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I provide a simple derivation of the Born rule as giving a classical probability, that is, the ratio
of the measure of favorable states of the system to the measure of its total possible states.

In classical systems, the probability is due to the fact that the same macro state can be realized
in different ways as a micro state. Despite the radical differences between quantum and classical
systems, the same can be applied to quantum systems. More precisely, I show that in a continuous
basis, the contributing basis vectors are present in a state vector with real and equal coefficients, but
they are distributed with variable density among the eigenspaces of the observable. The measure of
the contributing basis vectors gives the Born rule without making other assumptions.

This works only if the basis is continuous, but all known physically realistic measurements involve
a continuous basis, because they involve the positions of the particles.

The continuous basis is not unique, and for subsystems it depends on the observable.
But for the entire universe, there are continuous bases that give the Born rule for all measurements,

because all measurements reduce to distinguishing macroscopic pointer states, and macroscopic
observations commute. This allows for the possibility of an ontic basis for the entire universe.

In the wavefunctional formulation, the basis can be chosen to consist of classical field configura-
tions, and the coefficients Ψ[ϕ] can be made real by absorbing them into a global U(1) gauge.

This suggests an interpretation of the wavefunction as a nonuniform distribution of classical states.
For the many-worlds interpretation, this result gives the Born rule from micro-branch counting.
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I. INTRODUCTION

In quantum mechanics, the Born rule prescribes that
the probability that the outcome of a quantum measure-
ment is the eigenvalue λj of the observable is

Prob(λj) = ⟨ψ|P̂j |ψ⟩, (1)

where the unit vector |ψ⟩ represents the state of the ob-

served system right before the measurement, and P̂j is
the projector on the eigenspace corresponding to λj .

The projection postulate states that |ψ⟩ projects onto

one of the eigenspaces P̂j with the probability from (1).
von Neumann expressed already in 1927 the desirabil-

ity of having a derivation of the Born rule “from empirical
facts or fundamental probability-theoretic assumptions,
i.e., an inductive justification” [26]. Gleason’s theorem
shows that any countably additive probability measure
on closed subspaces of a Hilbert space H, dimH > 2,

has the form tr(P̂ρ̂), where P̂ is the projector on the sub-
space and ρ̂ is a density operator [14]. If the state is
represented by ρ̂, this can be interpreted as the Born
rule. Gleason’s theorem is very important, in showing
that if there is a probability rule, it should have the form
of the Born rule. But it does not say that the density
operator of the observed system is the same ρ̂, how the
probabilities arise in the first place, and what they are
about [9]. For example, it is unable to convert the ampli-
tudes of the branches in the many-worlds interpretation
(MWI) [7, 10, 24, 28] into actual probabilities. For this
reason, the search for a proof of the Born rule continues.

There are numerous proposals to derive the Born rule.
Earlier attempts to derive it from more basic principles

include [12], [15], [11] etc. Such approaches based on
a frequency operator were accused of circularity [5, 6].
Other proposals, in relation to MWI, are based on many-
minds [1], decision theory [8, 19, 27] (accused of circular-
ity in [2, 3]), envariance [29] (accused of circularity in
[20]), measure of existence [23] etc. For a review see [25].
The necessity to obtain the Born rule in MWI by branch
counting was advocated in [18], where Saunders proposed
the existence of consistent histories that are more refined
than the ones that give the branching structure and have
equal amplitude branches.

In this article, I investigate the possibility of obtaining
probabilities that are very similar to the classical ones.
As in classical physics, what we observe are macro-states.
If each macro state can be realized in different ways as
a micro state, probabilities can arise from the relative
count, or rather the relative measure1, of the micro-states
underlying each macro state, just like in the standard
understanding of probabilities.

In Section §II I argue that, contrary to the common
view on quantum mechanics, an “ontic” or “classical”
basis for the entire universe is possible, allowing for
classical-like probabilities in quantum mechanics.

In Sec. §III I prove the main result, that in a con-
tinuous basis it is possible to express the state vector
as a linear combination of basis vectors of equal norm,
but distributed unevenly. Then the probability density
can be understood as a distribution of “classical” states

1 The term “counting” is a misnomer if the basis is continuous,
and therefore uncountable, but it may be intuitive.
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relatively to that basis (Fig. 1).

