
The severity score is fundamentally flawed: A reply

to Spanos’ ”Severity and Trustworthy Evidence”

November 2, 2022

Contents

1 Introduction 2

2 Clarifications 2

3 A New Example 10

3.1 The More Power the Better . . . . . . . . . . . . . . . . . . . . . 11

4 Conclusion 13

1



1 Introduction

Aris Spanos’ recent critical appraisal of my paper on the severity measure of evi-

dence and the Winner’s Curse (Spanos 2022) has the merit of allowing me to clarify

my arguments. I show that Spanos’ paper contains mistakes, contradictions, and

an example that ultimately supports my conclusions. The bottom line is that the

severity score is fundamentally defective because it favors the rejection of the null

hypothesis due to sampling error as opposed to the discovery of true discrepan-

cies from the null. Since the severity score is a function of the test statistics, it is

especially corrupted by the large sampling error of underpowered test.

This paper contains two main sections. In the first, I clarify my original argu-

ments. This allows me to pinpoint mistakes and contradictions in Spanos’ paper.

In the second, I drive my point home with yet another example, one that can allow

me to dismiss some more of Spanos’ critical comments.

2 Clarifications

I would like to specify that I do not claim that there is a fundamental problem with

classical theory-testing. I claim that there is a fundamental problem with the sever-

ity interpretation of classical theory-testing. In order to show this I published the

following example in which I ask the reader to imagine a statistician named S who

has obtained two different samples of 10 independent and identically distributed

observations (IID): (X1, X2, ..., X10) and (Y1, Y2, ..., Y10).

Their respective distributions are defined as follows:

(i) Xi ∼ N (µ1 = 1.01, σ2
1 = 36)

(ii) Yj ∼ N (µ2 = 1, σ2
2 = 36)
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where µ represents the mean of a normal distribution and σ2 its variance.

Perhaps this was not clear in my original paper but the IID property of the

observations is a given. It is known to S. There is no issue about the misspeci-

fication of the model. Hence Spanos’ discussion on this topic is, unfortunately,

irrelevant and rather ironic. The way Spanos’ paper presents a statistically signifi-

cant downtrend in the differences between the xi and the yj (in the order that they

are sampled) (Spanos 2022, p.7) in order to show that the observations are not ID

does not only miss the target, it is nothing short of extraordinary when engaging

in a discussion on the dangers of making inferences based on small samples. The

data used in the simulation is only there for illustration purposes and to allow the

readers to conduct the experiment themselves with R. As will be shown in the next

section, such examples can easily be produced with not such downtrend.

Besides the IID property of the observations, S only knows two things about

the parameters of the two normal distributions:

(1) µ1 > µ2 or µ1 = µ2

(2) σ1 = σ2

and she is interested in knowing if the data could support the idea that there is a

difference between the two means that is strictly larger than 0.1. Why 0.1? This is a

genuine and important question for S. Smaller differences are not important to her.

S does not know that the true difference between the means is 0.01. Otherwise, she

would not even see the point of the experiment. She truly believes that there is a

discrepancy larger than 0.1 and thinks that even a small sample can generate a sig-

nificant result. When Spanos writes ”detecting a tiny discrepancy µ1 − µ2 = 0.01

will still be a hopeless task with n = 10. Intuitively , this amounts to attempting to

use n = 10 to distinguish between two almost identical densities” (Spanos 2022,

p.11). He is quite right. No one is disputing that. Poor S, little does she know.
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As for me, the author of the original paper, I have an agenda when I choose

0.1. I want to show that the severity score will mislead S’s into strongly believing

that there is a discrepancy that is strictly larger than 0.1, which is at least at least

ten times larger than the true difference. ”Ten times larger” has a dramatic tone

to it. Indeed, ”Rochefort-Maranda (2020) cherry-picks a particular discrepancy

γ1 = 0.1” (Spanos 2022, p.10). It is cherry-picking, yet fair play. It is like cherry-

picking one black swan to falsify the statement ”All swans are white”.

Now, in order to make an inference about the difference between µ1 and µ2,

S uses a one-tailed Student’s t-Test where H1: µ1 > µ2 and H0: µ1 = µ2. The

variances are estimated with the samples.

