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Abstract

The following questions are germane to our understanding of gauge-(in)variant

quantities and physical possibility: how are gauge transformations and spacetime

diffeomorphisms understood as symmetries, in which ways are they similar, and

in which are they different? To what extent are we justified in endorsing differ-

ent attitudes—nowadays called sophistication, haecceitism, and eliminativism—

towards each? This is the first of four papers taking up this question.

This first paper will discuss notions of symmetries and isomorphisms that will

be used in the remaining papers in the series. There are several such notions in

the literature and the question of how they mesh with empirical discernibility is a

delicate one; even the orthodox view that symmetries are empirically unobservable

(even in principle) has recently been challenged by Belot (2013). Focusing on local

field theories, I will provide a precise definition of dynamical symmetries in terms of

the space of states of the theory at hand. I will then apply the definition to Yang-

Mills theories and general relativity and show that these symmetries correspond

to automorphisms of ‘natural’ geometric structures: the small diffeomorphisms of
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the spacetime manifold and the small fiber-preserving diffeomorphisms of a fibered

space. Finally, I will show that these automorphisms can be given a passive gloss,

since they correspond 1-1 to the coordinate transformations of the underlying man-

ifolds.

Same-diff [noun]: an oxymoron, used to describe something as being the same as

something else. Often used as an excuse for being wrong. (Urban dictionary).
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1 Introduction

1.1 Motivation

Gauge theories lie at the heart of modern physics: in particular, they constitute the standard

model of particle physics. Philosophers of physics generally accept as the leading idea of a

gauge theory—or as the main connotation of the phrase ‘gauge theory’—that it involves a

formalism that uses more variables than there are physical degrees of freedom in the system

described; and thereby more variables that one strictly speaking needs to use. Hence the

common soubriquets: ‘descriptive redundancy’, ‘surplus structure’, and more controversially,

‘descriptive fluff’ (e.g. Earman (2002, 2004)).

Although the main idea and connotation of descriptive redundancy has been endorsed by

countless presentations in the physics literature, some celebrated philosophers, such as Healey

(2007) and Earman (2002) among others, have gone beyond this connotation, and defended

a stronger, eliminativist view. The view is that gauge symmetry must be ‘eliminated’ before

determining which models of a theory represent distinct physical possibilities, on pain of radical

indeterminism.1 For them, the connotation of ‘fluff’ is that it can have no purpose.

But radical indeterminism also threatens theories such as general relativity, embodying

diffeomorphism symmetry. Does this symmetry arise from ‘descriptive redundancy’ in the

same way as, it is claimed, gauge transformations do? Should we construe the inference from

models to reality similarly in the two theories? In this paper, I will show that, under a specific

definition of dynamical symmetries, those of both general relativity and Yang-Mills theory can

be understood to arise from descriptive redundancy. But here I will not attempt to elevate

this conclusion to a criterion, regimenting when symmetries can be understood in this way, as

descriptive redundancies. That will be the job of the second (Gomes, 2021b) and third Gomes

(2022b) papers in the series.

In this first of four papers analysing the similarities and distinctions between the gauge

symmetries of Yang-Mills theory and the spacetime diffeomorphisms of general relativity, I will

set up the formal background, the basic physical interpretation, and the basic definitions to be

used in the remaining three. The second and third paper, Gomes (2021b, 2022b) will analyse

more formal aspects of the comparison between the gauge symmetries of Yang-Mills theory

and the spacetime diffeomorphisms of general relativity. They will also give general desiderata

for other theories to admit a perspicuous interpretation, in a similar way as Yang-Mills and

general relativity do. Gomes (2021b) focuses on topics that are more metaphysical and concern

the philosopher more than the physicist, while Gomes (2022b) focuses on conceptual matters

that are nearer to the heart of physicists. The fourth paper in the series, Gomes (2021c), will

analyse more detailed aspects of this comparison, such as the degree of non-locality of the two

1We will more fully describe what is expected of eliminativism, and its alternatives, in Gomes (2021b). For

now, I take a gauge symmetry to be ‘eliminated’ in the sense required if there exists a second theory, with

different ontological commitments, which is empirically equivalent to the first, and which has no local gauge

symmetry.
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theories.

This paper sets the standard for the following ones, by construing the different types of

interaction—e.g. electromagnetic—geometrically, as on a par with how general relativity de-

scribes gravity. I describe how both the fundamental fields of these theories encode structural,

or relational, properties, that arise from comparisons. If spacetime geometry is about the

external distance between spacetime points, the principal bundle geometry is about the in-

ternal ‘distances’ (or rather, rotations) between the charges of particles. And in even fewer

words: general relativity is about the external geometry, whereas Yang-Mills theory is about

the internal geometry.

With that construal, I hope to erase, or at least weaken, any prejudice the reader may

harbor about fundamental conceptual differences between the symmetries of general relativity

and Yang-Mills theory.

1.2 Roadmap

Here is a brief outline about how we plan to proceed. In Section 2 I will provide a detailed defi-

nition of symmetries, including infinitesimal symmetries. When we apply the general definition

of symmetries to the functions that are responsible for endowing the theory with dynamical

content—i.e. a Hamiltonian or an action functional—we arrive at the empirical unobservability

thesis : that symmetry-related models are empirically indiscernible.2 Interpreting these sym-

metries as the isomorphisms of some category will enable me to give a rough outline of the

doctrines of eliminativism and sophistication, which will be main topics in the following paper

in the series, Gomes (2021b). In Section 3 we provide a brief introduction to the mathematical

formalism of the theory of general relativity.

In Section 4 we do the same for gauge theory, but with greater attention to detail, since the

theory is less familiar to the philosopher of physics. As to the dynamical symmetries of general

relativity and Yang-Mills, I will display an exhaustive set of symmetries that are infinitesimal,

or connected to the identity, according to the definition of Section 2, in each theory. I will do

this in Sections 3 and 4, respectively.3 In Section 4, we encounter two types of symmetries:

ones that can be interpreted via the isomorphisms of some natural geometric structure, and

ones that are just a postulated mathematical transformation. In parallel, philosophers of

physics are accustomed to the active interpretation of symmetries—as isomorphisms of some

natural geometric structure— whereas more pragmatic physicists tend to construe symmetries

passively, as mere postulated changes between coordinate systems.

In Section 5, I defuse this tension, by providing a one-to-one correspondence between the

(infinitesimal) symmetries defined in Section 2 and passive changes of coordinates of the natural

geometric structures underlying general relativity and Yang-Mills theory. This resolution allows

2This thesis will be defended at a more technical level in the third paper in the series, Gomes (2022b), once

we have developed the necessary tools.
3Most of the literature on the topic does not show this: they merely present some set of transformations

that are symmetries under a given definition—cf. Torre & Anderson (1993) for an exception.
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us to see the dynamical symmetries of both theories as descriptive redundancies.

Finally, I note that the basic Yang-Mills field that lends itself to the geometric interepre-

tation is not a field on spacetime; it is a field on some other (fibered) manifold and requires

coordinate charts for representations on spacetime. Therefore, to finish the side-by-side com-

parison of Yang-Mills and general relativity, we would like to describe the Yang-Mills fields as

on a par with the abstract metric tensor field, as fields on spacetime and without the use of

coordinate charts. We provide this interpretation by construing the basic fields of Yang-Mills

theory as sections of the bundle of connections (or Atiyah-Lie bundle). Since this construction

is overly technical, we leave it to Appendix A.4 In Section 6 we conclude.

2 Dynamical symmetries

To begin our more formal investigation, I must provide a formal definition of symmetries. This

may seem like a straightforward task, but it is far from it. The intuitions we commonly have

about symmetries clash with most attempts of formalization (as discussed by Belot (2013)).

So we tread carefully, and define symmetries more flexibly than is usually done. This brief

treatment already allows us to ask interesting questions, about the interpretation of symmetries,

and about symmetry-related models.

In its broadest terms, a symmetry is a transformation of a system which preserves the

values of a relevant (usually large) set of physical quantities. Of course, this broad idea is

made precise in various different ways: for example as a map on the space of states, or on

the set of quantities; and as a map that must respect the system’s dynamics, e.g. by mapping

solutions to solutions or even by preserving the value of the Lagrangian functional on the states.

In Section 2.1 I will provide the definitions about symmetries that we will be using through-

out this paper. In Section 2.2 I will argue that, applying this notion to the generators of

dynamical evolution, it is plausible to infer that symmetry-related models are empirically in-

discernible. Section 2.3 discusses the relation between the idea of symmetries explored in the

previous Section and the existence of an appropriate mathematical structure that encodes those

symmetries as its isomorphisms. Given the tools of Section 2.3, Section 2.4 briefly discusses the

doctrine of structuralism and its relation to the reductive understanding of symmetry-related

models, called eliminativism, that will be an important thread in the following papers in the

series.

2.1 Technical considerations about symmetries

The intuitive idea of dynamical symmetries is that they are transformations acting on the

models, or solutions, of a given theory, such that the models that they relate are empirically

indiscernible according to that theory. The intuition is helpful, but nailing down symmetry

more precisely is a challenge. For instance: defining a dynamical symmetry as any transforma-

4This construction will be important in the fourth paper in the series, Gomes (2021c).
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tion that takes each solution of the equations of motion of a theory to another solution is far too

weak: it would imply that any solution is related by a symmetry to any other. And there are

other problems. For instance: models which we would intuitively take to depict physically dis-

tinct situations may nonetheless be symmetry-related, depending on the notion of symmetry;

and it is also false that empirically identical situations are always symmetry-related according

to every account of symmetry.5

Examples illustrating the above problems—and more—are described in (Belot, 2013), which

expounds the obstacles towards a general definition. Different authors have risen to Belot’s

challenge, of providing a general account of symmetry that is coherent and yet non-circular.

For instance, Wallace (2019a) requires symmetries to be realizable as transformations of sub-

systems of the universe, while Fletcher (2021) requires other non-physical, epistemic criteria.

I want to avoid the discussion of subsystems and would prefer an explanation based on math-

ematical/physical criteria. So for now, I give what I believe to be a plausible definition of

symmetries, that disallows some but probably not all of Belot (2013)’s counter-examples.

Let Φ be the space of models of the theory. Models are supposed to be complete descriptions

of the world, according to the given theory. Here the word ‘world’ is deliberately ambiguous:

it can refer to an instantaneous state or to an entire history.6 And ‘instantaneous state’ is

also ambiguous: one may understand an instantaneous description to include or not include

information about rates of change—theories whose models are states in phase space include

this information and those whose models are complete instantaneous configurations do not.

Models of instantaneous states of affairs (in both senses) will here be dubbed states of the

universe; and I will keep using ‘world’ and ‘model’ as the more inclusive terms: both can apply

to descriptions of entire histories or of instantaneous states.

Now, each physical theory will postulate some mathematical structure for its models. For

example, in non-relativistic mechanics, we could have each model be a configuration of N point

particles in Euclidean space, R3. So each model is endowed with both the differentiable and

vector space structure of R3, which can be used in formal manipulations. Now this mathe-

matical structure of each model is reflected in a different level of mathematical structure for

the entire space of models, Φ. In this example, the space of models—taken as instantaneous

states without information about rates of change—is configuration space, which is isomorphic

to R3N . So, while the linear and smooth structure of R3 belongs to each model, and we use

it for important operations such as taking derivatives, we also require the smooth structure of

configuration space in order to do variational calculus, or to give a Hamiltonian formulation of

the theory. Or similarly, the symplectic structure of a given theory can be seen as a structure

on the state space Φ; this structure does not inhere in each model (which can itself have a lot

of structure, in particular in the case of field theories: e.g. for a model of a history in general

relativity, i.e. a model of spacetime, the structure of a semi-Riemannian manifold).

5Nor is it straightforward to nail down what “preserving the form” of an equation really means. But this

can be achieved by using the formalism of jet bundles: see, for example Weatherall (2022).
6This first definition excludes subsystems. I discuss these in Gomes (2021a), and, in more generality, in

Gomes (2022a).
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In field theories, the space of models Φ is usually endowed with an (infinite-dimensional)

topological structure that allows definitions of neighborhoods of models, differentiable one-

parameter families of models, etc. And as discussed in the previous paragraph, we will usually

endow it with further structure: smooth, symplectic, etc.7 Of course, using these further,

e.g. topological, structures, Φ becomes an infinite-dimensional manifold. But I would like to

reassure the concerned reader on this point: infinite and finite dimensional geometries differ

in various details, but much of the abstract geometrical reasoning that we are familiar with in

the finite case extends to the infinite one.8

Thus, in sum, each of the models and also Φ are endowed with mathematical structure.