A. Constant density, varying amplitude

B. Constant amplitude, varying density
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FIG. 1. The Born rule from “counting” basis states.
A. The usual interpretation of a wavefunction as a linear com-
bination of basis state vectors of different amplitudes.
B. The interpretation of the wavefunction in terms of basis
vectors with uniform amplitude but inhomogeneous density.

In Sec. §IV I discuss the physical interpretation of
this derivation of the Born rule, how it makes possible
the existence of a “classical” or ontic basis for the entire
universe, how complex numbers appear, and how this
yields probabilities in the many-worlds interpretation.

II. CLASSICAL VS. QUANTUM
PROBABILITIES

In this Section we look at classical probabilities to iden-
tify what conditions they require to be satisfied, and
whether they can be satisfied in quantum mechanics.
This will provide the physical justification to interpret
probabilities in a quantum world, based on the proof
given in Sec. §III.

If the world would be classical and deterministic, the
result of a process can appear to be impredictable at the
macro-level, even if “Laplace’s demon”, who knows the
physical state in full detail, should be able to assign to
each event a probability equal to either 0 or 1.

Observation 1. Nontrivial probabilities exist for agents
that lack complete information about the micro-state of
the system.

For example, the classical probability that throwing a
pair of dice results in the outcome

+ (2)

is given by the measure of the set of micro-states that re-
alize the macro-state in which the outcome is (2) divided
by the total measure. Let us summarize this:

Condition 1 (Probability). The probability is the ratio
of the measure of favorable outcomes to the total measure
of possible outcomes.

In classical physics, Condition 1 makes sense because
the universe is in a unique state at any time. But in
quantum mechanics, an observed system can be in a su-
perposition of multiple states that coexist in parallel.

Difficulty 1. Unlike classical systems, quantum micro-
states seem to be able to coexist in parallel, in superpo-
sition, as shown by interference experiments.

But would Condition 1 be invalidated if multiple classi-
cal worlds would exist in parallel? In a classical universe
where there are more worlds and the agent doesn’t know
in which of them it exists, the ignorance of the micro-
state assuming the knowledge of the macro-state is the
same as in a universe where there is only one world whose
state is incompletely known to the agent. This leads to
the following:

Observation 2 (Equivalence). Probabilities for a given
macro-state are independent on whether the distribution
describes the probability that the agent exists in a unique
world and ignores its micro-state, or if it describes more
worlds, and the agent does not know in which of these
worlds it exists.

An implicit assumption underlying Observation 2 is
that an agent or observer supervenes (in the sense that
its states depends) on a single world, even if there are
more parallel worlds. But if there can be more parallel
worlds, this condition is additionally needed:

Condition 2 (Correspondence). If there are more par-
allel worlds, and at a given time different instances of an
agent exist in more of them, each instance of the agent
supervenes on only one of these worlds.

In other words, the physical state of the world should
be able to support ontologically the existence of agents
or observers, so that their experience of probabilities de-
pends on their ignorance of the micro-state.
In a quantum world, the central difference is that there

are multiple ways in which the macro-state of a subsys-
tem can be realized as micro-states, each depending on
the experimental settings. For example, the spin of a par-
ticle can be interpreted as consisting of definite possible
spins | ↑⟩z and | ↓⟩z if the spin is measured along the axis
z, but not if it is measured along another axis. In clas-
sical mechanics, the possible outcomes are considered to
be independent of the measuring settings, provided that
the observation’s effect on the observed system can be
made arbitrarily small.
The main difficulty in the applicability of classical

probabilities in quantum mechanics is therefore

Difficulty 2. The possible observed quantum states of a
subsystem depend on the settings of the measuring device
performing the observation of that subsystem.

However, quantum mechanics can satisfy Condition 2.
For example, a measurement of the spin of a spin-1/2
particle along the axis z results in the possible states{

| ↑⟩z|up⟩z
| ↓⟩z|down⟩z,

(3)
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where | ↑⟩z and | ↓⟩z are the spin states of the parti-
cle along the axis z, and |up⟩z and |down⟩z are the cor-
responding states of the pointer. A spin measurement
along the axis x leads to a different decomposition,{

1/
√
2 (| ↑⟩z + | ↓⟩z) |up⟩x

1/
√
2 (| ↑⟩z − | ↓⟩z) |down⟩x.