The statistic used for such a test is defined as follows:

t =
(X̄ − Ȳ)− (µ1 − µ2)

Sp ×
√

1
10 +

1
10

where

Sp =

√
9S2

1 + 9S2
2

18
,

S2
1 =

10

∑
i=1

((xi)− X̄)2

9
,

X̄ =
10

∑
i=1

xi

10
,

S2
2 =

10

∑
i=1

((yi)− Ȳ)2

9
,

and

Ȳ =
10

∑
i=1

yi

10
.

For a significance level α of 0.05, S will reject H0 (accept H1) if she finds a

test statistic tobs such that the probability of obtaining a result at least as distant (on
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the positive axis) from 0 as tobs is smaller than or equal to 0.05 under H0. If not,

then she will fail to reject H0.

The estimators here are both unbiased and consistent. The former means that

the expected value of X̄, Ȳ, X̄ − Ȳ, S2
1, and S2

2 are equal to the real parameters or

interest. In other words, if S were to repeat the same experiment an infinite amount

of times, the average of the results would be equal to the unknown parameters. In

the Appendix, I repeat the experiment two million times and show that the mean of

the estimates is practically identical to the real parameters.

Moreover, as the number of observations tends to infinity, the estimators con-

verge in probability towards the real parameters. Thus, they are consistent. In

Figure 1, I illustrate this property for X̄ − Ȳ by increasing the number of obser-

vation by one, starting with ten observations per group, fifty thousand time (See

Appendix to repeat the experiment). One can see that the observed difference con-

verges towards 0.01 as the sample size increases. Therefore, when Spanos suggests

that the examples uses ”inconsistent estimators” (Spanos 2022, p.11) he is prov-

ably wrong. I recommend that the readers try similar lines of code and test the

result with the other estimators.

Considering that all the estimators in the experiment are consistent, meaning

that they converge in probability towards the true value of the parameter, the fol-

lowing claim is very strange : ”For a particular Mθ; an optimal point estimator

θ̂(X) of θ does not entail the inferential claim θ̂(x0) ≃ θ for a large enough n,

wbere “≃” denotes “approximately equal to” (Spanos 2022, p.16). The estimators

discussed here will converge as illustrated in Figure 1.

The problem with the estimators in S’s experiment is that they are quite vari-

able. In other words, the sampling error is large. The problem does not come

from some mysterious model misspecification at all (the sampling is very transpar-

ent and can be reproduced). Figure 1 shows this large variance (sampling error)
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Figure 1: Observed differences (diff) between the sample means of each group showing

the consistency of the estimator for the difference between the means of the two popula-

tions. Produced with 50,000 simulations. Each time, 1 observation is added. Seed equals

31. The horizontal line is at 0.01.

for small sample sizes and how it is reduced as we add more observations to the

samples. Each repetition of the experiment with ten observations per group will

generate quite variable results because the sampling error is large. In S’s experi-

ment, the lower the sample size, the lower the power of the test and the higher the

sampling error. This means that the lower the power, the more significant results

will be triggered because of the magnitude of the sampling error and not because

of the magnitude of the actual difference between the two means of the populations

under study. As we will see bellow, this also means that the high severity score for

discrepancies strictly larger than 0.1 will be generated by the sampling error. The
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fact of the matter is that the severity score is corrupted by the sampling error.

After S proceeds with the t-test, she finds a difference of 4.250; a test statistic

tobs = 1.914; and a p-value = 0.036 (See (Rochefort-Maranda 2021)). Therefore,

S rejects H0 (p-value< 0.05). The test is significant.

S has observed a difference between the two means of 4.250 when the true

difference is only 0.01. This is because we have a significant result with an un-

derpowered test such that the effect size incredibly bigger than reality (450 times

greater). S would thus be wrong to believe that there is a substantial difference

between H0 and H1. Yet, this is what the severity score prescribes.

Going back to S and her experiment, she uses the severity score for µ1 − µ2 >

0.1 in order to quantify the strength of the evidence attached to that claim. She

computes that score as follows:

ts =
(4.250)− (0.1)

Sp ×
√

1
10 +

1
10

SEV(µ1 − µ2 > 0.1) = F(ts) = 0.961

where F(ts) is the cumulative distribution function of a Student’s distribution with

18 degrees of freedom evaluated at point ts.