Now we can define a general notion of symmetry.

Definition 1 (S-symmetry) Let S be some quantity on the system, represented as a real

function on Φ that respects these structures (e.g. is smooth, linear, etc.). Then a transformation

Θ : Φ→ Φ is an S-symmetry iff Θ:

(a) respects the mathematical structure posited for Φ (e.g. smooth, linear, symplectic, etc.);

(b) is definable without fixed parameters from Φ, i.e. all models enter as free variables in the

transformation Θ; and

(c) Θ preserves the values of S: for any model m ∈ Φ, S(Θ(m)) = S(m).

Note that a transformation Θ that only preserves the value of S at a subset of models is

not an S-symmetry. A symmetry transformation respects the mathematical structure posited

for Φ and preserves the value of a function S on Φ. So, for example, given some such structure,

e.g. a symplectic form Ω (in which case Φ is a smooth manifold, infinite-dimensional in the

case of field theories and finite-dimensional for particle mechanics), and a Hamiltonian H that

is a real-valued function on Φ, then then (using the asterisk, as usual, for drag-along and

pull-back), item (a) implies Θ∗Ω = Ω, and item (c) implies Θ∗H := H ◦Θ = H.

The purpose of item (b) is to disallow ‘spurious’ symmetries. That is, in the same way that

we would not like any two solutions of the equations of motion to be related by a symmetry,

we do not want to say that all of the states with the same S are related by S-symmetries. Item

7An important question here is: in what sense does the mathematical structure of the models constrain

or determine the mathematical structure of Φ? For example, in (Ringström, 2021, Ch. 10), it is argued that

other criteria, such as stability of solutions of the theory, have the power to largely determine the appropriate

topology of Φ. But I do not aim to answer this complicated question in general.
8Kriegl & Michor (1997) have a general approach to geometry that is based on curves and their differ-

entiability as embedded in arbitrary spaces; and for many of the geometrical objects and intuitions of the

finite-dimensional case, the approach builds bridges towards the infinite-dimensional. Another useful source,

that develops differential geometry in the infinite-dimensional case by replacing Rn as the image of local charts

of manifolds by more general Hilbert or Banach vector spaces, is (Lang, 1999). One useful rule of thumb

about generalizing mathematical theorems is the following: theorems of finite-dimensional geometry whose

proof requires some sort of integration are not straightforwardly extendible, whereas those that do not require

integration are relatively easily extendible.
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(b) disallows such gerrymandered Θ’s.9

Given Definition 1 it is, for precisely formulated theories, usually straightforward to exhibit

some symmetries. But the challenge is not to determine that some set of transformations—say

the diffeomorphisms—are symmetries of some theory, say general relativity. The challenge is

to find all the symmetries, under some given definition and formulation of the theory. In that

respect, it is easier to work with infinitesimal symmetries, to which we now turn.

Infinitesimal symmetries In this paper I will be mostly interested in local symmetries of field

theories, and in symmetries that could arise in either the Hamiltonian or the Lagrangian

framework. That is, I am interested in symmetries that are continuous and connected to the

identity transformation, and in the case where the space of models Φ has at least a topological

structure.

Specializing to those cases, let S be some quantity on Φ, as above.

Definition 2 (Infinitesimal S-symmetry) A vector field X on Φ generates an infinitesimal

S-symmetry, iff:

(a) X respects the structure of Φ (e.g. its flow is continuous, smooth, symplectic, etc.);

(b) X is definable without fixed parameters from Φ, i.e. all models enter as free variables in

the argument of X ; and

(c) X preserves the values of S: for any model m, X [S](m) = 0.10

When an infinitesimal S-symmetry can be integrated for parameter time t, we have finite

symmetries generated by the flow of X : Θt
X : Φ→ Φ, such that (omitting X and t): S(Θ(m)) =

S(m).

Infinitesimal symmetries are generically much more tractable than the full group of sym-

metries; and, even in field theory, given S, they can often be found algorithmically, e.g. as

kernels of certain integro-differential operators: which is how we will determine them from the

Einstein-Hilbert and the Yang-Mills action functionals, in Sections 3 and 4, respectively.

These definitions downplay the role of the dynamical equations of motion of a given theory.

But we can include the dynamical content of symmetries by equating S with an action func-

tional. Such an action functional provides a more complete characterization of the dynamics

of a given theory than do the equations of motion, since it can be used as a starting-point for

quantization within either the Lagrangian or Hamiltonian formalisms; (and it also yields the

classical equations of motion in a straightforward manner). So, for almost the entirety of this

9However, I should note that, in most cases, respecting the smooth structure of Φ as per item (a) would

already disallow crudely gerrymandered situations; but one can certainly create examples that satisfy (a) and

would be disallowed by (b).
10Here, for any 1-parameter curve of models m(t) such that d

dt |t=0
m(t) = Xm and m(0) = m, this is taken

as X [S](m) := d
dt |t=0

(S(m(t)).
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paper, the quantity S for the S-symmetries will be identified with the action functional. And

so here m ∈ Φ is a history, for which I will suppress boundary conditions in the elementary

notation, and I will write ϕ for m, to match field theory notation—which will be my focus.

Thus we endow Φ with a (infinite-dimensional) manifold-like structure of its own; and take

dynamics to be obtained from a variational principle. That is, given an action functional on

this space: S : Φ→ R, the extremization requirement S[ϕ+δϕ]−S[ϕ] = 0 for all directions (or

vector fields) δϕ ∈ TϕΦ, gives rise to the equations of motion, as conditions on the ‘base point’

ϕ. Moreover, certain vector fields on Φ may leave S invariant, e.g. S[ϕ + δ̂ϕ(ϕ)] − S[ϕ] = 0,

for all ϕ, where δ̂ϕ : Φ→ TϕΦ is a smooth vector field on this infinite-dimensional field space,

Φ, that, importantly, obeys supposition (b) from Definition 2.

So much by the way of summarizing the situation in classical physics. Turning to quantum

mechanics: barring the existence of anomalies (which arise from the lack of invariance of the

path integral measure and/or regularization), symmetries of an action are straightforwardly

translated into quantum symmetries. Thus it is natural to take this as a more fundamental

notion than symmetry of the equations of motion. This is the first reason to prefer the notion of

infinitesimal symmetries; there are two more, as I now explain. In the path integral formalism,

infinitesimal symmetries constitute degenerate directions for the propagator. This implies that

two nearby states lying along such a degenerate direction should count as physically the same.

In order that the contribution of states in these directions are not counted independently

towards a given transition amplitude, we are motivated to identify them as being physically

identical. Thirdly, infinitesimal symmetries are the only local symmetries that can arise in

the Hamiltonian formalism (as discussed in the third paper, Gomes (2021c)). Thus we take

Definition 2 as more fundamental.

2.2 Empirical unobservability

An S-symmetry relates empirically indistinguishable models if S captures all the empirically

accessible quantities.11 Theories are their own arbiters of empirical (in)discernibility (cf. (Read

& Møller-Nielsen, 2020)),12 so different theories may have different S’s being sufficient for

empirical indiscernibility. But for all theories of modern physics, taking S as the Hamiltonian

11Here I do not use ‘empirical’ to denote the traditional positivist and post-positivist ‘meter-readings’ or

‘no-special-training-neeed for the judgment’, or ‘the sheer look’—a very common denotation in the literature

about the theory-observation distinction of the past fifty years. I use it to denote ‘in-principle-observable’, in

a very encompassing sense of ‘in-principle’.
12Einstein made this very point to Heisenberg. Here is how (Heisenberg, 1971, p.63) described the interaction:

I said “We cannot observe electron orbits inside the atom...Now, since a good theory must be

based on directly observable magnitudes, I thought it more fitting to restrict myself to these,

treating them, as it were, as representatives of the electron orbits.” But Einstein protested: “But

you don’t seriously believe that none but observable magnitudes must go into a physical theory?”.

In some surprise, I asked “Isn’t that precisely what you have done with relativity?”. “Possibly I

did use this kind of reasoning,” Einstein admitted, “but it is nonsense all the same....In reality

the very opposite happens. It is the theory which decides what we can observe.”
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or the action functional will be enough for our purposes.13

To be more precise: it is not that I believe that the action or Hamiltonian somehow encom-

passes all physical quantities for a given theory: it is rather that I endorse the unobservability

thesis of Wallace (2019a). That is, take the generator of the dynamics to be the Hamiltonian

or the action functional. It is only the variation of these functions that dictate the evolution:

e.g. through a Poisson bracket or a variational principle. Thus, if these quantities do not vary

when the basic variables are acted on by a transformation satisfying (a) and (b) of Definition

2, there is a rigorous sense in which the very dynamics of the theory are preserved by the set of

transformations. Now, we can further assume that empirical access to a physical system (see

footnote 11), in particular a physical process of observation, is itself a dynamical notion. Thus

a dynamical symmetry cannot have consequences for what is observable when that symmetry

encompasses the physical processes involved in a measurement. From these two suppositions,

it is not far-fetched to conclude that quantities or properties that are symmetry-variant cannot

make a difference to a dynamical process. Or put differently: the values of such quantities can-

not be inferred from dynamical processes; and in particular, by certain types of observation.

That is, under certain assumptions about the measurement process, the unobservability thesis

states that quantities or properties that have values that vary under transformations of the

system that preserve all dynamical facts—e.g. the equations of motion or the quantum tran-

sition amplitudes—are unobservable, because they cannot be ascribed dynamical significance.

We will have more to say about this in the third paper in the series, Gomes (2022b).

2.3 Symmetries as isomorphisms

But, as will be discussed at length in this paper and its sequel: if we are to judge symmetry-

related models as representing the same physical possibility, it makes sense to seek a type of

physical and mathematical structure that clearly represents the quantities that are symmetry-

The topic prompts one to consider the Kantian view that there are certain ‘a priori’ elements of any given

theory, which must be assumed if the theory is to be empirically significant; for this reason these a priori

elements cannot be cannot be empirically tested in the same ways as the other elements in the theory. Along

roughly the same lines, the relativized, or dynamic a priori, as elaborated in (Friedman, 2001), provides an

updated version of the position, that can, Friedman argues, withstand the weight of evidence from the history

of modern science against its Kantian forebear.
13Boundary conditions are here taken as features of Φ, jointly with the other mathematical structure delin-

eated above. One of the most notable counter-examples of Belot (2013) is the Lenz-Runge symmetry, which

preserves the equations of motion of a Newtonian two-body problem, but does not preserve features we take to

be observable, such as the orbit eccentricity. We could disallow these symmetries by including eccentricity as

one of our quantities S, but, in this case, this is not necessary. For Lenz-Runge symmetry is not an S-symmetry

when S is the action functional, since the action is not preserved by that symmetry: it is only preserved up to a

boundary term that is non-vanishing. Galilean boosts are similarly excluded: they introduce a boundary term.

A milder definition of S, which allows arbitrary boundary terms, is also a possibility, and indeed, in general

relativity in the presence of boundaries, it is necessary to allow boundary terms in order that infinitesimal

diffeomorphisms count as symmetries of the standard Einstein-Hilbert action of the theory.
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invariant.14

The first step in realizing this idea is naturally conveyed in the category theoretic framework

(cf. footnote 15 below): we identify symmetries with the isomorphisms of some structure, as

represented in a category in which the objects are the models of the theory. That is, since item

(c) in Definition 2 implies that symmetries can be composed, we demand that symmetries,

acting on models, form a groupoid, i.e. a category in which every arrow is an isomorphism,

with the objects of the category being the models, i.e. the elements of Φ.15

Lest these definitions remain strictly mathematical, I make explicit, albeit in a general way,

their relation to the physical world (or better: that part of the physical world the theory aims

to describe). We assume there is a set of possible worlds so that our theory maps each orbit—

under the symmetries—of models to a class of physically equivalent worlds, in a 1-1 manner

(see Jacobs (2022) for more on this relation). So every world is described by some model, and

two worlds are physically equivalent iff they are described by isomorphic models.

