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Abstract

What is the ontological status of mass and charge in a realist quan-
tum theory? This has been an important but debated issue in the
foundations of physics. In this paper, I present a new analysis of
the reality of mass and charge and its implications for the ontological
meaning of the wave function. First, I argue that mass and charge
should be included in the ontology of a t-ontic theory. In particular,
for an N-body system, there are IV different physical entities with re-
spective masses and charges in three-dimensional space. Next, I argue
that a field ontological interpretation of the wave function such as wave
function realism or the multi-field interpretation, which usually regards
mass and charge as constants of nature, cannot accommodate mass and
charge in its ontology. Third, I argue that in order to include mass
and charge in the ontology for entangled states, the physical entities
must be particles whose motion is discontinuous. Finally, I introduce
the RDM of particles interpretation of the wave function, according
to which a quantum system is composed of particles with mass and
charge which undergo random discontinuous motion (RDM) in three-
dimensional space, and the wave function represents the propensities
of these particles which determine their random discontinuous motion.
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1 Introduction

It has been debated what the ontology of a realist quantum theory is and
if mass and charge should be included in the ontology of the theory. The
common sense view is that mass and charge are intrinsic properties of a
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physical system and should be included in the ontology of quantum me-
chanics. However, this view is not widely accepted. For example, according
to some authors (e.g. Esfeld et al, 2014), mass and charge should be better
regarded as constants of nature, rather than the properties of particles in
Bohmian mechanics. Moreover, mass and charge are not included in the
ontologies of the field ontological interpretations of the wave function such
as wave function realism (Albert, 1996, 2013; Ney, 2021) and the multi-field
interpretation (Hubert and Romano, 2018). It also seems that mass and
charge can hardly be included in the field ontologies. Then, exactly what is
the ontological status of mass and charge? If they are really real, how can
they be included in the ontology of quantum mechanics? In this paper, I will
present a new analysis of the reality of mass and charge and its implications
for the ontological meaning of the wave function.

The rest of this paper is organized as follows. In Section 2, I argue that
mass and charge should be included in the ontology of a w-ontic theory.
In particular, for an N-body system, there are N different physical entities
with respective masses and charges in three-dimensional space. In Section
3, I argue that a field ontological interpretation of the wave function such as
wave function realism or the multi-field interpretation, which usually regards
mass and charge as constants of nature, cannot accommodate mass and
charge in its ontology. In Section 4, I further argue that in order to include
mass and charge in the ontology for entangled states, the physical entities
must be particles whose motion is discontinuous. In Section 5, I introduce
the RDM of particles interpretation of the wave function. According to
this interpretation, a quantum system is composed of particles with mass
and charge which undergo random discontinuous motion (RDM) in three-
dimensional space, and the wave function represents the propensities of these
particles which determine their random discontinuous motion. Conclusions
are given in the last section.

2 Reality of mass and charge

In quantum mechanics, mass and charge are usually regarded as intrinsic
properties of a physical system, not contants of nature or numerical param-
eters entering the equations of motion without referring to anything in the
ontology of the theory. There are two common reasons. The first reason is
that there is an entire zoo of elementary particles varying in mass or charge
or both according to modern particle physics. Then, “there must be some-
thing in the world which makes it the case that certain terms (respectively
certain coordinates) in the equations of motion refer to, say, an electron
rather than a muon” (Esfeld et al, 2017), and this thing is just the mass
and charge of the particle. The second reason is the additive property of
mass and charge. The mass and charge of a system is the sum of the masses



and charges of its components. While a contant of nature such as Planck’s
constant has no such a property, and it applies equally to a system and its
components. Thus, even if there exists only a single species of particles,
the mass and charge of this particle are still different from the contants of
nature.

