynamical symmetries. One of the main problems of
Earman’s proposal has to do with the allegedly insufficient justification for the
principles, which can lead to a lack of clarity as to whether the principles are
materially adequate or whether some counterexamples to them can be found.
The core of the previous discussion allows us to complete the justification for
the principles and, consequently, to delimit their range of validity. According
to the view I defend here, the relation between spacetime symmetries and
dynamical symmetries is arrived at by referring both notions to certain trans-
formations that are symmetries of subsystems which can act as measuring
devices. This is achieved by coordinating a notion of geometrical congruence
with certain dynamical symmetries applied to subsystems. So, stated in a sim-
plistic way, this proposal amounts to a reformulation of Earman’s principles in
which the terms ‘spacetime symmetries’ and ‘dynamical symmetries’ are pre-
cisely interpreted in the following way: spacetime symmetries and D-congruent
symmetries should coincide. A slightly different way of putting this involves
understanding the principles as recommending an (empirical) interpretation
of the theory in which there is coincidence of the dynamics responsible for
the behaviour of devices taken to determine the spacetime structure (rods and
clocks) and the dynamics of measuring devices that provide empirical tests of
the theory. Conversely, according to this proposal, the discrepancy between

23 I borrow this term from Kant’s work to allude to a generalized faculty of ideal observers
as represented in physical theories.
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spacetime and dynamical symmetries—once the notion of dynamical symme-
try is taken as fixed and interpreted as applied to subsystems—can be traced
back to a posit of spacetime symmetries which, even if only tacitly, must be
linked to the behaviour of certain systems that obey a dynamics that is differ-
ent from that attributed to measuring devices (many times, the discrepancy is
due to the postulation of spacetime structures whose determinations have lost
all trace of their connection to any dynamics whatsoever). This can be made
explicit through a very well-known example.

Special Relativity (SR) can be characterized as a theory stating either
that the geometry of spacetime is Minkowskian or that (locally) all the phys-
ical laws are Poincaré invariant. From the perspective defended in this paper,
both characterizations arise from a more basic implicit assumption: the em-
pirical procedures (physical systems) idealized and assumed by the theory as
standard for the determination of spacetime chronogeometry (this is somehow,
implicitly, encoded in the formalism of the theory), are the same (or at least
are governed by analogous dynamics) as the measuring devices that provide us
with the empirical basis of the physical theory. Historically, this was encoded
in the behaviour of rods and clocks as derived from the relativity principle
and the light principle. Now, this does not mean that it is inconsistent to for-
mulate a theory empirically equivalent to SR but set in a different spacetime
structure, or that it is impossible to have dynamical laws with symmetries
differing from Poincaré invariance in Minkowski spacetime. But in such cases,
the coordination presumed by the principles fails.

An example of this might be present in Lorentz’ theory.24 In this case, the
main question can be posed in terms of how to accommodate a dynamical law
that is Lorentz invariant in Newtonian or Galilean spacetime. If one is willing
to keep one of these spatio-temporal structures (ultimately due to the assumed
dynamical functioning of some material systems governed by Newtonian dy-
namics) and faces a theory encoded by Maxwell’s equations, two possibilities
exist. One is to hope eventually to formulate the theory in equations with
the same symmetries as the assumed spatio-temporal structure; doing so has
some empirical consequences that should be sanctioned by experiment. The
other option is to allow the difference in symmetries. But this means that,
in principle, these laws should imply the possibility of detecting certain iner-
tial motions in spacetime. If this was not the case—as the null result of the
Michelson–Morley experiment eventually showed—then there is the possibility
of trying to explain the null result by postulating some dynamical effects on
measuring devices due to their motion in absolute space, as Lorentz did. But
in such a case, the question is then: What justification is there for maintaining
that the spatio-temporal structure is Newtonian? Simplifying, this might be
sustained by a priori, geometrical or dynamical reasons. Considered from a
bluntly a priori standpoint, it would involve assuming that spacetime must be
Newtonian. A more sophisticated version of this position, based on geometri-