This initial construal of symmetries is closest to what (Wallace, 2019a, p. 3) dubs the

‘representational strategy’, which “builds the representational equivalence of symmetry-related

models into the definition [of symmetry], usually by requiring that symmetries are automor-

phisms of the appropriate mathematical space of models (hence preserve all structure, and thus

all representation-apt features, of a model)”.

But note the flexibility of the formalism: we have not specified any independent definition

of invariant structure; for now invariant structure is just what is common to the symmetry-

related models. I will postpone to Gomes (2021b) whether this construal of symmetries as

isomorphisms is apt for sophistication.

All the symmetries investigated here and in the following papers, obeying Definition 2,

will be (when exponentiated) represented as groups (which could be infinite-dimensional),

14It is this idea that motivates our first desideratum for sophistication, in Gomes (2021b), i.e. (i): that

symmetries be mathematically induced by the automorphisms of some natural geometric structure. We will

briefly introduce the doctrine in Section 2.4.
15The most important characteristic of category theory is its focus on isomorphisms and transformations

between mathematical objects that preserve (some of) their internal structure. For instance, these isomorphisms

could be group homomorphisms in the category of groups, or linear maps in the category of vector spaces. More

precisely, given a category C, a morphism f : A → B is an isomorphism between objects A and B if and only

if there is another morphism f−1 : B → A such that f ◦ f−1 = IdA and f−1 ◦ f = IdB . And a property P is

structural, just in case P (A) iff P (f(A)) for all isomorphisms f . Another important type of mapping are the

functors between different categories. This is, essentially, a mapping of objects to objects and arrows to arrows

that preserves the categorical properties in question. Such functors are crucial for comparing the objects of

different mathematical categories. A groupoid is a category in which every arrow has an inverse in the above

sense, i.e. every arrow is an isomorphism. An automorphism is an isomorphism that has the same object as its

domain and target: f : A→ A. Thus, for instance, to take the example of Section 3, the automorphisms of the

differentiable manifold M—the diffeomorphisms Diff(M)—will induce, through pull-back, the isomorphisms of

Lorentzian metrics on M , the category of objects Lor(M). The automophisms of a Lorentzian metric are those

diffeomorphisms that preserve the metric, i.e. they are isometries f∗gab = gab (and so, for generic objects of

Lor(M), they are just the identity).
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denoted G, such that, given the space of models of a theory, Φ, there is an action of G on Φ,

a map Φ : G × Φ → Φ, that preserves the action functional, and so that each g ∈ G gives

an S-symmetry. More formally: there is a structure-preserving map, µ, on Φ that can be

characterized element-wise, for g ∈ G and ϕ ∈ Φ, as follows:

µ : G × Φ → Φ

(g, ϕ) 7→ µ(g, ϕ) =: ϕg. (2.1)

Since each g ∈ G defines a symmetry, the action is such that, as per clause (c) in the Definitions

above, S(ϕg) = S(ϕ), for all ϕ and g.

The symmetry group partitions the state space into equivalence classes by an equivalence

relation, ∼, where ϕ ∼ ϕ′ iff for some g, ϕ′ = ϕg. We denote the equivalence classes under

this relation by square brackets [ϕ] and the orbit of ϕ under G by Oϕ := {ϕg, g ∈ G}. Note

here that though there is a one-to-one correspondence between [ϕ] and Oϕ, the latter is seen as

an embedded manifold of Φ, whereas the former exists abstractly, outside of Φ (see Figure 1).

More mathematically: were we to write the canonical projection operator onto the equivalence

Figure 1: The space of states, ‘foliated’ by the action of some group G that preserves the value

of some relevant quantity, S, and the space of equivalence classes. In field theory, when S is the

value of the action functional, each of these spaces—Φ, G, and [Φ]—is an infinite-dimensional

manifold.

classes, pr : Φ → Φ/G, taking ϕ 7→ [ϕ], then the orbit Oϕ is the pre-image of this projection,

i.e. Oϕ := pr−1([ϕ]).

Tacitly endorsing these extra assumptions about symmetries, we call [ϕ] the physical state,

and ϕ′ ∈ Oϕ its representative (when there is no need to emphasise that ϕ involves a choice

of representative, we call it just ‘the state’ for short). We call the collection of equivalence

classes, [Φ] := {[φ], φ ∈ Φ}, the physical state space. As written, this is an abstract space, i.e.

defined implicitly by an equivalence relation, or as certain classes of isomorphic models, under

the appropriate notion of isomorphism. It is, in a perspectival analogy, ‘a view from nowhere’.
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2.4 Structuralism in physics, summarized

There is an important distinction between the objects represented by the models and the

structure that is represented by the isomorphism classes of the models.16

In physics, the distinction becomes more salient in the context of determinism. In the

case of theories with ‘time-dependent’ symmetries—such as Yang-Mills theory and general

relativity—determinism can only be secured for the equivalence classes, [ϕ] ∈ [Φ], not for the

states ϕ ∈ Φ (see e.g. Earman (1986); Wallace (2002)).

But, as in pure mathematics, we usually cannot explicitly express the structure encoded

by [ϕ] (at least not without significant pragmatic burden or explanatory deficit); we can do

so only implicitly, by pointing to the isomorphism classes, or by selecting representatives of

those classes. Thus we enter debates about structuralism within physics. With the jargon

introduced, we can briefly revisit some of the definitions glossed in Section 1:

Eliminativism about symmetries seeks a new theory with an intrinsic parametrization of

[Φ] that makes no reference to the elements of Φ. In other words, eliminativism seeks to render

all and only the physically significant structure of the old theory as the primary objects of a

new theory, thus securing physical determinism by jettisoning representational redundancy.

Sophistication, in broad terms, rejects eliminativism while maintaining a commitment to

structuralism as an abstract—often higher-order, in the logical sense of requiring quantification

over properties and relations—characterization of the ontology, often under the label of ‘Leibniz

equivalence’. This position claims that an intrinsic parametrization of [Φ] is not required for

an ontological commitment only to members of [Φ] (see Dewar (2017)); the broad idea is to

use arbitrary members of Oϕ as opposed to [ϕ]. We will have much more to say about this

doctrine—and in defence of it!— in the remaining papers in this series, once we have introduced

the theories we want to apply the doctrine to.

3 Diffeomorphisms in general relativity

This Section will be briefer than the following one, on gauge symmetry, since the intepretation

of redundancy in general relativity is less controversial than in gauge theory.

I will take general relativity in the metric formalism, where the most general models of

the theory, sometimes labeled kinematically possible models (KPMs) (so as to avoid confusion

with those models that satisfy the equations of motion, which are labeled dynamically possible

models (DPMs)), are given by the tuples: 〈M, gab,∇, ψ〉. Here M is a smooth manifold, gab is a

Lorentzian metric (a (0, 2)-rank tensor with signature (−,+,+,+)); ∇ is a covariant derivative

operator, and ψ represents some distribution of matter and radiation. I will assume ∇ is the

the unique Levi-Civita one, i.e. obeying ∇cgab = 0. I will call the space of these KPMs Φ,

16It is unfortunate that the label ‘stucturalism’ has already been applied to the relational-substantivalist

debate with a different meaning: for Ladyman (2015), structuralism carried connotations of eliminativism.

Here, it does not.

13



and, if we simplify to fixing M and consider the theory in vacuo, i.e. setting ψ = 0, then

Φ = Lor(M), the space of Lorentzian metrics over M .17

The physical interpretation of the theory is chronogeometric, in the following sense. Ac-

cording to the geodesic principle, the images of smooth geodesic, time-like curves represent

the possible histories of freely falling (i.e. subject only to gravity, but to no other force,

e.g. electromagnetism) massive test particles. That is, curves γ(λ), where λ ∈ [0, 1] is some

parametrization of the curve, such that tangent vectors γ′ are time-like, i.e. gabγ
′aγ′b < 0,

and such that γ′a∇aγ
′b = 0, represent freely-falling particles whose energy-momentum ten-

sor is ignorable—it doesn’t back-react on the geometry. Those time-like curves that are not

geodesic, i.e. do not satisfy γ′a∇aγ
′b = 0, represent the possible histories of massive test parti-

cles that are subject to a force additional to gravity, e.g. electromagnetism. Finally, the images

of smooth null geodesic curves represent the possible histories of light rays.

In terms of the category-theoretic language (see footnote 15): the groupoid of smooth

manifolds has as objects the smooth manifolds, and diffeomorphisms as the isomorphisms;

diffeomorphisms are those maps that preserve the smooth global structure of manifolds. And

the category Lor(M) has as objects the metrics on M of Lorentzian signature gab, and isometries

as the isomorphisms.

The matter and gravitational fields are maps from points of the manifold to some other

value space; we will look at this definition in detail when we discuss vector bundles in the

second paper, Gomes (2022b). The dependence of the fields on spacetime points implies that

an action by a diffeomorphism f : M →M on this base set will lift to an action on the fields:

just take the new field to have at x the value that the original field had at f(x). We can

represent such an action of the diffeomorphisms of M on a model, represented by the triplet

〈M, gab, ψ〉, by the pull-backs, 〈M, f ∗gab, f
∗ψ〉.

It is also useful to represent the local, infinitesimal action of diffeomorphisms. Namely, for

a one-parameter family of diffeomorphisms ft ∈ Diff(M), such that f0 = Id, the tangent to

ft at t = 0 is the vector field Xa (ft is the flow of X). Then, infinitesimally we obtain, for

example, for the metric:
d

dt

∣∣∣∣
t=0

f ∗t gab ≡ LXgab = ∇(aXb), (3.1)

where LX denotes the Lie derivative along Xa.18 It is useful to denote the diffeomorphisms that

are connected to the identity, i.e. that are generated by vector fields through exponentiation,

17Indices a, b, c, etc are taken to be abstract (cf. (Wald, 1984, Ch. 2.4) for an explanation), i.e. only denote

the rank of the tensor, but no coordinate basis. I will denote coordinate indices by Greek letters: µ, ν, etc.
18For a map f : M → N , for η a one-form on N , f∗η is a one-form acting on v ∈ TxM as f∗η(v) := η(Tf(v)),

where Tf : TM → TN is also called the push-forward of the map (taking tangents to curves in M to the

tangents to the images of those curves under f), and is sometimes denoted by a f∗. For a scalar function ρ

on N , and x ∈ M , f∗ρ(x) = ρ(f(x)). Since, when f ∈ Diff(M), maps and their inverses are both smooth, we

can mostly ignore the distinction between push-forward and pull-back and denote the appropriate action of the

maps without distinguishing superscript and subscript asterisks. Thus, even though formally the pull-back of

f would run in the opposite direction of f , we will take it to always run in the same direction (by replacing,

when necessary, f by its inverse).
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as Diffo(M). Here and in the following papers we will mostly focus on this group, as opposed

to the full one; but this focus will only be justified in Gomes (2022b), where it will become

important.

If we assume a vacuum, i.e. that ψ = 0, what are the ‘natural’ isomorphisms of 〈M, gab〉?
Standard mathematical practice takes isomorphisms in this category to be just those induced

by the diffeomorphisms of the base set M . Then, in vacuo, two models 〈M, gab〉 and 〈M, g̃ab〉
are isomorphic if and only if there is a diffeomorphism of M , f ∈Diff(M), such that f(gab) =

g̃ab. If matter and radiation fields are included, an isomorphism would require the same map

to similarly relate their distributions in the two models, but these fields could have other

isomorphisms beyond those induced by the diffeomorphisms—as we will see.

Thus we have described the isomorphisms of this space of KPMs of vacuum spacetimes.

Spacetime physical theories usually assume that these isomorphisms are also symmetries of the

theory, in the sense that a large, salient set of quantities, and their values, will be physically

represented equally well by any isomorphism-related model. But what are the dynamical

symmetries of the theory?

In the spirit of Definition 2, we endow Φ with a (infinite-dimensional) manifold-like structure

of its own, and define an action functional on this space: S : Φ→ R, given by:

S[g] :=

∫
M

d4x
√
g R, (3.2)

where R is the Ricci scalar curvature of the metric, obtained by taking the trace of the Ricci

curvature, R := gabR
ab. We then extremize S[g] in vacuum, and for a fixed boundary-less

manifold M , so that elements of Φ differ only by their metrics. Then, omitting indices, from

the extremization requirement S[g+ δg]−S[g] = 0 for all directions δg ∈ TgΦ, the equations of

motion emerge as conditions on the ‘base metric’ g. Besides, certain vector fields on Φ leave S

invariant, e.g. in vacuum S[g+δ̂g(g)]−S[g] = 0, for all g, where δ̂g : Φ→ TΦ is a smooth vector

field on this infinite-dimensional field space, Φ. With another set of minimal assumptions,

namely, that M has no boundaries and that δ̂g is ‘local’ in a sense to be established below,

these vector fields can be identified as the the infinitesimal versions of the maps gab → f ∗gab.