In the following, I will argue that mass and charge should be included
in the ontology of a w-ontic theory. In a w-ontic theory, it is assumed
that when a physical system is assigned to a wave function by quantum
mechanics, it has a well-defined set of physical properties or an ontic state,
and the wave function is a representation of the ontic state. Now consider
a physical system such as an electron whose ontic state is represented by
a wave function [1(0)) at an initial instant. According to the Schrodinger
equation, the time evolution of the wave function is affected by the mass
of the system m, and two different values of m, such as mi and msy, lead
to different evolution of the wave function, namely we have [i(t,m1)) #
|1(t, mo)) for some later instants ¢. Now if the mass of the system m does
not represent anything in the ontology of the theory, then the two situations,
in which m assumes two different values, m; and msy, will be exactly the same
in ontology for the system at the initial instant; the initial ontic states are
represented by the same wave function |1(0)) in these two situations. Since
the two situations (which are the same in ontology) cannot be distinguished,
the law of motion must be the same for the two situations. Then we must
have the relation |¢(t,m1)) = |[¢(t,m2)) for all later instants ¢ by the law
of motion. This is inconsistent with the result of the Schrédinger evolution,
namely |¢(t,m1)) # |¢(t,mg2)) for some later instants tE| Therefore, the
mass of the system must represent something in the ontology of the theory,
or in other words, mass must be a property of the system. This is also true
for the charge of a physical system.

By the same reasoning, one can further argue that for an N-body sys-
tem, the correlation between the mass and charge of each subsystem and the
three coordinates of the subsystem should be also included in the ontology
of the theory. The reason is that the time evolution of the wave function
of an N-body system is affected not only by the mass and charge of each
subsystem (as argued above), but also by the correlation between the mass
and charge of each subsystem and the three coordinates of the subsystem in
the Schrodinger equation; if the mass and charge of one subsystem is cor-
related with the three coordinates of another subsystem in the Schrodinger
equation, then the time evolution of the wave function of the system will

!Note that the law of motion may be not deterministic but stochastic as in collapse
theories. However, the stochastic effect is so small that it can be ignored for a microscopic
system such as an electron. In this case, |¢(¢, m1)) may be different from | (¢, m2)), but
the difference between them resulting from the stochastic effect is much smaller than the
difference resulting from the difference of the two masses. Thus there is still inconsistency
when mass is not included in the ontology of the theory.



be different. This means that the mass and charge of each subsystem ex-
ist in the three-dimensional space described by the three coordinates of the
subsystem.

It has been widely and convincingly argued that the three coordinates of
each subsystem are three position coordinates in the same three-dimensional
space, our three-dimensional space (see, e.g. Lewis, 2004, 2013, 2016; Gao,
2017; Ney, 2021, chap.8). Then, for an N-body system, in ontology there are
N different physical entities with respective masses and charges, and they
exist in our three-dimensional space. In a v-ontic theory, the wave function
of an N-body system will represent the ontic state of IV physical entities in
three-dimensional space.

3 Wave function realism

Wave function realism is a widely-discussed view about the meaning of the
wave function and the ontology of quantum mechanics (Albert, 1996, 2013).
According to this view, the wave function represents a real physical field in a
fundamental high-dimensional space, and the amplitude and the phase of the
wave function are intrinsic properties of the points in the space. There has
been a hot debate among philosophers of physics and metaphysicians relating
to the pros and cons of wave function realism (see Ney and Albert, 2013;
Ney, 2021 and references therein). However, the issue about the ontological
status of mass and charge in wave function realism has been ignored by
its proponents. In the following, I will analyze if mass and charge can be
included in the ontology of wave function realism.

Consider a two-body system whose wave function is defined in a six-
dimensional configuration space. Suppose the wave function of the system
is localized in one position (1,1, 21, T2, Y2, 22) in the configuration space
at a given instant. This wave function can be decomposed into a product of
the wave functions of the two subsystems, which are localized in positions
(z1,y1,21) and (z2,y2, 22) in three-dimensional space, respectively. Suppose
the two subsystems have different masses such as m; and my (as well as
different charges such as @1 and Q2). Now according to wave function
realism, the ontic state of this two-body system is a physical field in the
fundamental six-dimensional configuration space. Concretely speaking, this
field is localized in position (x1,y1, 21, T2, Y2, 22) in the six-dimensional space,
and it has an amplitude and a phase in this position which is equal to the
amplitude and phase of the wave function of the system.