24 Philosophical discussions of Lorentz’ theory and its relation to SR abound. See, for
example [26], [17], [1], [4].
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cal considerations, involves assuming that rods and clocks measure a Galilean
spacetime (note that from this vantage point it is difficult to justify Newto-
nian absolute space). Finally, one might justify the, again, Galilean structure
of spacetime as being derived from the symmetries of Newtonian mechanics. At
the same time, as noted above, one would need to use some machinery (sim-
ilar to Lorentz’ theorem of corresponding states and generalized contraction
hypothesis) to explain why we do not detect motion in absolute space.25

The problem with all these defences of the Newtonian or Galilean nature of
spacetime, from the perspective of the principles, is that they have lost all con-
tact with the dynamical notion of congruence that is the basis of the geometric
determination of spacetime. Postulating, as Lorentz did, some dynamical ef-
fects to explain the null result of the Michelson–Morley experiment, flies in
the face of taking rods and clocks—if governed by Newtonian dynamics—as
a basis for the dynamical definition of congruence. The recommendation ex-
tracted from the principles (under my interpretation) would be something like
the following: prefer the theory in which the measuring systems used to deter-
mine the geometry of spacetime are governed by the same dynamics as that
governing the measuring devices that operate in electrodynamic experiments,
which would be used to detect the alleged motion in absolute space. The ra-
tionale behind this, in this particular case, is that after realizing that some
fundamental theory is incompatible with the dynamics of systems that probe
spacetime, there are reasons to doubt that those systems are adequate for
measuring the metric of spacetime. The notion of congruence defined for such
systems does not seem to hold any more if we take into account electromag-
netic phenomena. The principles recommend coordinating the mathematical
notion of congruence with a dynamics of measuring systems that cannot detect
inertial motion internally. This has the consequence, following the logic of the
previous section, of establishing that spacetime is Minkowskian.

This way of formulating Earman’s principles allows us to derive different
conclusions when they are applied to different pairs of theories: absolute space
is surplus in Newtonian gravitation but ether rest is not in Lorentz’ theory
because the principles recommend eliminating the former (by congruence rea-
soning) but not the latter (the same reasoning in this case recommends shifting
to Minkowski spacetime). This addresses the problems, fairly pointed out by
Bradley [4], of a merely formalistic interpretation of Earman’s principles (in
line with Norton’s [26]) that recommends eliminating surplus structure. The
principles defended here can be taken as indicating the origin of changes in
interpretation that result in assigning different roles to the same structures:
they have to do with the difference in how the connection between the pro-
cedures for the determination of spacetime geometry and the behaviour of
measuring systems is interpreted in both theories. It is then an interpretative,
not a merely formal, question. What they recommend is not to eliminate al-
leged surplus structure but to make these two procedures convergent; in other
words, they recommend a strategy by which to relate the notion of congruence

25 See [19].
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behind the definition of spacetime structure and a notion of dynamical sym-
metries, interpreted as being applied to subsystems that can measure/detect
certain quantities that relate them to other subsystems.

6 Conclusions

The relation between spacetime and dynamical symmetries can be traced back
to the interpretation of some features of physical theories as potentially cod-
ifying the notion of ideal observers. This interpretive framework provides a
justification for the connection between a notion of congruence, from geom-
etry and essential for the determination of physical space(time), and certain
features that characterize the measuring devices that can be used to empir-
ically test the theory. So, such a connection can be understood as a way of
giving content to an epistemological framework that assumes that the same
procedures that are used to measure the geometry of spacetime are also part
of the means through which we arrive at the empirical content that supports
our physical theories. In both characterizations (congruence and measuring
devices) certain transformations play an essential role; the present proposal at-
tempts to state under what conditions those transformations can be equated.
This is what provides the qualified relation between spacetime and dynamical
symmetries expressed by the symmetry principles.