Indeed, these directions can be proven to be given by δ̂g = LXgab of (3.1), and they generate

the isomorphisms induced by the diffeomorphisms of M .19

Here is a sketch of the proof: let vab = δ̂g be a local vector field in Φ, which we assume to

depend locally on the metric and its derivatives. The local assumption amounts to a defini-

19If M has boundaries, then not all vector fields will preserve the value of the action. In that way, there is a

departure from dynamical symmetries seen as sets of transformations of the equations of motion which keep ‘its

form’ invariant. For if one model satisfies the Einstein equations, an isomorphic model will also satisfy them,

irrespective of its behavior at the boundaries. And the addition of a scalar field, ψ, would similarly have an

infinitesimal symmetry given by LXψ.
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tion:20

δ̂g :=

∫
M

vab(g, ∂g, ∂
2g, · · · )(x)

δ

δgab(x)
. (3.3)

We then have a corresponding directional variation of the action functional,

δvS[g] =

∫
M

d4 x

∫
M

d4 y vab(y)
δ(
√
g R(x))

δgab(y)
(3.4)

=

∫
M

d4 x
√
g

(
∇a∇bv

ab −∇c∇c(g
abvab)− vabRab − 1

2
Rgabv

ab

)
(3.5)

=̂

∫
M

d4 x
√
g vab(R

ab − 1

2
gabR)

!
= 0, (3.6)

where =̂ is equality up to boundary terms (which we are taking to vanish) and
!

= uses our

assumption of symmetry. Since equality up to boundary terms must hold at all gab, and

thus for all Rab (not just those that satisfy the Einstein equations), it is not hard to see

that the only way to ensure (3.6) is to make use of the general geometric constraints on

Rab − 1
2
gabR: namely, the algebraic symmetry of the indices ab and the contracted Bianchi

identity, ∇a(R
ab − 1

2
gabR) = 0. Since vab is already symmetric in ab,21 there is no further use

for the algebraic symmetry; we can only profitably use the Bianchi identity. Since the Bianchi

identity involves contraction of the term multiplying vab with a covariant derivative, we must

have at least one total derivative inside vab, and we can then use integration by parts (using

integration by parts leaves only a boundary term, which vanishes by assumption). Therefore,

the only completely general solution is to take vab = ∇(aXb) = LXgab. Note that this argument

works for completely general, possibly metric-dependent, vector fields Xa ∈ X(M).

Thus, following Definition 2, we obtain the full set of symmetries of the theory; already

a remarkable triumph of the definition. In contrast, as far as I know: without using the

infinitesimal definition and applying it to the action functional, the proof that the most gen-

eral symmetries of general relativity were given by generalized diffeomorphisms (and constant

dilatations) was only provided relatively recently, in Torre & Anderson (1993).22

And of course, these directions in Φ are integrable, forming a closed space, since the Lie

derivative obeys LXLY − LYLX = L[X,Y ], where [•, •] is the commutator of vector fields. So

these infinitesimal symmetries, by (3.1), generate diffeomorphisms, and diffeomorphisms form

20Just as we would write a general vector field on M as
∑
i v
i(x) ∂

∂xi . Here the points of Φ are gab—in

analogy to the points x ∈ M—and suspending the standard Einstein summation convention by reintroducing

the explicit summation, we have a more direct analogy with the integration sign in the infinite-dimensional

case.
21Because δ

δgab(x)
is symmetric in ab, and for any two tensors, Y abZ(ab) = Y (ab)Z(ab).

22More rigorously, the proof of uniqueness of the solution here would proceed in much the same way as

Lovelock’s theorem (1973), which is nonetheless much simpler than Torre & Anderson (1993)’s proof. There,

they prove that the only infinitesimal, generalized symmetries of the equations of motion of general relativity,

i.e. general, metric dependent transformations of the Einstein tensor that would vanish when the original

Einstein tensor vanishes, are vab = ∇(aXb) and vab = cgab, where c is a constant. Here, the constant dilatation

does not emerge, because our symmetries of the action must also hold when the Einstein tensor doesn’t vanish

(i.e. also hold off-shell).
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orbits of Lor(M). Thus we identify the symmetry group as G := Diffo(M), which acts pointwise

on the space of Lorentzian metrics over M , namely, Φ = Lor(M).

Therefore, in vacuo, we will say that 〈M, gab〉 and 〈M, g̃ab〉 are both isomorphic and symmetry-

related iff there is an f ∈ Diffo(M), such that g̃ab = f ∗gab. We write this as:

〈M, gab〉 ∼ 〈M, f ∗gab〉. (3.7)

Before we turn to gauge theories, I would like to emphasize two points. First, I find it

remarkable that such a general definition as Definition 2, when applied to the action functional,

already implies so much structure for symmetry, such as being integrable into an orbit, and

having group structure.23

The second point to note is that diffeomorphisms act transitively on M ; any point can be

carried to any other point. This means that there is no non-trivial orbit for Diffo(M) picking

out subsets of M . Of course, Diffo(M) does not act transitively on the infinite-dimensional

Lor(M): the orbits of G by (3.7) are closed subsets of that domain, and are said to foliate

it. Thus diffeomorphisms and gauge-symmetries are indiscernible at the level of Φ; to discern

them—as we will more completely do more completely in Gomes (2021c)—we must zoom in

on their action on the base manifold M , or what we will call the pointwise action of the

symmetries.

4 Gauge transformations in Yang-Mills theories

This Section will explore details of symmetries in gauge theories: more especifically, of Yang-

Mills theories.

23In this respect, the covariant symplectic formalism is very convenient: we can define symmetries as vector

fields in the kernel of the symplectic form; then a few steps suffice to show that these vector fields form an

algebra that lies also in the kernel of the symplectic form, and thus through exponentiation we obtain the orbits

of the symmetry group (cf. (Lee & Wald, 1990, Sec. 2)). Indeed, the null directions of Ω are necessary and

sufficient to characterise the generators of gauge symmetry. For suppose the vector fields v, w are such that

Ω(v, •) = 0 = Ω(w, •). Using the Cartan Magic formula relating Lie derivatives, contractions i and the exterior

derivative d:

LvΩ = (div + ivd)Ω = 0;

i.e. the first term vanishes because Ω(v, •) = 0 and second because dΩ = 0. So Ω itself is invariant along v.

Moreover, if we take the commutator of v, w, i.e. [v, w] = Lvw, contract it with Ω, and remember the formula:

Lv(Ω(w, •)) = Ω(Lvw, •) + (LvΩ)(w, •) ,

we obtain that, since both Lv(Ω(w, •)) = 0 and LvΩ = 0, it is also the case that Ω([v, w], •) = 0. Thus, by the

Frobenius theorem the kernel of Ω forms an integrable distribution which integrates to give the orbits of the

symmetry transformation.

But it is important to stress that while the covariant Lagrangian version of both Yang-Mills theories and

general relativity have groups of symmetries, and so does the Hamiltonian version of Yang-Mills theory (in

which Φ is phase space), the set of symmetries of the Hamiltonian version of general relativity has only a

groupoid structure (see Blohmann et al. (2013)).
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Speaking metaphysically, the previous Section 3 construed the symmetries of general rel-

ativity as isomorphisms of a natural geometric structure. And there is a possible misgiving

that the symmetries of gauge theory are less natural, and thus have a less natural structural

interpretation than those of general relativity.

I believe that the concern is indeed justified in the case of gauge transformations in the

gauge-potential formalism for electromagnetism; I will explain this in Section 4.2, after I have

described the basics of that formalism in Section 4.1. But that formalism is not the last word

in the theoretical development of Yang-Mills theories. In Section 4.3 I motivate the need for a

more complete, geometric understanding of what the fields and gauge symmetries of modern

physics are about. We leave a brief presentation of the mathematical formalism to Section 4.4.

4.1 Electromagnetism in the gauge potential formalism: basics

In electromagnetism, the basic dynamical variable is the electromagnetic field tensor, Fab.

Upon choosing a spacetime split into spatial and time directions, the components of the elec-

tromagnetic tensor become the familiar electric and magnetic fields (in coordinates): Fi0 = Ei,

and Fjkε
jk
i = Bi (where we used the three-dimensional totally-antisymmetric tensor, ε, or the

spatial Hodge star, to obtain a 1-form).

The Maxwell equations in the Minkowski spacetime are written, in a coordinate basis, in

terms of Fab, as:

∇aFab = jb, and ∇[aFbκ] = 0, (4.1)

where ja is the current, and square brackets denote anti-symmetrization of indices. The second

equation of (4.1) is called ‘the Bianchi identity’, and it is read as a constraint on the field

tensor. A geometric explanation for this constraint is that Fab = ∇[aAb], or, in exterior calculus

notation, dA = F, where Aa is called the gauge-potential. At least locally, this relation follows

from the Poincaré lemma.

The equations of motion of this theory—now assuming in vacuo, i.e. j = 0, for simplicity—

are:

∇a∇bAa −∇a∇aAb = 0. (4.2)

And these equations are obtained from the action functional:

S[A] :=

∫
M

∇[aAb]∇[aAb] =

∫
M

∗F ∧ F, (4.3)

where ∗ is the Hodge-star operator (which takes an argument differential form to its ortho-

complement, and ∧ is the exterior (wedge) product between forms).

The classical interpretation of the theory interprets the Faraday tensor as a physical field,

e.g. the electric and the magnetic, in a given space-time split. If we add to the Lagrangian the

contribution from a charged particle with charge q and mass m, whose world-line is given by

γ:

Sparticle =

∫
γ

(mγ′aγ′bgab + qAaγa), (4.4)
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we obtain, from the variation with respect to the particle trajectory, the Lorentz-force law:

mγ′a∇aγ
′
b = qFabγ

′a, (4.5)

which describes how the motion of charged particles is disturbed by electromagnetic interac-

tions.

Non-Abelian Yang-Mills theories have an analogous equation of motion, (4.12) below, which,

like the Einstein equations, are only gauge-covariant, and not gauge-invariant like the Abelian

version of electromagnetism; and they have an analogous Lorentz-force equation as well. But

due to quantum effects—namely, confinement—the theory does not have a long-ranged classical

interpretation like electromagnetism does.

4.2 Symmetries need not be isomorphisms: an example from gauge theory

Gauge-potentials for electromagnetism are locally just smooth one-forms on the manifold, and

the natural notion of isomorphism here is just the one inherited from differential geometry:

again, pull-backs by spacetime diffeomorphisms. That is, the KPMs of the theory are given

by 〈M,A〉, where A is given by Aa, or, in coordinates, Aµdxµ, i.e. the potentials are sections

of the cotangent bundle—real-valued one-forms over each topologically trivial patch—on the

manifold M . Since they are differential forms, we could rehearse the argument of Section 3 and

conclude that the isomorphisms of the space of models are again pull-backs by diffeomorphisms.

But the dynamics of the theory are another matter. If we follow the definition of symmetries

given in Section 2.1, we arrive at the standard gauge transformations.

Namely, in analogy to (3.6), we have here:

δvS[A] =

∫
M

F ab∇bva
!

= 0. (4.6)

Now, we are not allowed to use the equations of motion, since this equality must hold for

general Aa. Here, the only general constraint at our disposal to solve (4.6) is the algebraic

anti-symmetry of ab.24 Thus we must have that ∇[bva] = 0. As a one-form, we rewrite this as

dv = 0, which, by the Poincaré lemma, implies that locally v = dξ, for a scalar function ξ.

Thus the infinitesimal symmetry adds a gradient of a smooth function to the gauge-potential

one-form: A→ A + dξ, for ξ ∈ C∞(M).