This ontic state does not include the masses and charges of the two
subsystems. The issue is that if the six-dimensional configuration space is
fundamental as wave function realism assumes, any ontic state localized in
one position in this space cannot contain complete information about the
masses and charges of the two subsystems. For example, an ontic state



localized in one position may contain information about the sum of the
masses of the two subsystems. But the sum does not uniquely determine
the mass of each subsystem. More crucially, the ontic state cannot contain
the information about the correlation between the mass and charge of each
subsystem and the three coordinates of the subsystem in the Schrédinger
equation, e.g. the correlation between m; and (z1, y1, 21). Even if the masses
mq and mg (not their sum) are both localized in position (z1, y1, 21, T2, Y2, 22)
in the six-dimensional space, it cannot be determined whether m; or mo is
correlated with (z1,y1,21) or (z2,y2,22). But, as argued before, different
correlations will lead to different evolution of the wave function of the two-
body system, and thus they should be included in the ontology of the theory.

By contrast, if the fundamental space is three-dimensional, then the
ontic state existing in two positions in this space can contain complete in-
formation about the masses and charges of the two subsystems, as well as
the correlation between the mass and charge of each subsystem and the
three coordinates of the subsystem; the mass and charge of subsystem 1,
m1 and @1, are localized in postion (z1,y1, 21), and the mass and charge of
subsystem 2, my and 2, are localized in postion (z2,y2, 22).

Similarly, one can argue that the multi-field interpretation of the wave
function also has the issue of wave function realism. Unlike wave function
realism, the multi-field interpretation assumes that our three-dimensional
space, not the configuration space, is fundamental. However, the multi-field
is defined not in each position but in each group of N positions in three-
dimensional space for an N-body system. For the above two-body system,
whose wave function is localized in one position (z1,y1, 21, €2, Y2, 22) in the
configuration space, the multi-field has only one amplitude and one phase in
the two positions (x1,y1,21) and (x2,y2, z2) in our three-dimensional space.
Thus, like the case of wave function realism, the multi-field cannot contain
complete information about the masses and charges of the two subsystems in
these two positions, as well as the correlation between the mass and charge
of each subsystem and the three coordinates of the subsystem, either.

4 How can mass and charge be included in the
ontology of a i-ontic theory?

Why wave function realism or the multi-field interpretation of the wave
function? It is probably because they can explain the entangled states of
an N-body system more directly. As we have seen, however, these two field
interpretations of the wave function cannot accomodate mass and charge in
their ontology. Then, how can mass and charge be included in the ontology
of a w-ontic theory? In order to answer this question, we must further
analyze the entangled states of an N-body system (see also Gao, 2017).
Consider again the above two-body system. Suppose the wave func-



tion of the system is localized in two positions (1,1, 21, Z2, Y2, 22) and
(3,Y3, 23, T4, Y4, 24) in the six-dimensional configuration space at a given
instant. This is an entangled state, which can be generated from a prod-
uct state by the Schrodinger evolution of the system. In this case, there
are still two physical entities with the original masses and charges in three-
dimensional space, since the Schrédinger evolution does not create or an-
nihilate physical entitiesﬂ and the mass and charge properties of the two
physical entities do not change during its evolution either.

According to the above analysis, the wave function of the two-body sys-
tem being localized in position (x1,y1, 21, T2, Y2, 22) means that physical en-
tity 1 with mass m; and charge Q); exists in position (x1,y1,21) in three-
dimensional space, and physical entity 2 with mass mo and charge Q)2 exists
in position (x2,y2, z2) in three-dimensional space. Similarly, the wave func-
tion of the two-body system being localized in position (z3,ys3, 23, T4, Y4, 24)
means that physical entity 1 exists in position (x3, y3, z3) in three-dimensional
space, and physical entity 2 exists in position (x4, y4, z4) in three-dimensional
space. These are two ordinary physical situations. Then, when the wave
function of the two-body system is an entangled state, being localized in
both positions (x1,y1, 21, T2, Y2, 22) and (x3, Y3, 23, T4, Y4, 24), how do the two
physical entities exist in three-dimensional space?

Since the ontic state of the physical entities described by the wave func-
tion is defined either at a precise instant or during an infinitesimal time
interval around a given instant as the limit of a time-averaged state, there
are two possible existent formsE| One is that the above two physical situa-
tions exist at the same time at the precise given instant in three-dimensional
space. This means that physical entity 1 exists in positions (z1,y1,21)
and (3,3, 23), and physical entity 2 exists in positions (x2,ys2,22) and
(x4,Y4,24). Since there is no correlation between the positions of the two
physical entities, the wave function that describes this existent form is
not an entangled state but a product state, which is localized in four po-
sitions (x1,y1, 21, T2, Y2, 22), (T3,Ys3, 23, T4, Y4, 24), (T1,Y1, 21, T4, Y4, 24), and
(z3,Y3, 23, T2, Y2, 22) in the six-dimensional configuration space. Thus this
possiblity is excluded.

