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Abstract 

Brouwer’s intuitionism was a far-reaching attempt to reform the foundations of mathematics. 

While the mathematical community was reluctant to accept Brouwer’s work, its response to 

later-developed brands of intuitionism, such as those presented by Hermann Weyl and Arend 

Heyting, was different. The paper accounts for this difference by analyzing the intuitionistic 

versions of Brouwer, Weyl, and Heyting in light of a two-tiered model of the body and image 

of mathematical knowledge. Such a perspective provides a richer account of each story and 

points to a possible connection between the community’s reaction and the changes each 

mathematician had proposed.  

1. Introduction  

Brouwer’s intuitionistic program was an intriguing attempt to reform the foundations of 

mathematics and was probably the most controversial one within the contours of the 

foundational debate of the 1920s. As a whole, Brouwer’s intuitionism did not prevail, but 

parts of the intuitionistic enterprise were developed over the years, and several 

mathematicians dedicated their efforts to presenting their own intuitionistic interpretations of 

Brouwer’s work. Two of the most notable attempts are those of Hermann Weyl, whose 1921 

paper brought Brouwer’s intuitionism to the fore, and Arend Heyting, whose formalization of 

intuitionism made Brouwer’s ideas more approachable to traditional mathematicians.  

The mathematical community’s reaction to Weyl’s and Heyting’s intuitionistic works was far 

more sympathetic than its reaction to Brouwer’s original program. Most explanations for the 

community’s more positive attitude towards Weyl and Heyting concern their consenting 

attitudes towards formal methods (Mark van Atten 2017; van Dalen 1995; Hesseling 2003) or 

their abandonment of Brouwer’s mystical-philosophical lines of thought (Franchella 1995; 

Placek 1999; van Stigt 1990; Troelstra 1991). According to Dennis Hesseling, Weyl’s clear 

and coherent writing style (as opposed to Brouwer’s overly technical style) made his 1921 

paper considerably more approachable to the classical mathematicians, who often found 

Brouwer’s papers incomprehensible (Hesseling 2003, 61–62). Weyl’s use of metaphors, and 

especially his use of the terms ‘crisis’ and ‘revolution’, also played a role in attracting 

readers’ attention. Hesseling claims: 

It is impossible to say if Weyl had any specific revolution in mind when he wrote 

these lines. However, one can try to re-create the impression these words may have 

had on readers in 1921. What did it mean to them to read an important mathematician 

proclaim the 'revolution'? They could have been reminded of the German 1918 



 

 2 

revolution, by which the republic had been declared. If this was the case, it means that 

they saw Weyl's intuitionism as linked to republican, democratic Germany. By 1921, 

however, the German revolution was generally considered 'stolen', and the most likely 

revolution was a communist one. […] Thus, Weyl's call could be seen as much more 

radical […]. (Hesseling 2003, 303–4) 

Historian of science Paul Forman argued that Weyl’s rhetoric was shaped by the “social-

intellectual atmosphere in the aftermath of Germany's defeat” (Forman 1971, 61). He claimed 

that both Weyl and Hilbert “at the very least saw close parallels between the crisis in 

mathematics and the political crises then wracking Germany,” and maintained that 

Germany’s defeat was the main reason behind the German mathematical community’s 

increasing interest in Brouwer’s intuitionism during the 1920s (Forman 1971, 60–61). This 

argument is part of Forman’s broader approach, known as “Forman thesis,” in which he put 

forward the argument that the cultural values prevalent in a given place and time could affect 

the very content of scientific knowledge. According to Forman’s thesis, the culture of 

Weimar Germany influenced the way many scientists, including Hermann Weyl, interpreted 

the concept of causality in physics and quantum mechanics (Forman 1971; Norris 2000). 

Forman’s thesis raised an intense and controversial debate among historians and physicists 

that has remained at the heart of discussions about the historical relationship between science 

and culture ever since (Carson, Kojevnikov, and Trischler 2011; Kraft and Kroes 1984). 

The popularity of Heyting's brand of intuitionism is also often attributed to its 

disentanglement from Brouwer's philosophical considerations. Philosopher Miriam 

Franchella points out that "Arend Heyting is well known not only for his own contributions 

to intuitionism, but also for his expository efforts to make Brouwer's ideas more accessible 

and more widely known […] by separating its mystic philosophy (seen as bizarre) from its 

basic concepts for mathematics" (Franchella 1995, 105). In a similar vein, philosopher 

Thomas Placek notes that "an undeniable advantage of Heyting's approach is that it puts the 

fate of intuitionism on a more 'down-to-earth' ground” (Placek 1999, 106), in the sense that 

Heyting’s intuitionism was based on considerations that were perceived as less philosophical 

or bizarre than Brouwer’s.  

Yet such explanations portray only part of the picture, as they mostly account for the 

practical differences between the three stories. In the current paper, I argue that the 

differences between the intuitionistic versions of Brouwer, Weyl, and Heyting run deeper. 

The three mathematicians held different views regarding the normative boundaries of the 

discipline that was reflected in the respective versions of intuitionism each produced. The 

following pages are devoted to a careful examination of each approach and the impact of the 

differences on the community’s respective responses. 

The paper proceeds by analyzing the changes suggested by Brouwer, Weyl, and Heyting in 

terms of changes to the practical layer of mathematics, on the one hand, and changes to the 

normative layer of mathematics, on the other. Such an analysis takes into account how each 

conceived the way mathematics should be properly done, and how this manifested in their 

respective work. This characterization provides a richer account of each story and draws a 

possible connection between the community’s reaction and the scope of change each 

mathematician suggested. 
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2. Mathematics’ Two (Three?) Layers 

In his paper, “Linearity and reflexivity in the growth of mathematical knowledge” (1989), 

historian Leo Corry presents a theory of how mathematical knowledge progresses and how 

developments in mathematics take place. He describes mathematics as comprised of two 

different layers of thought: the body of knowledge, which refers to theorems, proofs, 

techniques, and results obtained within mathematics, and the image of knowledge, which 

covers the normative aspects of the discipline. The firm distinction between ‘image’ and 

‘body of knowledge’ was first proposed by Yehuda Elkana (1978, 1981); Corry borrows it 

and applies it, with an important twist, to mathematics.  

Elkana suggested that every scientific discipline can be viewed as comprising two 

interconnected layers of thought: the body of knowledge and the image of knowledge. Elkana 

characterizes the ‘body of knowledge’ as where the research is done; it consists of various 

first-order scientific theories, concepts, and procedures (Elkana 1978, 315). Second-order 

‘images of knowledge,’ by contrast, govern certain aspects of scientific activity that 

determine but are not contained within the ‘body of knowledge,’ such as the sources of 

knowledge, the legitimization of knowledge, the audience of knowledge, and relatedness to 

prevailing norms and ideologies. The distinction between the two lies in the questions they 

address:  

[…] in the process of scientific activity, the most important decisions involve 

problems of choice: the decision as to whether an experiment or a calculation is 

satisfactory, clear enough, reliable or to be discarded; […] All these decisions are not 

reached on the basis of the body of knowledge – that is, on the discipline itself, in 

which the research is being done. The body of knowledge – let us say physics or 

biology – does not give us clues as to what is beautiful, interesting, feasible, frontier-

of knowledge, convincing, broad or narrow, worthwhile, in good taste, thematically 

on the right track, too risky, premature, repetitive, and so on – yet these are the very 

terms in which problem-choice and scientific decisions are couched. (Elkana 1978, 

315) 

Accordingly, science progresses in the course of addressing two different types of questions: 

those concerned with the tools and methods employed in making a discovery or forming a 

new theory, and those to do with the guiding principles and normative boundaries of the 

discipline itself.  