Here, there is no analogue of (3.1) for the symmetries: no isomorphism of an underly-

ing space induces the symmetry through pull-back. The dynamical symmetries are therefore

‘larger’ than those expected from the natural notion of mathematical isomorphisms of the

objects in play, which would, again, be diffeomorphisms.25

24Why can’t we use the Bianchi identity, once again? Because here, the indices are already contracted, i.e.

after integration by parts we obtain ∇aF ab. In form language, there is no local operator that, acting on d ∗F,

will result in something proportional to dF (which is what vanishes due to the Bianchi identity).
25Here the natural symmetries involve only differential geometric operations—such as exterior

differentiation—and thus composition with diffeomorphisms is well-defined. Indeed, the two operations com-

mute, since the exterior derivative commutes with the pull-back: for f ∈Diff(M), the object and arrow (A, ξ)

gets mapped to (f∗A, f∗ξ).
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Nonetheless, there are natural geometric structures for which gauge transformations emerge

as isomorphisms. We will look at these geometric structures in the upcoming Section 4.3. But

we will only fully justify the correspondence between local gauge transformations and the

automorphisms of this structure in Section 5.

4.3 A brief introduction to fiber bundles

The modern mathematical formalism of gauge theories relies on the theory of principal and

associated fibre bundles. We will not give a comprehensive account here (cf. e.g. (Kobayashi

& Nomizu, 1963)). In this Section we introduce the necessary ideas, and in Section 4.4 we

introduce the formalism in more detail.

Our intuitive idea of a field over space is something like temperature. A temperature field

can be written as a map from space to the real numbers, T : M → R. Being told that there

are fields that have a more complicated ‘internal structure’ than temperature—for instance,

vector fields that over each point of spacetime can point in different directions—we will want

to generalize a scalar map like temperature to ρ : M → F , a map from spacetime to some

internal vector space F .

For tensor bundles, made up of tensor products of tangent and cotangent vectors, F is

“soldered” onto spacetime, M .26 But the fields employed in modern theoretical physics—

representing different properties of matter—live in more general vector bundles, F , which

are not thus soldered to spacetime. Generically, those fields have many components at each

spacetime point which are not associated to spacetime directions; they represent degrees of

freedom that are ‘internal’ to each spacetime point. Such fields interact through forces other

than the gravitational force, and each of these forces is related to a given gauge or symmetry

group, because certain properties of these interactions reflect some symmetry group.

The worry might arise that the same symmetry group could be realised very independently

on different matter fields. But all these different matter fields interact with the same force,

and thus the action of the symmetry group must be meshing between the various matter fields.

Mathematically, this means that the parallel transport of internal quantities is compatible for

all the fields. This ‘coincidence’ is conveniently described if we encode the symmetries through

the formalism of principal fiber bundles (PFBs): they allow us to encode the essential symmetry

structure of each type of interaction—e.g. electromagnetic—independently of the individual

matter fields that are susceptible to this interaction.

In more detail, states of different species of matter are represented in (as sections of)

different vector bundles: one vector bundle per field. The main idea of a principal fiber

bundle is that it is a space where a given Lie group—usually taken to be associated with a

certain type of fundamental force or interaction—acts. And then, as expounded lucidly by

Weatherall (2016), the Ehresmann connection of a principal bundle regiments the symmetry

26For instance, we can identify elements of the tangent bundle with tangent vectors of curves on the base

manifold. In more detail, supposing the internal vector space F has the dimension of M , a soldering form gives

an isomorphism between each TxM and F , in a smooth way.
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properties of all the different matter fields that feel that force or interaction. Charged scalar,

electron, quark-fields, etc., all interact electromagnetically; and that interaction is mediated

by the same fundamental electromagnetic field (mutatis mutandis, for other interactions, e.g.

replacing ‘electromagnetism’ by the ‘strong force’). This means that the relevant covariant

derivative operators on the vector bundles in which these matter fields are valued have the

same parallel transport and curvature properties. Such universality is mathematically enforced

because these vector bundles are associated to the same fundamental Ehresmann connection

on the principal bundle, and this means they have their covariant derivative operators defined

uniquely by that connection.

In this respect, the role performed by the geometry of spacetime in mediating gravitational

interactions is precisely analogous to the role performed by the geometry of the principal

bundle in mediating other forces or interactions. In a direct analogy: just as the Levi-Civita

connection in gravity encodes the geometric properties of the gravitational force and dictates

the parallel transport of fields that interact gravitationally, the Ehresmann connection encodes

the geometric properties of some other force, and dictates parallel transport of components of

the fields that interact with that force.

The main idea underlying the physical significance of the parallel transport of internal

quantities was already well stated in the paper that introduced this mathematical machinery

into physics, Yang & Mills (1954):

The conservation of isotopic spin is identical with the requirement of invariance of all

interactions under isotopic spin rotation. This means that when electromagnetic

interactions can be neglected, as we shall hereafter assume to be the case, the

orientation of the isotopic spin is of no physical significance. The differentiation

between a neutron and a proton is then a purely arbitrary process. As usually

conceived, however, this arbitrariness is subject to the following limitation: once

one chooses what to call a proton, what a neutron, at one space-time point, one is

then not free to make any choices at other space-time points.

The idea here is that calling a particle a proton or a neutron at a given point is meaningless; only

relational or, more broadly, structural properties of the theory can have physical significance,

for instance, whether your original ‘proton’ became a ‘neutron’ upon going around a loop.27

The only physically relevant information is a notion of sameness across different points of

spacetime: thus, once we label a given particle as e.g. a proton at one point of spacetime,

the structure of the bundle specifies what would also count as a proton at another spacetime

point, infinitesimally nearby. These constraints are imposed by the Ehresmann connection-

form, or connection-form for short. A connection-form ω maps infinitesimally nearby points of

the manifold P (on which the group acts) to infinitesimal group elements. In Section 4.4, we

give the technical conditions that make precise this idea.

27Of course this example, which originally motivated Yang and Mills, applies only in the context of isospin

symmetry—which is approximate. For the electric charge tells protons and neutron apart in an intrinsic manner.
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4.4 The formalism of principal fibre bundles

A principal fibre bundle is, in short, just a manifold where some group acts. In detail: it is a

smooth manifold P that admits a smooth free action of a (path-connected, semi-simple) Lie

group, G: i.e. there is a map G × P → P with (g, p) 7→ g · p for some left action · and such

that for each p ∈ P , the isotropy group is the identity (i.e. Gp := {g ∈ G | g · p = p} = {e}).
Naturally, we construct a projection π : P → M onto equivalence classes, given by p ∼

q ⇔ p = g · q for some g ∈ G. That is: the base space M is the orbit space of P , M = P/G,

with the quotient topology, i.e. it is characterized by an open and continuous π : P → M .

By definition, G acts transitively on each fibre, i.e. orbit. The automorphism group of P—

those transformations that preserve the structures—are fiber-preserving diffeomorphisms, i.e.

diffeomorphisms

τ : P → P such that τ(g · p) = g · τ(p). (4.7)

Purely internal, or gauge transformations can be identified as those for which π◦τ ◦π−1 = IdM ;

that is, as purely ‘vertical’ automorphisms of the bundle; (the orbits are usually drawn going

up the page, hence ‘vertical’).

4.4.a The Ehresmann connection-form.

On P , we consider an Ehresmann connection ω, which is a 1-form on P valued in the Lie algebra

g of G that satisfies appropriate compatibility properties with respect to the fibre structure

and the group action of G on P . The connection selects a “vertical” subspace of the tangent

space TpP at p ∈ P , which “points in the direction of the fiber”, and it selects a “horizontal”

subspace—which gives the notion of parallel transport linking nearby fibres. Namely: Given

an element ξ of the Lie-algebra g, we define the vertical space Vp at a point p ∈ P , as the linear

span of vectors of the form

vξ(p) :=
d

dt
|t=0(exp(tξ) · p), for ξ ∈ g. (4.8)

And then the conditions on ω are:

ω(vξ) = ξ and Lg
∗ω = g−1ωg, (4.9)

where Lg
∗ωp(v) = ωg·p(Lg∗v) and where Lg∗ is the push-forward of the tangent space for the

left-action g : P → P . Thus, we can only characterize the action of ω on vector fields on P ,

i.e. on sections of the vector bundle TP , say ζ ∈ C∞(TP ), if they are left-invariant, i.e. if

ζg·p = Lg∗ζp.

A choice of connection is equivalent to a choice of covariant ‘horizontal’ complements to the

vertical spaces, i.e. Hp⊕Vp = TpP , with H compatible with the group action. That is, since ω

is g-valued and gives an isomorphism between Vp and g, the first condition of (4.9) means that:

i) the kernel Ker(ωp) = Hp, and ii) since Vp = Ker(π∗), Hp will be 1-1 projected by π∗ onto the

tangent space Tπ(p)M . Thus the vectors spanning Ker(ωp) are the so-called horizontal vectors

in the bundle, and each represents a unique ‘horizontal lift’ at p of a direction at Tπ(p)M . This
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condition also requires that, much like the metric, the connection form is nowhere vanishing.

The second condition of (4.9) guarantees that the notion of horizontality covaries with the

choice of representative of the fiber (e.g. the choice of frame in the frame bundle example

above), that is: a vector v ∈ TpP is horizontal iff Lg∗v ∈ Tg·pP is horizontal.

To define curvature, we note that an infinitesimally small parallelogram with horizontal

sides that projects onto a closed parallellogram on M , may not close on P . Namely, if a

horizontal parallellogram starts at p ∈ P , it may end at g · p. Infinitesimally, we obtain a

Lie-algebra valued two-form on P ,

Ω := dω + ω ∧ ω, (4.10)

where d is the exterior derivative on P .

4.4.b The gauge potentials.

Locally over M , it is possible to choose a smooth embedding σ of the group identity into the

fibres of P . Called local sections of P , these are maps σ : U → P such that π ◦ σ = id. So for

U ⊂M , there is a map σ : U → P such that P is locally of the form U ×G.

Given local sections σ on each chart domain U , we define a local spacetime representative

A of ω, as the pullback of the connection, Aσ := σ∗ω ∈ Λ1(Uα, g); (here σ is not a spacetime

index; we momentarily keep it in the notation as a reminder of the reliance on a choice of

section).28 Similarly, we can define the field-strength Fσ = σ∗Ω. We will expand on the

physical significance of these sections in Gomes (2022b), and in Section .

In a basis for a given chart on U ⊂ M , we write: A = AIµ dxµτI , τI ∈ g is a Lie-algebra

basis, and AIµ ∈ C∞(U).29 Vertical automorphisms are represented as gauge transformations,

which, infinitesimally, for a Lie-algebra valued function ξa ∈ C∞(U, g), act as

δξA
I
µ = ∂µξ

I + [Aµ, ξ]
I = Dµξ

I , (4.11)

where Dµ(•) = ∂µ(•) + [Aµ, •], the gauge-covariant derivative, is defined to act on Lie-algebra

valued functions.

The equations of motion of Yang-Mills theory, written as differential equations of fields on

spacetime, are:

DµF I
µν = jIν , (4.12)

where F I
µν = ∇[µA

I
ν] −

1
2
[Aµ, Aν ]

I , and jIν is the charged non-Abelian current.

28Note that A only captures the content of ω in directions that lie along the section σ. The vertical component

of ω—which is dynamically inert, as per the first equation of (4.9)—can be seen (in a suitable interpretation of

differential forms, cf. Bonora & Cotta-Ramusino (1983)) as the BRST ghosts. This interpretation geometrically

encodes gauge transformations through the BRST differential Thierry-Mieg (1980). Although interesting in its

own right, we will not explore this topic here. See Gomes (2019); Gomes & Riello (2017) for more about the

relationship between ghosts and the gluing of regions.
29Clearly, I are Lie-algebra indices and µ are spacetime indices. We take {dx⊗ τ} to stand in for the basis

for a vector bundle T ∗U ⊗ g.
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4.4.c PFBs as bundles of linear bases and associated bundles

To gather intuition about principal fiber bundles (PFBs) as the ‘organizers’ of symmetry prin-

ciples, as described in Section 4.3, it is worthwhile to introduce them in the context of the

familiar tangent vector fields on M .

The main idea of fiber bundles is that they are spaces that locally look like a product, i.e.

a fiber ‘bundle’. So the many fields of nature would be represented as maps that take each

point of spacetime (or space) into its respective value space, or fiber.

We denote fiber bundles by E; they are smooth manifolds that admit the action of a

surjective projection π : E →M so that locally E is of the form π−1(U) ' U × F , for U ⊂M

(and similarly for all subsets of U) and F is some ‘fiber’: a space that ‘inhabits’ each point of

M and in which the fields take their values.