The other possible existent form is that the above two physical situa-
tions exist “at the same time” during an arbitrarily short time interval or
an infinitesimal time interval around the given instant in three-dimensional
space. Concretely speaking, the situation in which physical entity 1 is in po-
sition (z1,y1, 21) and physical entity 2 is in position (x2,y2, 22) exists in one
part of the continuous time flow, and the situation in which physical entity 1

2In other words, when the state of the two physical entities evolves from a product
state to an entangled state, the interaction between them does not annihilate any of them
from the three-dimensional space.

31 have discussed these two possibilities when analyzing the origin of the mass and
charge distributions of a quantum system (Gao, 2017, 2020).



is in position (x3,y3, 2z3) and physical entity 2 is in position (x4, y4, z4) exists
in the other part. The restriction is that the temporal part in which each
situation exists cannot be a continuous time interval during an arbitrarily
short time interval; otherwise the wave function describing the state in the
time interval will be not the original superposition of two branches, but
one of the branches. This means that the set of the instants at which each
situation exists is not a continuous instant set but a discontinuous, dense
instant set. At some discontinuous instants, physical entity 1 with mass m;
and charge )1 exists in position (z1,y1, 21) and physical entity 2 with mass
mg and charge Q2 exists in position (x2, y2, 22), while at other discontinuous
instants, physical entity 1 exists in position (x3,ys, z3) and physical entity
2 exists in position (x4, y4, z4). By this way of time division, the above two
physical situations exist “at the same time” during an arbitrarily short time
interval or during an infinitesimal time interval around the given instant.
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Figure 1: Two entangled physical entities in space at six neighboring instants

This way of time division implies a picture of discontinuous motion for
the involved physical entities, which is as follows. Physical entity 1 with
mass my and charge @1 jumps discontinuously between positions (z1, y1, 21)
and (x3,ys, z3), and physical entity 2 with mass mgy and charge Q2 jumps dis-
continuously between positions (x2,y2, 22) and (x4,y4, 24). Moreover, they
jump in a precisely simultaneous way. When physical entity 1 jumps from
position (x1,y1,21) to position (x3,ys, z3), physical entity 2 always jumps
from position (xg,ys2, z2) to position (x4,y4, 24), and vice versa. In the limit
case where position (x2,ys, 22) is the same as position (x4, y4, 24), physical
entities 1 and 2 are no longer entangled, while physical entity 1 with mass
mq and charge @)1 still jumps discontinuously between positions (x1,y1, 21)
and (x3,ys, z3). This means that the picture of discontinuous motion also
exists for one-body systems. Since quantum mechanics does not provide fur-
ther information about the positions of the physical entities at each instant,
the discontinuous motion described by the theory is also random.

The above analysis may also tell us what these physical entities are. A
physical entity in three-dimensional space may be a continuous field or a
discrete particle. For the above entangled state of a two-body system, since
each physical entity is only in one position in space at each instant (when



there are two positions it may occupy), it is not a continuous field but a
localized particle. In fact, there is a more general reason why these physical
entities are not continuous fields in three-dimensional space. It is that for an
entangled state of an N-body system we cannot even define N continuous
fields in three-dimensional space which contain the total information of the
entangled state.

Since a general position entangled state of a many-body system can be
decomposed into a superposition of the product states of the position eigen-
states of its subsystems, the above analysis applies to all entangled states.
Therefore, it is arguable that an N-body quantum system is composed not
of N continuous fields but of IV discrete particles in three-dimensional space.
Moreover, the motion of these particles is not continuous but discontinuous
and random in nature, and especially, the motion of entangled particles is
precisely simultaneous.