(4)

The macro-states corresponding to spin measurements
along distinct axes are orthogonal, so the micro-states
from eq. (3) are orthogonal to those from eq. (4), even
though the observed system’s states | ↑⟩z and | ↓⟩z are not
orthogonal to 1/

√
2 (| ↑⟩z ± | ↓⟩z). Since all four states

|up⟩z, |down⟩z,|up⟩x, and |down⟩x are macroscopically
distinct, they are orthogonal, so the four states from
equations (3) and (4) are also orthogonal.

In general, every quantum measurement ultimately be-
comes a direct observation of the macro-state of the mea-
suring device. So every measurement reduces to distin-
guishing macro-states. Macro-states are distinguished by
macro-observables, and all macro-observables commute.

Macro-states are represented by subspaces of the form

P̂αH, where (P̂α)α∈A is a set of commuting projectors

on H, so that [P̂α, P̂β ] = 0 for any α ̸= β ∈ A, and⊕
α∈AP̂αH = H. This claim is empirically adequate, as

illustrated by the example of spin measurements. This
position is adopted for example in decohering histories
approaches [13] and in MWI [28].

Observation 3. We never observe the micro-state, only
the macro-states.

Since ultimately every measurement translates into an
observation represented by the macro projectors, there is
a universal basis for all measurements, which diagonalizes
all macro projectors.

Observation 4. For the entire universe, whose states
are represented by vectors in a Hilbert space H, there is
a universal basis

(|ϕ⟩)ϕ∈C (5)

compatible with the macro-states. In general, more such
bases exist.

It may seem too much to account for states of the entire
universe just to explain the probabilities of the measure-
ment of a single particle. But in fact we always do this,
because the observed particle can be entangled with any
other system in the universe. The usual separation be-
tween the observed system and the rest of the universe
that enters in our theoretical description is an idealiza-
tion that may make us not the forest for the trees. Then,

Observation 5. The state of the universe is not a set of
independent states of subsystems, but a single state.

Despite Difficulty 2, the existence of a basis as in Ob-
servation 4 will turn out to make it possible for quantum
mechanics to satisfy Condition 2. This requires

Principle 1. In quantum mechanics, there is a basis as
in Observation 4, so that all instances of an agent can be
realized only in worlds whose states are from that basis.
We will call it ontic basis and its elements ontic states.

But another difficulty in quantum mechanics is that
the state is found, after wavefunction collapse or deco-

herence, to be P̂α|ψ⟩/|P̂α|ψ⟩|. The Born rule prescribes

the probability that the state becomes P̂α|ψ⟩/|P̂α|ψ⟩| is
given by ⟨ψ|P̂α|ψ⟩, as in (1). In the ontic basis (5), |ψ⟩
is decomposed as a linear combination with distinct co-
efficients (amplitudes) ⟨ϕ|ψ⟩, so

Prob(α) = ⟨ψ|P̂α|ψ⟩ =
∫
Cα

|⟨ϕ|ψ⟩|2 (ϕ)dµ(ϕ), (6)

where Cα = {ϕ ∈ C||ϕ⟩ ∈ P̂αH} and µ is the measure on

C. While |⟨ϕ|ψ⟩|2 gives a measure, this is not sufficient
to interpret it probabilistically:

Difficulty 3. Measure alone is not probability.

In Sec. §III we will see that Principle 1 allows Con-
dition 2 to be satisfied in quantum mechanics, and Dif-
ficulties 1, 2, and 3 to be avoided, so by Observation 2,
Condition 1 is satisfied too.

III. DERIVATION OF THE BORN RULE

Before proving the main result, let us motivate it.
Consider a state vector of the form

|ψ⟩ = 1√
n

n∑
k=1

|ϕk⟩. (7)

where (|ϕk⟩)k∈{1,...,n} are orthonormal vectors from H.

