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I give a very simple derivation of the Born rule by counting states from a continuous basis.
More precisely, I show that in a continuous basis, the contributing basis vectors are present in a

state vector with real and equal coefficients, but they are distributed with variable density among
the eigenspaces of the observable. Counting the contributing basis vectors while taking their density
into account gives the Born rule without making other assumptions. State counting yields the Born
rule only if the basis is continuous, but all known physically realistic observables admit such bases.

The continuous basis is not unique, and for subsystems it depends on the observable.
But for the entire universe, there are continuous bases that give the Born rule for all measurements,

because all measurements reduce to distinguishing macroscopic pointer states, and macroscopic
observations commute. This allows for the possibility of an ontic basis for the entire universe.

In the wavefunctional formulation, the basis can be chosen to consist of classical field configura-
tions, and the coefficients Ψ[ϕ] can be made real by absorbing them into a global U(1) gauge.

For the many-worlds interpretation, this result gives the Born rule from micro-branch counting.
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I. INTRODUCTION

In quantum mechanics, the Born rule prescribes the
probability that the outcome of a quantum measurement
is the eigenvalue λj of the observable is

Prob(λj) = ⟨ψ|P̂j |ψ⟩, (1)

where the unit vector |ψ⟩ represents the state of the ob-

served system right before the measurement, and P̂j is
the projector on the eigenspace corresponding to λj .

The projection postulate states that |ψ⟩ projects onto

one of the eigenspaces P̂j with the probability from (1).
von Neumann expressed already in 1927 the desirabil-

ity of having a derivation of the Born rule “from empirical
facts or fundamental probability-theoretic assumptions,
i.e., an inductive justification” [22]. Gleason’s theorem
shows that any countably additive probability measure
on closed subspaces of a Hilbert space H, dimH > 2,

has the form tr(P̂ρ̂), where P̂ is the projector on the sub-
space and ρ̂ is a density operator [13]. If the state is
represented by ρ̂, this can be interpreted as the Born
rule. Gleason’s theorem is very important, in showing
that if there is a probability rule, it should have the form
of the Born rule. But it does not say that the density
operator of the observed system is the same ρ̂, how the
probabilities arise in the first place, and what they are
about [9]. For example, it is unable to convert the ampli-
tudes of the branches in the many-worlds interpretation
(MWI) [7, 10, 20, 24] into actual probabilities. For this
reason, the search for a proof of the Born rule continues.

There are numerous proposals to derive the Born rule.
Earlier attempts to derive it from more basic principles
include [12], [14], and others [11]. Such approaches based
on a frequency operator were accused of circularity [5, 6].
Other proposals, in relation to MWI, are based on many-
minds [1], decision theory [8, 17, 23] (also accused of cir-

cularity in [2, 3]), envariance [25] (accused of circularity
in [18]), measure of existence [19] etc. For a review see
[21]. The necessity to obtain the Born rule in MWI by
branch counting was advocated in [16].

In this article I follow this guideline:

Goal 1. Ideally, the Born rule should be obtained in the
old-fashioned way, as the ratio of the number of favorable
outcomes to the total number of possible outcomes.

I show that, in a continuous basis, it is possible to ex-
press the state vector as a linear combination of basis
vectors of equal norm, but distributed unevenly. Then
the probability density can be understood as a distribu-
tion of “classical” states (Fig. 1).
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FIG. 1. The Born rule from counting basis states.
A. The usual interpretation of a wavefunction as a linear com-
bination of basis state vectors of different lengths.
B. The interpretation of the wavefunction in terms of equal
length basis state vectors, but with inhomogeneous density.

In Sec. §II I prove the main result. In Sec. §III I
discuss its implications, how it makes possible the exis-
tence of a “classical” or ontic basis for the entire universe,
how the wavefunction becomes real, and how this yields
probabilities in the many-worlds interpretation.
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II. PROBABILITIES FROM COUNTING

Before proving the main result, let us motivate it.
Consider a state vector of the form

|ψ⟩ = 1√
n

n∑
k=1

|ϕk⟩. (2)

where (|ϕk⟩)k∈{1,...,n} are orthonormal vectors from H.

Then, if every |ϕk⟩ is an eigenvector of the operator Â
representing the observable, the Born rule simply coin-
cides with the counting of basis states:

⟨ψ|P̂j |ψ⟩ =
1

n

(
n∑

k=1

⟨ϕk|

)(
P̂j

n∑
k=1

|ϕk⟩

)

=
1

n

∑
|ϕk⟩∈P̂jH

⟨ϕk|ϕk⟩ =
nj
n
,

(3)

where P̂j is the projector of the eigenspace corresponding
to the eigenvalue λj , and nj is the number of basis vectors
|ϕk⟩ that are eigenvectors for λj . This would satisfy Goal
1, but the state vectors of the form (2) are very special.

Interestingly, in the continuous case, the basis vectors
can be distributed with nonuniform density, making it
possible for the continuous version of eq. (2) to apply to
any state vector. This motivates the following results.

Theorem 1. Let (|ϕ⟩)ϕ∈C be an orthonormal basis in-
dexed continuously by the points of a topological manifold
C with a measure µ on its σ-algebra. Then, any state vec-
tor |ψ⟩ so that |⟨ϕ|ψ⟩| is µ-measurable has the form

|ψ⟩ =
∫
ϕ∈C

eiα(ϕ)|ϕ⟩dµ̃(ϕ), (4)

where α : C → R, and µ̃ is a measure on C specifying the
density of the basis vectors (eiα(ϕ)|ϕ⟩)ϕ∈C.
If the eigenspace Hλ of an eigenvalue λ of an observ-

able Â is spanned by (|ϕ⟩)ϕ∈Cλ
, where Cλ is µ-measurable,

Prob(λ) =

∫
ϕ∈Cλ

eiα(ϕ)|ϕ⟩dµ̃(ϕ). (5)

Proof. In full generality, we can assume that ⟨ϕ|ψ⟩ ∈ R
for all ϕ. If not, substitute |ϕ⟩ 7→ eiα(ϕ)|ϕ⟩, where α(ϕ) is
the phase in the polar form of ⟨ϕ|ψ⟩, for all ϕ ∈ C. Then,

|ψ⟩ =
∫
ϕ∈C

r(ϕ)|ϕ⟩dµ(ϕ), (6)

where r(ϕ) := |⟨ϕ|ψ⟩| and r ∈ L2(C, µ,R) is a real non-
negative square-integrable function.