Applying Elkana’s distinction to mathematics, Corry distinguishes between the body of 

mathematical knowledge, which includes theories, facts, methods and open problems, and the 

image of mathematics, which includes guiding principles that help us discuss questions that 

arise from the body of mathematical knowledge but cannot be settled within it. The 

distinction between the two domains, claims Corry, is “by its very definition, somewhat 

blurred and always historically conditioned” (Corry 2001, 168), but he does not suggest that 

one layer is more important to the development of mathematics than the other.  

Corry perceives the body and image of knowledge as organically interconnected domains in 

the history of a discipline, but he does not regard their relationship as cause and effect (Corry 

2001, 177). Hence, transitions between images of knowledge are processes unique and 

distinct from transitions in the body of knowledge. Philosopher Lukas Verburgt calls into 

question Corry’s distinction between the ‘body’ and ‘image’ of mathematics and argues that 
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it should be amended to accommodate the reciprocal dynamics of a science’s image and body 

of knowledge (Verburgt 2015). Verburgt’s central argument is that transitions in the domain 

of mathematics cannot be conceived as transformations of one ‘image’ to another ‘image’ of 

the same ‘body’ of knowledge and, in his leading example concerning the birth of modern 

probability theory, Verburgt shows how transformations between images of knowledge 

destroyed concepts in the body of knowledge (Verburgt 2015, 11–20). The current paper 

shows how the retelling of Brouwer’s, Weyl’s, and Heyting’s stories in light of Corry’s 

model raises some interesting questions regarding the direction of changes in the body and 

image of knowledge and whether changes in the image of mathematics can occur 

independently of changes in the body of mathematics. While it is beyond the scope of this 

paper to provide a comprehensive answer to these intriguing questions, it should be noted that 

Corry maintains that there is not only one direction in which mathematical transitions can 

occur (Corry 2001). As a case study, Corry examines the structural image of a specific 

mathematical discipline, namely, algebra, by analyzing van der Waerden’s Moderne Algebra, 

which presents the body of algebraic knowledge as deriving from a single unified 

perspective, and all the relevant results in the field are achieved using similar concepts and 

methods (Corry 2001, 172)1. The systematic study of different varieties of algebra through a 

common approach is what Corry calls a structural image of algebra. Whereas the transition to 

a new structural image in the case of van der Waerden’s Moderne Algebra was enabled due 

to changes in the body of knowledge, it does not imply that this is mandatory (Corry 2001, 

177). 

Similar to Elkana, Corry identifies the difference between the two layers in the range of 

questions they address: the body of knowledge answers questions dealing with the subject 

matter of mathematics, and the image of knowledge addresses questions concerning 

mathematicians’ cognitive and normative views, such as: 

• Which of the open problems of the discipline most urgently demands attention? 

• What is to be considered a relevant experiment, or a relevant argument?  

• What procedures, individuals or institutions have authority to adjudicate 

disagreements within the discipline?  

• What is to be taken as the legitimate methodology of the discipline?  

• What is the most efficient and illuminating technique that should be used to solve a 

certain kind of problem in the discipline? (Corry 2001, 168) 

Corry’s novel claim is that, unlike other disciplines, in mathematics questions pertaining to 

both the body and image of knowledge are contained within mathematics itself. Mathematics 

is uniquely endowed with an ability to “absorb certain images of knowledge directly into the 

body of knowledge” (Corry 2001, 3). In every other discipline there is a constant interaction 

 
1 According to Corry, in the case of van der Waerden’s Moderne Algebra, the newly proposed image had firm 

roots in the then-current body of knowledge (Corry 2001, 173-8). Though the textbook presents an original 

perspective regarding the algebraic structure, it uses as cornerstones several mathematical notions such as 

groups, fields, and ideals that have already been introduced to the mathematical community, and it builds upon 

already developed theories of renowned algebraists (such as Emmy Noether and Ernst Steinitz). Van der 

Waerden took mathematical concepts (such as Isomorphism) that were previously defined separately for 

different mathematical notions (such as groups, rings, or fields) and showed that they could be a-priori defined 

for each algebraic system (Schlote 2005, Corry 2001). The mathematical entities van der Waerden discussed 

were familiar and acceptable within the mathematical discourse; the novelty he introduced lay in their relations. 



 

 5 

between the body and image of knowledge; in mathematics, however, there is a special 

interconnection between the two layers: 

Only in mathematics there is an intermediate layer, reflexive knowledge; in no other 

instance may claims about a given discipline qua discipline be inspected with the 

same methodological tools and through the same criteria as any other claim of that 

discipline and, accordingly, be included in the body of knowledge or rejected from it. 

(Corry 1989, 415) 

This reflexive aspect of mathematics enables it to examine the nature of the discipline itself 

by exploring the same two-tiered framework that is used in everyday methodological 

practice. Some mathematical theories can be classified easily into one of the two tiers, while 

other mathematical theories may encompass an aspect of both. Consider proof theory as an 

example of reflexive knowledge. Mathematics is the only discipline that has a dedicated 

doctrine that on the one hand examines how its methods should be properly done, and on the 

other hand represents proofs as formal mathematical objects and analyzes them through 

mathematical techniques. 

The current paper proposes viewing Heyting’s formalization of intuitionism as part of this 

intermediate layer of mathematics, as it absorbed an intuitionistic image of knowledge into 

the classical body of knowledge by using formal methods to express intuitionistic ideas. This 

argument will be further elaborated and discussed in sections 5 and 6. But first, let us set the 

scene by exploring how each of the three mathematicians envisaged the normative 

boundaries of the discipline in terms of the image and body of mathematical knowledge, and 

which layers their intuitionistic program aimed to change. 

3. Brouwer on the Image and Body of Knowledge 

Brouwer’s views on which questions belong to the body and which to the image of 

mathematical knowledge can be extracted from his views regarding the difference between 

intuitionism and formalism: 

The question where mathematical exactness does exist, is answered differently by the 

two sides; the intuitionist says: in the human intellect, the formalist says: on paper. 

[…] For the formalist therefore mathematical exactness consists merely in the method 

of developing the series of relations, and is independent of the significance one might 

want to give to the relations or the entities which they relate. And for the consistent 

formalist these meaningless series of relations to which mathematics are reduced have 

mathematical existence only when they have been represented in spoken or written 

language together with the mathematical-logical laws upon which their development 

depends, thus forming what is called symbolic logic. (Brouwer 1912, 83) 

As Brouwer saw it, the intuitionist and the formalist perceive the normative boundaries of 

mathematics differently. The intuitionist perceives mathematical objects as creations of the 

mind, not as mere symbols and formulas written on paper. Moreover, to the intuitionist, the 

meaning of mathematical relations cannot be detached from the symbols that represent them. 