Then, if every |ϕk⟩ is an eigenvector of the operator Â
representing the observable, the Born rule simply coin-
cides with counting basis states:

⟨ψ|P̂j |ψ⟩ =
1

n

(
n∑

k=1

⟨ϕk|

)(
P̂j

n∑
k=1

|ϕk⟩

)

=
1

n

∑
|ϕk⟩∈P̂jH

⟨ϕk|ϕk⟩ =
nj
n
,

(8)

where P̂j is the projector of the eigenspace corresponding
to the eigenvalue λj , and nj is the number of basis vectors
|ϕk⟩ that are eigenvectors for λj .
In MWI, this is the only situation when “naive branch

counting” coincides with the Born rule. It is used as a
starting point for arguments that the Born rule is present
in MWI for “less naive” counting rules [8, 18, 23, 27].
Eq. (8) would satisfy Condition 1, but it seems to

work only for very special state vectors. We cannot even
make it work for all vectors in a finite-dimensional Hilbert
space, since the basis vectors either have to contribute
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to eq. (7) with the same absolute value 1/
√
n of the

coefficient ⟨ϕk|ψ⟩, or to be absent.
Interestingly, as if by magic, the idea works in the con-

tinuous case without problems, because the basis vectors
can be distributed with nonuniform density, making it
possible for the continuous version of eq. (7) to apply to
any state vector. Let C be a topological manifold with
a measure µ on its σ-algebra, and H := L2(C, µ,C) the
Hilbert space of square-integrable complex functions on
C. Let (|ϕ⟩)ϕ∈C an orthogonal basis of H, so that∫

C

⟨ϕ|ϕ′⟩ψ(ϕ′)dµ̃(ϕ′) = ψ(ϕ) (9)

for any square-integrable function ψ ∈ H.
Without loss of generality, for any given state vector

|ψ⟩ so that |⟨ϕ|ψ⟩| is µ-measurable, we can assume that
⟨ϕ|ψ⟩ ∈ R for all ϕ. If not, substitute the basis by |ϕ⟩ 7→
eiθ(ϕ)|ϕ⟩, where θ(ϕ) is the phase appearing in the polar
form of ⟨ϕ|ψ⟩, for all ϕ ∈ C.

Theorem 1. The state vector |ψ⟩ has the form

|ψ⟩ =
∫
C

|ϕ⟩dµ̃(ϕ), (10)

where θ : C → R, and µ̃ is a measure on C specifying the
density of the basis vectors (|ϕ⟩)ϕ∈C.

Any projector P̂α diagonal in the basis (|ϕ⟩)ϕ∈C corre-
sponds to a subset Cα ⊆ C. If Cα is µ-measurable,∣∣∣∣∫

Cα

|ϕ⟩dµ̃(ϕ)
∣∣∣∣2 =

∫
Cα

r2(ϕ)dµ(ϕ). (11)

Proof. Let r(ϕ) := |⟨ϕ|ψ⟩|. Then, r ∈ L2(C, µ,R) is a
real non-negative square-integrable function, and

|ψ⟩ =
∫
C

r(ϕ)|ϕ⟩dµ(ϕ). (12)

The following measure satisfies eq. (10),

dµ̃(ϕ) := r(ϕ)dµ(ϕ). (13)

Then, evidently P̂α|ψ⟩ =
∫
Cα

|ϕ⟩dµ̃(ϕ), and

∣∣∣∣∫
Cα

|ϕ⟩dµ̃(ϕ)
∣∣∣∣2 = ⟨ψ|P̂α|ψ⟩ =

∫
Cα

r2(ϕ)dµ(ϕ). (14)

The reader may think that
∫
Cα

|ϕ⟩dµ̃(ϕ) cannot have

finite norm, or that, in any case, it has to be larger than
1. So let us check this more explicitly:∣∣∣∣∫

Cα

|ϕ⟩dµ̃(ϕ)
∣∣∣∣2 =

(∫
Cα

⟨ϕ|dµ̃(ϕ)
)(∫

Cα

|ϕ′⟩dµ̃(ϕ′)
)

=

∫
Cα

(∫
Cα

⟨ϕ|ϕ′⟩dµ̃(ϕ′)
)
dµ̃(ϕ)

=

∫
Cα

(∫
Cα

⟨ϕ|ϕ′⟩r(ϕ′)dµ(ϕ′)
)
dµ̃(ϕ)

=

∫
Cα

r(ϕ)dµ̃(ϕ) =

∫
Cα

r2(ϕ)dµ(ϕ).

(15)

This double-checks eq. (11).

Observation 6 (Probability). If Principle 1 is assumed
in quantum mechanics, Theorem 1 shows that the density
of the ontic states satisfies the Born rule for the macro-
observables P̂α, α ∈ A. This allows Condition 2 to be
satisfied, and by Observation 2, Condition 1 is satisfied
too, despite Difficulties 1–3, according to the Born rule.