If the severity score is high, then we can infer that the data provides good

evidence for µ1 − µ2 > 0.1.

Severity Principle (full). Data x0 (produced by process G) provides

good evidence for hypothesis H (just) to the extent that test T severely

passes H with x0. (Mayo and Spanos 2011, p.162).

In a nutshell, S has found a significant result (p-value=0.036). She thus re-

jects H0 and finds a high severity score for the claim µ1 − µ2 > 0.1 (severity

score=0.961). Hence, S believes that she has good evidence (see previous quotes)

for such a difference that is at least ten times larger than the true difference.
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Again, it is really peculiar when Spanos claims that I ”misinterpret the assign-

ment of probability 0,961 meant for the inferential claim γ > 0.1 as an endorse-

ment for γ = 0.1; it is not!” (Spanos 2022, p.10). I have never written such a

statement in any of my publications!

S would be epistemically irresponsible to trust the severity score given what

is now known about the problem of effect sizes and underpowered tests. If the

severity score is high for µ1 − µ2 > 0.1, it is because the observed effect size is

very big due to the sampling error. Again, the sampling error corrupts the severity

measure of evidence. Therefore, the severity score is an inadequate measure of

evidence and should be rejected. In order to assess the strength of the evidence, one

must make sure that a departure from the null is not an artifact of an underpowered

test. The severity score is useless for that purpose.

What would be better than the severity score to assess the strength of the ev-

idence against the null would either be to repeat the experiment in order to see

if the results are robust or, to obtain more observations in order to increase the

power of the test and realise that many more observations are needed in order to

convincingly reject H0 and track the truth (the difference is 0.01).

The first option is oddly dismissed by Spanos: ”Replicating n=10 many times,

say N = 10000; will not address the inherent problem of untrustworthiness” (Spanos

2022, p.11). Yet, Spanos also claims that ” [by] replacing “31” with the other two

seeds and simple variations on “7356581” by adding a digit, all the t-tests reverse

the author’s result of rejecting H0”(Spanos 2022, p.8). Now this is equivalent to

saying that the repetition of the experiment will show that the evidence against the

null is poor and that S’s results are not robust. There is a flagrant contradiction here

in Spanos’ paper.

The second option is incompatible with Spanos and Mayo’s view to the effect

that a more powerful test (not of the pre-data kind, the real kind, given the true
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unknown difference between the means) can provide better evidence against the

null: ”wherein an α level rejection is taken as more evidence against the null, the

higher the power of the test” (Mayo and Spanos 2006, p.344), which is obviously

wrong in this case. I’m not sure how this can be debatable. The rejection of the

null by S is obviously the result of the sampling error and therefore constitute poor

evidence against the null. Even Spanos acknowledges that ”[a] huge sample size

(n= 5312800) [is] called for” (Spanos 2022, p.10) in order to reject the null more

convincingly.

More power yields a better estimate of the true difference (see previous com-

ments on consistent estimators) and therefore better evidence against the null. In

fact, one would need more than one hundred thousand repetitions of the experi-

ment in order to find out that the distribution of the p-values is not uniform and

that H0 should be rejected. The Appendix shows such a result with three million

repetitions, starting with a seed of 31 in order to meet Spanos’s challenge: ”It’s not

obvious why the author did not use the seed “31” when simulating other NIID data

in the same paper”(Spanos 2022, p.10). (more on the choice of seeds in the next

section).

Given that a p-value follows a uniform distribution under H0 but not under H1,

S could perform a Kolmogorov-Smirnov test with n=3,000,000 for the uniformity

of the p-values. Doing so, she would obtain a test statistic of 0.0017245 and a p-

value of 0.00000003561 (See Appendix to reproduce the results). This means that

S would be able to convincingly reject the hypothesis H0 with the help of a test that

relies on a huge sample size. This clashes with the rejection of H0 with only ten

observations per group. The more powerful test clearly provides better evidence

against H0 here.
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3 A New Example

Now let us assume that the observations were problematic in the previous example,

that the model was somehow misspecified even though the result comes from a very

transparent simulation. Then let us conjure up a similar example, but one that is

not misspecified in the way that Spanos would object to.