Mathematical exactness cannot be based only on axioms and formulas: 

The viewpoint of the formalist must lead to the conviction that if other symbolic 

formulas should be substituted for the ones that now represent the fundamental 
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mathematical relations and the mathematical-logical laws, the absence of the 

sensation of delight, called "consciousness of legitimacy,” which might be the result 

of such substitution would not in the least invalidate its mathematical exactness. 

(Brouwer 1912, 84)  

According to Brouwer, questions concerning the nature and origins of mathematical objects 

are certainly part of the image of mathematical knowledge. However, not every meta-

mathematical question should be pursued within the discipline. Some meta-mathematical 

considerations are not part of the image of mathematical knowledge: 

To the philosopher or to the anthropologist, but not to the mathematician, belongs the task 

of investigating why certain systems of symbolic logic rather than others may be 

effectively projected upon nature. Not to the mathematician, but to the psychologist, 

belongs the task of explaining why we believe in certain systems of symbolic logic and 

not in others, in particular why we are averse to the so-called contradictory systems in 

which the negative as well as the positive of certain propositions are valid. (Brouwer 

1912, 84) 

Brouwer’s intuitionism holds that the existence of a mathematical object is equivalent to the 

possibility of its construction in one’s mind. Here arises an important philosophical 

distinction between, on the one hand, objects like finite numbers and a constructive countable 

set, which are objects that we finite beings can intuitively grasp, and on the other hand, the 

Cantorian collection of all real numbers, which is an infinite entity that exceeds our grasp. 

Brouwer regarded the former entities as ‘finished’ or ‘finish-able’ while the latter are 

‘unfinished.’ A ‘finished’ set is produced by a recognizable process (that is, a process that 

one can construct), yielding some legitimate grasp of the object with all its parts (that is, that 

the parts are ‘determined’ by the initial grasp). An ‘unfinished’ collection is one that we 

cannot grasp in a way that suffices to determine all its parts (Brouwer 1952; Posy 2008).  

Brouwer used this distinction to confront Cantor’s perception of infinity.2 Brouwer accepted 

ω-sequences as legitimate mathematical objects since they are sequences of discrete elements 

generated by a countably ordered process:  

This intuition of two-oneness, the basal intuition of mathematics, creates not only the 

numbers one and two, but also all finite ordinal numbers, inasmuch as one of the 

elements of the two-oneness may be thought of as a new two-oneness, which process 

may be repeated indefinitely; this gives rise to the smallest infinite ordinal ω. 

(Brouwer 1912, 85–86) 

However, they are the only infinite objects he accepted: 

In chapter 1 we have seen that there exist no other sets than finite and denumerably 

infinite sets and continua; this has been shown on the basis of the intuitively clear fact 

 
2 Cantor’s theory of transfinite numbers distinguishes cardinality from order, thus defining different classes of 

numbers:  is defined as the lowest transfinite ordinal number and is the order type of the natural numbers 

under their usual linear ordering. 
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that in mathematics we can create only finite sequences, further by means of the 

clearly conceived “and so on” the order type ω […] (Brouwer 1907, 142–43) 

Brouwer addressed the set of real numbers negatively as ‘denumerably unfinished,’ pointing 

out that given a denumerable subset we can straightaway find an element of the continuum 

that is not in the given subset, but there is no positive existence claim to support the existence 

of such element. Hence, he proclaimed Cantor’s second number class and any ranked order 

of increasing cardinalities as illegitimate mathematical objects, mere “expression[s] for a 

known intention” (Brouwer 1907, 148). 

The alternative Brouwer suggested to the Cantorian hierarchy consisted of only finite 

cardinalities: 

Thus, we distinguish for sets the following cardinal numbers, in order of magnitude:  

1. the various finite numbers. 

2. the denumerably infinite. 

3. the denumerably unfinished. 

4. the continuous. (Brouwer 1907, 149) 

 

Here, the term ‘denumerably unfinished’ refers to a set of which only a denumerable subset is 

well-defined, and new objects belonging to the set can always be added using a fixed 

procedure (Brouwer 1907, 187–88)3. As for the intuition of the continuum itself, Brouwer 

firmly believed that we have an intuitive grasp of the continuum as a whole: 

Having recognized that the intuition of ‘fluidity’ is as primitive as that of several 

things conceived as forming a unit together, the latter being at the basis of every 

mathematical construction, we are able to state properties of the continuum as a 

‘matrix of points to be thought of as a whole’. (Brouwer 1907, 8–9) 

[…] However, the continuum as a whole was given to us by intuition; a construction 

for it, an action that would create from the mathematical intuition ‘all’ its points as 

individuals, is inconceivable and impossible. (Brouwer 1907, 62) 

Thus, a continuum that is constructed out of a set of independently given points (like the 

Cantorian continuum) cannot be considered a legitimate mathematical entity. No set of points 

can exhaust the continuum since, in Brouwer’s view, it is a unity in its own right (Brouwer 

1907; Posy 2005).  

According to the Brouwerian image of mathematical knowledge, the principle of excluded 

middle is also deemed unacceptable. In “The unreliability of logical principles” (Brouwer 

1908), Brouwer explained the problematic aspects of accepting the principle of excluded 

middle as valid in both finite and infinite sets:  

As long as only certain finite discrete systems are posited, the investigation into the 

possibility or impossibility of a fitting can always be terminated and leads to an 

 
3 The term “denumerably unfinished” is used for different purposes in this paragraph and the paragraph before, 

but it refers to the same thing. According to Brouwer, denumerably unfinished sets are all sets of which 

elements “can be individually realized, and in which for every denumerably infinite subset there exists an 

element not belonging to this subset” (Brouwer 1912, 135). In later papers (1918; 1925), Brouwer does not 

mention this notion and creates a theory of powers based on one-to-one correspondence (Heyting 1975, 568). 
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answer, whence the principium tertii exclusi is a reliable principle of reasoning. That 

also infinite systems, with respect to so many properties, are controlled by finite 

means, is achieved by surveying the denumerably infinite sequence of the whole 

numbers by complete induction, namely by observing properties, that is, fittings, that 

hold for an arbitrary whole number, and in particular also contradictions, that is, 

impossible fittings, that hold for an arbitrary whole number. However, that from the 

systems posited in a question, one can be derived that reads the question by means of 

a complete induction, on the basis of an invariant in a denumerably infinite sequence, 

and thereby solves it, is found only a posteriori, when accidentally the construction of 

such a system has succeeded. For the whole of the systems that can be developed 

from the question posed is denumerably unfinished, whence cannot be a priori 

investigated methodically regarding the presence or absence of a system that decides 

the question. And it is not excluded, that by a draw as lucky as the ones that have so 

often led to a decision, we will one day see from the denumerably infinite system of 

possible developments that it is unsolvable. So that in infinite systems the principium 

tertii exclusi is as yet not reliable. (Brouwer 1908, 108) 

The principle of excluded middle can only be used as a reliable tool in finite systems where 

each object of the set can be examined (in principle) by means of a finite process. Within a 

finite system, one can eventually determine whether there is a member of the set with the 

property A or that every member of the set lacks the property A. However, in infinite 

systems, it is not possible to examine every object of the set (not even in principle); thus, 

even if one never finds a member of the set with the property A, it does not prove that every 

member of the set lacks the property A (Brouwer 1908, 1918). 