The measure dµ̃(ϕ) := r(ϕ)dµ(ϕ) satisfies eq. (4):

|ψ⟩ =
∫
ϕ∈C

|ϕ⟩dµ̃(ϕ). (7)

Since r(ϕ) is µ-measurable, the measure µ̃ is absolutely
continuous with respect to µ.
If one is not careful enough, one may think that eq.

(7) cannot represent a normalized vector. But it does:

⟨ψ|ψ⟩ =
∫
ϕ∈C

⟨ϕ|dµ̃(ϕ)
∫
ϕ′∈C

|ϕ′⟩dµ̃(ϕ′)

=

∫
ϕ∈C

(∫
ϕ′∈C

⟨ϕ|ϕ′⟩dµ̃(ϕ′)
)
dµ̃(ϕ)

=

∫
ϕ∈C

(∫
ϕ′∈C

⟨ϕ|ϕ′⟩r(ϕ′)dµ(ϕ′)
)
dµ̃(ϕ)

=

∫
ϕ∈C

r(ϕ)dµ̃(ϕ) =

∫
ϕ∈C

r2(ϕ)dµ(ϕ) = 1.

(8)

Eq. (5) follows directly from eq. (7).

Therefore, the density µ̃ of the basis states corresponds
to the Born rule, according to Goal 1.

III. IMPLICATIONS

Remark 1. For any physically realistic quantum mea-
surement there is a continuous basis in which the ob-
servable is diagonal, as required by Theorem 1. Even
for a single particle in nonrelativistic quantum mechan-
ics, the Hilbert space is infinite-dimensional, and admits
continuous bases, e.g. the position basis. In general, mea-
surements reduce to position measurements: the pointer
indicates the result by its position, for a photographic
plate we read the position where the particle hit it etc.
In practice, these are not points, but regions of space of
positive area or volume, so all measurements satisfy,
in practice, the conditions from Theorem 1.

Remark 2. Subsystems admit observables that cannot
be diagonalized simultaneously, so the continuous basis
depends on the observable. Therefore, for subsystems
there are no continuous bases universal for all ob-
servables.

Remark 3. However, there is a universal continuous
basis for the entire universe. Every measurement ul-
timately becomes a direct observation of a macro-state,
the state of the pointer of the measuring device. So ev-
ery measurement reduces to distinguishing macro-states.
Macro-states are represented by subspaces of the form

P̂αH, where (P̂α)α∈A is a complete set of commuting

projectors on H, so that [P̂α, P̂β ] = 0 for any α ̸= β ∈ A,

and
⊕

α∈AP̂αH = H. Since ultimately every measure-
ment translates into an observation represented by the
macro projectors, there is a universal continuous basis
for all measurements, which diagonalizes all macro pro-
jectors. Therefore, this universal basis can be taken as
representing “classical states”, which may be called ontic
states. Theorem 1 allows us to interpret the Born rule
for any measurement as counting such ontic states. This
is consistent with any observable we measure for the sub-
system, since different measurement settings ultimately
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translate to distinguishing macro-states defined by the
same set of macro projectors.

It may seem too much to count states of the entire
universe just to account for the probabilities of the mea-
surement of a single particle. But in fact we always do
this, because the observed particle can be entangled with
any other system in the universe.

Remark 4. A basis (|ϕ⟩)ϕ∈C that really is ontic or classi-
cal is possible. In the Schrödinger wavefunctional formu-
lation of quantum field theory [15], C becomes the config-
uration space of classical fields, and the wavefunctional
Ψ[ϕ] := ⟨ϕ|Ψ⟩ replaces the nonrelativistic wavefunction.
Now our basis literally consists of classical states.
While it may be unusual to interpret quantum mechanics
in this way, it makes sense, once we remember that we
never observe individual particles, but macro-states, and
these are imported from the classical theory.

Remark 5. The phase change |ϕ⟩ 7→ eiα(ϕ)|ϕ⟩ from the
proof of Theorem 1 can be identified with an U(1) gauge
transformation of the classical field, ϕ 7→ eiα(ϕ)ϕ, so
that eiα(ϕ)|ϕ⟩ = |eiα(ϕ)ϕ⟩, because both are unphysical.
Charged and spinor fields admit an U(1) symmetry, but
also the photons [4], since classical electromagnetic field
admits a complex form. Then, Ψ[ϕ] can be made real
by changing the global U(1) gauge of the classi-
cal states, and eq. (7) can be interpreted directly as a
distribution of classical states.

Remark 6. In the many-worlds interpretation, if we
“naively” count the worlds or macro-branches that result
after a measurement, the result coincides with the Born
rule only if the state has the form (2) in the eigenba-
sis of the observable. But counting micro-branches that
correspond to the basis (|ϕ⟩)ϕ∈C gives the correct prob-
abilities (even if they may interfere in the future, unlike
the macro-branches), in accord with Goal 1.

Remark 7. In the wavefunctional approach each micro-
branch consists of classical fields ϕ. These are the lo-
cal beables. This justifies counting each micro-
branch as a world.
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