But the decomposition π−1(U) ' U ×F is not unique, and will depend on what is called ‘a

trivialization’ of the bundle, which is basically a coordinate system that makes the local product

structure explicit. Thus, in principle there is no unique identification of an element of F at a

point x ∈ M with an element of F at a point y ∈ M . In principle, there is no identification

of a vector, or even of a scalar quantity, like temperature, as possessed at different points of

spacetime.

So, to be explicit: F is some space where we can have quantities in spacetime take their

value; for instance, a scalar field could take values in R or C, whereas a more complicated field

such as a vector field or a spinor field, could take values in R4,C4, etc. A choice of section of the

bundle represents fields taking values in F : e.g. a spinor field, or a quark field, etc, which are

all vector bundles, in that F is a vector space. A field-configuration for E is called a section,

and it is a map κ : M → E such that π ◦κ = IdM .30 Sections replace the functions κ̃ : M → F ,

that we would employ if the fields that physics uses had a fixed, or “absolute”—i.e. spacetime

independent—value space. We denote smooth sections like this by κ ∈ C∞(E).

A useful example of a vector bundle is the tangent bundle, TM . A smooth tangent vector

field is a smooth assignment of elements of TM over M , denoted X ∈ X(M), with π : TM →
M , mapping X ∈ TxM → x ∈ M . The tangent bundle TM locally has the form of a product

space, U × F , with F ' R4. But even if TM were globally trivializable, so that a product

structure could be found for its totality, this would not mean we could identify an element

v ∈ R4 at different points of M . Differential geometry teaches us to attach a vector space to

each point of M and to have vectors at different points objectively related only according to

some definition of parallel transport along paths in M .

This example is also useful to articulate what we mean by a principal fiber bundle that

‘orchestrates the parallel transport’ of the other fields. Here the principal bundle that orches-

30It is somewhat confusing that a section of a vector bundle is an entirely different object from the section

of a principal bundle. So, for instance two different choices of the electron field are two different sections of

its vector bundle, and thus are not counted as ‘equivalent’ in the way that two sections of a principal bundle

are. And while a global section of P exists iff the bundle is trivial, we can always find a global section of an

associated bundle (cf. (Kobayashi & Nomizu, 1963, Theo. 5.7)).

24



trates parallel transport of tangent vectors (and tensor bundles in general) can be taken to be

the bundle of linear frames of TM , called ‘the frame bundle’ (where ‘frame’ means ‘basis of the

tangent space TxM ’), written L(TM). The fibre over each point of the base space M consists

of all of the linear frames of the tangent space there, i.e. all choices {eI(x)}I=1,···4 ∈ L(TM),

of sets of spanning and linearly independent vectors (here the index I enumerates the basis

elements).31

So each point p ∈ P of the frame bundle above a point x ∈ M (i.e. such that x = π(p))

is just a basis for the tangent space TxM ; and there is a one-to-one map between the group

GL(R4) and the fibre: we can use the group to go from any frame to any other (at that same

point), but there is no basis that canonically corresponds to the identity element of the group.

This example illustrates a feature of principal fiber bundles that distinguishes them from vector

bundles: in the former, the fibers are isomorphic to some Lie group G; and there is no “zero”

or identity element on each fibre, as there is in a vector bundle.

If we imagine the orbits of the group, or the fibers, as being in the vertical direction,

directions transversal to the fiber will connect frames over neighbouring points of M . We thus

dub as horizontal those directions by which a connection identifies—or ‘links’ and takes as

identical—frames on neighbouring fibers.32 That is: to link fibres, we need to postulate more

structure: a connection.

To see how these horizontal directions encode parallel transport of vectors, we need to

return to the tangent bundle TM , from the frame bundle, L(TM). We proceed as follows:

take a point of TM , i.e. a vector at a given point x ∈ M , Xx ∈ Ex as an element of the

fiber TxM ' F = R4, where the ordered quadruplet are the components of Xx according

to a frame, {eI(x)} ∈ L(TM). So, we write Xx = aIeI ∈ TxM as the ordered quadruplet

(a1, · · · , a4) ∈ R4. Of course, if we rotate the frame by an element of the group in question, i.e.

GL(R4), say by a matrix gIJ = ρ(g), where ρ : G → GL(R4) is the matrix representative of

the abstract group, then, as long as we undo that rotation on the components, we obtain the

same vector, in the original frame. That is, aKg−1
KLg

LIeI = aIeI . Thus, if we write a doublet

(p, v) as, respectively, the frame and the components, we want to identify (gp, vg−1) (where

we have simplified the notation for the action of the group to be just juxtaposition). This is a

standard construction of an associated bundle, denoted by TM ' L(TM)×ρ R4.

Once we have constructed associated bundles in this way, parallel transport, for any vector

bundle comes naturally from a notion of horizontality in the principal bundle. To find the

parallel transport of the vector Xx along Yx, take the curve γ(t) ∈ M with γ(0) = x, and so

that γ′(0) = Yx. Given a frame px ∈ P so that π(px) = x, we take the horizontal lift of γ(t)

through px: call it γ̃(t). Let Xx = [px, v], where v ∈ Rn are the components of Xx in terms of

31Depending on the theory, we will take different subsets of the linear frames, and of the corresponding

structure group. For instance, for general relativity, we take the structure group as O(4) (or SO(3, 1)) acting

on the orthonormal bases.
32In general relativity, we could take this to be a torsion-free connection-form on P by deI = ωIJe

J , where

ω here satisfies the expected equations, see (4.9) below (and we used the one-forms algebraically dual to the

vector basis: eJ(eI) = δJI ). This equation translates to one using the covariant derivative ∇ as: ∇eI = ωJI eJ .
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the basis px. By definition, the curve in E given by [γ̃(t), v] is parallel transported, i.e. gives

a parallel transport of Xx along γ(t). Now, we can define the covariant derivative of a vector

field X such that X(x) = Xx as follows. First, we define vX : P → R4 such that, for all p ∈ P

X(π(p)) = [p, vX(p)], where vX(g · p) = g−1vX(p); (4.13)

that is, vX(p) is the decomposition of X(π(p)) on the basis p (and therefore vX obeys the

covariance property on the right of (4.13)). Thus we define the covariant derivative of X along

Y at x, as:

∇YX(x) := lim
t→0

1

t
([γ̃(−t), vX(γ̃(−t))]− [px, vX(px)]). (4.14)

In words, we compare the parallel transported components of X with the actual components of

X; their non-constancy corresponds to the failure of X to be parallel transported, and to the

non-vanishing covariant derivative of X. In this way a covariant derivative is just the standard

derivative of the components in the horizontal—or parallel transported—frame. This is, in

words, the description of the covariant derivative of X along Y at x ∈M .

The picture is useful in that it applies to any vector bundle on which the structure group

G in question acts. For instance, in the standard model of particle physics, the fundamental

forces are associated to Lie groups, and each field that interacts via such a force lives in a

vector bundle that admits an action of the corresponding group. Thus for a given vector

bundle with typical fiber F , we have a linear representation of the Lie group in question, G,

ρ : G → GL(F ), and we can take the principal connection—the notion of horizontality in the

PFB with structure group G—to induce a notion of parallel transport in the bundle E with

fiber F . Indeed, we can take the same procedure as above, building a linear frame for F at

each point; parallel-transport then encodes an appropriate G-covariant way to identify vector

values along paths in the base space M .

5 The correspondence between active and passive transformations

In the previous Section we saw an interesting contrast: in one formulation of Yang-Mills the-

ory, the symmetries are isomorphisms that are induced from the automorphisms of a natural

geometric structure—a fibered manifold. In another, the symmetries are just postulated, and,

at least on the surface, have nothing to do with the automorphisms of a geometric structure.33

But it is possible to show that the postulated symmetries in fact arise as mere passive

transformations—coordinate changes—of the natural geometric structure. Conversely, the

maps that change coordinates can also induce a subset of the active automorphisms of the

geometric structure. Thus, in this Section I will show that there is an interesting one-to-one

correspondence between the two kinds of symmetry, in both the general relativistic and in the

Yang-Mills case, at least for the infinitesimal symmetries of Section 2. This correspondence is

33These two formulations of the theory are paradigmatic examples of candidates for internal and external

sophistication, respectively, to be studied in (Gomes, 2021b, Sec. 4) (see Dewar (2017)).
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usually understood, in the spacetime case, as one between the active and passive diffeomor-

phisms. It is this correspondence that justifies the pragmatic physicists’ nearly universal focus

on coordinate transformations in lieu of active transformations.

I will start by describing the general relativistic case, in Section 5.1. Then in Section 5.2

I will perform the same analysis for Yang-Mills theory. Lastly, in Section 5.3, I will conclude

that this passive-active correspondence implies that the local dynamical symmetries of both

Yang-Mills and general relativity can be construed as notational redundancies.

5.1 The passive-active correspondence for spacetime diffeomorphisms

I here define charts as smooth maps from subsets U of M (whose union covers M), to Rn, with

smooth inverses. The charts are are required to have smooth transition functions wherever

they overlap: given φ1, φ2 : U → Rn, where U is the intersection of the domains of φ1, φ2,

we require that φ2 ◦ φ−1
1 is a smooth bijective function between subsets of Rn, from φ1(U) of

Rn to φ2(U). Any such complete collection of charts is called an atlas for M , and any two

compatible atlases—whose transition functions between charts of the two atlases are smooth

and have smooth inverses—are equivalent. The smooth structure of the manifold is defined as

the equivalence class of atlases; or equivalently, as the maximal atlas, including all compatible

charts. A maximal atlas can be taken simply to define the smooth and topological structure

of the manifold.

First, let us look at the active transformations, as they act on charts. For f ∈ Diff(M)

and a given tensor field T := T a1,··· ,akb1,··· ,bl , we obtain a transformed field T̃ := f ∗T: the ‘dragged’

version of the tensor field. Of course, any chart that is dragged by a diffeomorphism also gives

another chart. So, suppose that, under a chart φ1 : U1 → Rn, the components of T at a point

that lies in φ1’s domain are given by T µ1,··· ,µkν1,··· ,νl . Then, there will be a second, compatible chart,

φ2 : U2 → Rn, for which the components of the transformed field, T̃, are also numerically given

by the untilded T µ1,··· ,µkν1,··· ,νl . The relation between φ1 and φ2 is, of course, just φ1 = φ2 ◦ f , where

U2 = f(U1). That is:

U1 U2

φ1(U1) ∩ φ2(U2)

f

φ1
φ2 (5.1)

Thus, given the joint description of T by all the charts {φi1}i∈I of our atlas for M ; call it atlas

1: there will be a second atlas—atlas 2: {φi2}i∈I—for which the different tensor, T̃ = f(T),

has the same numerical description as T. In equations:

φi1(T) = φi2(T̃), ∀i ∈ I. (5.2)

In words, the images (i.e. the values of components) of the transformed tensor under the new

charts are the same as the images of the untransformed tensor under the old charts.34

34Here we opted for the standard construction of the manifold structure using charts to ‘probe’ M . But
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The active transformation therefore amounts to a change of (a non-maximal) atlas. And any

diffeomorphism will leave a maximal atlas completely invariant; a good thing, since otherwise

we would not be able to say that smooth structure—the structure that remains invariant under

diffeomorphisms— is determined (or defined, cf. footnote 34) by a maximal atlas.

Now, a passive diffeomorphism is a smooth function from Rn to itself, with smooth inverse,

which I will write as f ∈ Diff(Rn), that is interpreted as ‘translating’ between two charts φ1

and φ2 of an atlas; so that φ2 = f ◦ φ1. Here we construe f passively, as a pure notational

change: when the domains of two arbitrary charts φ1, φ2 overlap, we have a transition function

between the charts that is a diffeomorphism between subsets of Rn. That is:

U1 ∩ U2

φ1(U1 ∩ U2) φ2(U1 ∩ U2)

φ1
φ2

f

(5.3)

From the above,

f := φ2 ◦ φ−1
1 : φ1(U1 ∩ U2) ⊂ Rn → φ2(U1 ∩ U2) ⊂ Rn. (5.4)

This transformation simply does not act on quantities on M : we interpret it as only changing

their description.35

Clearly, in order to reconceive f actively, we can uniquely ‘associate’ it to a local diffeo-

morphism on M , the domain manifold. More explicitly: given the charts, we can reconstruct

an active diffeomorphism relating a tensor T to a tensor T̃ on a patch, using the transition

function f . Namely, by going down to Rn by the chart, applying f , and then going up from

Rn by the same chart. That is, omitting for now the index i:

f(T) =: T̃ where f := φ−1
1 ◦ f ◦ φ1 ∈ Diff(M). (5.5)

Most authors would be wary of identifying active and passive transformations in such an

explicit fashion: for one thing, they will point out, active diffeomorphisms act globally, whereas

passive transformations act on each chart.

there is a different route, that takes only the differentiable structure of Rn for granted, and induces the smooth

structure on M from the bottom up. The interpretation is ‘nominalist’ in the sense that the charts are not

understood as surveying some pre-existing abstract structure: they induce the structure. A maximal atlas can

be taken simply to define the smooth and topological structure of the manifold. In particular, one does not need

to remain faithful to some prior topological or smooth structure of M : the topology, as well as the differentiable

structure, are bequeathed to M by the charts of a maximal atlas. The set of all domains of charts in the atlas

forms a topological base for the manifold: it is closed under finite intersections and arbitrary unions, and its

union is the whole manifold. With respect to this topology all charts are homeomorphisms, by construction.