Brouwer believed that Peano, Russell, Cantor, and Bernstein had overlooked the essential 

role that the human intuition of mathematics plays when moving from investigating finite sets 

to infinite sets. In finite sets, the examination of each object of the set can be conducted by a 

machine or a trained animal. However, with regard to infinite domains, human intuition 

becomes indispensable, and the mathematician can no longer rely solely on logical rules or 

‘linguistic buildings,’ to use Brouwer’s phrasing (Brouwer 1908).   

Together with the restricting concept of infinity and his demand that mathematical objects 

must be constructed, Brouwer introduced a new image of mathematical knowledge, which he 

considered as the only proper way to do mathematics. In doing so, the idea of mathematical 

truth and its relation to the provability and refutability of a mathematical statement was 

redefined: in the newly proposed intuitionistic theory, knowing that a statement P is true 

means having proof of it; to negate P is to claim that P is refutable (i.e., that a 

counterexample exists), but it does not imply that “not P” is provable (Brouwer 1912; 

Heyting 1956; Sundholm and van Atten 2008). One of the many implications of such a 

thorough reformation was to render proofs of mathematical existence by contradiction an 

illegitimate technique within the discipline. 

While Brouwer’s early work (until 1918) showed that some mathematical statements do not 

hold intuitionistically and vice versa, it was only when he introduced choice sequences that it 

became apparent that intuitionism is incomparable with classical mathematics (Iemhoff 

2020). According to intuitionism, there is only potential infinity, which means that infinite 

objects can only be produced by a process that generates them one by one. A choice sequence 

is an infinite sequence of numbers, elements, or finite objects, created by the “free will” of 

the “creating subject” (Brouwer 1949; Niekus 2005). There are ‘lawlike’ and ‘lawless’ 
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sequences; a lawlike sequence is a sequence that can be determined by a law or an algorithm, 

while a lawless sequence is not subject to any law (Fourman 1982; Dummett 1977). The 

natural numbers are an example of a lawlike sequence, and the sequence of casts of a die can 

represent a lawless sequence in the sense that “at any stage only finitely results are known, 

but we cannot say anything about future values” (Troelstra 1977, 12; for a detailed 

examination of lawlike and lawless sequences see also Kreisel 1968).  

From 1918 onwards, Brouwer spoke of choice sequences as a fundamental part of his 

intuitionistic mathematics, which allowed him to describe the intuitionistic continuum by 

continuity axioms (Brouwer 1948; Brouwer 1952). However, the use of the continuity 

axioms entailed far-reaching implications for the classical body of mathematical knowledge 

since classically invalid statements can derive from axioms such as the weak continuity 

axiom and the full axiom of continuity (van Atten and van Dalen 2002)4.  

Brouwer’s intuitionistic program entailed deep and comprehensive changes to the image of 

knowledge, yet did not call into question a single theory in the body of classical mathematics. 

No previously proven results were rejected; some were deemed unacceptable according to the 

new Brouwerian image of knowledge, but none were proven wrong or contradictory in 

consequence of Brouwer’s intuitionism. Moreover, Brouwer did not use any methods from 

the body of knowledge to express his intuitionistic ideas. The changes Brouwer suggested 

affected only the image of mathematical knowledge. Nonetheless, Brouwer’s ideas drew the 

attention of Hermann Weyl, physicist and mathematician, who was searching to find a 

solution to the same problem that occupied Brouwer. 

Before discussing Weyl's version of intuitionism, a word of clarification is in order. The 

versions of intuitionism suggested by Brouwer (and Weyl, as demonstrated in the next 

section) proposed changes to the body of mathematical knowledge that conflicted with 

classical reasoning, but these changes did not disprove mathematical theories. Both Brouwer 

and Weyl were extremely troubled by the problematic and unstable foundations of 

mathematics. Each suggested a somewhat different alternative to classical mathematics, 

which derived from the basic assumptions that mathematics is a creation of the mind and that 

the only legitimate mathematical objects are those obtained by construction. Hence, from 

their intuitionistic point of view, some classical theories were "rejected" or not valid based on 

being non-constructive. However, to a non-intuitionistic mathematician, who is relatively 

indifferent to the paradoxes of Cantor's set theory and does not view mathematics as a mental 

construction, there was no (classical) logical reason to reject or invalidate any working 

theory. Thus the "rejected" or "unacceptable" classical theories were not rejected based on 

logical fallacies or mistakes but on fundamental philosophical-normative disagreements. 

4. Hermann Weyl on the Image and Body of Mathematical Knowledge  

In the early stages of the history of intuitionism, Hermann Weyl was among the few 

mathematicians who, at some point, embraced Brouwer's intuitionism. Weyl displayed a keen 

interest in philosophy, specifically in idealism and phenomenology (Feferman 1998; Scholz 

2000). The emergence of the paradoxes of set theory at the turn of the century intensified the 

 
4 It should be noted that there are attempts to address choice sequences as supplementary to classical 

mathematics and not only opposing or contradicting it. For example, an approach bringing together the 

endlessness of time, its indeterminacy, and the free choice of the creating subject was suggested by Saul Kripke 

in his 2019 paper, where he outlines how a concept of free choice sequence can be combined with an acceptance 

of classical mathematics (Kripke 2019). 
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sense among mathematicians that something was fundamentally wrong with the foundations 

of mathematics. Deeply disturbed by their possible ramifications, Weyl embarked on a 

journey to search for an alternative to Cantor’s set-theoretic approach. Das Kontinuum (Weyl 

1918) was his part-constructive response to the turmoil. According to Dirk van Dalen, the 

solution Weyl suggested was not a “mere technicality for escaping unpleasant phenomena; it 

was based on the philosophical insights of phenomenology. Phenomenology was his explicit 

point of departure” (van Dalen 2013, 309).  

It is worth pointing out that there is, in fact, an extensive discussion about how Weyl’s 

philosophical leanings have shaped his foundational position in the debate between 

intuitionism, constructivism, and formalism-finitism in the 1920s. Solomon Feferman argued 

that Weyl’s criticism of the set-theoretical approach led him to embrace a predicativist 

position in Das Kontinuum (Weyl 1918; see Feferman 1988 for further discussion). Erhard 

Scholz describes Weyl’s inclination towards intuitionism as rooted in philosophical 

considerations deeply influenced by Fichte’s approach to the concept of continuum and space 

(Scholz 2000), whereas Norman Sieroka claims that during the 1920s, Husserl’s 

phenomenology motivated Weyl to adopt Brouwer’s intuitionism and Fichte’s constructivism 

motivated him to adopt formalism – which explains why, after his brief affiliation with 

Husserl’s “intuitionistic-phenomenological” approach, from 1925 Weyl’s foundational views 

drifted towards Fichte’s “formalistic-constructivist” approach (Sieroka 2009, 2019). 