But this requires the following:

Condition 3 (Continuity). The ontic basis has to be
continuous, in the sense that C is a topological manifold
and dµ is continuous.

For any physically realistic quantum measurement
there is a continuous basis in which the observable is diag-
onal, as required by Theorem 1. Even for a single particle
in nonrelativistic quantum mechanics, the Hilbert space
is infinite-dimensional, and admits continuous bases, e.g.
the position basis.

Observation 7. All measurements satisfy, in practice,
Condition 3 required for Theorem 1.

Example 1. Consider a measurement of the spin of
a particle, whose spin state is initially |ψ⟩s = a| ↑
⟩z + b| ↓⟩z, where |a|2 + |b|2 = 1. The particle also
has position degrees of freedom, so its state is in fact
ψ(x, t) = ψu(x, t)| ↑⟩z + ψd(x, t)| ↓⟩z. At the initial
time t0, ψu(x, t0) = aψ0(x), ψd(x, t0) = bψ0(x), and
⟨ψ0|ψ0⟩ = 1. The measuring device also has position
degrees of freedom. The measurement process consists
of using a magnetic field to entangle the spin and the po-
sition of the particle, then it detects the position. After
passing through the magnetic field, at time t1, ψu(x, t1)
becomes restricted to the “up” region of a screen or
photographic plate, and ψd(x, t1) to the “down” region.
From the position, the spin is inferred to be either “up”
or “down”. The regions “up” and “down” of the screen
are almost identical, but the densities of ψu(x, t1) and

ψd(x, t1) are proportional to |a|2 and respectively |b|2.
Eq. (10) becomes, for the two possible outcomes,{

|ψu, t1⟩| ↑⟩z =
∫
up
eiθu(x)|x⟩dµ̃u(x)

|ψd, t1⟩| ↓⟩z =
∫
down

eiθd(x)|x⟩dµ̃d(x)
(16)

where {
dµ̃u(x) = |ψu(x, t1)| dx
dµ̃d(x) = |ψd(x, t1)| dx.

(17)

Now, we invoke collapse or decoherence to explain why
only one outcome is observed, and the probability is ob-
tained by applying eq. (11). This illustrates how, despite
apparently making a binary measurement of a qubit, the
actual basis is continuous, as required by Theorem 1.

Observation 8. We notice the existence of three den-
sities. The first one is dµ, given by the measure on C,
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and it is independent of states. The second density is
dµ̃ = r(ϕ)dµ, which describes how the ontic states con-
tribute to the state vector |ψ⟩ in eq. (10). The third
density, r2(ϕ)dµ is the probability density corresponding
to the Born rule, as in eq. (11).

This may seem strange, despite the explicit calcula-
tion from (15), so let us try to understand the interplay
between these densities.

Note 1 (“Magic” accident). One may expect that we
have to define the measure µ̃ so that dµ̃(ϕ) is r2(ϕ)dµ(ϕ),
rather than as in eq. (13). But, interestingly, eq. (11)
follows without this, simply by choosing the measure
µ̃ so that the amplitudes become uniformly equal to
1. Moreover, it does not even work otherwise, because
|ψ⟩ ≠

∫
C
r2(ϕ)|ϕ⟩dµ(ϕ).

Note 2 (Why it works?). Naively, it may seem that the
norm of

∫
Cα

|ϕ⟩dµ̃(ϕ) cannot be finite, or at least that it

is equal to
∫
Cα
dµ̃(ϕ) and it can be larger than 1, but this

is incorrect. Eq. (11) is correct, as checked in (14) and
double-checked in (15), because r(ϕ) is square-integrable,
and since it is µ-measurable, µ̃ ≪ µ, i.e. the measure µ̃
is absolutely continuous with respect to µ.