These are the terms involved in this formulation of the principles. Space-
time symmetries, nominally invariances of spacetime structures, must be un-
derstood as being determined by the congruences associated with certain (ide-
alized) systems that are taken to probe spacetime. Dynamical symmetries
are transformations that take solutions to solutions; and are such that when
applied to subsystems that act as measuring devices, they are internally un-
observable but detectable as changes in quantities that are relational between
subsystems. With these definitions, and the discussion in this paper, we have
a justification for Earman’s type of symmetry principles.

Such principles are restricted in two senses. First, this formulation assumes
that every dynamical symmetry so defined is going to be a spacetime symmetry
but, as I have suggested, this assumes that all such dynamical symmetries
can be interpreted as congruences. This might not always be the case (think
of the controversial case of global “internal/phase” symmetries). Second, it
depends on assuming a certain degree of idealization for the physical systems
that determine spacetime structures. Such an idealization might be based on
physical considerations or, as in the case of Weyl, on phenomenological ones.

The principles so explicated can be understood as heuristic principles for
the interpretation of spacetime theories. They recommend an interpretation
of the theory in which certain dynamical symmetries (those meeting the con-
ditions referred to above) are interpreted as a group of congruence transfor-
mations that is at the base of the definition of spacetime structures. Such an
interpretation, as we have seen in the case of Lorentz’ theory, might have to
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be accompanied by different kinds of formal modifications; sometimes, but not
always, these might recommend considering some structures as surplus.

We can distinguish different interpretive levels in this proposal. At the
base, we have the claim that the relation between spacetime symmetries and
dynamical symmetries arises from the coordination between some dynamical
symmetries and a mathematical notion of congruence. This might be inserted
into an interpretation of the formalism of a theory in which certain features are
taken as codifying the work of measuring devices. Finally, the connection can
be justified in a general framework in which this is related to the representation
of ideal observers. The full package is what I believe motivates us to regard
the proposal as a version of a functionalist approach to spacetime.
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tionalism in general relativity and quantum gravity. Synthese 199, 221–227.
https://doi.org/10.1007/s11229-020-02722-z

10. Darrigol, O. (2014) Physics and Necessity. Oxford University Press.
11. Dasgupta, S. (2016). Symmetry as an epistemic notion (twice over). British Journal for
the Philosophy of Science 67, 837–878.

12. Dewar, N., Eisenthal, J. (2019). A room with a view.
13. Disalle, R. (2006). Understanding spacetime: The philosophical development of physics
from Newton to Einstein. Cambridge: Cambridge University Press.

14. Earman, J. (1989). World Enough and Space-Time. Cambridge, Massachusetts: MIT
Press.

15. Ehlers, J., Pirani, F.A.E., Schild, A. (1972). Republication of: The geome-
try of free fall and light propagation. Gen Relativ Gravit 44, 1587-1609 (2012).
https://doi.org/10.1007/s10714-012-1353-4

16. Helmholtz, H. (1876). The origin and meaning of geometrical axioms. Mind, Vol. 1, No.
3 (Jul. 1876), pp. 301–321

17. Janssen, M. (1995). A Comparison between Lorentz’s Ether Theory and Special Rela-
tivity in the Light of the Experiments of Trouton and Noble, Ph.D. thesis, University of
Pittsburgh.



What spacetime does: ideal observers and (Earman’s) symmetry principles 23

18. Janssen, M. (2009). Drawing the line between kinematics and dynamics in special rela-
tivity. Studies in History and Philosophy of Modern Physics, 40, 25-52.

19. Janssen, M. (2019). How Did Lorentz Find His Theorem of Corresponding States?,
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy
of Modern Physics, 67, 167-175.

20. Knox, E. (2013). Effective spacetime geometry. Studies in History and Philosophy of
Modern Physics. 44, 346-356. http://dx.doi.org/10.1016/j.shpsb.2013.04.002.

21. Knox, E. (2019). Physical relativity from a functionalist perspective. Studies in History
and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics,
67, 118–124.
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