Be that as it may, in 1921, Weyl published a paper entitled “On the New Foundational Crisis 

in Mathematics” (Weyl 1921) that was not only a clear exposé of Brouwer’s intuitionistic 

ideas (van Dalen 2013; Hesseling 2003) but also an introduction to Weyl’s own intuitionistic 

approach. The paper begins with a brief description of the problem at hand, namely, the 

antinomies of set theory and its “vicious circle,” followed by an introduction to Weyl’s 

earlier attempt in Das Kontinuum to establish a solid foundation for analysis, which he had 

abandoned in favor of Brouwer’s theory (Weyl 1921, 86). Throughout the second section, 

Weyl elaborates on Brouwer’s ideas, including concepts such as sequence, law, mathematical 

existence, real number, and continuum. It is only towards the end of the article that Weyl 

articulates precisely how his own intuitionistic foundational theory differs from Brouwer’s 

intuitionism: 

As far as I understand, I no longer completely concur with Brouwer in the radical 

conclusions drawn here. After all he immediately begins with a general theory of 

functions (the name “set” is used by him to refer to what I call here functio continua), 

he looks at properties of functions, properties of properties, etc., and applies the 

identity principle to them. (I am unable to find a sense for many of his statements.) 

From Brouwer I borrowed (1) the basis that is essential in every respect, namely, the 

idea of the developing sequence and the doubt in the principium tertii exclusi, and (2) 

the concept of the functio continua. I am responsible for the concept of the functio 

mixta and the conception I summarize in the following three theses: (1) The concept 

of a sequence alternates, according to the logical connection in which it occurs, 

between “law” and “choice,” that is, between “Being” and “Becoming”; (2) universal 

and existential theorems are not judgements in the proper sense; they do not make a 

claim about a state of affairs, but they are judgement instructions and judgement 

abstracts, respectively; (3) arithmetic and analysis merely contain general statements 

about numbers and freely developing sequences; there is no general theory of 

functions or sets of independent content. (Weyl 1921, 109–10) 
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Two important observations arise from this quote. The first is that the intuitionistic versions 

of Brouwer and Weyl are rooted in foundational assumptions that are fundamentally different 

from those of classical mathematics (the principle of excluded middle, the concept of the 

continuous continuum, and mathematical existence are three prominent examples). Hence, 

their intuitionistic versions render several classical proofs, concepts, and theories 

intuitionistically unacceptable (for example, proofs of existence by contradiction). However, 

it does not imply that any classical theorem has been proved wrong or contradicting by their 

intuitionistic attempts. In this sense, Brouwer and Weyl presented new bodies of knowledge 

comprising intuitionistic theories that were incompatible with classical mathematics, but they 

did not engage with classical theories or proofs whatsoever. The incompatibility of their 

intuitionistic versions and classical mathematics derived from differences in the basic 

assumptions (some might argue that they are merely philosophical differences), not from 

disproving a theory or pointing to a logical fallacy in a classical proof. 

The second significant observation is that the differences between Brouwer’s and Weyl’s 

versions of intuitionism are mostly differences between the intuitionistic bodies of knowledge 

they suggest since they apply different logical connections and mathematical definitions and 

address the legitimacy of certain mathematical existence statements differently. However, 

their philosophical points of departure, at least in 1921, are relatively similar; both held 

similar views regarding normative questions pertaining to how mathematics should be 

properly done and which general logical principles should be deemed unacceptable (such as 

the principle of excluded middle). Hence, their suggested images of knowledge are quite 

alike.  

Brouwer’s comments on this part of Weyl’s paper indicate that both men were well-aware of 

their differences: 

[with respect to (1)] for me "emerging sequence" is neither one; one considers 

sequences from the stand-point of a helpless spectator, who does know at all in how 

far the completion has been free. […] I do, however, not agree with (2) and (3). (van 

Dalen 1995, 160) 

Two additional differences between Brouwer’s and Weyl’s versions of intuitionism emerge 

from Weyl’s 1921 paper. The first concerns how each addressed choice sequences and their 

properties: while Brouwer allowed choice sequences given by law, Weyl excluded lawlike 

sequences from the domain of choice sequences (van Dalen 1995, 152). For Brouwer, a 

choice sequence is an individual object, and he did not restrict the notion of choice in the 

sense that no matter how the path to creating such a sequence was chosen, it was an eligible 

sequence (Brouwer 1948). Weyl did not regard choice sequences as possessing the sort of 

individuality a lawlike sequence has: 

A sequence is created by arbitrary choosing the individual numbers one by one […] 

An individual determined sequence (and I mean determined in infinitum) can only be 

defined by a law. If, however, a sequence is created step by step through free acts of 

choice, then it must be seen as a developing one [eine werdende]. A developing 

choice sequence can only meaningfully be said to have properties for which the 

decision “yes or no” (does the sequence possess the property or not) can already be 

obtained when the sequence has reached a certain stage such that the further 

development of the sequence beyond this point of Becoming, however it may turn 

out, cannot reverse this decision. (Weyl 1921, 94). 
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Weyl focused his attention on getting the choice process right, while Brouwer did not 

elaborate on the choice process at all. In Weyl’s summary of the differences between his 

intuitionistic approach and Brouwer’s approach, it becomes clear that when Weyl refers to 

“developing” or “becoming” choice sequence, he means lawless sequences (Weyl 1921, 109-

10). Brouwer’s and Weyl’s different views on choice sequences and their properties represent 

a difference between the intuitionistic bodies of knowledge they suggested, as the definition 

of choice sequences and the processes to obtain them are part of the practices and theories of 

the discipline.    

The second difference concerns the consequences of adopting an intuitionistic point of view 

on logic, particularly regarding existence statements. In Brouwer’s view, existence statements 

are legitimate as long as they can be interpreted constructively, even if they do not contain 

information. Weyl, on the other hand, argued that legitimate existential statements are only 

those that contain information, such as “two is an even number” (as opposed to “there is an 

even number,” which is not a proper judgment since it does not provide us with the specific 

object). Nevertheless, both consent that constructive procedures are the only proper way to 

define existence statements, and this consensus is part of their suggested images of 

knowledge. 

Despite their differences, Weyl and Brouwer shared similar philosophical incentives to 

reform the foundations of mathematics. Weyl was deeply influenced by Kant’s notion of the 

primacy of intuition, and he describes his own philosophical voyage as deriving from Kant’s 

idea that space and time are not inherent in the objects of the world (Weyl 1955). Brouwer 

shared a similar impression with Kant’s approach to the apriority of time and dedicated the 

second chapter of his dissertation to improving Kant’s view of the a priori (Brouwer 1907, 

99-131). During the 1910s, Weyl was attracted to idealist philosophy, specifically to the 

works of Husserl and Fichte, which played a significant role in his foundational thought and 

the development of his inclination towards constructive approaches and later towards 

Brouwer’s intuitionistic ideas (Scholz 2004; Sieroka 2009, 2019).  