There is a reason why, in eq. (15),∫
Cα

⟨ϕ|ϕ′⟩dµ̃(ϕ′) = r(ϕ) (18)

rather than 1. A perhaps more revealing way of under-
standing this involves the scaling property of the Dirac
distribution δ(x) with a > 1,

δ(ax) = a−1δ(x). (19)

To see how this works, consider the Hilbert space
L2(Rn, µ,C) with the basis (|x⟩)x∈Rn . If f : Rn → Rn

is an invertible reparametrization of Rn, by making a
change of variables ỹ = f(y) we obtain the following
generalization of eq. (19),∫

Rn

⟨x|y⟩d ỹ =

∫
Rn

⟨x|y⟩
∣∣∣∣ ∂f∂y

∣∣∣∣dy =

∣∣∣∣ ∂f∂x
∣∣∣∣ , (20)

where |∂f/∂x| is the modulus of the determinant of the
Jacobian matrix of f at x. With the notation from The-
orem 1 but ϕ replaced by x, µ is the Lebesgue measure
on Rn, dµ(x) = dx, dµ̃(y) = d ỹ, and

r(x) =
dµ̃(x)

dµ(x)
=

∣∣∣∣ ∂f∂x
∣∣∣∣ . (21)

This explains once more how the homogenization of
the amplitude from eq. (10), despite not involving r2(ϕ),
leads to its appearance in eq. (15), by using the general-
ized scaling property of the Dirac delta distribution.

IV. INTERPRETATION OF THE
WAVEFUNCTION

A. Wavefunction or wavefunctional?

Subsystems admit observables that cannot be diag-
onalized simultaneously, so their continuous bases de-
pend on the observable. But since different measurement
settings ultimately translate into distinguishing macro-
states defined by the same set of macro projectors, the
ontic basis from Observation 4 and Principle 1 is consis-
tent with any observables we measure for the subsystems
[21]. This universal basis can be taken as representing
“classical states”, which may be called ontic states. The-
orem 1 allows us to interpret the Born rule for any mea-
surement as “counting” such ontic states.
But what are these ontic states? Since each parti-

cle is represented on a Hilbert space of wavefunctions
that have, among their degrees of freedom, the positions,
which play a role in any measurement, and also form a
continuous basis, it may be tempting to interpret the on-
tic states as position eigenstates, as in Example 1. But we
know that in fact the world is not described by nonrela-
tivistic quantum mechanics, but by quantum field theory.
A unique basis (|ϕ⟩)ϕ∈C that really is ontic or classical

is possible in quantum field theory. In the Schrödinger
wavefunctional formulation of quantum field theory [16,
17], C becomes the configuration space of classical fields,
and the Schrödinger wavefunctional

Ψ[ϕ] := ⟨ϕ|Ψ⟩ (22)

replaces the nonrelativistic wavefunction. Here, ϕ stands
for a collection of classical fields, ϕ = (ϕ1, . . . , ϕn).

B. Macro-classicality

The wavefunctional formulation represents quantum
states in terms of classical field states, in the sense that
the wavefunctional is a complex functional defined on the
configuration space of classical fields. The usual Fock
representation can be obtained from the basis (|ϕ⟩)ϕ∈C

[16]. The Fock representation can then be used to in-
terpret the quantum fields in terms of more commonly
used nonrelativistic quantum mechanical wavefunctions
and operators. But this is a departure from the more
foundational description provided by quantum fields.
We never observe individual particles directly, but only

macro-states. Macro-states are imported from the classi-
cal theory, and they are adequate, because at the macro
level the world looks classical. Therefore, it makes sense
to assume that states of the form |ϕ⟩ belong to macro-

states, i.e. for every |ϕ⟩ there is a macro-state P̂αH so

that |ϕ⟩ ∈ P̂αH, as in Observation 4 and Principle 1.

Principle 2. At any instant, at the macro level, a clas-
sical world in the classical state ϕ looks the same as a
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quantum world in the quantum state |ϕ⟩ or linear com-
binations of such states from the same macro-state.

And indeed, it took us a very long time to realize that
our world is not classical, but quantum.

C. Interpretation of complex numbers

Recall that eq. (10) is based on absorbing the phase
factor in the vector by substituting |ϕ⟩ 7→ eiθ[ϕ]|ϕ⟩, done
just before stating Theorem 1. This substitution depends
on the state |Ψ⟩, in particular θ[ϕ] changes in time. So we
cannot simply interpret |Ψ⟩ directly as a set of classical
states distributed according to the density from eq. (10).