Imagine the same scenario with S. This time around S makes 50 observations

for each group and she is now interested in a difference larger than 2.5 between

the two means. The pre-data power to detect a difference like that is pretty decent:

0.7989 and the true difference is still of 0.01.

She then observes a difference of 4.354739, a test statistics of t = 3.2884, and

she rejects H0 with a p-value of 0.0007. (See Appendix to repeat the experiment).

Again, she computes a severity score for a difference strictly bigger than 2.5 of

0.9177493. She is thus mislead once again by the severity score.

Now this example can be generated with a seed of 947878140 (See Appendix).

Contrary to what Spanos suggests: ”The seed used by Rochefort-Maranda (2020)

for the data in figure 2 is “31,” which is an unfortunate choice due to its smallness”

(Spanos 2022, p.8), the size of the seed does not matter at all. I can find such exam-

ple at will no matter the size of the seed. Moreover, Spanos will find it impossible

to find a trend in the differences of the observations in the order they are sampled

(See Figure 2).

In other words, examples like the ones I gave are easy to produce. For very low

powered tests, they occur slightly more often than five percent of the time and the

best way to weed them out is to repeat the experiment or to increase the power of

the test in order to find genuine evidence evidence against the null.
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Figure 2: Plot of the differences for the observations between each group in the order they

were sampled.

3.1 The More Power the Better

The slogan ”The more power the better” is not only good for pre-data power analy-

sis. Powerful experiments can detect smaller discrepancies, but that is not an issue

at all unless one gives the false impression that a significant test necessarily means

that the discrepancy is large when it is not. Moreover, small discrepancies do not

suggest that H0 is true or even plausible.

misconception: It is not because we have strong evidence for a small(er) dis-

crepancy from the null that we have less evidence against the null. Whether I find a

thousand dollars in my pocket or ten cents, both are equally good evidence against

the statement ”I have no money in my pocket”. The size of the discrepancy cuts no

epistemic ice.
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fact: (Ceteris Paribus) Sampling more observations will never be detrimental

to a statistical inference. More observations means less sampling error. Just think

of how informative a census of the population can be as opposed to a probabilistic

survey.

There is a clear distinction between (1) claiming that a significant test provides

justification for an scientifically interesting difference between H0 and H1 and (2)

claiming that it provides justification for a difference of λ between H0 and H1.

A small difference between H0 and H1 can be extremely well-justified. What

inflated effect sizes show is that if we want to justify the existence of a difference

λ (whatever it may be), then we need a significant result obtained with a powerful

test.

In Spanos’ paper, he is asking us to imagine two tests that are barely signifi-

cant. One (test A) uses more observation than the other (test B). He also correctly

points out that ”according to Rochefort-Maranda (2020), test (A) provides stronger

evidence against H0: µ0 = 0.5 because n1 > n2” (Spanos 2022, p.16). Then he

proceeds to claim that this is false because the lower bound confidence interval of

test B is further away from 0.5. In reaction, I would simply say that if test A is

barely significant and that we can find a larger estimate for µ with less observation

with test B, then test B is corrupted by the higher sampling error and the Winner’s

Curse. So, yes, test A provides better evidence against H0 even if there is only a

small discrepancy at play. To claim that B provides better evidence against the null

is tantamount to saying that we should favor the rejection of the null hypothesis

due to sampling error as opposed to the discovery of true discrepancies from the

null. John Pratt (1961) is simply mistaken (See Spanos 2022, p.16).
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4 Conclusion

In sum, I still stand by my original conclusion: the severity score is fundamen-

tally flawed. It favors the rejection of the null hypothesis due to sampling error

as opposed to the discovery of true discrepancies from the null. At the root of the

problem is the mistaken view according to which the detection of a large discrep-

ancy is better evidence against H0 than a smaller one. When holding on to such

a view, powerful test are deemed to provide less evidence against the null when

in fact they produce the most reliable conclusions one can obtain. In statistics,

obtaining more observations (i.e., a larger sample size) can be costly or opera-

tionally impossible, but never detrimental to the quality of an inference because it

reduces the variance associated with the sampling procedure (the sampling error).

Of course, one can be mislead into thinking that there is a large discrepancy from

the null when a powerful test is significant. But this does not mean that powerful

test provides poor evidence against the null.
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