Cf. (Lang, 1999, p. 22-23) for a textbook definition of smooth structure in this manner, and Wallace (2019b)

for a conceptual treatment. Using the chart-nominalist interpretation of smooth structure, the fact that the

domains of these charts in the two different atlases differ seems inconsequential, since the manifold structure

(topological, smooth, etc) is defined by the charts.
35When the domains overlap, one could see an active diffeomorphism as a right action of the diffeomorphisms

on the charts, φ2 = φ1 ◦ f , whereas the passive diffeomorphism above would correspond to a left action of the

diffeomorphisms on the charts φ2 = f ◦ φ1.
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But first of all, it is undeniable that tensor quantities Q such that φ∗1(Q) are invariant

under the passive f . That is, using the fact that in our notation the pull-back works as the

push-forward (cf. footnote 18) and that:

f
∗
(φ∗1(Q)) = φ∗1(Q), (5.6)

this tensorial quantity will also be invariant under the active diffeomorphism f given in (5.5),

i.e.:

f ∗(Q) = φ−1
1
∗ ◦ f ∗ ◦ φ∗1(Q) = φ−1

1
∗φ∗1(Q) = Q, (5.7)

since (5.6) also implies that f
−1

(φ2(Q)) = φ2(Q).

Conversely, any active infinitesimal diffeomorphism, represented by the vector field Xa, will,

in the infinitesimal limit, map points not in the boundary of each chart to points within that

same chart, and assuming charts overlap on open subsets, the boundary of each chart will belong

to the interior of another chart, etc. Then, by the same construction that gave rise to (5.5),

these active infinitesimal diffeomorphisms correspond to some infinitesimal diffeomorphism

of each chart in the given atlas, transitioning in the appropriate way at the intersection of

neighboring charts.

Therefore, there is a 1-1 correspondence between quantities that are invariant under the

diffeomorphisms that are connected to the identity—that is, that are generated by the flows of

vector fields—and those quantities that are invariant under coordinate transformations that are

connected to the identity. Intuitively, this relation is mathematically rather simple, since we

know that local patches of M are locally diffeomorphic to Rn, and we can therefore naturally

move diffeomorphisms from one space to the other.36 But despite this simplicity, to the extent

that we think passive transformations are better understood or at least more operational (as I

will argue in (Gomes, 2022b, Sec. 5)), this relation provides a powerful interprettive tool.

In sum: there are two ways of associating active and passive transformations. The first

way says that an active diffeomorphism takes quantities as described by one atlas to the same

description under a different, compatible atlas, as in equation (5.2). The second association

between active and passive is more useful, since it does not require us to explicitly change the

atlas by reshuffling. For instance, for diffeomorphisms, it says that passive diffeomorphisms—

diffeomorphisms of Rn on the image of the charts—recover some of the active diffeomorphisms

(cf. (5.5)). In particular, we get a 1-1 correspondence between the active and passive infinites-

imal symmetries of general relativity (as defined in Section 2), and therefore, by integrating in

36For illustration, take the change from spherical to cylindrical coordinates:

r =
√
ρ2 + z2; θ = arctan

(
z
ρ

)
; ϕ = ϕ,

where r and ρ are, respectively, cylindrical and spherical radius, ϕ is the azimuth angle, z is the cylindrical

height, and θ is the elevation angle. Passively, we take these coordinates to refer to the same points of R3. But

we can also construe this diffeomorphism actively, for R3 comes endowed with some background structure of its

own. So the map above takes a given ordered triple, seen as an element of the product R3, to a different ordered

triple: just plug in values of (ρ, ϕ, z) and find where they go as (r(ρ, z), ϕ, θ(z, ρ)). Under this interpretation,

a given (a, b, c) ∈ R3 is being actively mapped to (
√
a2 + c2, b, arctan

(
c
a

)
) ∈ R3.
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time, we get a 1-1 correspondence between ‘invariants under coordinate transformations that

are connected to the identity’ and ‘invariants under isomorphisms that are connected to the

identity’.37

5.2 Active and passive correspondence for gauge transformations

As with the definition of a manifold using an atlas, the intrinsic construction of bundles in Sec-

tion 4 “hides under the hood” the fact that we can define bundle structure using ideas about

local trivializations. Namely, we use local trivializations and conditions on the transition func-

tions between charts to induce the bundle structure from a local product structure. And once

again, the invariant structure is defined by what are taken to be ‘coordinate tranformations’.

A local section of a principal bundle P , σ, induces a diffeomorphism U×G ' π−1(U), given

by Σ : U ×G→ P , such that:

Σ : (x, g) 7→ g · σ(x), whose inverse is Σ−1 : p 7→ (π(p), gσ(p)−1) (5.8)

where gσ : π−1(U) → G gives gσ(p) as the unique group element taking p to (the fibre’s

intersection with) the local section, i.e. gσ(p) is the group element such that

gσ(p) · p = σ(π(p)). (5.9)

The precise form of gσ will of course depend on σ.

Vertical automorphisms τ , given in (4.7), can be represented with a group-valued function

on P , i.e. Ψ : P → G, defined by

τ(p) = Ψ(p) · p such that Ψ(g · p) = gΨ(p)g−1, (5.10)

which is the equivariance condition that Ψ gets from τ .

Then any vertical automorphism τ induces a diffeomorphism of U × G, as follows. Let

τ(p) := Ψ(p) · p, as above. Then, for a section σ and a general p = Σ(x, g) ∈ π−1(U), using

(5.9) gives:

τ ◦ Σ : (x, g) 7→ τ(g · σ(x)) = Ψ(g · σ(x)) · (g · σ(x)) = (Ψ(g · σ(x))g) · σ(x), (5.11)

37Thus if we want to construe symmetry just as notational variance, we have strong reason to restrict

considerations to symmetry groups that are connected to the identity—as they appear in the Hamiltonian

formalism, as I argued in Section 2 (cf. also (Gomes & Butterfield, 2022, Sec. 3)). But I should note that the

mismatch between the full group of diffeomorphisms and the subgroup that is connected to the identity is stark:

according to one suitable topology—called ‘weak Whitney topology’—any open set of Diff(M) containing the

identity also contains elements that are not connected to the identity. Another reason to restrict to the symmetry

groups that are connected to the identity, as we will discuss in Gomes (2021c), is that in the Hamiltonian

framework, symmetries are generated by the symplectic flow of constraint functions, or momentum maps, and

are thus always connected to the identity. Indeed, I take these latter facts to justify the physicist’s focus on

invariance with respect to coordinate transformations, as opposed to the more abstract invariance under active

diffeomorphisms.
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where in the first equality we used the definition of Ψ in (5.10) and in the second equality we

used that the group action is a homomorphism: h · (g ·p) = (hg) ·p, where h, g ∈ G (and above,

h = Ψ(g · σ(x)) and p = σ(x)).

As expected, the vertical automorphism Ψ just takes σ to a different section, which, taking

g = Id in (5.11), is immediately seen to be σ′ := Ψ(σ) · σ. Moreover, applying Σ−1 to (5.11),

we obtain, since Σ−1(g · σ(x)) = (x, g):

Σ−1 ◦ τ ◦ Σ : (x, g) 7→ (x,Ψ(g · σ(x))g) = (x, gΨ(σ(x))), (5.12)

where we used the equivariance property of Ψ of (5.10) on the last equality. And so, sandwiched

between the diffeomorphism Σ, the vertical automorphism only acts on the group part of the

product U × G, with gσΨ := Ψ ◦ σ : U → G. We thus obtain that Σ−1 ◦ τ ◦ Σ is a ‘coordinate

transformation’, or diffeomorphism of U ×G.38

We call a gσΨ ∈ G a gauge transformation. To be defined, these gauge transformations require

a trivialization, σ. Once anchored to a trivialization, they are the local, passive counterparts

of the active Ψ : P → G, described in (5.10). The set of gσΨ for all vertical automorphisms Ψ

defines G := {g(x), x ∈ U}, which inherits from G the structure of an (infinite-dimensional)

Lie-group, by pointwise extension of the group multiplication of G over U .

Can we understand these passive transformations, these changes of sections σ, in terms of

more familiar mathematical objects, as we understood the coordinate changes of the spacetime

manifold? Yes, we can understand them as point-dependent changes of bases for vector spaces,

in two ways. One is more indirect, which I include here in this Section; and the other is more

direct, since it is based on a spacetime representation of the Ehresmann connection, to be

described in Appendix A.

As discussed in Section 4.4.c, given some general vector space F and structure group G

and ρ : G→ GL(F ), and P a G-principal bundle over M , we can define the associated vector

bundle over M , which is denoted E := P ×ρF . Conversely, the frame bundle for a given vector

bundle E, L(E) (formed by the bases of Ex ' F for each x ∈M) is a principal bundle P ′ with

structure group GL(F ). But we can form another principal bundle P , as a sub-bundle of P ′ as

a sub-bundle of L(E) corresponding to a subset of frames related by ρ(G). Then, assuming the

action of ρ : G→ GL(F ) is faithful, changes of section in P uniquely correspond to changes of

frames of E; cf. Kobayashi & Nomizu (1963, Prop. 5.5) and Weatherall (2016, p. 2401) for a

conceptual treatment.39

38Since σ and Ψ are smooth, and, for fixed x, g 7→ gΨ(σ(x)) is clearly a diffeomorphism of G (since it is just

the action of G on the element Ψ(σ(x))). The inverse is of course just (x, g) 7→ (x, gΨ(σ(x))−1), which enjoys

the same properties.
39Of course, this raises a puzzle: if the principal bundle is construed as just a bundle of linear frames, how

can we justify the restriction of G to a subset of the most general group of transformations between frames,

GL(F )? As discussed by (Weatherall, 2016, Sec. 4), the restriction corresponds to the preservation of some

added structure to F . In other words, when F is not just a vector space, but e.g. a normed vector space,

we would like changes of basis to preserve this structure, e.g. the orthonormality of the basis vectors, and

this restricts the bundle of linear frames to the appropriate sub-bundle. To see this, define P ×ρ F as the
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In other words, a section σ : U → P may be understood as a frame field for a certain vector

bundle, and changes of section may be understood as the allowed change of basis at each point.

5.3 Notational redundancy

Thus, by having the symmetries (according to Definition 2 of Section 2) of our theories—general

relativity and Yang-Mills—be induced by the automorphisms of a natural geometric structure—

smooth manifolds and smooth fibered manifolds, respectively—we have achieved something

remarkable: both of these symmetries can now be glossed as mere notational redundancy.

This construal closes a gap between the more conceptual-minded physicist or philosopher

of physics and the more pragmatic physicist. For the latter, invariance under different coordi-

nate representations is usually equated with ‘physical status’. As Dirac (1930, p. vii) writes

in the introduction to his magisterial book, : “The important things in the world appear as

the invariants [...] of these [coordinate] transformations.” And here is Nozick (2001, p. 82),

espousing a complete disregard for active transformations: “Once we possess the covariant rep-

resentation under which the equations stay the same for all coordinate systems, the quantities

in the (covariant) equations are the real and objective quantities.” (my emphasis).40

In both the general relativistic and Yang-Mills case, this property—that the active iso-

morphisms are locally equivalent to a passive transformation—gives a gloss of ‘notational re-

dundancy’ to the symmetry in question, a type of redundancy most authors agree to be well

understood.