Since Weyl’s metaphysical outlook included some realistic aspects, his idealism was 

different from Brouwer’s idealism because Brouwer’s philosophy amounted virtually to 

solipsism, while Weyl still seemed to have cleaved to phenomenology5 (Mancosu and 

Ryckman 2002; Bell and Korté 2015). However, this common philosophical ground and their 

shared view regarding the primary intuition of time have contributed to Weyl’s leaning 

towards intuitionism. Both men shared similar views in 1921 regarding the legitimate 

methodologies and appropriate techniques that should be practiced within the discipline. For 

example, Brouwer and Weyl agreed that existential and universal statements are meaningful 

only if they are defined using constructive procedures (Weyl 1921, 89). In this sense, Weyl’s 

views regarding the normative boundaries of the discipline are quite similar to Brouwer’s.  

Nonetheless, from Weyl’s 1921 paper emerges another significant difference between the 

two, regarding the connection between the image and the body of knowledge. After 

introducing the concept of functio continua, Weyl writes:  

 
5 An extensive overview of the evolution of Weyl’s idealism and the differences between Brouwer’s philosophy 

and Weyl’s phenomenological views can be found in Mancosu and Ryckman’s comprehensive analysis of the 

correspondence between Hermann Weyl and Oscar Becker during 1923-1926 (Mancosu and Ryckman 2002). 

Mancosu and Ryckman show that Weyl saw a connection between intuitionism and phenomenology, and they 

describe how the changes in his mathematical views during the 1920s influenced his philosophical positions. 
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But let me emphasize again that individual determined functions of this sort occur 

from case to case in theorems of mathematics, yet one never makes general theorems 

about them. The general formulation of these concepts is therefore only required if 

one gives an account of the meaning and the method of mathematics; for mathematics 

itself, and the content of its theorems, it does not come into consideration at all. (Weyl 

1921, 106) 

Brouwer, who received an early draft of Weyl’s paper, commented on this specific 

paragraph: 

It seems to me that the whole purpose of your paper is endangered by the end of the 

second paragraph of page 34. After you have roused the sleeper, he will say to 

himself: "So the author admits that the real mathematical theorems are not affected by 

his considerations? Then he should no longer disturb me!" and turns away and sleeps 

on. Thereby you do our cause injustice, for with the existence theorem of the 

accumulation point of an infinite point set, many a classical existence theorem of a 

minimal function, as well as the existence theorems for geodesics without the second 

differentiability condition, loses its justification! (van Dalen 1995, 149) 

Brouwer, as noted earlier, saw a firm and inseparable connection between mathematical 

tools, formulas, and methods, and the meaning or relations they represent. Weyl, on the other 

hand, distinguished between mathematical meaning and mathematics itself: accounts of 

meaning require intuitionistic definitions and concepts, but intuitionism’s fundamental 

considerations are somewhat less relevant for the everyday work of practicing 

mathematicians.  

Weyl’s 1921 paper was an important milestone in the foundational debate. It certainly 

received more reactions than Brouwer’s papers ever did, and created quite a stir in the 

mathematical community (van Dalen 1995; Hesseling 2003). However, most reactions to 

Weyl’s paper were written within the inner circle of Brouwer, Mannoury, Weyl, Fraenkel, 

and less frequently, Hilbert and Becker, between 1921 and 1926. According to the historical 

evidence Dennis Hesseling provides, the debate reached its peak between 1927 and 1933, and 

most reactions during this period were written in response to Heyting’s work (Hesseling 

2003, 96, 363–69). Why were mathematicians more engaged with Heyting’s intuitionism, 

than with Brouwer’s or Weyl’s versions of intuitionism? What is unique to Heyting’s version 

of intuitionism? 

Similar to Brouwer’s intuitionism, the changes suggested by Weyl’s intuitionism affected 

only the images of knowledge. It is true that the works of Brouwer and Weyl posed some 

interesting and deep questions for a small (but important) sector of the mathematical 

community, but they did not disprove a single theory from the classical body of knowledge, 

nor did they use classical methods to articulate their intuitionistic ideas. Unlike the works of 

Brouwer and Weyl, Heyting’s formalization of intuitionistic mathematics entailed a different 

kind of change to the body and image of mathematical knowledge.    

5. Heyting’s Intuitionism as a Change to Both the Image and Body of Knowledge  

Arend Heyting was Brouwer's student at the University of Amsterdam during the 1920s. His 

dissertation, supervised by Brouwer, was devoted to an extensive study of axiomatization in 

constructive mathematics. In 1927, the Dutch Mathematical Association announced an essay 
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competition on the formalization of Brouwer's intuitionist theories. A year later, Heyting won 

the prize, and his remarkable essay was extended and published in 1930. Heyting continued 

to develop this line of thought into a series of papers presenting a formalization of 

intuitionistic logic and mathematics, and his papers started to gain attention within the 

foundational debate (Heyting 1930a, 1980). Heyting’s formalization project during the 1930s 

purported to combine into one big system intuitionistic propositional and predicate logic, 

arithmetic, and analysis. The parts covering logic and arithmetic, excluding the principle of 

excluded middle, were subsystems of their classical counterparts (Heyting 1930a, 1930b, 

1930c).  

Like Brouwer, Heyting believed that mathematical entities do not exist outside of the human 

mind:  

Intuitionistic mathematics consists […] in mental constructions; a mathematical 

theorem expresses a purely empirical fact, namely the success of a certain 

construction. “2+2 = 3+1” must be read as an abbreviation for the statement: “I have 

effected the mental constructions indicated by “2+2” and by “3+1” and I have found 

that they lead to the same result. (Heyting 1956, 8) 

However, Heyting held a different view regarding the role of philosophy in mathematics: 

[…] we must distinguish between the simple practice of mathematics and its 

valuation. In order to construct mathematical theories no philosophical preliminaries 

are needed, but the value we attribute to this activity will depend upon our 

philosophical ideas. (Heyting 1956, 9) 

Heyting’s disentanglement from Brouwer’s philosophical considerations should be taken 

with a pinch of salt; Heyting may say that the “only philosophical thesis of mathematical 

intuitionism is that no philosophy is needed to understand mathematics” (Heyting 1974, 79), 

but even his own writings show that mathematical intuitionism depends on views and choices 

concerning meaning, introspection, and the limits of acceptable idealization (Heyting 1956, 

1974). In this respect, Heyting was no less philosophically engaged than Brouwer. Hence, 

even though Heyting abandoned Brouwer’s philosophical grounding, his image of 

mathematical knowledge remained squarely intuitionistic. According to several of Brouwer 

scholars and biographers, the philosophical origins of Brouwer’s intuitionistic thinking are to 

be located in Kant’s philosophy (van Dalen 1978; van Stigt 1990). Brouwer himself felt that 

at least part of his own philosophical view of the a-priori could be traced back to Kant’s 

philosophy, pending some adjustments to Kant’s concept of the a-priori (Brouwer 1907, 99). 

He explicitly states that his dissertation's principal goal is to “rectify Kant's point of view on 

apriority in the experience and bring it up to date” (Brouwer 1907, 114). Heyting’s 

intuitionistic mathematics, on the other hand, was much less rooted in Kant’s philosophy, and 

several of Brouwer’s most significant concepts, such as consciousness and mind, play no role 

in Heyting’s approach (Heyting 1974). While Heyting and Brouwer may have disagreed on 

what is intuitively clear, as Heyting himself put it: “it has proved not to be so intuitively clear 

what is intuitively clear in mathematics” (Heyting 1962, 195), as intuitionists, they both 

agreed that mathematical entities do not exist outside of the human mind. 