5 The wave function as a description of random
discontinuous motion of particles

In classical mechanics, we have a clear physical picture of motion. It is well
understood that the trajectory function z(¢) in the theory describes contin-
uous motion of a particle. In quantum mechanics, the trajectory function
x(t) is replaced by a wave function ¥ (x,t). If the particle ontology is still
viable in the quantum world, then it seems natural that the wave func-
tion should describe some sort of more fundamental motion of particles, of
which continuous motion is only an approximation in the classical domain,
as quantum mechanics is a more fundamental theory of the physical world,
of which classical mechanics is an approximation. The previous analysis pro-
vides a strong support for this conjecture. It says that a quantum system is
a system of particles that undergo random discontinuous motion. Here the
concept of particle is used in its usual sense. A particle is a small localized
object with mass and charge, and it is only in one position in space at each
instant. As a result, the wave function in quantum mechanics can be re-
garded as a description of the more fundamental motion of particles, which
is essentially discontinuous and random. In this section, I will give a more
detailed introduction of random discontinuous motion (RDM) of particles
and the interpretation of the wave function in terms of RDM of particles
(Gao, 2017; 2020).

5.1 Describing RDM of particles

In the following, I will first give a strict description of RDM of particles
based on the measure theory. For the sake of simplicity, I will mainly analyze
one-dimensional motion. The results can be readily extended to the three-



dimensional situation.

Figure 2: Describing random discontinuous motion of a particle

Consider the state of RDM of a particle in finite intervals At and Az
around a space-time point (¢;,2;) as shown in Figure 2. The positions of the
particle form a random, discontinuous trajectory in this square regionﬁ We
study the projection of this trajectory in the ¢-axis, which is a dense instant
set in the time interval At. Let W be the discontinuous trajectory of the
particle and @ be the square region [z, z; + Ax] X [t;,t; + At]. The dense
instant set can be denoted by m(W N Q) € R, where 7 is the projection
on the t-axis. According to the measure theory, we can define the Lebesgue
measure:

MA:):,At(fL'j,ti) = / dt. (1)
m(WﬁQ)@R

Since the sum of the measures of the dense instant sets in the time interval
At for all z; is equal to the length of the continuous time interval At, we
have:

D Magaclzj,ti) = At (2)
J
Then we can define the measure density as follows:

plx,t) = AgchAHtl—m Mpag at(z,t)/(Az - At). (3)

4Unlike deterministic continuous motion of particles, the discontinuous trajectory func-
tion, z(t), no longer provides a useful description for RDM of particles. Recall that a
trajectory function z(t) is essentially discontinuous if it is not continuous at every instant
t. A trajectory function x(t) is continuous if and only if for every ¢t and every real number
€ > 0, there exists a real number & > 0 such that whenever a point to has distance less
than § to ¢, the point x (o) has distance less than € to x(t).



We call p(z,t) position measure density or position density in brief. This
quantity provides a strict description of the position distribution of the par-
ticle in an infinitesimal space interval dx around position z during an in-
finitesimal interval d¢ around instant ¢, and it satisfies the normalization
relation fj;o p(x,t)de = 1 by . Note that the existence of the above
limit relies on the precondition that the probability density that the parti-
cle appears in each position x at each instant ¢, which may be denoted by
o(x,t), is differentiable with respect to both x and ¢. It can be seen that
p(z,t) is determined by o(x,t), and there exists the relation p(x,t) = o(z,t).

Since the position density p(z,t) changes with time in general, we may
further define the position flux density j(x,t) through the relation j(z,t) =
p(z,t)v(x,t), where v(z,t) is the velocity of the local position density. It
describes the change rate of the position density. Due to the conservation
of measure, p(x,t) and j(z,t) satisfy the continuity equation:

Op(z1) , 0j(,0)
ot ox

The position density p(x,t) and position flux density j(x,t) provide a com-
plete description of the state of RDM of a particle.

This description of the motion of a particle can be extended to the mo-
tion of many particles. At each instant a quantum system of N particles
can be represented by a point in an 3/N-dimensional configuration space.
During an arbitrarily short time interval or an infinitesimal time interval
around each instant, these particles perform RDM in three-dimensional
space, and correspondingly, this point performs RDM in the configuration
space. Then, similar to the single particle case, the state of the system can
be described by the position density p(x1,x2,...zn,t) and position flux den-
sity j(x1,x9,...xN,t) defined in the configuration space. There is also the
relation p(z1,z2,...xN,t) = o(z1, 2, ...xN, 1), where o(z1, z2,...xN,t) is the
probability density that particle 1 appears in position x; and particle 2 ap-
pears in position z9 ... and particle N appears in position . When these
N particles are independent with each other, the position density can be re-
duced to the direct product of the position density for each particle, namely
p(z1, 2, ...xN,t) = Hf\;l p(z;,t). Visually speaking, the RDM of each parti-
cle will form a mass and charge cloud in space (during an infinitesimal time
interval around each instant), and the RDM of many particles being in an
entangled state will form many entangled mass and charge clouds in space.