Thus Weatherall (2016, p. 2404) writes:

We are thus led to a picture on which we represent matter by sections of certain

vector bundles (with additional structure), and the principal bundles of Yang–Mills

theory represent various possible bases for those vector bundles. These considera-

tions lead to a deflationary attitude towards notions related to “gauge”: a choice of

gauge is just a choice of frame field relative to which some geometrically invariant

equivalence class for the doublet (p, v) ∈ P × F with (p, v) ∼ (g · p, ρ(g−1)v). Suppose that F is a Riemannian

vector space, with metric 〈·, ·〉. We can induce a metric in PF = P ×G F defining, for any p and v, v′ ∈ F :

〈[p, v], [p, v′]〉 := 〈v, v′〉. To be well-defined, we must have:

〈[p, v], [p, v′]〉 = 〈[g · p, ρ(g−1)v], [g · p, ρ(g−1)v]〉 = 〈ρ(g−1)v, ρ(g−1)v′〉 :

which is true only if the action of the group on F is orthogonal with respect to the metric. This corresponds

to G = O(n); similarly, SO(n) adds an orientation to F . Similarly, G = U(n) corresponds to a complex vector

space structure and a Hermitean inner product; G = SU(n) adds an orientation (see (Kobayashi & Nomizu,

1963, p. 60) and (Weatherall, 2016, p. 2403) for a conceptual treatment). The moral is that the added structure

on F induces an added structure on the associated vector bundle only if the transformation group preserves

that added structure.
40Note here that, though Nozick focuses on coordinate transformations, he is not requiring the physical

quantities to remain invariant under these transformations. So tensorial quantities would, for Nozick, qualify

as real.
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objects [...] may be represented, analogously to how geometrical objects may be

represented in local coordinates.

As I have argued, invariance under coordinate change can only play this deflationary role once

an active-passive correspondence for the symmetries of the theory is established, as it was here.

In Gomes (2021b), one desideratum for the symmetries of any given physical theory to admit

a ‘sophisticated’ interpretation, in the same sense as—I will argue—general relativity and Yang-

Mills theory do, will be precisely that the theory’s symmetries be induced by the automorphisms

of a natural geometric structure. For once symmetries are construed as isomorphisms that are

induced by the automorphisms of a natural geometric structure, and we can build an active-

passive correspondence as above, we can—as Weatherall says above—understand symmetry-

invariance as mere notational invariance under coordinate changes. Thus, for theories that

satisfy that desideratum, we are motivated to construct a passive-active correspondence, which

would indeed reinforce the common belief that the symmetries of those theories correspond to

notational redundancy.

6 Summing up

Yang-Mills and general relativity are the two theories that underlie our most empirically suc-

cessful models of the world. Among the most philosophically contentious topics about these

theories is the relationship between symmetry and physical equivalence. With the current se-

ries of papers, Gomes (2021b,c, 2022b), of which this is the first, I hope to shed light on that

topic, from various different angles. In the process, we will clarify how the symmetry-invariant

structure of each theory is to be mathematically and physically understood.

To start my investigation, here I provided specific definitions of symmetries on state space.

The definition of infinitesimal symmetry was then applied to whatever mathematical object

was responsible for endowing the theory with dynamics: e.g. the action functional or the

Hamiltonian. These we called dynamical symmetries, which, following Wallace (2019a), we

argued to be empirically unobservable.

In most theories, one lists a set of dynamical symmetries that fit under the given defini-

tion. But seldom is an exhaustive list provided, leaving open the possibility that “unwanted”,

un-listed, symmetries persist in the theory. Here, for both the Yang-Mills and the general

relativistic case, I provided an exhaustive list of dynamical symmetries under the present defi-

nition.

Unlike the dynamical symmetries of general relativity, which are induced by the automor-

phisms of the underlying spacetime manifold, at first sight the dynamical symmetries of Yang-

Mills have no geometric significance; they are postulated. But I showed how these symmetries

can also be construed as induced by the automorphisms of a natural geometric structure: as

fiber-preserving diffeomorphisms of an appropriate fibered manifold.

Thus we showed that the symmetries of AIµ are in 1-1 correspondence with the symme-

tries of ω, which have a geometric origin. I then proved the same correspondence holds for
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gravity: namely, the active isomorphisms of gab that are connected to the identity are in 1-1

correspondence with the passive coordinate changes—also connected to the identity—of all

the local coordinate representatives gαβ. Thus the invariants functions of of ω and gab under

infinitesimal dynamical symmetries can be understood purely passively: as invariants under

coordinate changes. The conclusion is that, when the isomorphisms of the theory are induced

by the automorphisms of an underlying geometric structure—a smooth manifold or a fibered

smooth manifold—we can “deflate” the meaning of symmetries to mere notational changes;

like the change of basis of a vector space.

But the relationship between gab and gαβ is not the same as the relationship between ω and

AIµ. In the metric case, both the abstract tensor and the coordinate expression have spacetime

as their domain. The relation between ω and AIµ requires a pull-back to a section, which is

why we can interpret the latter but not the former as a function over spacetime. The closer

parallel therefore is between a section Γ of the Atiyah-Lie algebroid, described in Section A,

and AIµ. For the sections Γ are in 1-1 correspondence with the Ehresmann connections, ω, but

they are abstract sections of a vector bundle over spacetime, which are represented as AIµ once

we choose a coordinate basis for spacetime and for each copy of the Lie algebra over each point

of spacetime in a chart.

Acknowledgements

I would like to thank Jeremy Butterfield for many conversations on this topic, and for reading

and commenting on various versions of the paper. I would also like to thank Ruward Mulder,

for a careful reading and insightful questions. And I would also like to thank two anonymous

referees, for their patience and comments, which led to several revisions of the initial draft.

APPENDIX

A The bundle of connections

Note above that the basic field that lends itself to the geometric interepretation, namely, the

Ehresmann connection, ω, is not a field on spacetime, but on some other (fibered) manifold.

And the interpretation of passive transformations as changes of frames above required some

vector bundle, E (or indeed, mostly the model vector space, F ), representing the value space

of some other field that interacted with the force carried by ω. Can we interpret the passive

transformations as of an interacting field in spacetime, without tying it to a specific matter

field with which it interacts? To finish the side-by-side comparison of Yang-Mills and general

relativity, we would like to describe the Yang-Mills fields as on a par with the abstract metric

tensor field, without the use of coordinates and as fields on spacetime, and to understand the

passive gauge transformations as changes of bases for the values of this field.

Here I introduce the bundle of connections and their sections, also known as connections of
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the Atiyah-Lie bundle, as a global, spacetime representative of the connection-form.41

To start, we could ask what kind of bundle the gauge potentials A are sections of. This

would lead us to a global section of some vector bundle over spacetime, which would reduce to

A in particular coordinate patches. But before we do that, note that A is object that mixes

tensorial indices with internal indices. The natural principal bundle for the tensorial part, as

discussed above (see (Weatherall, 2016, Sec. 3)), would be a sub-bundle of the frame bundle

L(TM). The internal part, corresponding to g, would require a sub-bundle of L(P ×ρ g). Here

ρ = Ad : G→ GL(g), where Adgv = g−1vg is the natural, adjoint action of G on g, appearing

in (4.9) and (4.11)).

To define the global sections of such an object, one would need to splice bundles of these

different characters together (see e.g. (Bleecker, 1981, Ch. 7.1)). Although it is possible to

construct the bundle in this way, it would involve the introduction of yet more formalism. But

there is an alternative way, that leads to the same answer, and which I will now explain (see

the Proposition in (Kolar et al., 1993, Ch. 17.5), for their equivalence).

Parallel transport is determined by horizontal directions in the bundle, as we saw in Section

4, and we know that the horizontal bundle H ⊂ TP , is left-invariant. So, if we know what

parallel transport is at p, we know what it is at g · p. By getting rid of this redundancy, we can

find a global spacetime representation of the connection ω. To do that, we first note that there

is a 1-1 relation between (Ehresmann) connection-forms and left-invariant sections of TP (see

(Kobayashi & Nomizu, 1963, Ch. 4)).

Left-invariant vector fields are not unconstrained sections of the vector bundle TP , i.e.

C∞(TP ). But they are unconstrained sections of TP/G, the so-called bundle of connections

(see e.g. (Ciambelli & Leigh, 2021, Sec. 3.2); (de León & Zajac, 2020, p.9); (Sardanashvily,

2009, p.60); (Kolar et al., 1993, Ch. 17.4) and (Jacobs, 2021, Ch. 7)). In other words, the

difference between sections of TP and TP/G is that, while both can be seen as sections over

TM (with π∗ the projection), the latter—TP/G—is more constrained, since it can only encode

left-equivariant objects defined on the first, TP .

The main idea in the construction of this bundle is to take the projection map π∗ : TP →
TM , and make it ‘forget’ at which point or “height” of the orbit it was applied. The formalism

represents parallel transport of internal quantities for the directions in spacetime, rather than

for directions in the bundle P . Thus TP/G is most naturally a vector bundle over TM rather

than over M or P . But since TM is itself a bundle over M , TP/G can also be construed as a

bundle over M .

To define the fiber of TP/G, recall that a point in TP is locally described by (p, vp) with

vp ∈ TpP , and the group G acts (freely and transitively) as (p, vp) 7→ (g · p, Lg∗(vp)), which

is the relation by which we define the left-invariant vector fields. Thus TP/G is defined by

41The bundle of connections appeared almost simultaneously in Atiyah (1957) and Kobayaschi (1957). It is

often referred to as the Atiyah-Lie bundle. See also (Kolar et al., 1993, Ch. 17.4). To avoid confusion, it is

better to refer to a section of the bundle of connections, which is itself a generalization of a connection to what

are known as Lie algebroids (see Mackenzie (2005)), as an Atiyah-Lie connection.
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identifying

(p, vp) ∼ (g · p, Lg∗(vp)), for all g ∈ G. (A.1)

Since locally (i.e. given some trivialization of the tangent bundle) for x = π(p) and ξ ∈ g,

we can represent p = (x, g) := g · σ(x) and vp = (Xx, ξ) := ξ + σ∗(Xx) we have, locally,

(p, vp) = (x, g,Xx, ξ). If we take the quotient, we obtain that the elements of the new vector

bundle will be locally of the form (x,Xx, ξ).

Given a point on M , and a tangent direction on M , and a local trivialization of the bundle,

an element of the vector bundle T ∗P/G spits out a Lie-algebra element. Thus, as in the

standard manner of obtaining Aσ from ω, here we also locally recover, in a trivialization, that

the representative of the connection, call it Γ, is the g-valued 1-form on M ; Γ is global, but in

a local trivialization, it would be represented by AIµ, where, the indices refer to a Lie-algebra

and a tangent bundle basis. So Γ stands to the abstract tensor gab as AIµ stands to gµν . The

values of Γ according to different trivializations are related by the transformation (4.11), just

as the values of gµν are related by coordinate transformations. These are correlates of the

passive transformations. Thus we find, as announced in the introduction to this Section, the

appropriate analogy, comparing a section of TP/G with a global vector field, X, which we

can write locally with coordinates, Xµ∂µ, where Aσ stands in analogy to the components Xµ.

Thus, the sections of the bundle TP/G will be frame-invariant, and therefore, invariant under

passive gauge transformations.

We can sum up as follows: a section of T ∗P/G should be seen as the global, coordinate-

independent generalization of Aσ; the advantage of a section of T ∗P/G over the standard gauge

potential is that it is globally defined and it is independent of internal coordinates (coordinates

for the Lie algebra, and tangent bundle); and the advantage over the connection-form is that it

is a section of a vector bundle with T ∗M as its base space. The disadvantage is that it is highly

abstract. Nonetheless, this formulation allows a strong analogy between the basic kinematical

variables of the gauge theory and the metric, in a coordinate-independent manner.

To finish this Appendix, let us briefly focus once again on the geometrical meaning of ω.

The unifying power of the principal connection is that it defines compatible parallel transport

for any field/particle that interacts with the force associated to G, even for the as-of-yet

undiscovered forces and groups.

We can think of Γ, the section of the vector bundle T ∗P/G, as one more physical field

on spacetime. Since it is a section of a certain vector bundle, upon introducing coordinates

(or frames) it admits changes of bases with which it is described, and these can be construed

as passive gauge transformations. Just as the connection ω is invariant with respect to these

passive transformations, but variant with respect to the active ones, so will be Γ.
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