Yet, unlike his teacher, Heyting insisted on adopting a formalist methodology in practice. In 

an interview with Dirk van Dalen and Walter van Stigt, Heyting described the differences 

between his and Brouwer’s image of knowledge: 
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As to your question about Brouwer’s attitude towards formalism, I would like to add 

that he always maintained that formalizing mathematics is unproductive since 

mathematics is constructing-in-the-mind, of which language, and therefore also a 

formal system, can only give inadequate representation. I have become more and 

more convinced that at least in the communication of mathematics formalization has 

its great advantages. From recent research into the notion of choice sequences it has 

become apparent that for any sufficiently clear representation formalization is even 

necessary. (van Stigt 1990, 290) 

Unlike Brouwer, Heyting viewed the use of formal methods to express intuitionistic ideas as 

a legitimate technique within the image of mathematical knowledge. As Heyting described in 

one of his last papers on intuitionism and the nature of mathematics, written in 1974, the 

formalization of intuitionism had at least two different objectives:  

[…] there is a possible application of formal methods to intuitionistic mathematics. It 

is the best method for investigating the assumptions which are made in a given proof. 

In recent years it has been successfully applied to the proofs in Brouwer's theory of 

choice sequences. The formalization of intuitionistic logic served another purpose, 

namely to express the logical theorems in a language which is understood by 

traditional mathematicians. The metamathematical work on the formal system of 

intuitionistic logic, however interesting in itself, has little to do with intuitionistic 

mathematics. (Heyting 1974, 89–90) 

Heyting viewed the formalization of intuitionism primarily as a tool for mathematical 

research that can contribute to the development of intuitionistic theories.6 His use of 

axiomatic methods was mostly functional, as a means to an end (the end being the 

introduction and clarification of Brouwer’s intuitionistic ideas). In the 1930 series of papers, 

Heyting presented his axioms for intuitionistic propositional logic, and in a letter to Oskar 

Becker, he described how he obtained them: 

I sifted the axioms and theorems of Principia Mathematica and, on the basis of those 

that were found to be admissible, looked for a system of independent axioms. Given 

the relative completeness of Principia, this to my mind ensures the completeness of 

my system in the best possible way. Indeed, as a matter of principle, it is impossible 

to be certain that one has captured all admissible modes of inference in one formal 

system. (Mark van Atten 2017) 

Put differently, Heyting developed an intuitionistic system by cutting down a classical 

axiomatic system to fit the intuitionistic viewpoint. He acknowledged the ability of formal 

 
6 Although Heyting does not provide any direct references or examples of his remark regarding the successful 

applications of formalized methods to intuitionism in his 1974 paper, he is most likely referring to the works of 

Stephen Kleene, Richard Vesley, John Myhill, Georg Kreisel, and Anne Sjerp Troelstra. In 1950 Kleene started 

to work on an axiomatic system of intuitionistic analysis based on a language with variables for numbers and 

choice sequences and included arithmetical axioms, an axiom of countable choice, the axiom of bar induction, 

and a continuity axiom (Kleene and Vesley 1965). In the 1960s, Kreisel developed an axiomatization for lawlike 

sequences and choice sequences, and Myhill presented an axiom intended to express Brouwer’s theory of the 

creative subject (Kreisel and Troelstra 1970; Myhill 1966). In 1968 Kreisel presented an axiomatization of the 

theory of lawless sequences, later used by Troelstra as a tool for studying other notions of choice sequence 

(Kreisel 1968; Troelstra 1983). According to Troelstra, the advancement in formalizing intuitionism that took 

place during 1963-1980 made clear that “many different notions of choice sequence may be distinguished, with 

different properties” (Troelstra 1991, 20). 
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methods to appeal to classical mathematicians, and argued that whereas the use of axiomatic 

methods is not necessary, it is effective for conveying notions and proofs of intuitionistic 

mathematics (Heyting 1959, 70). 

In Heyting’s works we notice a different kind of change to the body and image of knowledge 

than that applied in the intuitionistic versions of Brouwer and Weyl. The change Heyting 

suggested starts from the image of knowledge, as he viewed mathematics as a mental 

activity. However, unlike Brouwer and Weyl, Heyting used the classical body of 

mathematical knowledge to express his intuitionistic ideas: he presented the philosophical 

views underlying intuitionistic mathematics through formal axioms. Heyting created a new 

theory using methods and tools from within the body of knowledge, namely, he used 

mathematics’ unique ability to absorb a normative view of how mathematics should be 

properly done into its own body of knowledge.  

6. Intuitionism, Reflexivity, and Body-images 

To better understand the differences between the intuitionistic versions of Brouwer, Weyl, 

and Heyting, let us now return to Corry’s two-tiered approach. As mentioned in section 2, 

mathematics is endowed with a unique connection between its image and body of knowledge. 

In mathematics there is a third, intermediate layer, which involves both the body and image 

of knowledge, which Corry refers to as “reflexive thinking”: 

Reflexive thinking is clearly a part of the body of mathematical knowledge, because it 

is produced as any other piece of mathematical knowledge and is justified by proof. 

On the other hand, it is produced by concentrating on purely second order problems, 

and hence it is related to the images of knowledge. Mathematical knowledge includes 

all the layers […] [t]hey are in a state of “ongoing dialectical debate” which we must 

try to understand if we want to understand the historical process of the growth of 

mathematics. (Corry 1989, 425) 

Read through Corry’s prism, Heyting’s formalization of intuitionism can be viewed as part of 

this intermediate layer. Heyting’s use of formal methods to express a philosophical view of 

mathematical entities as creations of the mind produced a piece of mathematical knowledge 

that belongs to the body of knowledge but also to the image of knowledge, as it concentrates 

on a normative question of how mathematics should be done.  

In clear contrast, Brouwer’s and Weyl’s versions of intuitionism cannot be considered part of 

this reflexive layer of thought. The changes introduced by both Brouwer and Weyl are 

changes that concentrate primarily on “second-order problems,” namely, on the layer of the 

images of knowledge. Unlike Heyting’s intuitionistic mathematics, which affected and 

involved the body of knowledge as well, the intuitionistic versions suggested by Brouwer and 

Weyl were confined solely to the normative realm of the images of knowledge.  