—0. (4)

5.2 Interpreting the wave function

Although the motion of particles is essentially discontinuous and random,
the discontinuity and randomness of motion are absorbed into the state
of motion, which is defined during an infinitesimal time interval around a
given instant and described by the position density and position flux den-

10



sity. Therefore, the evolution of the state of RDM of particles may obey
a deterministic continuous equation. By assuming the nonrelativistic equa-
tion of RDM of particles is the Schrodinger equation and considering the
form of the resulting continuity equation, we can obtain the relationship be-
tween the position density p(z,t), position flux density j(x,t) and the wave
function ¢ (z,t). p(z,t) and j(x,t) can be expressed by ¥ (x,t) as followsﬂ

p(z,t) = |¢($,t)|2, (5)
51y = o, 28D g AR, )

Correspondingly, the wave function ¥ (z,t) can be uniquely expressed by
p(x,t) and j(z,t) or v(z,t) (except for an overall phase factor):

D@, t) = /ple, D™ I e v e’ /1 -

In this way, the wave function ¢ (z, t) also provides a complete description of
the state of RDM of a particleﬁ A similar one-to-one relationship between
the wave function and position density, position flux density also exists for
RDM of many particles. For the motion of many particles, the position den-
sity and position flux density are defined in a 3/N-dimensional configuration
space, and thus the many-particle wave function, which is composed of these
two quantities, also lives on the 3/N-dimensional configuration space.

It is well known that there are several ways to understand objective
probability, such as frequentist, propensity, and best-system intepretations
(Héjek, 2019). In the case of RDM of particles, the propensity interpretation
seems more appropriate. This means that the wave function in quantum me-
chanics should be regarded not simply as a description of the state of RDM
of particles, but more suitably as a description of the instantaneous property
of the particles that determines their RDM at a deeper level. In particular,
the modulus squared of the wave function represents the propensity property
of the particles that determines the probability density that they appear in
every possible group of positions in space. In contrast, the position den-
sity and position flux density, which are defined during an infinitesimal time
interval around a given instant, are only a description of the state of the
resulting RDM of particles, and they are determined by the wave function.

®Note that the relation between j(z,t) and ¥ (z,t) depends on the concrete form of the
external potential under which the studied system evolves, and the relation given below
holds true for an external scalar potential. In contrast, the relation p(z,t) = |¢(z,t)|?
holds true universally, independently of the concrete evolution of the studied system.

SNote that there is also a picture of RDM of particles in Bell’s Everett (?) theory
(Bell, 1981). In that theory, however, the wave function is regarded as a real physical field
in configuration space, and the RDM of particles is not aimed to provide an ontological
interpretation of the wave function.

11



In this sense, we may say that the motion of particles is “guided” by their
wave function in a probabilistic way.

6 Conclusion

What is the ontological status of mass and charge in a realist quantum the-
ory? This has been an important but debated issue in the foundations of
physics. In this paper, I present a new analysis of the reality of mass and
charge and its implications for the ontological meaning of the wave func-
tion. It is argued that mass and charge should be included in the ontology
of a 1-ontic theory. However, a field ontological interpretation of the wave
function such as wave function realism or the multi-field interpretation can-
not accommodate mass and charge in its ontology. Moreover, in order to
include mass and charge in the ontology for entangled states, the physical
entities must be particles with mass and charge, whose motion is random
and discontinuous in three-dimensional space. Finally, I also introduce the
RDM of particles interpretation of the wave function, according to which the
wave function represents the propensities of particles which determine their
random discontinuous motion (RDM). It remains to be seen if the RDM of
particles interpretation is fully satifactory and if there are other ontologi-
cal interpretations of the wave function which can accommodate mass and
charge.
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