But the phase change |ϕ⟩ 7→ eiθ[ϕ]|ϕ⟩ can be identi-
fied with an U(1) gauge transformation of the classical
field, denoted ϕ 7→ eiθ[ϕ]ϕ (in fact U(1) acts differently
on different fields, but I will use a uniform notation for
its action), so that

eiθ[ϕ]|ϕ⟩ ≡ |eiθ[ϕ]ϕ⟩. (23)

This makes sense because (1) multiplying a state vec-
tor with a phase factor changes the vector, but not the
physical (quantum) state it represents, and (2) an U(1)
gauge transformation of a classical field represents the
same physical (classical) state.

Charged and spinor fields, and electromagnetic poten-
tials, admit a nontrivial U(1) symmetry, but it is suffi-
cient that ϕ includes one such field. The gauge transfor-
mation depends on the state |Ψ⟩, so it changes in time.

Observation 9. Ψ[ϕ] can be made real by changing the
global U(1) gauge of the basis of classical fields.

Principle 3. The wavefunctional |Ψ⟩ =
∫
C
|ϕ⟩dµ̃[ϕ] can

be interpreted as a set of gauged classical fields dis-
tributed according to a density functional (Fig. 2).

wavefunctional phases as gauges density

= x

FIG. 2. Interpretation of the wavefunctional. The U(1)
gauge or phase is represented by the pure color hues in the
color wheel. The density is represented as shades of gray.
Their combination gives the wavefunctional |Ψ⟩ =

∫
C
|ϕ⟩dµ̃[ϕ]

as a set of classical fields with varying densities and gauges.

D. Local beables

There are several benefits in using the interpretation
of the wavefunctional from Principle 3 as starting point
in the investigations of the foundations of quantum the-
ory. It is more foundational, since quantum field theory
is more foundational than nonrelativistic quantum me-
chanics. It comes with an ontology – each state |ϕ⟩ cor-
responds to a set of fields defined on the 3d-space, not on
the configuration space. These fields are the local beables,
whose necessity was advocated by Bell [4]. The Born rule
can be interpreted in terms of such ontic states.
A state does not consist of a single ontic state, but of a

set of such states (Principle 3). The projection postulate
should not be understood as collapsing the system to a
basis state |ϕ⟩, no measurement can extract the complete
information about the state of the entire universe. Only
the ontic states making Ψ[ϕ] belonging to the resulting

macro-state P̂αH should remain after the projection.

E. Many worlds

But if decoherence makes the components of Ψ[ϕ]
corresponding to different macro-states no longer in-
terfere, there is no need to invoke the projection pos-
tulate, and we can adopt the many-worlds interpreta-
tion (MWI). However, “naively” counting the worlds or
macro-branches gives the correct probabilities only if the
state decomposes into macro-branches as in eq. (7).

Observation 10. “Counting” micro-branches that cor-
respond to the basis (|ϕ⟩)ϕ∈C gives the correct probabili-
ties in MWI, in accord with Condition 1. Even if, unlike
the macro-branches, the micro-branches may interfere in
the future, they do this within the same macro-branch.
Moreover, since each micro-branch consists of classical
fields ϕ, and since these are the local beables, it becomes
justified to count each micro-branch as a world.

Observation 11. We should also include quantum grav-
ity in our foundational investigations of quantum theory.
In background-free approaches to quantum gravity, it be-
comes impossible to interpret physically all linear com-
binations as superpositions, because states in which the
geometry of space is different cannot be superposed, so
the ontic states dissociate automatically [22]. They can
reassociate, unless the dissociation becomes irreversible
due to decoherence. This provides an additional justifi-
cation for the many-worlds interpretation (in a revised
form [22]).

Observation 12. Solid arguments were made that a ra-
tional agent should believe that the probability in MWI is
given by the Born rule [8, 19, 27], and also that we should
assign to the branches a measure of existence consistent
with the Born rule [23, 25], even if “naive” branch count-
ing gives a different answer. Does Theorem 1 contradict
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these proposals? No, in fact it shows that they are con-
sistent with “naive counting” applied to an ontic basis
(Observation 10).

We can make an analogy with the existence theorems.
There are situations when we can prove mathematically
that an equation has a solution, without having the so-
lution itself. And it is possible that later we are able to
construct an explicit solution. This doesn’t contradict
the existence theorem, it confirms it. Similarly, Theo-
rem 1 might just provide an explicit situation in which
“naive counting” validates decision-theoretic and other
arguments. It can also be seen as the limit of the refined
branch-counting method proposed in [18].
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