Neither Brouwer nor Weyl used any methods or theories from the existing body of 

knowledge to express their intuitionistic ideas. Their point of departure was a normative 

conception of how mathematics should be properly done, but they did not use formal 

methods to articulate their intuitionistic approaches. According to Walter van Stigt, even 

though Brouwer encouraged Heyting to engage with the formalization of intuitionism, 

Brouwer himself opposed formalization, dismissing it as a “sterile and unproductive 

mathematical exercise” (van Stigt 1990, 285).  
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Heyting’s use of formal methods as tools of communication to convey his intuitionistic ideas 

serves as a compelling example of the unique connection between mathematics’ body and 

image of knowledge. Heyting’s intuitionism was rooted in normative considerations, but he 

also believed that casting them in formal garb rendered some intuitionistic notions clearer and 

more accessible to the working mathematician. As he wrote: 

Intuitionistic mathematics is a mental activity [“Denktätigkeit”], and for it every 

language, including the formalistic one, is only a tool for communication. It is in 

principle impossible to set up a system of formulas that would be equivalent to 

intuitionistic mathematics, for the possibilities of thought cannot be reduced to a finite 

number of rules set up in advance. Because of this, the attempt to reproduce the most 

important parts of formal language is justified exclusively by the greater conciseness 

and determinateness of the latter vis-à-vis ordinary language; and these are properties 

that facilitate the penetration into the intuitionistic concepts and the use of these 

concepts in research. (Heyting 1930a, 311) 

Heyting’s formalization put intuitionistic logic and classical logic side by side, as two parallel 

systems, a move that encouraged mathematicians and logicians to develop and analyze the 

intuitionistic system as well, and compare between the two. Indeed, mathematicians were 

much more inclined to engage with Heyting’s work. Mathematician Alfred Errera and 

logician Marcel Barzin embarked on a public discussion with Heyting through a series of 

papers in the L'Enseignement mathematique journal, addressing different aspects of Heyting's 

formalization papers (Barzin and Errera 1931, 1932a, 1932b, 1933). Their correspondence 

shone a spotlight on Heyting's work, and in turn, encouraged more mathematicians to interact 

with it. A quantitative inquiry of the public reactions to intuitionism presented by Dennis 

Hesseling indicates that, in the 1930s, there was a shift in the debates' trajectory and content; 

the number of reactions to intuitionism in the 1930s was substantially higher than in the 

1920s or earlier. These reactions mainly engaged Heyting's formalization of logic and not 

Brouwer's original intuitionistic program (Hesseling 2003, 93–99, 363–69).  

A substantial amount of the reactions to Heyting’s formalization go beyond the intuitionistic 

system itself and discuss the differences between classical and intuitionistic mathematics. 

Mathematician Kurt Gödel and logician and mathematician Gerhard Gentzen each arrived 

independently at a theorem proving that Peano Arithmetic is translatable into Heyting 

Arithmetic (Gödel 1933; Gentzen withdrew his paper when he learned of Gödel’s paper). 

Gödel’s paper concludes: “the system of intuitionistic arithmetic and number theory is only 

apparently narrower than the classical one, and in truth contains it, albeit with a somewhat 

deviant interpretation.” (Gödel 1933, 295). Thus, it seems that Gödel saw the differences 

between intuitionism and classical mathematics mostly as differences in the image, not the 

body of knowledge. Heyting replied to Gödel’s paper, stating that “for the intuitionist, the 

interpretation is what is essential” (Heyting 1934, 18), and his response made Gödel 

“supersensitive about differences in meaning” (Mark van Atten 2017; Kreisel 1987, 82). That 

is not to imply that Gödel was converted to intuitionism; he certainly was not. But the 

developments made by Gödel, Gentzen, and Karl Menger (and later by others) to Heyting’s 

formalized system suggest that Heyting’s formalization of intuitionism allowed for ideas 

belonging to the intuitionistic image of knowledge to be discussed from within the classical 

body of knowledge; a discussion that could not have taken place within the contours of 

Brouwer’s or Weyl’s intuitionistic versions. In order to engage with Brouwer’s intuitionism 

or Weyl’s intuitionism, mathematicians had to be acquainted, at least to some extent, with 

their philosophical considerations and understand the implications of such considerations on 
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mathematics. Heyting’s intuitionism offered mathematicians a way to explore intuitionistic 

ideas without an initial immersion in philosophical commitments they often found foreign 

and unrelatable.  

7. Concluding Remarks 

This paper proposed viewing the differences between the works of Brouwer, Weyl, and 

Heyting through the prism of Corry’s dual perspective of a normative and a practical layer of 

change. Such a perspective concentrates on the normative boundaries of the discipline as 

each of the three mathematicians conceived it, and describes the changes they suggested to 

the discipline of mathematics in terms of changes to the image and body of knowledge. 

Brouwer and Weyl suggested a comprehensive change to the image of mathematical 

knowledge, while leaving the classical body of knowledge entirely unaltered. Heyting’s 

formalization of intuitionism, on the other hand, affected an intermediate layer unique to 

mathematics through which his image of knowledge was absorbed into the classical body of 

knowledge.  

By applying Corry’s two-tiered model to the works of Brouwer, Weyl, and Heyting, this 

paper polishes the common lens employed by historical and philosophical accounts regarding 

the differences between the three stories, and the reaction of the community to Heyting’s 

mathematical intuitionism. Philosopher Tomasz Placek argues that Heyting’s non-

philosophical approach renders his intuitionism more approachable and understandable to the 

practicing mathematician, as he is “not distracted by the burden of speculative philosophy” 

(Placek 1999, 106). Mathematician and biographer Walter van Stigt argues that “Heyting’s 

neo-intuitionism diverges from the Brouwer orthodoxy on three fundamental issues: the 

philosophical foundation of mathematics, the nature of mathematics as thought-construction, 

and the role of language and logic in mathematics” (van Stigt 1990, 275). The current paper, 

however, suggests that there is more to Heyting’s intuitionism than here described. The kind 

of move Heyting made in formalizing intuitionistic ideas is nonetheless driven by 

philosophical considerations. While it is true that Heyting’s philosophical considerations are 

different from those of Brouwer, the motivation behind Heyting’s formalization is primarily 

normative, in the sense that his use of formal methods is a means to an end, the end being a 

representation of how mathematics should be properly done. This objective of his work was 

marginalized by the formalized system he introduced, as Heyting himself noted in 1978: 

[…] They [the 1930s papers] were of little help in the struggle to which I devoted my 

life, namely a better understanding and appreciation of Brouwer’s ideas. They 

diverted the attention from the underlying ideas to the formal system itself. (Heyting 

1978, 15) 

The perspective suggested in this paper contributes to existing historical and philosophical 

accounts by providing an additional aspect to the narrative of the development of intuitionism 

hitherto left out of the story. It remains true to Heyting’s own intentions in using formal 

methods to introduce intuitionistic ideas while also providing a possible explanation for 

mathematicians’ inclination to engage, develop and respond to Heyting’s version of 

intuitionism.  

Brouwer, Weyl, and Heyting each held a different view regarding the proper way of doing 

mathematics, and those differences translated into three different versions of intuitionism. 

Unlike Brouwer’s intuitionism and Weyl’s intuitionism, Heyting’s mathematical intuitionism 
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affected the classical body of knowledge by absorbing into it an intuitionistic image of 

knowledge, thereby creating a mathematical theory that is part of both layers. Among the 

three, Heyting was the only one who used formal methods from the classical body of 

knowledge to express his intuitionistic mathematics, thereby creating a way for classical 

mathematicians to discuss intuitionistic ideas. This perspective, therefore, enriches current 

historical and philosophical accounts, and when all are considered together, they combine to 

offer a more comprehensive account of the intuitionistic story and its reception than any can 

offer alone. 
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